binutils-gdb/gdb/ppc-sysv-tdep.c

2074 lines
64 KiB
C
Raw Normal View History

/* Target-dependent code for PowerPC systems using the SVR4 ABI
for GDB, the GNU debugger.
Copyright (C) 2000-2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "value.h"
#include "ppc-tdep.h"
#include "target.h"
#include "objfiles.h"
2004-06-06 Randolph Chung <tausq@debian.org> * gdbarch.sh (PUSH_DUMMY_CALL): Change CORE_ADDR func_addr argument to struct value *function. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * infcall.c (call_function_by_hand): Pass entire function value to push_dummy_call. * Makefile.in (alpha-tdep.o, frv-tdep.o, ia64-tdep.o, mips-tdep.o) (ppc-sysv-tdep.o, rs6000-tdep.o): Update dependencies. * alpha-tdep.c (alpha_push_dummy_call): Update call signature. * amd64-tdep.c (amd64_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * d10v-tdep.c (d10v_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call) (hppa64_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * m88k-tdep.c (m88k_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call) (mips_o32_push_dummy_call, mips_o64_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * rs6000-tdep.c (rs6000_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu) (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise.
2004-06-07 04:02:55 +02:00
#include "infcall.h"
#include "dwarf2.h"
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
#include "target-float.h"
gdb: Use std::min and std::max throughout Otherwise including <string> or some other C++ header is broken. E.g.: In file included from /opt/gcc/include/c++/7.0.0/bits/char_traits.h:39:0, from /opt/gcc/include/c++/7.0.0/string:40, from /home/pedro/gdb/mygit/cxx-convertion/src/gdb/infrun.c:68: /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:243:56: error: macro "min" passed 3 arguments, but takes just 2 min(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:265:56: error: macro "max" passed 3 arguments, but takes just 2 max(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ In file included from .../src/gdb/infrun.c:21:0: To the best of my grepping abilities, I believe I adjusted all min/max calls. gdb/ChangeLog: 2016-09-16 Pedro Alves <palves@redhat.com> * defs.h (min, max): Delete. * aarch64-tdep.c: Include <algorithm> and use std::min and std::max throughout. * aarch64-tdep.c: Likewise. * alpha-tdep.c: Likewise. * amd64-tdep.c: Likewise. * amd64-windows-tdep.c: Likewise. * arm-tdep.c: Likewise. * avr-tdep.c: Likewise. * breakpoint.c: Likewise. * btrace.c: Likewise. * ctf.c: Likewise. * disasm.c: Likewise. * doublest.c: Likewise. * dwarf2loc.c: Likewise. * dwarf2read.c: Likewise. * environ.c: Likewise. * exec.c: Likewise. * f-exp.y: Likewise. * findcmd.c: Likewise. * ft32-tdep.c: Likewise. * gcore.c: Likewise. * hppa-tdep.c: Likewise. * i386-darwin-tdep.c: Likewise. * i386-tdep.c: Likewise. * linux-thread-db.c: Likewise. * lm32-tdep.c: Likewise. * m32r-tdep.c: Likewise. * m88k-tdep.c: Likewise. * memrange.c: Likewise. * minidebug.c: Likewise. * mips-tdep.c: Likewise. * moxie-tdep.c: Likewise. * nds32-tdep.c: Likewise. * nios2-tdep.c: Likewise. * nto-procfs.c: Likewise. * parse.c: Likewise. * ppc-sysv-tdep.c: Likewise. * probe.c: Likewise. * record-btrace.c: Likewise. * remote.c: Likewise. * rs6000-tdep.c: Likewise. * rx-tdep.c: Likewise. * s390-linux-nat.c: Likewise. * s390-linux-tdep.c: Likewise. * ser-tcp.c: Likewise. * sh-tdep.c: Likewise. * sh64-tdep.c: Likewise. * source.c: Likewise. * sparc-tdep.c: Likewise. * symfile.c: Likewise. * target-memory.c: Likewise. * target.c: Likewise. * tic6x-tdep.c: Likewise. * tilegx-tdep.c: Likewise. * tracefile-tfile.c: Likewise. * tracepoint.c: Likewise. * valprint.c: Likewise. * value.c: Likewise. * xtensa-tdep.c: Likewise. * cli/cli-cmds.c: Likewise. * compile/compile-object-load.c: Likewise.
2016-09-16 20:55:17 +02:00
#include <algorithm>
/* Check whether FTPYE is a (pointer to) function type that should use
the OpenCL vector ABI. */
static int
ppc_sysv_use_opencl_abi (struct type *ftype)
{
ftype = check_typedef (ftype);
if (ftype->code () == TYPE_CODE_PTR)
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
return (ftype->code () == TYPE_CODE_FUNC
&& TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
}
/* Pass the arguments in either registers, or in the stack. Using the
ppc sysv ABI, the first eight words of the argument list (that might
be less than eight parameters if some parameters occupy more than one
word) are passed in r3..r10 registers. float and double parameters are
passed in fpr's, in addition to that. Rest of the parameters if any
are passed in user stack.
If the function is returning a structure, then the return address is passed
[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 02:48:08 +02:00
in r3, then the first 7 words of the parameters can be passed in registers,
starting from r4. */
CORE_ADDR
2004-06-06 Randolph Chung <tausq@debian.org> * gdbarch.sh (PUSH_DUMMY_CALL): Change CORE_ADDR func_addr argument to struct value *function. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * infcall.c (call_function_by_hand): Pass entire function value to push_dummy_call. * Makefile.in (alpha-tdep.o, frv-tdep.o, ia64-tdep.o, mips-tdep.o) (ppc-sysv-tdep.o, rs6000-tdep.o): Update dependencies. * alpha-tdep.c (alpha_push_dummy_call): Update call signature. * amd64-tdep.c (amd64_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * d10v-tdep.c (d10v_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call) (hppa64_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * m88k-tdep.c (m88k_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call) (mips_o32_push_dummy_call, mips_o64_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * rs6000-tdep.c (rs6000_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu) (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise.
2004-06-07 04:02:55 +02:00
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 12:21:04 +01:00
function_call_return_method return_method,
CORE_ADDR struct_addr)
{
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
ULONGEST saved_sp;
int argspace = 0; /* 0 is an initial wrong guess. */
int write_pass;
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
gdb_assert (tdep->wordsize == 4);
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
2007-06-18 Markus Deuling <deuling@de.ibm.com> * gdbarch.sh (SP_REGNUM): Replace by gdbarch_sp_regnum. * v850-tdep.c (v850_unwind_sp): Likewise. * std-regs.c (value_of_builtin_frame_sp_reg): Likewise. * stack.c (frame_info): Likewise. * stabsread.c (define_symbol): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu) (sh_dwarf2_frame_init_reg, sh_frame_cache, sh_frame_prev_register) (sh_unwind_sp): Likewise. * sh64-tdep.c (sh64_push_dummy_call, sh64_frame_cache) (sh64_frame_prev_register, sh64_unwind_sp): Likewise. * rs6000-tdep.c (rs6000_push_dummy_call, rs6000_unwind_dummy_id) (rs6000_frame_cache): Likewise. * rs6000-nat.c (store_register): Likewise. * remote-mips.c (mips_wait): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * m32r-rom.c (m32r_supply_register): Likewise. * frame.c (frame_sp_unwind): Likewise. * mips-tdep.c (mips_insn16_frame_cache) (mips_insn32_frame_cache): Likewise (comment). * m68klinux-nat.c (supply_gregset): Likewise. * m68k-tdep.c (m68k_get_longjmp_target): Likewise. * ia64-tdep.c (ia64_frame_prev_register): Likewise. * i386-tdep.c (i386_get_longjmp_target): Likewise. * dwarf2-frame.c (dwarf2_frame_default_init_reg): Likewise. * cris-tdep.c (cris_regnums, cris_sigcontext_addr) (cris_sigtramp_frame_unwind_cache, cris_push_dummy_call) (cris_scan_prologue, crisv32_scan_prologue, cris_unwind_sp) (cris_register_type, crisv32_register_type) (cris_dwarf2_frame_init_reg): Likewise. * arch-utils.c (legacy_virtual_frame_pointer): Likewise. * amd64-tdep.c (amd64_frame_prev_register): Likewise. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Likewise. * libunwind-frame.c (libunwind_frame_cache): Likewise. * gdbarch.sh (PC_REGNUM): Replace by gdbarch_pc_regnum. * regcache.c (read_pc_pid, generic_target_write_pc): Likewise. * xtensa-tdep.c (xtensa_register_type, xtensa_supply_gregset) (xtensa_unwind_pc, xtensa_frame_cache, xtensa_frame_prev_register) (xtensa_extract_return_value, xtensa_store_return_value): Likewise. * v850-tdep.c (v850_unwind_pc): Likewise. * stack.c (frame_info): Likewise. * sh-tdep.c (sh_generic_show_regs, sh3_show_regs, sh2e_show_regs) (sh2a_show_regs, sh2a_nofpu_show_regs, sh3e_show_regs) (sh3_dsp_show_regs, sh4_show_regs, sh4_nofpu_show_regs) (sh_dwarf2_frame_init_reg, sh_frame_prev_register, sh_unwind_pc) (sh_dsp_show_regs): Likewise. * shnbsd-tdep.c (shnbsd_supply_gregset) (shnbsd_collect_gregset): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Likewise. * sh64-tdep.c (sh64_compact_reg_base_num, sh64_show_media_regs) (sh64_frame_prev_register, sh64_unwind_pc): Likewise. * rs6000-tdep.c (ppc_supply_gregset, ppc_collect_gregset) (6000_register_reggroup_p, rs6000_unwind_pc) (rs6000_frame_cache): Likewise. * rs6000-nat.c (regmap, rs6000_fetch_inferior_registers) (rs6000_store_inferior_registers): Likewise. * remote-mips.c (mips_wait, mips_load): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcnbsd-nat.c (getregs_supplies, ppcnbsd_supply_pcb): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * ppc-linux-nat.c (ppc_register_u_addr, fetch_ppc_registers) (store_ppc_registers, fill_gregset): Likewise. * mips-tdep.c (mips_stub_frame_cache, mips_gdbarch_init): Likewise. * mipsnbsd-tdep.c (mipsnbsd_supply_reg, mipsnbsd_fill_reg): Likewise. * mipsnbsd-nat.c (getregs_supplies): Likewise. * m68k-tdep.c (m68k_register_type, m68k_unwind_pc): Likewise. * m68klinux-nat.c (supply_gregset): Likewise. * irix5-nat.c (fill_gregset): Likewise. * i386-tdep.c (i386_unwind_pc): Likewise. * i386-linux-nat.c (i386_linux_resume): Likewise. * frame.c (get_prev_frame_1): Likewise. * dwarf2-frame.c (dwarf2_frame_default_init_reg): Likewise. * dbug-rom.c (dbug_supply_register): Likewise. * cris-tdep.c (cris_sigtramp_frame_unwind_cache, cris_scan_prologue) (crisv32_scan_prologue, cris_unwind_pc, cris_register_size) (cris_register_type, crisv32_register_type, crisv32_register_name) (cris_dwarf2_frame_init_reg, find_step_target) (cris_software_single_step, cris_supply_gregset) (cris_regnums): Likewise. * alpha-linux-nat.c (alpha_linux_register_u_offset): Likewise. * aix-thread.c (special_register_p, supply_sprs64, supply_sprs32) (fill_sprs64, fill_sprs32, store_regs_user_thread): Likewise. * mips-linux-tdep.c (mips_linux_write_pc): Likewise. * gdbarch.sh (PS_REGNUM): Replace by gdbarch_ps_regnum. * dbug-rom.c (dbug_supply_register): Likewise. * xtensa-tdep.c (xtensa_supply_gregset, xtensa_frame_cache) (xtensa_frame_prev_register, xtensa_push_dummy_call): Likewise. * win32-nat.c (win32_resume): Likewise. * std-regs.c (value_of_builtin_frame_ps_reg) (value_of_builtin_frame_pc_reg): Likewise. * m68k-tdep.c (m68k_register_type): Likewise. * m68klinux-nat.c (supply_gregset): Likewise. * gdbarch.sh (FP0_REGNUM): Replace by gdbarch_fp0_regnum. * sh-tdep.c (sh_extract_return_value_fpu, sh_store_return_value_fpu) (sh2e_show_regs, sh2a_show_regs, sh3e_show_regs, sh4_show_regs) (sh_sh2a_register_type, sh_sh3e_register_type, sh_sh4_register_type) (fv_reg_base_num, dr_reg_base_num): Likewise. * sh64-tdep.c (sh64_fv_reg_base_num, sh64_dr_reg_base_num) (sh64_fpp_reg_base_num, sh64_compact_reg_base_num, sh64_push_dummy_call) (sh64_extract_return_value, sh64_store_return_value) (sh64_show_media_regs, sh64_show_compact_regs, sh64_register_type) (sh64_do_fp_register, sh64_media_print_registers_info): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers) (invalidate_cache): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * mipsnbsd-tdep.c (mipsnbsd_supply_fpreg) (mipsnbsd_fill_fpreg): Likewise. * mipsnbsd-nat.c (mipsnbsd_fetch_inferior_registers) (mipsnbsd_store_inferior_registers): Likewise. * mips-linux-tdep.c (mips_supply_fpregset, mips_fill_fpregset) (mips64_supply_fpregset, mips64_fill_fpregset): Likewise. * mips-linux-nat.c (mips64_linux_register_addr): Likewise. * m68k-tdep.c (m68k_register_type, m68k_convert_register_p): Likewise. * m68klinux-nat.c (getfpregs_supplies, supply_fpregset) (fill_fpregset): Likewise. * irix5-nat.c (supply_fpregset, fill_fpregset): Likewise. * i386-tdep.h (struct_return): Likewise (comment). * i386-nto-tdep.c (i386nto_register_area): Likewise. * go32-nat.c (fetch_register, go32_fetch_registers, store_register) (go32_store_registers): Likewise. * alpha-tdep.c (alpha_next_pc): Likewise. * alpha-linux-nat.c (alpha_linux_register_u_offset): Likewise. * alphabsd-nat.c (alphabsd_fetch_inferior_registers) (alphabsd_store_inferior_registers): Likewise. * core-regset.c (fetch_core_registers): Likewise. * i386v4-nat.c (supply_fpregset, fill_fpregset): Likewise. * gdbarch.c, gdbarch.h: Regenerate.
2007-06-18 19:45:26 +02:00
&saved_sp);
/* Go through the argument list twice.
Pass 1: Figure out how much new stack space is required for
arguments and pushed values. Unlike the PowerOpen ABI, the SysV
ABI doesn't reserve any extra space for parameters which are put
in registers, but does always push structures and then pass their
address.
Pass 2: Replay the same computation but this time also write the
values out to the target. */
for (write_pass = 0; write_pass < 2; write_pass++)
{
int argno;
/* Next available floating point register for float and double
arguments. */
int freg = 1;
/* Next available general register for non-float, non-vector
arguments. */
int greg = 3;
/* Next available vector register for vector arguments. */
int vreg = 2;
/* Arguments start above the "LR save word" and "Back chain". */
int argoffset = 2 * tdep->wordsize;
/* Structures start after the arguments. */
int structoffset = argoffset + argspace;
/* If the function is returning a `struct', then the first word
(which will be passed in r3) is used for struct return
address. In that case we should advance one word and start
from r4 register to copy parameters. */
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 12:21:04 +01:00
if (return_method == return_method_struct)
{
if (write_pass)
regcache_cooked_write_signed (regcache,
tdep->ppc_gp0_regnum + greg,
struct_addr);
greg++;
}
for (argno = 0; argno < nargs; argno++)
{
struct value *arg = args[argno];
struct type *type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (type);
const bfd_byte *val = value_contents (arg);
if (type->code () == TYPE_CODE_FLT && len <= 8
&& !tdep->soft_float)
{
/* Floating point value converted to "double" then
passed in an FP register, when the registers run out,
8 byte aligned stack is used. */
if (freg <= 8)
{
if (write_pass)
{
/* Always store the floating point value using
the register's floating-point format. */
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
struct type *regtype
= register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (val, type, regval, regtype);
regcache->cooked_write (tdep->ppc_fp0_regnum + freg,
regval);
}
freg++;
}
else
{
/* The SysV ABI tells us to convert floats to
doubles before writing them to an 8 byte aligned
stack location. Unfortunately GCC does not do
that, and stores floats into 4 byte aligned
locations without converting them to doubles.
Since there is no know compiler that actually
follows the ABI here, we implement the GCC
convention. */
/* Align to 4 bytes or 8 bytes depending on the type of
the argument (float or double). */
argoffset = align_up (argoffset, len);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += len;
}
}
else if (type->code () == TYPE_CODE_FLT
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
&& len == 16
&& !tdep->soft_float
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
&& (gdbarch_long_double_format (gdbarch)
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
== floatformats_ibm_long_double))
{
/* IBM long double passed in two FP registers if
available, otherwise 8-byte aligned stack. */
if (freg <= 7)
{
if (write_pass)
{
regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
val + 8);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
freg += 2;
}
else
{
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += 16;
}
}
else if (len == 8
&& (type->code () == TYPE_CODE_INT /* long long */
|| type->code () == TYPE_CODE_FLT /* double */
|| (type->code () == TYPE_CODE_DECFLOAT
&& tdep->soft_float)))
{
/* "long long" or soft-float "double" or "_Decimal64"
passed in an odd/even register pair with the low
addressed word in the odd register and the high
addressed word in the even register, or when the
registers run out an 8 byte aligned stack
location. */
if (greg > 9)
{
/* Just in case GREG was 10. */
greg = 11;
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += 8;
}
else
{
/* Must start on an odd register - r3/r4 etc. */
if ((greg & 1) == 0)
greg++;
if (write_pass)
{
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
val + 0);
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
val + 4);
}
greg += 2;
}
}
else if (len == 16
&& ((type->code () == TYPE_CODE_FLT
&& (gdbarch_long_double_format (gdbarch)
== floatformats_ibm_long_double))
|| (type->code () == TYPE_CODE_DECFLOAT
&& tdep->soft_float)))
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
{
/* Soft-float IBM long double or _Decimal128 passed in
four consecutive registers, or on the stack. The
registers are not necessarily odd/even pairs. */
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
if (greg > 7)
{
greg = 11;
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += 16;
}
else
{
if (write_pass)
{
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
val + 0);
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
val + 4);
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 2,
val + 8);
regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 3,
val + 12);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
greg += 4;
}
}
else if (type->code () == TYPE_CODE_DECFLOAT && len <= 8
&& !tdep->soft_float)
{
/* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
end up in memory. */
if (freg <= 8)
{
if (write_pass)
{
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
const gdb_byte *p;
/* 32-bit decimal floats are right aligned in the
doubleword. */
if (TYPE_LENGTH (type) == 4)
{
memcpy (regval + 4, val, 4);
p = regval;
}
else
p = val;
regcache->cooked_write (tdep->ppc_fp0_regnum + freg, p);
}
freg++;
}
else
{
argoffset = align_up (argoffset, len);
if (write_pass)
/* Write value in the stack's parameter save area. */
write_memory (sp + argoffset, val, len);
argoffset += len;
}
}
else if (type->code () == TYPE_CODE_DECFLOAT && len == 16
&& !tdep->soft_float)
{
/* 128-bit decimal floats go in f2 .. f7, always in even/odd
pairs. They can end up in memory, using two doublewords. */
if (freg <= 6)
{
/* Make sure freg is even. */
freg += freg & 1;
if (write_pass)
{
regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
val + 8);
}
}
else
{
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, 16);
argoffset += 16;
}
/* If a 128-bit decimal float goes to the stack because only f7
and f8 are free (thus there's no even/odd register pair
available), these registers should be marked as occupied.
Hence we increase freg even when writing to memory. */
freg += 2;
}
else if (len < 16
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& opencl_abi)
{
/* OpenCL vectors shorter than 16 bytes are passed as if
a series of independent scalars. */
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
for (i = 0; i < nelt; i++)
{
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
if (eltype->code () == TYPE_CODE_FLT && !tdep->soft_float)
{
if (freg <= 8)
{
if (write_pass)
{
int regnum = tdep->ppc_fp0_regnum + freg;
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
struct type *regtype
= register_type (gdbarch, regnum);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (elval, eltype,
regval, regtype);
regcache->cooked_write (regnum, regval);
}
freg++;
}
else
{
argoffset = align_up (argoffset, len);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += len;
}
}
else if (TYPE_LENGTH (eltype) == 8)
{
if (greg > 9)
{
/* Just in case GREG was 10. */
greg = 11;
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, elval,
TYPE_LENGTH (eltype));
argoffset += 8;
}
else
{
/* Must start on an odd register - r3/r4 etc. */
if ((greg & 1) == 0)
greg++;
if (write_pass)
{
int regnum = tdep->ppc_gp0_regnum + greg;
regcache->cooked_write (regnum + 0, elval + 0);
regcache->cooked_write (regnum + 1, elval + 4);
}
greg += 2;
}
}
else
{
gdb_byte word[PPC_MAX_REGISTER_SIZE];
store_unsigned_integer (word, tdep->wordsize, byte_order,
unpack_long (eltype, elval));
if (greg <= 10)
{
if (write_pass)
regcache->cooked_write (tdep->ppc_gp0_regnum + greg,
word);
greg++;
}
else
{
argoffset = align_up (argoffset, tdep->wordsize);
if (write_pass)
write_memory (sp + argoffset, word, tdep->wordsize);
argoffset += tdep->wordsize;
}
}
}
}
else if (len >= 16
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& opencl_abi)
{
/* OpenCL vectors 16 bytes or longer are passed as if
a series of AltiVec vectors. */
int i;
for (i = 0; i < len / 16; i++)
{
const gdb_byte *elval = val + i * 16;
if (vreg <= 13)
{
if (write_pass)
regcache->cooked_write (tdep->ppc_vr0_regnum + vreg,
elval);
vreg++;
}
else
{
argoffset = align_up (argoffset, 16);
if (write_pass)
write_memory (sp + argoffset, elval, 16);
argoffset += 16;
}
}
}
else if (len == 16
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
{
/* Vector parameter passed in an Altivec register, or
when that runs out, 16 byte aligned stack location. */
if (vreg <= 13)
{
if (write_pass)
regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, val);
vreg++;
}
else
{
argoffset = align_up (argoffset, 16);
if (write_pass)
write_memory (sp + argoffset, val, 16);
argoffset += 16;
}
}
else if (len == 8
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->vector_abi == POWERPC_VEC_SPE)
{
/* Vector parameter passed in an e500 register, or when
that runs out, 8 byte aligned stack location. Note
that since e500 vector and general purpose registers
both map onto the same underlying register set, a
"greg" and not a "vreg" is consumed here. A cooked
write stores the value in the correct locations
within the raw register cache. */
if (greg <= 10)
{
if (write_pass)
regcache->cooked_write (tdep->ppc_ev0_regnum + greg, val);
greg++;
}
else
{
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, 8);
argoffset += 8;
}
}
else
{
/* Reduce the parameter down to something that fits in a
"word". */
gdb_byte word[PPC_MAX_REGISTER_SIZE];
memset (word, 0, PPC_MAX_REGISTER_SIZE);
if (len > tdep->wordsize
|| type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION)
{
/* Structs and large values are put in an
aligned stack slot ... */
if (type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& len >= 16)
structoffset = align_up (structoffset, 16);
else
structoffset = align_up (structoffset, 8);
if (write_pass)
write_memory (sp + structoffset, val, len);
/* ... and then a "word" pointing to that address is
passed as the parameter. */
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
store_unsigned_integer (word, tdep->wordsize, byte_order,
sp + structoffset);
structoffset += len;
}
else if (type->code () == TYPE_CODE_INT)
/* Sign or zero extend the "int" into a "word". */
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
store_unsigned_integer (word, tdep->wordsize, byte_order,
unpack_long (type, val));
else
/* Always goes in the low address. */
memcpy (word, val, len);
/* Store that "word" in a register, or on the stack.
The words have "4" byte alignment. */
if (greg <= 10)
{
if (write_pass)
regcache->cooked_write (tdep->ppc_gp0_regnum + greg, word);
greg++;
}
else
{
argoffset = align_up (argoffset, tdep->wordsize);
if (write_pass)
write_memory (sp + argoffset, word, tdep->wordsize);
argoffset += tdep->wordsize;
}
}
}
/* Compute the actual stack space requirements. */
if (!write_pass)
{
/* Remember the amount of space needed by the arguments. */
argspace = argoffset;
/* Allocate space for both the arguments and the structures. */
sp -= (argoffset + structoffset);
/* Ensure that the stack is still 16 byte aligned. */
sp = align_down (sp, 16);
}
/* The psABI says that "A caller of a function that takes a
variable argument list shall set condition register bit 6 to
1 if it passes one or more arguments in the floating-point
registers. It is strongly recommended that the caller set the
bit to 0 otherwise..." Doing this for normal functions too
shouldn't hurt. */
if (write_pass)
{
ULONGEST cr;
regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
if (freg > 1)
cr |= 0x02000000;
else
cr &= ~0x02000000;
regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
}
}
/* Update %sp. */
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
/* Write the backchain (it occupies WORDSIZED bytes). */
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
/* Point the inferior function call's return address at the dummy's
breakpoint. */
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
return sp;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Handle the return-value conventions for Decimal Floating Point values. */
Mostly trivial enum fixes This is a patch I extracted from Pedro's C++ branch. It contains the most trivial enum fixes, where an integer type/value was used instead of the appropriate enum type/value. It fixes many C++ errors, since in C++ you can't mix integers and enums implicitely. Regardless of the C++ conversion, I think this is a good cleanup to make use of the appropriate enum types. Regression-tested on native x86_64. gdb/ChangeLog: * aarch64-linux-nat.c (aarch64_linux_can_use_hw_breakpoint): Use enum type or value instead of integer. (aarch64_linux_insert_watchpoint): Likewise. (aarch64_linux_remove_watchpoint): Likewise. * ada-lang.c (ada_op_print_tab): Likewise. * amd64-linux-tdep.c (amd64_canonicalize_syscall): Likewise. (amd64_linux_syscall_record_common): Likewise. * arch-utils.c (target_byte_order_user): Likewise. (default_byte_order): Likewise. * arm-linux-nat.c (arm_linux_can_use_hw_breakpoint): Likewise. (arm_linux_get_hwbp_type): Likewise. (arm_linux_hw_watchpoint_initialize): Likewise. (arm_linux_insert_watchpoint): Likewise. * arm-linux-tdep.c (arm_canonicalize_syscall): Likewise. (arm_linux_syscall_record): Likewise. * breakpoint.c (update_watchpoint): Likewise. (breakpoint_here_p): Likewise. (bpstat_print): Likewise. (enable_breakpoint_disp): Likewise. * c-lang.c (c_op_print_tab): Likewise. * cli/cli-decode.c (add_info_alias): Likewise. * d-lang.c (d_op_print_tab): Likewise. * eval.c (evaluate_subexp_standard): Likewise. * f-exp.y (dot_ops): Likewise. (f77_keywords): Likewise. * f-lang.c (f_op_print_tab): Likewise. * go-lang.c (go_op_print_tab): Likewise. * guile/scm-breakpoint.c (gdbscm_make_breakpoint): Likewise. * guile/scm-cmd.c (gdbscm_make_command): Likewise. * guile/scm-param.c (gdbscm_make_parameter): Likewise. * guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Likewise. * guile/scm-string.c (struct scm_to_stringn_data): Likewise. (struct scm_from_stringn_data): Likewise. * i386-linux-tdep.c (i386_canonicalize_syscall): Likewise. * ia64-linux-nat.c (ia64_linux_insert_watchpoint): Likewise. (ia64_linux_remove_watchpoint): Likewise. (ia64_linux_can_use_hw_breakpoint): Likewise. * infrun.c (print_stop_event): Likewise. * jv-lang.c (java_op_print_tab): Likewise. * linux-nat.c (linux_proc_xfer_partial): Likewise. * linux-nat.h (struct lwp_info): Likewise. * linux-thread-db.c (enable_thread_event): Likewise. * m2-lang.c (m2_op_print_tab): Likewise. * mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise. (mi_cmd_stack_list_variables): Likewise. * mi/mi-main.c (mi_cmd_trace_frame_collected): Likewise. * mi/mi-out.c (mi_table_begin): Likewise. (mi_table_header): Likewise. * mips-linux-nat.c (mips_linux_can_use_hw_breakpoint): Likewise. (mips_linux_insert_watchpoint): Likewise. (mips_linux_remove_watchpoint): Likewise. * nat/mips-linux-watch.c (mips_linux_watch_type_to_irw): Likewise. * nat/mips-linux-watch.h (struct mips_watchpoint): Likewise. (mips_linux_watch_type_to_irw): Likewise. * nto-procfs.c (procfs_can_use_hw_breakpoint): Likewise. (procfs_insert_hw_watchpoint): Likewise. (procfs_remove_hw_watchpoint): Likewise. (procfs_hw_watchpoint): Likewise. (procfs_can_use_hw_breakpoint): Likewise. (procfs_remove_hw_watchpoint): Likewise. (procfs_insert_hw_watchpoint): Likewise. * p-lang.c (pascal_op_print_tab): Likewise. * ppc-linux-nat.c (ppc_linux_can_use_hw_breakpoint): Likewise. * ppc-linux-tdep.c (ppu2spu_unwind_register): Likewise. * ppc-sysv-tdep.c (get_decimal_float_return_value): Likewise. * procfs.c (procfs_can_use_hw_breakpoint): Likewise. (procfs_insert_watchpoint): Likewise. (procfs_remove_watchpoint): Likewise. * psymtab.c (recursively_search_psymtabs): Likewise. * remote-m32r-sdi.c (m32r_can_use_hw_watchpoint): Likewise. (m32r_insert_watchpoint): Likewise. * remote-mips.c (mips_can_use_watchpoint): Likewise. (mips_insert_watchpoint): Likewise. (mips_remove_watchpoint): Likewise. * remote.c (watchpoint_to_Z_packet): Likewise. (remote_insert_watchpoint): Likewise. (remote_remove_watchpoint): Likewise. (remote_check_watch_resources): Likewise. * s390-linux-nat.c (s390_insert_watchpoint): Likewise. (s390_remove_watchpoint): Likewise. (s390_can_use_hw_breakpoint): Likewise. * s390-linux-tdep.c (s390_gdbarch_init): Likewise. * spu-linux-nat.c (spu_can_use_hw_breakpoint): Likewise. * target.h (struct target_ops): Likewise. * tilegx-tdep.c (tilegx_analyze_prologue): Likewise. * ui-out.c (struct ui_out_hdr): Likewise. (append_header_to_list): Likewise. (get_next_header): Likewise. (verify_field): Likewise. (ui_out_begin): Likewise. (ui_out_field_int): Likewise. (ui_out_field_fmt_int): Likewise. (ui_out_field_skip): Likewise. (ui_out_field_string): Likewise. (ui_out_field_fmt): Likewise. * varobj.c (new_variable): Likewise. * x86-nat.c (x86_insert_watchpoint): Likewise. (x86_remove_watchpoint): Likewise. (x86_can_use_hw_breakpoint): Likewise. * xtensa-tdep.h (struct gdbarch_tdep): Likewise. * inflow.c (enum gdb_has_a_terminal_flag_enum): Add name to previously anonymous enumeration type.. * linux-record.h (enum gdb_syscall): Add gdb_sys_no_syscall value. * target-debug.h (target_debug_print_enum_target_hw_bp_type): New. (target_debug_print_enum_bptype): New. * target-delegates.c: Regenerate.
2015-07-31 19:19:53 +02:00
static enum return_value_convention
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
struct regcache *regcache, gdb_byte *readbuf,
const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
gdb_assert (valtype->code () == TYPE_CODE_DECFLOAT);
/* 32-bit and 64-bit decimal floats in f1. */
if (TYPE_LENGTH (valtype) <= 8)
{
if (writebuf != NULL)
{
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
const gdb_byte *p;
/* 32-bit decimal float is right aligned in the doubleword. */
if (TYPE_LENGTH (valtype) == 4)
{
memcpy (regval + 4, writebuf, 4);
p = regval;
}
else
p = writebuf;
regcache->cooked_write (tdep->ppc_fp0_regnum + 1, p);
}
if (readbuf != NULL)
{
regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
/* Left align 32-bit decimal float. */
if (TYPE_LENGTH (valtype) == 4)
memcpy (readbuf, readbuf + 4, 4);
}
}
/* 128-bit decimal floats in f2,f3. */
else if (TYPE_LENGTH (valtype) == 16)
{
if (writebuf != NULL || readbuf != NULL)
{
int i;
for (i = 0; i < 2; i++)
{
if (writebuf != NULL)
regcache->cooked_write (tdep->ppc_fp0_regnum + 2 + i,
writebuf + i * 8);
if (readbuf != NULL)
regcache->cooked_read (tdep->ppc_fp0_regnum + 2 + i,
readbuf + i * 8);
}
}
}
else
/* Can't happen. */
internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* Handle the return-value conventions specified by the SysV 32-bit
PowerPC ABI (including all the supplements):
no floating-point: floating-point values returned using 32-bit
general-purpose registers.
Altivec: 128-bit vectors returned using vector registers.
e500: 64-bit vectors returned using the full full 64 bit EV
register, floating-point values returned using 32-bit
general-purpose registers.
GCC (broken): Small struct values right (instead of left) aligned
when returned in general-purpose registers. */
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf,
int broken_gcc)
{
2003-11-07 Andrew Cagney <cagney@redhat.com> * ppc-linux-tdep.c (ppc_linux_init_abi): When 32-bit GNU/Linux, set "return_value" instead of "use_struct_convention". (ppc_linux_use_struct_convention): Delete function. (ppc_linux_return_value): New function. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): New function. (ppc_sysv_abi_broken_return_value): New function. (do_ppc_sysv_return_value): Add "gdbarch" parameter. (ppc64_sysv_abi_push_dummy_call): Add "gdbarch" parameter, drop static. (ppc_sysv_abi_extract_return_value): Delete function. (ppc_sysv_abi_broken_extract_return_value): Delete function. (ppc_sysv_abi_store_return_value): Delete function. (ppc_sysv_abi_broken_store_return_value): Delete function. (ppc_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_extract_return_value): Delete function. (ppc64_sysv_abi_store_return_value): Delete function. * ppcnbsd-tdep.c (ppcnbsd_return_value): New function. (ppcnbsd_init_abi): Set "return_value", instead of "use_struct_convention", "extract_return_value", and "store_return_value". (ppcnbsd_use_struct_convention): Delete function. * ppc-tdep.h (ppc64_sysv_abi_return_value): Declare. (ppc_sysv_abi_return_value): Declare. (ppc_sysv_abi_broken_return_value): Declare. (ppc_sysv_abi_use_struct_convention): Delete. (ppc_sysv_abi_store_return_value): Delete. (ppc_sysv_abi_extract_return_value): Delete. (ppc_sysv_abi_broken_store_return_value): Delete. (ppc_sysv_abi_broken_extract_return_value): Delete. (ppc64_sysv_abi_use_struct_convention): Delete. (ppc64_sysv_abi_extract_return_value): Delete. (ppc64_sysv_abi_store_return_value): Delete. * rs6000-tdep.c (rs6000_gdbarch_init): For 32-bit and 64-bit SYSV, set "return_value" instead of "extract_return_value", "store_return_value", and "use_struct_convention".
2003-11-07 21:44:51 +01:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
gdb_assert (tdep->wordsize == 4);
if (type->code () == TYPE_CODE_FLT
&& TYPE_LENGTH (type) <= 8
&& !tdep->soft_float)
{
if (readbuf)
{
/* Floats and doubles stored in "f1". Convert the value to
the required type. */
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
struct type *regtype = register_type (gdbarch,
tdep->ppc_fp0_regnum + 1);
regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (regval, regtype, readbuf, type);
}
if (writebuf)
{
/* Floats and doubles stored in "f1". Convert the value to
the register's "double" type. */
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (writebuf, type, regval, regtype);
regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (type->code () == TYPE_CODE_FLT
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
&& TYPE_LENGTH (type) == 16
&& !tdep->soft_float
&& (gdbarch_long_double_format (gdbarch)
== floatformats_ibm_long_double))
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
{
/* IBM long double stored in f1 and f2. */
if (readbuf)
{
regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
regcache->cooked_read (tdep->ppc_fp0_regnum + 2, readbuf + 8);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
if (writebuf)
{
regcache->cooked_write (tdep->ppc_fp0_regnum + 1, writebuf);
regcache->cooked_write (tdep->ppc_fp0_regnum + 2, writebuf + 8);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_LENGTH (type) == 16
&& ((type->code () == TYPE_CODE_FLT
&& (gdbarch_long_double_format (gdbarch)
== floatformats_ibm_long_double))
|| (type->code () == TYPE_CODE_DECFLOAT && tdep->soft_float)))
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
{
/* Soft-float IBM long double or _Decimal128 stored in r3, r4,
r5, r6. */
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
if (readbuf)
{
regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf);
regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
if (writebuf)
{
regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
include: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.h (struct floatformat): Add split_half field. (floatformat_ibm_long_double): New. libiberty: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * floatformat.c (mant_bits_set): New. (floatformat_to_double): Use it. Note no special handling of split formats. (floatformat_from_double): Note no special handing of split formats. (floatformat_ibm_long_double_is_valid, floatformat_ibm_long_double): New. (floatformat_ieee_single_big, floatformat_ieee_single_little, floatformat_ieee_double_big, floatformat_ieee_double_little, floatformat_ieee_double_littlebyte_bigword, floatformat_vax_f, floatformat_vax_d, floatformat_vax_g, floatformat_i387_ext, floatformat_m68881_ext, floatformat_i960_ext, floatformat_m88110_ext, floatformat_m88110_harris_ext, floatformat_arm_ext_big, floatformat_arm_ext_littlebyte_bigword, floatformat_ia64_spill_big, floatformat_ia64_spill_little, floatformat_ia64_quad_big, floatformat_ia64_quad_little): Update for addition of split_half field. gdb: 2007-11-07 Joseph Myers <joseph@codesourcery.com> Daniel Jacobowitz <dan@codesourcery.com> * gdbtypes.c (floatformats_ibm_long_double): New. * gdbtypes.h (floatformats_ibm_long_double): Declare. * ia64-tdep.c (floatformat_ia64_ext): Update for addition of split_half field. * mips-tdep.c (n32n64_floatformat_always_valid, floatformat_n32n64_long_double_big, floatformats_n32n64_long): Remove. (mips_gdbarch_init): Use floatformats_ibm_long_double instead of floatformats_n32n64_long. * ppc-linux-tdep.c (ppc_linux_init_abi): Use 128-bit IBM long double. * doublest.c (convert_floatformat_to_doublest, convert_doublest_to_floatformat): Handle split floating-point formats. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Handle IBM long double arguments. (ppc64_sysv_abi_push_dummy_call): Likewise. (do_ppc_sysv_return_value): Handle IBM long double return.
2007-11-08 01:08:48 +01:00
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if ((type->code () == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
|| (type->code () == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
|| (type->code () == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
&& tdep->soft_float))
{
if (readbuf)
{
/* A long long, double or _Decimal64 stored in the 32 bit
r3/r4. */
regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
}
if (writebuf)
{
/* A long long, double or _Decimal64 stored in the 32 bit
r3/r4. */
regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (type->code () == TYPE_CODE_DECFLOAT && !tdep->soft_float)
return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
writebuf);
else if ((type->code () == TYPE_CODE_INT
|| type->code () == TYPE_CODE_CHAR
|| type->code () == TYPE_CODE_BOOL
|| type->code () == TYPE_CODE_PTR
Convert lvalue reference type check to general reference type check In almost all contexts (except for overload resolution rules and expression semantics), lvalue and rvalue references are equivalent. That means that in all but these cases we can replace a TYPE_CODE_REF check to a TYPE_IS_REFERENCE check and, for switch statements, add a case label for a rvalue reference type next to a case label for an lvalue reference type. This patch does exactly that. gdb/ChangeLog PR gdb/14441 * aarch64-tdep.c (aarch64_type_align) (aarch64_extract_return_value, aarch64_store_return_value): Change lvalue reference type checks to general reference type checks. * amd64-tdep.c (amd64_classify): Likewise. * amd64-windows-tdep.c (amd64_windows_passed_by_integer_register): Likewise. * arm-tdep.c (arm_type_align, arm_extract_return_value) (arm_store_return_value): Likewise. * ax-gdb.c (gen_fetch, gen_cast): Likewise. * c-typeprint.c (c_print_type): Likewise. * c-varobj.c (adjust_value_for_child_access, c_value_of_variable) (cplus_number_of_children, cplus_describe_child): Likewise. * compile/compile-c-symbols.c (generate_vla_size): Likewise. * completer.c (expression_completer): Likewise. * cp-support.c (make_symbol_overload_list_adl_namespace): Likewise. * darwin-nat-info.c (info_mach_region_command): Likewise. * dwarf2loc.c (entry_data_value_coerce_ref) (value_of_dwarf_reg_entry): Likewise. * eval.c (ptrmath_type_p, evaluate_subexp_standard) (evaluate_subexp_for_address, evaluate_subexp_for_sizeof): Likewise. * findvar.c (extract_typed_address, store_typed_address): Likewise. * gdbtypes.c (rank_one_type): Likewise. * hppa-tdep.c (hppa64_integral_or_pointer_p): Likewise. * infcall.c (value_arg_coerce): Likewise. * language.c (pointer_type): Likewise. * m32c-tdep.c (m32c_reg_arg_type, m32c_m16c_address_to_pointer): Likewise. * m88k-tdep.c (m88k_integral_or_pointer_p): Likewise. * mn10300-tdep.c (mn10300_type_align): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * ppc-sysv-tdep.c (do_ppc_sysv_return_value) (ppc64_sysv_abi_push_param, ppc64_sysv_abi_return_value): Likewise. * printcmd.c (print_formatted, x_command): Likewise. * python/py-type.c (typy_get_composite, typy_template_argument): Likewise. * python/py-value.c (valpy_referenced_value) (valpy_get_dynamic_type, value_has_field): Likewise. * s390-linux-tdep.c (s390_function_arg_integer): Likewise. * sparc-tdep.c (sparc_integral_or_pointer_p): Likewise. * sparc64-tdep.c (sparc64_integral_or_pointer_p): Likewise. * spu-tdep.c (spu_scalar_value_p): Likewise. * symtab.c (lookup_symbol_aux): Likewise. * typeprint.c (whatis_exp, print_type_scalar): Likewise. * valarith.c (binop_types_user_defined_p, unop_user_defined_p): Likewise. * valops.c (value_cast_pointers, value_cast) (value_reinterpret_cast, value_dynamic_cast, value_addr, typecmp) (value_struct_elt, value_struct_elt_bitpos) (value_find_oload_method_list, find_overload_match) (value_rtti_indirect_type): Likewise. * valprint.c (val_print_scalar_type_p, generic_val_print): Likewise. * value.c (value_actual_type, value_as_address, unpack_long) (pack_long, pack_unsigned_long, coerce_ref_if_computed) (coerce_ref): Likewise. * varobj.c (varobj_get_value_type): Likewise.
2017-03-20 21:47:54 +01:00
|| TYPE_IS_REFERENCE (type)
|| type->code () == TYPE_CODE_ENUM)
&& TYPE_LENGTH (type) <= tdep->wordsize)
{
if (readbuf)
{
/* Some sort of integer stored in r3. Since TYPE isn't
bigger than the register, sign extension isn't a problem
- just do everything unsigned. */
ULONGEST regval;
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
&regval);
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
regval);
}
if (writebuf)
{
/* Some sort of integer stored in r3. Use unpack_long since
that should handle any required sign extension. */
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
unpack_long (type, writebuf));
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* OpenCL vectors < 16 bytes are returned as distinct
scalars in f1..f2 or r3..r10. */
if (type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& TYPE_LENGTH (type) < 16
&& opencl_abi)
{
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
for (i = 0; i < nelt; i++)
{
int offset = i * TYPE_LENGTH (eltype);
if (eltype->code () == TYPE_CODE_FLT)
{
int regnum = tdep->ppc_fp0_regnum + 1 + i;
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
struct type *regtype = register_type (gdbarch, regnum);
if (writebuf != NULL)
{
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (writebuf + offset, eltype,
regval, regtype);
regcache->cooked_write (regnum, regval);
}
if (readbuf != NULL)
{
regcache->cooked_read (regnum, regval);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (regval, regtype,
readbuf + offset, eltype);
}
}
else
{
int regnum = tdep->ppc_gp0_regnum + 3 + i;
ULONGEST regval;
if (writebuf != NULL)
{
regval = unpack_long (eltype, writebuf + offset);
regcache_cooked_write_unsigned (regcache, regnum, regval);
}
if (readbuf != NULL)
{
regcache_cooked_read_unsigned (regcache, regnum, &regval);
store_unsigned_integer (readbuf + offset,
TYPE_LENGTH (eltype), byte_order,
regval);
}
}
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* OpenCL vectors >= 16 bytes are returned in v2..v9. */
if (type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& TYPE_LENGTH (type) >= 16
&& opencl_abi)
{
int n_regs = TYPE_LENGTH (type) / 16;
int i;
for (i = 0; i < n_regs; i++)
{
int offset = i * 16;
int regnum = tdep->ppc_vr0_regnum + 2 + i;
if (writebuf != NULL)
regcache->cooked_write (regnum, writebuf + offset);
if (readbuf != NULL)
regcache->cooked_read (regnum, readbuf + offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_LENGTH (type) == 16
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
{
if (readbuf)
{
/* Altivec places the return value in "v2". */
regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
}
if (writebuf)
{
/* Altivec places the return value in "v2". */
regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_LENGTH (type) == 16
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->vector_abi == POWERPC_VEC_GENERIC)
{
/* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
GCC without AltiVec returns them in memory, but it warns about
ABI risks in that case; we don't try to support it. */
if (readbuf)
{
regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
}
if (writebuf)
{
regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_LENGTH (type) == 8
&& type->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->vector_abi == POWERPC_VEC_SPE)
{
/* The e500 ABI places return values for the 64-bit DSP types
(__ev64_opaque__) in r3. However, in GDB-speak, ev3
corresponds to the entire r3 value for e500, whereas GDB's r3
only corresponds to the least significant 32-bits. So place
the 64-bit DSP type's value in ev3. */
if (readbuf)
regcache->cooked_read (tdep->ppc_ev0_regnum + 3, readbuf);
if (writebuf)
regcache->cooked_write (tdep->ppc_ev0_regnum + 3, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (broken_gcc && TYPE_LENGTH (type) <= 8)
{
/* GCC screwed up for structures or unions whose size is less
than or equal to 8 bytes.. Instead of left-aligning, it
right-aligns the data into the buffer formed by r3, r4. */
gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
int len = TYPE_LENGTH (type);
int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
if (readbuf)
{
regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
regvals + 0 * tdep->wordsize);
if (len > tdep->wordsize)
regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
regvals + 1 * tdep->wordsize);
memcpy (readbuf, regvals + offset, len);
}
if (writebuf)
{
memset (regvals, 0, sizeof regvals);
memcpy (regvals + offset, writebuf, len);
regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
regvals + 0 * tdep->wordsize);
if (len > tdep->wordsize)
regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
regvals + 1 * tdep->wordsize);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_LENGTH (type) <= 8)
{
if (readbuf)
{
/* This matches SVr4 PPC, it does not match GCC. */
/* The value is right-padded to 8 bytes and then loaded, as
two "words", into r3/r4. */
gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
regvals + 0 * tdep->wordsize);
if (TYPE_LENGTH (type) > tdep->wordsize)
regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
regvals + 1 * tdep->wordsize);
memcpy (readbuf, regvals, TYPE_LENGTH (type));
}
if (writebuf)
{
/* This matches SVr4 PPC, it does not match GCC. */
/* The value is padded out to 8 bytes and then loaded, as
two "words" into r3/r4. */
gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
memset (regvals, 0, sizeof regvals);
memcpy (regvals, writebuf, TYPE_LENGTH (type));
regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
regvals + 0 * tdep->wordsize);
if (TYPE_LENGTH (type) > tdep->wordsize)
regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
regvals + 1 * tdep->wordsize);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
return RETURN_VALUE_STRUCT_CONVENTION;
}
2003-11-07 Andrew Cagney <cagney@redhat.com> * ppc-linux-tdep.c (ppc_linux_init_abi): When 32-bit GNU/Linux, set "return_value" instead of "use_struct_convention". (ppc_linux_use_struct_convention): Delete function. (ppc_linux_return_value): New function. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): New function. (ppc_sysv_abi_broken_return_value): New function. (do_ppc_sysv_return_value): Add "gdbarch" parameter. (ppc64_sysv_abi_push_dummy_call): Add "gdbarch" parameter, drop static. (ppc_sysv_abi_extract_return_value): Delete function. (ppc_sysv_abi_broken_extract_return_value): Delete function. (ppc_sysv_abi_store_return_value): Delete function. (ppc_sysv_abi_broken_store_return_value): Delete function. (ppc_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_extract_return_value): Delete function. (ppc64_sysv_abi_store_return_value): Delete function. * ppcnbsd-tdep.c (ppcnbsd_return_value): New function. (ppcnbsd_init_abi): Set "return_value", instead of "use_struct_convention", "extract_return_value", and "store_return_value". (ppcnbsd_use_struct_convention): Delete function. * ppc-tdep.h (ppc64_sysv_abi_return_value): Declare. (ppc_sysv_abi_return_value): Declare. (ppc_sysv_abi_broken_return_value): Declare. (ppc_sysv_abi_use_struct_convention): Delete. (ppc_sysv_abi_store_return_value): Delete. (ppc_sysv_abi_extract_return_value): Delete. (ppc_sysv_abi_broken_store_return_value): Delete. (ppc_sysv_abi_broken_extract_return_value): Delete. (ppc64_sysv_abi_use_struct_convention): Delete. (ppc64_sysv_abi_extract_return_value): Delete. (ppc64_sysv_abi_store_return_value): Delete. * rs6000-tdep.c (rs6000_gdbarch_init): For 32-bit and 64-bit SYSV, set "return_value" instead of "extract_return_value", "store_return_value", and "use_struct_convention".
2003-11-07 21:44:51 +01:00
enum return_value_convention
gdb/ * breakpoint.h (bp_location): Add related_address member. * inferior.h (get_return_value): Take a pointer to struct value instead of struct type for the function requested. * value.h (using_struct_return): Likewise. * gdbarch.sh (return_value): Take a pointer to struct value instead of struct type for the function requested. * breakpoint.c (set_breakpoint_location_function): Initialize related_address for bp_gnu_ifunc_resolver breakpoints. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the requested function's address to gdbarch_return_value. * eval.c (evaluate_subexp_standard): Pass the requested function's address to using_struct_return. * infcall.c (call_function_by_hand): Pass the requested function's address to using_struct_return and gdbarch_return_value. * infcmd.c (get_return_value): Take a pointer to struct value instead of struct type for the function requested. (print_return_value): Update accordingly. (finish_command_continuation): Likewise. * stack.c (return_command): Pass the requested function's address to using_struct_return and gdbarch_return_value. * value.c (using_struct_return): Take a pointer to struct value instead of struct type for the function requested. Pass the requested function's address to gdbarch_return_value. * python/py-finishbreakpoint.c (finish_breakpoint_object): New function_value member, replacing function_type. (bpfinishpy_dealloc): Update accordingly. (bpfinishpy_pre_stop_hook): Likewise. (bpfinishpy_init): Likewise. Record the requested function's address. * mips-tdep.c (mips_fval_reg): New enum. (mips_o32_push_dummy_call): For MIPS16 FP doubles do not swap words put in GP registers. (mips_o64_push_dummy_call): Update a comment. (mips_o32_return_value): Take a pointer to struct value instead of struct type for the function requested and use it to check if using the MIPS16 calling convention. Return the designated general purpose registers for floating-point values returned in MIPS16 mode. (mips_o64_return_value): Likewise. * ppc-tdep.h (ppc_sysv_abi_return_value): Update prototype. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * alpha-tdep.c (alpha_return_value): Take a pointer to struct value instead of struct type for the function requested. * amd64-tdep.c (amd64_return_value): Likewise. * amd64-windows-tdep.c (amd64_windows_return_value): Likewise. * arm-tdep.c (arm_return_value): Likewise. * avr-tdep.c (avr_return_value): Likewise. * bfin-tdep.c (bfin_return_value): Likewise. * cris-tdep.c (cris_return_value): Likewise. * frv-tdep.c (frv_return_value): Likewise. * h8300-tdep.c (h8300_return_value): Likewise. (h8300h_return_value): Likewise. * hppa-tdep.c (hppa32_return_value): Likewise. (hppa64_return_value): Likewise. * i386-tdep.c (i386_return_value): Likewise. * ia64-tdep.c (ia64_return_value): Likewise. * iq2000-tdep.c (iq2000_return_value): Likewise. * lm32-tdep.c (lm32_return_value): Likewise. * m32c-tdep.c (m32c_return_value): Likewise. * m32r-tdep.c (m32r_return_value): Likewise. * m68hc11-tdep.c (m68hc11_return_value): Likewise. * m68k-tdep.c (m68k_return_value): Likewise. (m68k_svr4_return_value): Likewise. * m88k-tdep.c (m88k_return_value): Likewise. * mep-tdep.c (mep_return_value): Likewise. * microblaze-tdep.c (microblaze_return_value): Likewise. * mn10300-tdep.c (mn10300_return_value): Likewise. * moxie-tdep.c (moxie_return_value): Likewise. * mt-tdep.c (mt_return_value): Likewise. * ppc-linux-tdep.c (ppc_linux_return_value): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Likewise. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * ppcnbsd-tdep.c (ppcnbsd_return_value): Likewise. * rl78-tdep.c (rl78_return_value): Likewise. * rs6000-aix-tdep.c (rs6000_return_value): Likewise. * rx-tdep.c (rx_return_value): Likewise. * s390-tdep.c (s390_return_value): Likewise. * score-tdep.c (score_return_value): Likewise. * sh-tdep.c (sh_return_value_nofpu): Likewise. (sh_return_value_fpu): Likewise. * sh64-tdep.c (sh64_return_value): Likewise. * sparc-tdep.c (sparc32_return_value): Likewise. * sparc64-tdep.c (sparc64_return_value): Likewise. * spu-tdep.c (spu_return_value): Likewise. * tic6x-tdep.c (tic6x_return_value): Likewise. * v850-tdep.c (v850_return_value): Likewise. * vax-tdep.c (vax_return_value): Likewise. * xstormy16-tdep.c (xstormy16_return_value): Likewise. * xtensa-tdep.c (xtensa_return_value): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/testsuite/ * gdb.base/return-nodebug.exp: Also test float and double types.
2012-05-16 16:35:09 +02:00
ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
doc/ChangeLog: -------------- * gdb.texinfo (Set SH Calling convention): New @item. (Show SH Calling convention): Ditto. ChangeLog: ---------- * NEWS: Add information on calling convention and new SH CLI options. * sh-tdep.c (sh_cc_gcc): New static string. (sh_cc_renesas): Ditto. (sh_cc_enum): New static string array. (sh_active_calling_convention): New static string pointer denoting active user chosen ABI. (sh_is_renesas_calling_convention): New function to return function specific ABI, or user choice if necessary. (sh_use_struct_convention): Rename first argument and turn around its meaning. Check for renesas ABI and return accordingly. (sh_use_struct_convention_nofpu): New function. (sh_next_flt_argreg): Get function type as third parameter. Check for renesas ABI and choose floating registers accordingly. (sh_push_dummy_call_fpu): Check for ABI and choose argument slot and struct return slot accordingly. (sh_push_dummy_call_nofpu): Ditto. (sh_return_value_nofpu): Call sh_use_struct_convention_nofpu from here. Evaluate ABI and give to sh_use_struct_convention_nofpu. (sh_return_value_fpu): Evaluate ABI and give to sh_use_struct_convention. (show_sh_command): New function. (set_sh_command): Ditto. (_initialize_sh_tdep): Initialize `set/show sh calling-convention CLI command. * gdbarch.sh (return_value): Add func_type argument. * gdbarch.c: Regenerate. * gdbarch.h: Ditto. * eval.c (evaluate_subexp_standard): Rename local variable value_type to val_type so as not to collide with value_type function. Call using_struct_return with additional function type argument. * infcall.c (call_function_by_hand): Call using_struct_return and gdbarch_return_value with additional function type argument. * infcmd.c (print_return_value): Take addition func_type argument. Call gdbarch_return_value with additional function type argument. (finish_command_continuation): Call print_return_value with additional function type argument. (finish_command): Ditto. * sparc-tdep.c (sparc32_push_dummy_code): Call using_struct_return with additional function type argument. * stack.c (return_command): Call using_struct_return and gdbarch_return_value with additional function type argument. * value.c (using_struct_return): Take additional function type argument. * value.h (using_struct_return): Accommodate declaration. * alpha-tdep.c (alpha_return_value): Add func_type argument. * amd64-tdep.c (amd64_return_value): Ditto. * arm-tdep.c (arm_return_value): Ditto. * avr-tdep.c (avr_return_value): Ditto. * cris-tdep.c (cris_return_value): Ditto. * frv-tdep.c (frv_return_value): Ditto. * h8300-tdep.c (h8300_return_value): Ditto. (h8300h_return_value): Ditto. * hppa-tdep.c (hppa32_return_value): Ditto. (hppa64_return_value): Ditto. * i386-tdep.c (i386_return_value): Ditto. * ia64-tdep.c (ia64_return_value): Ditto. * iq2000-tdep.c (iq2000_return_value): Ditto. * m32c-tdep.c (m32c_return_value): Ditto. * m32r-tdep.c (m32r_return_value): Ditto. * m68hc11-tdep.c (m68hc11_return_value): Ditto. * m68k-tdep.c (m68k_return_value): Ditto. (m68k_svr4_return_value): Ditto. * m88k-tdep.c (m88k_return_value): Ditto. * mep-tdep.c (mep_return_value): Ditto. * mips-tdep.c (mips_eabi_return_value): Ditto. (mips_n32n64_return_value): Ditto. (mips_o32_return_value): Ditto. (mips_o64_return_value): Ditto. * mn10300-tdep.c (mn10300_return_value): Ditto. * mt-tdep.c (mt_return_value): Ditto. * ppc-linux-tdep.c (ppc_linux_return_value): Ditto. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Ditto. (ppc_sysv_abi_broken_return_value): Ditto. (ppc64_sysv_abi_return_value): Ditto. * ppc-tdep.h (ppc_sysv_abi_return_value): Ditto. (ppc_sysv_abi_broken_return_value): Ditto. (ppc64_sysv_abi_return_value): Ditto. * ppcnbsd-tdep.c (ppcnbsd_return_value): Ditto. * rs6000-tdep.c (rs6000_return_value): Ditto. * s390-tdep.c (s390_return_value): Ditto. * score-tdep.c (score_return_value): Ditto. * sh-tdep.c (sh_return_value_nofpu): Ditto. (sh_return_value_fpu): Ditto. * sh64-tdep.c (sh64_return_value): Ditto. * sparc-tdep.c (sparc32_return_value): Ditto. * sparc64-tdep.c (sparc64_return_value): Ditto. * spu-tdep.c (spu_return_value): Ditto. * v850-tdep.c (v850_return_value): Ditto. * vax-tdep.c (vax_return_value): Ditto. * xstormy16-tdep.c (xstormy16_return_value): Ditto. * xtensa-tdep.c (xtensa_return_value): Ditto. * gdbtypes.h (struct type): Add calling_convention member. * dwarf2read.c (read_subroutine_type): Add calling convention read from DW_AT_calling_convention attribute to function type.
2008-04-22 13:03:42 +02:00
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
gdb/ * breakpoint.h (bp_location): Add related_address member. * inferior.h (get_return_value): Take a pointer to struct value instead of struct type for the function requested. * value.h (using_struct_return): Likewise. * gdbarch.sh (return_value): Take a pointer to struct value instead of struct type for the function requested. * breakpoint.c (set_breakpoint_location_function): Initialize related_address for bp_gnu_ifunc_resolver breakpoints. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the requested function's address to gdbarch_return_value. * eval.c (evaluate_subexp_standard): Pass the requested function's address to using_struct_return. * infcall.c (call_function_by_hand): Pass the requested function's address to using_struct_return and gdbarch_return_value. * infcmd.c (get_return_value): Take a pointer to struct value instead of struct type for the function requested. (print_return_value): Update accordingly. (finish_command_continuation): Likewise. * stack.c (return_command): Pass the requested function's address to using_struct_return and gdbarch_return_value. * value.c (using_struct_return): Take a pointer to struct value instead of struct type for the function requested. Pass the requested function's address to gdbarch_return_value. * python/py-finishbreakpoint.c (finish_breakpoint_object): New function_value member, replacing function_type. (bpfinishpy_dealloc): Update accordingly. (bpfinishpy_pre_stop_hook): Likewise. (bpfinishpy_init): Likewise. Record the requested function's address. * mips-tdep.c (mips_fval_reg): New enum. (mips_o32_push_dummy_call): For MIPS16 FP doubles do not swap words put in GP registers. (mips_o64_push_dummy_call): Update a comment. (mips_o32_return_value): Take a pointer to struct value instead of struct type for the function requested and use it to check if using the MIPS16 calling convention. Return the designated general purpose registers for floating-point values returned in MIPS16 mode. (mips_o64_return_value): Likewise. * ppc-tdep.h (ppc_sysv_abi_return_value): Update prototype. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * alpha-tdep.c (alpha_return_value): Take a pointer to struct value instead of struct type for the function requested. * amd64-tdep.c (amd64_return_value): Likewise. * amd64-windows-tdep.c (amd64_windows_return_value): Likewise. * arm-tdep.c (arm_return_value): Likewise. * avr-tdep.c (avr_return_value): Likewise. * bfin-tdep.c (bfin_return_value): Likewise. * cris-tdep.c (cris_return_value): Likewise. * frv-tdep.c (frv_return_value): Likewise. * h8300-tdep.c (h8300_return_value): Likewise. (h8300h_return_value): Likewise. * hppa-tdep.c (hppa32_return_value): Likewise. (hppa64_return_value): Likewise. * i386-tdep.c (i386_return_value): Likewise. * ia64-tdep.c (ia64_return_value): Likewise. * iq2000-tdep.c (iq2000_return_value): Likewise. * lm32-tdep.c (lm32_return_value): Likewise. * m32c-tdep.c (m32c_return_value): Likewise. * m32r-tdep.c (m32r_return_value): Likewise. * m68hc11-tdep.c (m68hc11_return_value): Likewise. * m68k-tdep.c (m68k_return_value): Likewise. (m68k_svr4_return_value): Likewise. * m88k-tdep.c (m88k_return_value): Likewise. * mep-tdep.c (mep_return_value): Likewise. * microblaze-tdep.c (microblaze_return_value): Likewise. * mn10300-tdep.c (mn10300_return_value): Likewise. * moxie-tdep.c (moxie_return_value): Likewise. * mt-tdep.c (mt_return_value): Likewise. * ppc-linux-tdep.c (ppc_linux_return_value): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Likewise. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * ppcnbsd-tdep.c (ppcnbsd_return_value): Likewise. * rl78-tdep.c (rl78_return_value): Likewise. * rs6000-aix-tdep.c (rs6000_return_value): Likewise. * rx-tdep.c (rx_return_value): Likewise. * s390-tdep.c (s390_return_value): Likewise. * score-tdep.c (score_return_value): Likewise. * sh-tdep.c (sh_return_value_nofpu): Likewise. (sh_return_value_fpu): Likewise. * sh64-tdep.c (sh64_return_value): Likewise. * sparc-tdep.c (sparc32_return_value): Likewise. * sparc64-tdep.c (sparc64_return_value): Likewise. * spu-tdep.c (spu_return_value): Likewise. * tic6x-tdep.c (tic6x_return_value): Likewise. * v850-tdep.c (v850_return_value): Likewise. * vax-tdep.c (vax_return_value): Likewise. * xstormy16-tdep.c (xstormy16_return_value): Likewise. * xtensa-tdep.c (xtensa_return_value): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/testsuite/ * gdb.base/return-nodebug.exp: Also test float and double types.
2012-05-16 16:35:09 +02:00
return do_ppc_sysv_return_value (gdbarch,
function ? value_type (function) : NULL,
valtype, regcache, readbuf, writebuf, 0);
}
2003-11-07 Andrew Cagney <cagney@redhat.com> * ppc-linux-tdep.c (ppc_linux_init_abi): When 32-bit GNU/Linux, set "return_value" instead of "use_struct_convention". (ppc_linux_use_struct_convention): Delete function. (ppc_linux_return_value): New function. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): New function. (ppc_sysv_abi_broken_return_value): New function. (do_ppc_sysv_return_value): Add "gdbarch" parameter. (ppc64_sysv_abi_push_dummy_call): Add "gdbarch" parameter, drop static. (ppc_sysv_abi_extract_return_value): Delete function. (ppc_sysv_abi_broken_extract_return_value): Delete function. (ppc_sysv_abi_store_return_value): Delete function. (ppc_sysv_abi_broken_store_return_value): Delete function. (ppc_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_extract_return_value): Delete function. (ppc64_sysv_abi_store_return_value): Delete function. * ppcnbsd-tdep.c (ppcnbsd_return_value): New function. (ppcnbsd_init_abi): Set "return_value", instead of "use_struct_convention", "extract_return_value", and "store_return_value". (ppcnbsd_use_struct_convention): Delete function. * ppc-tdep.h (ppc64_sysv_abi_return_value): Declare. (ppc_sysv_abi_return_value): Declare. (ppc_sysv_abi_broken_return_value): Declare. (ppc_sysv_abi_use_struct_convention): Delete. (ppc_sysv_abi_store_return_value): Delete. (ppc_sysv_abi_extract_return_value): Delete. (ppc_sysv_abi_broken_store_return_value): Delete. (ppc_sysv_abi_broken_extract_return_value): Delete. (ppc64_sysv_abi_use_struct_convention): Delete. (ppc64_sysv_abi_extract_return_value): Delete. (ppc64_sysv_abi_store_return_value): Delete. * rs6000-tdep.c (rs6000_gdbarch_init): For 32-bit and 64-bit SYSV, set "return_value" instead of "extract_return_value", "store_return_value", and "use_struct_convention".
2003-11-07 21:44:51 +01:00
enum return_value_convention
ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
gdb/ * breakpoint.h (bp_location): Add related_address member. * inferior.h (get_return_value): Take a pointer to struct value instead of struct type for the function requested. * value.h (using_struct_return): Likewise. * gdbarch.sh (return_value): Take a pointer to struct value instead of struct type for the function requested. * breakpoint.c (set_breakpoint_location_function): Initialize related_address for bp_gnu_ifunc_resolver breakpoints. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the requested function's address to gdbarch_return_value. * eval.c (evaluate_subexp_standard): Pass the requested function's address to using_struct_return. * infcall.c (call_function_by_hand): Pass the requested function's address to using_struct_return and gdbarch_return_value. * infcmd.c (get_return_value): Take a pointer to struct value instead of struct type for the function requested. (print_return_value): Update accordingly. (finish_command_continuation): Likewise. * stack.c (return_command): Pass the requested function's address to using_struct_return and gdbarch_return_value. * value.c (using_struct_return): Take a pointer to struct value instead of struct type for the function requested. Pass the requested function's address to gdbarch_return_value. * python/py-finishbreakpoint.c (finish_breakpoint_object): New function_value member, replacing function_type. (bpfinishpy_dealloc): Update accordingly. (bpfinishpy_pre_stop_hook): Likewise. (bpfinishpy_init): Likewise. Record the requested function's address. * mips-tdep.c (mips_fval_reg): New enum. (mips_o32_push_dummy_call): For MIPS16 FP doubles do not swap words put in GP registers. (mips_o64_push_dummy_call): Update a comment. (mips_o32_return_value): Take a pointer to struct value instead of struct type for the function requested and use it to check if using the MIPS16 calling convention. Return the designated general purpose registers for floating-point values returned in MIPS16 mode. (mips_o64_return_value): Likewise. * ppc-tdep.h (ppc_sysv_abi_return_value): Update prototype. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * alpha-tdep.c (alpha_return_value): Take a pointer to struct value instead of struct type for the function requested. * amd64-tdep.c (amd64_return_value): Likewise. * amd64-windows-tdep.c (amd64_windows_return_value): Likewise. * arm-tdep.c (arm_return_value): Likewise. * avr-tdep.c (avr_return_value): Likewise. * bfin-tdep.c (bfin_return_value): Likewise. * cris-tdep.c (cris_return_value): Likewise. * frv-tdep.c (frv_return_value): Likewise. * h8300-tdep.c (h8300_return_value): Likewise. (h8300h_return_value): Likewise. * hppa-tdep.c (hppa32_return_value): Likewise. (hppa64_return_value): Likewise. * i386-tdep.c (i386_return_value): Likewise. * ia64-tdep.c (ia64_return_value): Likewise. * iq2000-tdep.c (iq2000_return_value): Likewise. * lm32-tdep.c (lm32_return_value): Likewise. * m32c-tdep.c (m32c_return_value): Likewise. * m32r-tdep.c (m32r_return_value): Likewise. * m68hc11-tdep.c (m68hc11_return_value): Likewise. * m68k-tdep.c (m68k_return_value): Likewise. (m68k_svr4_return_value): Likewise. * m88k-tdep.c (m88k_return_value): Likewise. * mep-tdep.c (mep_return_value): Likewise. * microblaze-tdep.c (microblaze_return_value): Likewise. * mn10300-tdep.c (mn10300_return_value): Likewise. * moxie-tdep.c (moxie_return_value): Likewise. * mt-tdep.c (mt_return_value): Likewise. * ppc-linux-tdep.c (ppc_linux_return_value): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Likewise. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * ppcnbsd-tdep.c (ppcnbsd_return_value): Likewise. * rl78-tdep.c (rl78_return_value): Likewise. * rs6000-aix-tdep.c (rs6000_return_value): Likewise. * rx-tdep.c (rx_return_value): Likewise. * s390-tdep.c (s390_return_value): Likewise. * score-tdep.c (score_return_value): Likewise. * sh-tdep.c (sh_return_value_nofpu): Likewise. (sh_return_value_fpu): Likewise. * sh64-tdep.c (sh64_return_value): Likewise. * sparc-tdep.c (sparc32_return_value): Likewise. * sparc64-tdep.c (sparc64_return_value): Likewise. * spu-tdep.c (spu_return_value): Likewise. * tic6x-tdep.c (tic6x_return_value): Likewise. * v850-tdep.c (v850_return_value): Likewise. * vax-tdep.c (vax_return_value): Likewise. * xstormy16-tdep.c (xstormy16_return_value): Likewise. * xtensa-tdep.c (xtensa_return_value): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/testsuite/ * gdb.base/return-nodebug.exp: Also test float and double types.
2012-05-16 16:35:09 +02:00
struct value *function,
struct type *valtype,
struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
gdb/ * breakpoint.h (bp_location): Add related_address member. * inferior.h (get_return_value): Take a pointer to struct value instead of struct type for the function requested. * value.h (using_struct_return): Likewise. * gdbarch.sh (return_value): Take a pointer to struct value instead of struct type for the function requested. * breakpoint.c (set_breakpoint_location_function): Initialize related_address for bp_gnu_ifunc_resolver breakpoints. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the requested function's address to gdbarch_return_value. * eval.c (evaluate_subexp_standard): Pass the requested function's address to using_struct_return. * infcall.c (call_function_by_hand): Pass the requested function's address to using_struct_return and gdbarch_return_value. * infcmd.c (get_return_value): Take a pointer to struct value instead of struct type for the function requested. (print_return_value): Update accordingly. (finish_command_continuation): Likewise. * stack.c (return_command): Pass the requested function's address to using_struct_return and gdbarch_return_value. * value.c (using_struct_return): Take a pointer to struct value instead of struct type for the function requested. Pass the requested function's address to gdbarch_return_value. * python/py-finishbreakpoint.c (finish_breakpoint_object): New function_value member, replacing function_type. (bpfinishpy_dealloc): Update accordingly. (bpfinishpy_pre_stop_hook): Likewise. (bpfinishpy_init): Likewise. Record the requested function's address. * mips-tdep.c (mips_fval_reg): New enum. (mips_o32_push_dummy_call): For MIPS16 FP doubles do not swap words put in GP registers. (mips_o64_push_dummy_call): Update a comment. (mips_o32_return_value): Take a pointer to struct value instead of struct type for the function requested and use it to check if using the MIPS16 calling convention. Return the designated general purpose registers for floating-point values returned in MIPS16 mode. (mips_o64_return_value): Likewise. * ppc-tdep.h (ppc_sysv_abi_return_value): Update prototype. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * alpha-tdep.c (alpha_return_value): Take a pointer to struct value instead of struct type for the function requested. * amd64-tdep.c (amd64_return_value): Likewise. * amd64-windows-tdep.c (amd64_windows_return_value): Likewise. * arm-tdep.c (arm_return_value): Likewise. * avr-tdep.c (avr_return_value): Likewise. * bfin-tdep.c (bfin_return_value): Likewise. * cris-tdep.c (cris_return_value): Likewise. * frv-tdep.c (frv_return_value): Likewise. * h8300-tdep.c (h8300_return_value): Likewise. (h8300h_return_value): Likewise. * hppa-tdep.c (hppa32_return_value): Likewise. (hppa64_return_value): Likewise. * i386-tdep.c (i386_return_value): Likewise. * ia64-tdep.c (ia64_return_value): Likewise. * iq2000-tdep.c (iq2000_return_value): Likewise. * lm32-tdep.c (lm32_return_value): Likewise. * m32c-tdep.c (m32c_return_value): Likewise. * m32r-tdep.c (m32r_return_value): Likewise. * m68hc11-tdep.c (m68hc11_return_value): Likewise. * m68k-tdep.c (m68k_return_value): Likewise. (m68k_svr4_return_value): Likewise. * m88k-tdep.c (m88k_return_value): Likewise. * mep-tdep.c (mep_return_value): Likewise. * microblaze-tdep.c (microblaze_return_value): Likewise. * mn10300-tdep.c (mn10300_return_value): Likewise. * moxie-tdep.c (moxie_return_value): Likewise. * mt-tdep.c (mt_return_value): Likewise. * ppc-linux-tdep.c (ppc_linux_return_value): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Likewise. (ppc_sysv_abi_broken_return_value): Likewise. (ppc64_sysv_abi_return_value): Likewise. * ppcnbsd-tdep.c (ppcnbsd_return_value): Likewise. * rl78-tdep.c (rl78_return_value): Likewise. * rs6000-aix-tdep.c (rs6000_return_value): Likewise. * rx-tdep.c (rx_return_value): Likewise. * s390-tdep.c (s390_return_value): Likewise. * score-tdep.c (score_return_value): Likewise. * sh-tdep.c (sh_return_value_nofpu): Likewise. (sh_return_value_fpu): Likewise. * sh64-tdep.c (sh64_return_value): Likewise. * sparc-tdep.c (sparc32_return_value): Likewise. * sparc64-tdep.c (sparc64_return_value): Likewise. * spu-tdep.c (spu_return_value): Likewise. * tic6x-tdep.c (tic6x_return_value): Likewise. * v850-tdep.c (v850_return_value): Likewise. * vax-tdep.c (vax_return_value): Likewise. * xstormy16-tdep.c (xstormy16_return_value): Likewise. * xtensa-tdep.c (xtensa_return_value): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/testsuite/ * gdb.base/return-nodebug.exp: Also test float and double types.
2012-05-16 16:35:09 +02:00
return do_ppc_sysv_return_value (gdbarch,
function ? value_type (function) : NULL,
valtype, regcache, readbuf, writebuf, 1);
}
/* The helper function for 64-bit SYSV push_dummy_call. Converts the
function's code address back into the function's descriptor
address.
Find a value for the TOC register. Every symbol should have both
".FN" and "FN" in the minimal symbol table. "FN" points at the
FN's descriptor, while ".FN" points at the entry point (which
matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
FN's descriptor address (while at the same time being careful to
find "FN" in the same object file as ".FN"). */
static int
convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
{
struct obj_section *dot_fn_section;
struct bound_minimal_symbol dot_fn;
use bound_minsym as result for lookup_minimal_symbol et al This patch changes a few minimal symbol lookup functions to return a bound_minimal_symbol rather than a pointer to the minsym. This change helps prepare gdb for computing a minimal symbol's address at the point of use. Note that this changes even those functions that ostensibly search a single objfile. That was necessary because, in fact, those functions can search an objfile and its separate debug objfiles; and it is important for the caller to know in which objfile the minimal symbol was actually found. The bulk of this patch is mechanical. 2014-02-26 Tom Tromey <tromey@redhat.com> * ada-lang.c (ada_update_initial_language): Update. (ada_main_name, ada_has_this_exception_support): Update. * ada-tasks.c (ada_tasks_inferior_data_sniffer): Update. * aix-thread.c (pdc_symbol_addrs, pd_enable): Update. * arm-tdep.c (arm_skip_stub): Update. * auxv.c (ld_so_xfer_auxv): Update. * avr-tdep.c (avr_scan_prologue): Update. * ax-gdb.c (gen_var_ref): Update. * breakpoint.c (struct breakpoint_objfile_data) <overlay_msym, longjmp_msym, terminate_msym, exception_msym>: Change type to bound_minimal_symbol. (create_overlay_event_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint): Update. * bsd-uthread.c (bsd_uthread_lookup_address): Update. * c-exp.y (classify_name): Update. * coffread.c (coff_symfile_read): Update. * common/agent.c (agent_look_up_symbols): Update. * d-lang.c (d_main_name): Update. * dbxread.c (find_stab_function_addr, end_psymtab): Update. * dec-thread.c (enable_dec_thread): Update. * dwarf2loc.c (call_site_to_target_addr): Update. * elfread.c (elf_gnu_ifunc_resolve_by_got): Update. * eval.c (evaluate_subexp_standard): Update. * findvar.c (struct minsym_lookup_data) <result>: Change type to bound_minimal_symbol. <objfile>: Remove. (minsym_lookup_iterator_cb, default_read_var_value): Update. * frame.c (inside_main_func): Update. * frv-tdep.c (frv_frame_this_id): Update. * gcore.c (call_target_sbrk): Update. * glibc-tdep.c (glibc_skip_solib_resolver): Update. * gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline): Update. * go-lang.c (go_main_name): Update. * hppa-hpux-tdep.c (hppa_hpux_skip_trampoline_code) (hppa_hpux_find_import_stub_for_addr): Update. * hppa-tdep.c (hppa_extract_17, hppa_lookup_stub_minimal_symbol): Update. Change return type. * hppa-tdep.h (hppa_lookup_stub_minimal_symbol): Change return type. * jit.c (jit_breakpoint_re_set_internal): Update. * linux-fork.c (inferior_call_waitpid, checkpoint_command): Update. * linux-nat.c (get_signo): Update. * linux-thread-db.c (inferior_has_bug): Update * m32c-tdep.c (m32c_return_value) (m32c_m16c_address_to_pointer): Update. * m32r-tdep.c (m32r_frame_this_id): Update. * m68hc11-tdep.c (m68hc11_get_register_info): Update. * machoread.c (macho_resolve_oso_sym_with_minsym): Update. * minsyms.c (lookup_minimal_symbol_internal): Rename to lookup_minimal_symbol. Change return type. (lookup_minimal_symbol): Remove. (lookup_bound_minimal_symbol): Update. (lookup_minimal_symbol_text): Change return type. (lookup_minimal_symbol_solib_trampoline): Change return type. * minsyms.h (lookup_minimal_symbol, lookup_minimal_symbol_text) (lookup_minimal_symbol_solib_trampoline): Change return type. * mips-linux-tdep.c (mips_linux_skip_resolver): Update. * objc-lang.c (lookup_objc_class, lookup_child_selector) (value_nsstring, find_imps): Update. * obsd-tdep.c (obsd_skip_solib_resolver): Update. * p-lang.c (pascal_main_name): Update. * ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Update. * ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update. * proc-service.c (ps_pglobal_lookup): Update. * ravenscar-thread.c (get_running_thread_msymbol): Change return type. (has_ravenscar_runtime, get_running_thread_id): Update. * remote.c (remote_check_symbols): Update. * sol-thread.c (ps_pglobal_lookup): Update. * sol2-tdep.c (sol2_skip_solib_resolver): Update. * solib-dsbt.c (lm_base): Update. * solib-frv.c (lm_base, frv_relocate_section_addresses): Update. * solib-irix.c (locate_base): Update. * solib-som.c (som_solib_create_inferior_hook) (som_solib_desire_dynamic_linker_symbols, link_map_start): Update. * solib-spu.c (spu_enable_break): Update. * solib-svr4.c (elf_locate_base, enable_break): Update. * spu-tdep.c (spu_get_overlay_table, spu_catch_start) (flush_ea_cache): Update. * stabsread.c (define_symbol): Update. * symfile.c (simple_read_overlay_table): Update. * symtab.c (find_pc_sect_line): Update. * tracepoint.c (scope_info): Update. * tui-disasm.c (tui_get_begin_asm_address): Update. * value.c (value_static_field): Update.
2013-10-15 03:53:29 +02:00
struct bound_minimal_symbol fn;
/* Find the minimal symbol that corresponds to CODE_ADDR (should
have a name of the form ".FN"). */
dot_fn = lookup_minimal_symbol_by_pc (code_addr);
Replace the MSYMBOL_*_NAME macros with member functions Improves readability. In the future, it will also allow making the name private, once the name setter functions become member functions. gdb/ChangeLog: 2019-11-22 Christian Biesinger <cbiesinger@google.com> * ada-lang.c (ada_lookup_simple_minsym): Update. (ada_collect_symbol_completion_matches): Update. * ada-tasks.c (read_atcb): Update. * amd64-windows-tdep.c (amd64_skip_main_prologue): Update. (amd64_windows_skip_trampoline_code): Update. * arm-tdep.c (skip_prologue_function): Update. (arm_skip_stack_protector): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. (arm_wince_skip_main_prologue): Update. * ax-gdb.c (gen_expr): Update. * block.c (call_site_for_pc): Update. * blockframe.c (find_pc_partial_function): Update. * breakpoint.c (set_breakpoint_location_function): Update. * btrace.c (ftrace_print_function_name): Update. (ftrace_function_switched): Update. * c-valprint.c (print_unpacked_pointer): Update. * coffread.c (coff_symfile_read): Update. * compile/compile-c-symbols.c (convert_symbol_bmsym): Update. * compile/compile-cplus-symbols.c (convert_symbol_bmsym): Update. * dwarf-index-write.c (write_psymbols): Update. * dwarf2loc.c (call_site_to_target_addr): Update. (func_verify_no_selftailcall): Update. (tailcall_dump): Update. (call_site_find_chain_1): Update. (dwarf_expr_reg_to_entry_parameter): Update. * elfread.c (elf_gnu_ifunc_record_cache): Update. * eval.c (evaluate_funcall): Update. (evaluate_subexp_standard): Update. (evaluate_subexp_for_sizeof): Update. * expprint.c (print_subexp_standard): Update. (dump_subexp_body_standard): Update. * frame.c (get_prev_frame_always_1): Update. * frv-tdep.c (frv_skip_main_prologue): Update. * gnu-v2-abi.c (gnuv2_value_rtti_type): Update. * gnu-v3-abi.c (gnuv3_rtti_type): Update. (gnuv3_get_typename_from_type_info): Update. (gnuv3_skip_trampoline): Update. * hppa-tdep.c (hppa_lookup_stub_minimal_symbol): Update. * i386-tdep.c (i386_skip_main_prologue): Update. (i386_pe_skip_trampoline_code): Update. * ia64-tdep.c (ia64_convert_from_func_ptr_addr): Update. * infcall.c (get_function_name): Update. * linespec.c (minsym_found): Update. * linux-fork.c (info_checkpoints_command): Update. * m32c-tdep.c (m32c_m16c_address_to_pointer): Update. (m32c_m16c_pointer_to_address): Update. * maint.c (maintenance_translate_address): Update. * minsyms.c (add_minsym_to_hash_table): Update. (add_minsym_to_demangled_hash_table): Update. (lookup_minimal_symbol_mangled): Update. (lookup_minimal_symbol_demangled): Update. (lookup_minimal_symbol_linkage): Update. (lookup_minimal_symbol_text): Update. (lookup_minimal_symbol_by_pc_name): Update. (minimal_symbol_is_less_than): Update. (compact_minimal_symbols): Update. (build_minimal_symbol_hash_tables): Update. (find_solib_trampoline_target): Update. * mips-tdep.c (mips_stub_frame_sniffer): Update. (mips_skip_pic_trampoline_code): Update. * msp430-tdep.c (msp430_skip_trampoline_code): Update. * objc-lang.c (info_selectors_command): Update. (info_classes_command): Update. (find_methods): Update. (find_imps): Update. * p-valprint.c (pascal_val_print): Update. * ppc-linux-tdep.c (powerpc_linux_in_dynsym_resolve_code): Update. * ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update. * printcmd.c (build_address_symbolic): Update. (info_symbol_command): Update. * psymtab.c (psymbol_name_matches): Update. (match_partial_symbol): Update. (lookup_partial_symbol): Update. (print_partial_symbols): Update. (sort_pst_symbols): Update. (maintenance_check_psymtabs): Update. * python/py-framefilter.c (py_print_frame): Update. * python/python.c (gdbpy_rbreak): Update. * record-btrace.c (btrace_get_bfun_name): Update. (btrace_call_history): Update. * rs6000-tdep.c (rs6000_skip_main_prologue): Update. (rs6000_skip_trampoline_code): Update. * sol-thread.c (info_cb): Update. * stabsread.c (scan_file_globals): Update. * stack.c (find_frame_funname): Update. (info_frame_command_core): Update. * symmisc.c (dump_msymbols): Update. * symtab.c (symbol_natural_name): Rename to.., (general_symbol_info::natural_name): ...this. (symbol_demangled_name): Rename to... (general_symbol_info::demangled_name): ...this. (symbol_search_name): Rename to... (general_symbol_info::search_name): ...this. (symbol_matches_search_name): Update. (find_pc_sect_line): Update. (skip_prologue_sal): Update. (search_symbols): Update. (print_msymbol_info): Update. (rbreak_command): Update. (completion_list_add_msymbol): Update. (completion_list_objc_symbol): Update. (get_msymbol_address): Update. * symtab.h (struct general_symbol_info): Add member functions natural_name (), linkage_name (), print_name (), demangled_name (), and search_name (). (SYMBOL_NATURAL_NAME): Update. (symbol_natural_name): Move to a member function on general_symbol_info. (SYMBOL_DEMANGLED_NAME): Update. (symbol_demangled_name): Move to a member function on general_symbol_info. (SYMBOL_SEARCH_NAME): Update. (symbol_search_name): Move to a member function on general_symbol_info. (MSYMBOL_NATURAL_NAME): Remove. (MSYMBOL_LINKAGE_NAME): Remove. (MSYMBOL_PRINT_NAME): Remove. (MSYMBOL_DEMANGLED_NAME): Remove. (MSYMBOL_SEARCH_NAME): Remove. * x86-tdep.c (x86_in_indirect_branch_thunk): Update. Change-Id: I65aa529843a9903e174ce799037e41f954a9fcee
2019-11-22 19:05:14 +01:00
if (dot_fn.minsym == NULL || dot_fn.minsym->linkage_name ()[0] != '.')
return 0;
/* Get the section that contains CODE_ADDR. Need this for the
"objfile" that it contains. */
dot_fn_section = find_pc_section (code_addr);
if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
return 0;
/* Now find the corresponding "FN" (dropping ".") minimal symbol's
address. Only look for the minimal symbol in ".FN"'s object file
- avoids problems when two object files (i.e., shared libraries)
contain a minimal symbol with the same name. */
Replace the MSYMBOL_*_NAME macros with member functions Improves readability. In the future, it will also allow making the name private, once the name setter functions become member functions. gdb/ChangeLog: 2019-11-22 Christian Biesinger <cbiesinger@google.com> * ada-lang.c (ada_lookup_simple_minsym): Update. (ada_collect_symbol_completion_matches): Update. * ada-tasks.c (read_atcb): Update. * amd64-windows-tdep.c (amd64_skip_main_prologue): Update. (amd64_windows_skip_trampoline_code): Update. * arm-tdep.c (skip_prologue_function): Update. (arm_skip_stack_protector): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. (arm_wince_skip_main_prologue): Update. * ax-gdb.c (gen_expr): Update. * block.c (call_site_for_pc): Update. * blockframe.c (find_pc_partial_function): Update. * breakpoint.c (set_breakpoint_location_function): Update. * btrace.c (ftrace_print_function_name): Update. (ftrace_function_switched): Update. * c-valprint.c (print_unpacked_pointer): Update. * coffread.c (coff_symfile_read): Update. * compile/compile-c-symbols.c (convert_symbol_bmsym): Update. * compile/compile-cplus-symbols.c (convert_symbol_bmsym): Update. * dwarf-index-write.c (write_psymbols): Update. * dwarf2loc.c (call_site_to_target_addr): Update. (func_verify_no_selftailcall): Update. (tailcall_dump): Update. (call_site_find_chain_1): Update. (dwarf_expr_reg_to_entry_parameter): Update. * elfread.c (elf_gnu_ifunc_record_cache): Update. * eval.c (evaluate_funcall): Update. (evaluate_subexp_standard): Update. (evaluate_subexp_for_sizeof): Update. * expprint.c (print_subexp_standard): Update. (dump_subexp_body_standard): Update. * frame.c (get_prev_frame_always_1): Update. * frv-tdep.c (frv_skip_main_prologue): Update. * gnu-v2-abi.c (gnuv2_value_rtti_type): Update. * gnu-v3-abi.c (gnuv3_rtti_type): Update. (gnuv3_get_typename_from_type_info): Update. (gnuv3_skip_trampoline): Update. * hppa-tdep.c (hppa_lookup_stub_minimal_symbol): Update. * i386-tdep.c (i386_skip_main_prologue): Update. (i386_pe_skip_trampoline_code): Update. * ia64-tdep.c (ia64_convert_from_func_ptr_addr): Update. * infcall.c (get_function_name): Update. * linespec.c (minsym_found): Update. * linux-fork.c (info_checkpoints_command): Update. * m32c-tdep.c (m32c_m16c_address_to_pointer): Update. (m32c_m16c_pointer_to_address): Update. * maint.c (maintenance_translate_address): Update. * minsyms.c (add_minsym_to_hash_table): Update. (add_minsym_to_demangled_hash_table): Update. (lookup_minimal_symbol_mangled): Update. (lookup_minimal_symbol_demangled): Update. (lookup_minimal_symbol_linkage): Update. (lookup_minimal_symbol_text): Update. (lookup_minimal_symbol_by_pc_name): Update. (minimal_symbol_is_less_than): Update. (compact_minimal_symbols): Update. (build_minimal_symbol_hash_tables): Update. (find_solib_trampoline_target): Update. * mips-tdep.c (mips_stub_frame_sniffer): Update. (mips_skip_pic_trampoline_code): Update. * msp430-tdep.c (msp430_skip_trampoline_code): Update. * objc-lang.c (info_selectors_command): Update. (info_classes_command): Update. (find_methods): Update. (find_imps): Update. * p-valprint.c (pascal_val_print): Update. * ppc-linux-tdep.c (powerpc_linux_in_dynsym_resolve_code): Update. * ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update. * printcmd.c (build_address_symbolic): Update. (info_symbol_command): Update. * psymtab.c (psymbol_name_matches): Update. (match_partial_symbol): Update. (lookup_partial_symbol): Update. (print_partial_symbols): Update. (sort_pst_symbols): Update. (maintenance_check_psymtabs): Update. * python/py-framefilter.c (py_print_frame): Update. * python/python.c (gdbpy_rbreak): Update. * record-btrace.c (btrace_get_bfun_name): Update. (btrace_call_history): Update. * rs6000-tdep.c (rs6000_skip_main_prologue): Update. (rs6000_skip_trampoline_code): Update. * sol-thread.c (info_cb): Update. * stabsread.c (scan_file_globals): Update. * stack.c (find_frame_funname): Update. (info_frame_command_core): Update. * symmisc.c (dump_msymbols): Update. * symtab.c (symbol_natural_name): Rename to.., (general_symbol_info::natural_name): ...this. (symbol_demangled_name): Rename to... (general_symbol_info::demangled_name): ...this. (symbol_search_name): Rename to... (general_symbol_info::search_name): ...this. (symbol_matches_search_name): Update. (find_pc_sect_line): Update. (skip_prologue_sal): Update. (search_symbols): Update. (print_msymbol_info): Update. (rbreak_command): Update. (completion_list_add_msymbol): Update. (completion_list_objc_symbol): Update. (get_msymbol_address): Update. * symtab.h (struct general_symbol_info): Add member functions natural_name (), linkage_name (), print_name (), demangled_name (), and search_name (). (SYMBOL_NATURAL_NAME): Update. (symbol_natural_name): Move to a member function on general_symbol_info. (SYMBOL_DEMANGLED_NAME): Update. (symbol_demangled_name): Move to a member function on general_symbol_info. (SYMBOL_SEARCH_NAME): Update. (symbol_search_name): Move to a member function on general_symbol_info. (MSYMBOL_NATURAL_NAME): Remove. (MSYMBOL_LINKAGE_NAME): Remove. (MSYMBOL_PRINT_NAME): Remove. (MSYMBOL_DEMANGLED_NAME): Remove. (MSYMBOL_SEARCH_NAME): Remove. * x86-tdep.c (x86_in_indirect_branch_thunk): Update. Change-Id: I65aa529843a9903e174ce799037e41f954a9fcee
2019-11-22 19:05:14 +01:00
fn = lookup_minimal_symbol (dot_fn.minsym->linkage_name () + 1, NULL,
dot_fn_section->objfile);
use bound_minsym as result for lookup_minimal_symbol et al This patch changes a few minimal symbol lookup functions to return a bound_minimal_symbol rather than a pointer to the minsym. This change helps prepare gdb for computing a minimal symbol's address at the point of use. Note that this changes even those functions that ostensibly search a single objfile. That was necessary because, in fact, those functions can search an objfile and its separate debug objfiles; and it is important for the caller to know in which objfile the minimal symbol was actually found. The bulk of this patch is mechanical. 2014-02-26 Tom Tromey <tromey@redhat.com> * ada-lang.c (ada_update_initial_language): Update. (ada_main_name, ada_has_this_exception_support): Update. * ada-tasks.c (ada_tasks_inferior_data_sniffer): Update. * aix-thread.c (pdc_symbol_addrs, pd_enable): Update. * arm-tdep.c (arm_skip_stub): Update. * auxv.c (ld_so_xfer_auxv): Update. * avr-tdep.c (avr_scan_prologue): Update. * ax-gdb.c (gen_var_ref): Update. * breakpoint.c (struct breakpoint_objfile_data) <overlay_msym, longjmp_msym, terminate_msym, exception_msym>: Change type to bound_minimal_symbol. (create_overlay_event_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint): Update. * bsd-uthread.c (bsd_uthread_lookup_address): Update. * c-exp.y (classify_name): Update. * coffread.c (coff_symfile_read): Update. * common/agent.c (agent_look_up_symbols): Update. * d-lang.c (d_main_name): Update. * dbxread.c (find_stab_function_addr, end_psymtab): Update. * dec-thread.c (enable_dec_thread): Update. * dwarf2loc.c (call_site_to_target_addr): Update. * elfread.c (elf_gnu_ifunc_resolve_by_got): Update. * eval.c (evaluate_subexp_standard): Update. * findvar.c (struct minsym_lookup_data) <result>: Change type to bound_minimal_symbol. <objfile>: Remove. (minsym_lookup_iterator_cb, default_read_var_value): Update. * frame.c (inside_main_func): Update. * frv-tdep.c (frv_frame_this_id): Update. * gcore.c (call_target_sbrk): Update. * glibc-tdep.c (glibc_skip_solib_resolver): Update. * gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline): Update. * go-lang.c (go_main_name): Update. * hppa-hpux-tdep.c (hppa_hpux_skip_trampoline_code) (hppa_hpux_find_import_stub_for_addr): Update. * hppa-tdep.c (hppa_extract_17, hppa_lookup_stub_minimal_symbol): Update. Change return type. * hppa-tdep.h (hppa_lookup_stub_minimal_symbol): Change return type. * jit.c (jit_breakpoint_re_set_internal): Update. * linux-fork.c (inferior_call_waitpid, checkpoint_command): Update. * linux-nat.c (get_signo): Update. * linux-thread-db.c (inferior_has_bug): Update * m32c-tdep.c (m32c_return_value) (m32c_m16c_address_to_pointer): Update. * m32r-tdep.c (m32r_frame_this_id): Update. * m68hc11-tdep.c (m68hc11_get_register_info): Update. * machoread.c (macho_resolve_oso_sym_with_minsym): Update. * minsyms.c (lookup_minimal_symbol_internal): Rename to lookup_minimal_symbol. Change return type. (lookup_minimal_symbol): Remove. (lookup_bound_minimal_symbol): Update. (lookup_minimal_symbol_text): Change return type. (lookup_minimal_symbol_solib_trampoline): Change return type. * minsyms.h (lookup_minimal_symbol, lookup_minimal_symbol_text) (lookup_minimal_symbol_solib_trampoline): Change return type. * mips-linux-tdep.c (mips_linux_skip_resolver): Update. * objc-lang.c (lookup_objc_class, lookup_child_selector) (value_nsstring, find_imps): Update. * obsd-tdep.c (obsd_skip_solib_resolver): Update. * p-lang.c (pascal_main_name): Update. * ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Update. * ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update. * proc-service.c (ps_pglobal_lookup): Update. * ravenscar-thread.c (get_running_thread_msymbol): Change return type. (has_ravenscar_runtime, get_running_thread_id): Update. * remote.c (remote_check_symbols): Update. * sol-thread.c (ps_pglobal_lookup): Update. * sol2-tdep.c (sol2_skip_solib_resolver): Update. * solib-dsbt.c (lm_base): Update. * solib-frv.c (lm_base, frv_relocate_section_addresses): Update. * solib-irix.c (locate_base): Update. * solib-som.c (som_solib_create_inferior_hook) (som_solib_desire_dynamic_linker_symbols, link_map_start): Update. * solib-spu.c (spu_enable_break): Update. * solib-svr4.c (elf_locate_base, enable_break): Update. * spu-tdep.c (spu_get_overlay_table, spu_catch_start) (flush_ea_cache): Update. * stabsread.c (define_symbol): Update. * symfile.c (simple_read_overlay_table): Update. * symtab.c (find_pc_sect_line): Update. * tracepoint.c (scope_info): Update. * tui-disasm.c (tui_get_begin_asm_address): Update. * value.c (value_static_field): Update.
2013-10-15 03:53:29 +02:00
if (fn.minsym == NULL)
return 0;
/* Found a descriptor. */
start change to progspace independence This patch starts changing minimal symbols to be independent of the program space. Specifically, it adds a new objfile parameter to MSYMBOL_VALUE_ADDRESS and changes all the code to use it. This is needed so we can change gdb to apply the section offset when a minsym's address is computed, as opposed to baking the offsets into the symbol itself. A few spots still need the unrelocated address. For these, we introduce MSYMBOL_VALUE_RAW_ADDRESS. As a convenience, we also add the new macro BMSYMBOL_VALUE_ADDRESS, which computes the address of a bound minimal symbol. This just does the obvious thing with the fields. Note that this change does not actually enable program space independence. That requires more changes to gdb. However, to ensure that these changes compile properly, this patch does add the needed section lookup code to MSYMBOL_VALUE_ADDRESS -- it just ensures it has no effect at runtime by multiplying the offset by 0. 2014-02-26 Tom Tromey <tromey@redhat.com> * ada-lang.c (ada_main_name): Update. (ada_add_standard_exceptions): Update. * ada-tasks.c (ada_tasks_inferior_data_sniffer): Update. * aix-thread.c (pdc_symbol_addrs, pd_enable): Update. * arm-tdep.c (skip_prologue_function, arm_skip_stub): Update. * auxv.c (ld_so_xfer_auxv): Update. * avr-tdep.c (avr_scan_prologue): Update. * ax-gdb.c (gen_var_ref): Update. * blockframe.c (get_pc_function_start) (find_pc_partial_function_gnu_ifunc): Update. * breakpoint.c (create_overlay_event_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint): Update. * bsd-uthread.c (bsd_uthread_lookup_address): Update. * c-valprint.c (c_val_print): Update. * coff-pe-read.c (add_pe_forwarded_sym): Update. * common/agent.c (agent_look_up_symbols): Update. * dbxread.c (find_stab_function_addr, end_psymtab): Update. * dwarf2loc.c (call_site_to_target_addr): Update. * dwarf2read.c (dw2_find_pc_sect_symtab): Update. * elfread.c (elf_gnu_ifunc_record_cache) (elf_gnu_ifunc_resolve_by_got): Update. * findvar.c (default_read_var_value): Update. * frame.c (inside_main_func): Update. * frv-tdep.c (frv_frame_this_id): Update. * glibc-tdep.c (glibc_skip_solib_resolver): Update. * gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline): Update. * hppa-hpux-tdep.c (hppa64_hpux_search_dummy_call_sequence) (hppa_hpux_find_dummy_bpaddr): Update. * hppa-tdep.c (hppa_symbol_address): Update. * infcmd.c (until_next_command): Update. * jit.c (jit_read_descriptor, jit_breakpoint_re_set_internal): Update. * linespec.c (minsym_found, add_minsym): Update. * linux-nat.c (get_signo): Update. * linux-thread-db.c (inferior_has_bug): Update. * m32c-tdep.c (m32c_return_value) (m32c_m16c_address_to_pointer): Update. * m32r-tdep.c (m32r_frame_this_id): Update. * m68hc11-tdep.c (m68hc11_get_register_info): Update. * machoread.c (macho_resolve_oso_sym_with_minsym): Update. * maint.c (maintenance_translate_address): Update. * minsyms.c (lookup_minimal_symbol_by_pc_name): Update. (frob_address): New function. (lookup_minimal_symbol_by_pc_section_1): Use raw addresses, frob_address. Rename parameter to "pc_in". (compare_minimal_symbols, compact_minimal_symbols): Use raw addresses. (find_solib_trampoline_target, minimal_symbol_upper_bound): Update. * mips-linux-tdep.c (mips_linux_skip_resolver): Update. * mips-tdep.c (mips_skip_pic_trampoline_code): Update. * objc-lang.c (find_objc_msgsend): Update. * objfiles.c (objfile_relocate1): Update. * obsd-tdep.c (obsd_skip_solib_resolver): Update. * p-valprint.c (pascal_val_print): Update. * parse.c (write_exp_msymbol): Update. * ppc-linux-tdep.c (ppc_linux_spe_context_lookup) (ppc_elfv2_skip_entrypoint): Update. * ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update. * printcmd.c (build_address_symbolic, msym_info) (address_info): Update. * proc-service.c (ps_pglobal_lookup): Update. * psymtab.c (find_pc_sect_psymtab_closer) (find_pc_sect_psymtab, find_pc_sect_symtab_from_partial): Change msymbol parameter to bound_minimal_symbol. * ravenscar-thread.c (get_running_thread_id): Update. * remote.c (remote_check_symbols): Update. * sh64-tdep.c (sh64_elf_make_msymbol_special): Use raw address. * sol2-tdep.c (sol2_skip_solib_resolver): Update. * solib-dsbt.c (lm_base): Update. * solib-frv.c (lm_base, main_got): Update. * solib-irix.c (locate_base): Update. * solib-som.c (som_solib_create_inferior_hook) (link_map_start): Update. * solib-spu.c (spu_enable_break, ocl_enable_break): Update. * solib-svr4.c (elf_locate_base, enable_break): Update. * spu-tdep.c (spu_get_overlay_table, spu_catch_start) (flush_ea_cache): Update. * stabsread.c (define_symbol, scan_file_globals): Update. * stack.c (find_frame_funname): Update. * symfile-debug.c (debug_qf_expand_symtabs_matching) (debug_qf_find_pc_sect_symtab): Update. * symfile.c (simple_read_overlay_table) (simple_overlay_update): Update. * symfile.h (struct quick_symbol_functions) <find_pc_sect_symtab>: Change type of msymbol to bound_minimal_symbol. * symmisc.c (dump_msymbols): Update. * symtab.c (find_pc_sect_symtab_via_partial) (find_pc_sect_psymtab, find_pc_sect_line, skip_prologue_sal) (search_symbols, print_msymbol_info): Update. * symtab.h (MSYMBOL_VALUE_RAW_ADDRESS): New macro. (MSYMBOL_VALUE_ADDRESS): Redefine. (BMSYMBOL_VALUE_ADDRESS): New macro. * tracepoint.c (scope_info): Update. * tui/tui-disasm.c (tui_find_disassembly_address) (tui_get_begin_asm_address): Update. * valops.c (find_function_in_inferior): Update. * value.c (value_static_field, value_fn_field): Update.
2013-08-15 16:46:35 +02:00
(*desc_addr) = BMSYMBOL_VALUE_ADDRESS (fn);
return 1;
}
/* Walk down the type tree of TYPE counting consecutive base elements.
If *FIELD_TYPE is NULL, then set it to the first valid floating point
or vector type. If a non-floating point or vector type is found, or
if a floating point or vector type that doesn't match a non-NULL
*FIELD_TYPE is found, then return -1, otherwise return the count in the
sub-tree. */
static LONGEST
ppc64_aggregate_candidate (struct type *type,
struct type **field_type)
{
type = check_typedef (type);
switch (type->code ())
{
case TYPE_CODE_FLT:
case TYPE_CODE_DECFLOAT:
if (!*field_type)
*field_type = type;
if ((*field_type)->code () == type->code ()
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
return 1;
break;
case TYPE_CODE_COMPLEX:
type = TYPE_TARGET_TYPE (type);
if (type->code () == TYPE_CODE_FLT
|| type->code () == TYPE_CODE_DECFLOAT)
{
if (!*field_type)
*field_type = type;
if ((*field_type)->code () == type->code ()
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
return 2;
}
break;
case TYPE_CODE_ARRAY:
if (TYPE_VECTOR (type))
{
if (!*field_type)
*field_type = type;
if ((*field_type)->code () == type->code ()
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
return 1;
}
else
{
LONGEST count, low_bound, high_bound;
count = ppc64_aggregate_candidate
(TYPE_TARGET_TYPE (type), field_type);
if (count == -1)
return -1;
if (!get_array_bounds (type, &low_bound, &high_bound))
return -1;
count *= high_bound - low_bound;
/* There must be no padding. */
if (count == 0)
return TYPE_LENGTH (type) == 0 ? 0 : -1;
else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
return -1;
return count;
}
break;
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
{
LONGEST count = 0;
int i;
for (i = 0; i < type->num_fields (); i++)
{
LONGEST sub_count;
if (field_is_static (&type->field (i)))
continue;
sub_count = ppc64_aggregate_candidate
(type->field (i).type (), field_type);
if (sub_count == -1)
return -1;
if (type->code () == TYPE_CODE_STRUCT)
count += sub_count;
else
gdb: Use std::min and std::max throughout Otherwise including <string> or some other C++ header is broken. E.g.: In file included from /opt/gcc/include/c++/7.0.0/bits/char_traits.h:39:0, from /opt/gcc/include/c++/7.0.0/string:40, from /home/pedro/gdb/mygit/cxx-convertion/src/gdb/infrun.c:68: /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:243:56: error: macro "min" passed 3 arguments, but takes just 2 min(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:265:56: error: macro "max" passed 3 arguments, but takes just 2 max(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ In file included from .../src/gdb/infrun.c:21:0: To the best of my grepping abilities, I believe I adjusted all min/max calls. gdb/ChangeLog: 2016-09-16 Pedro Alves <palves@redhat.com> * defs.h (min, max): Delete. * aarch64-tdep.c: Include <algorithm> and use std::min and std::max throughout. * aarch64-tdep.c: Likewise. * alpha-tdep.c: Likewise. * amd64-tdep.c: Likewise. * amd64-windows-tdep.c: Likewise. * arm-tdep.c: Likewise. * avr-tdep.c: Likewise. * breakpoint.c: Likewise. * btrace.c: Likewise. * ctf.c: Likewise. * disasm.c: Likewise. * doublest.c: Likewise. * dwarf2loc.c: Likewise. * dwarf2read.c: Likewise. * environ.c: Likewise. * exec.c: Likewise. * f-exp.y: Likewise. * findcmd.c: Likewise. * ft32-tdep.c: Likewise. * gcore.c: Likewise. * hppa-tdep.c: Likewise. * i386-darwin-tdep.c: Likewise. * i386-tdep.c: Likewise. * linux-thread-db.c: Likewise. * lm32-tdep.c: Likewise. * m32r-tdep.c: Likewise. * m88k-tdep.c: Likewise. * memrange.c: Likewise. * minidebug.c: Likewise. * mips-tdep.c: Likewise. * moxie-tdep.c: Likewise. * nds32-tdep.c: Likewise. * nios2-tdep.c: Likewise. * nto-procfs.c: Likewise. * parse.c: Likewise. * ppc-sysv-tdep.c: Likewise. * probe.c: Likewise. * record-btrace.c: Likewise. * remote.c: Likewise. * rs6000-tdep.c: Likewise. * rx-tdep.c: Likewise. * s390-linux-nat.c: Likewise. * s390-linux-tdep.c: Likewise. * ser-tcp.c: Likewise. * sh-tdep.c: Likewise. * sh64-tdep.c: Likewise. * source.c: Likewise. * sparc-tdep.c: Likewise. * symfile.c: Likewise. * target-memory.c: Likewise. * target.c: Likewise. * tic6x-tdep.c: Likewise. * tilegx-tdep.c: Likewise. * tracefile-tfile.c: Likewise. * tracepoint.c: Likewise. * valprint.c: Likewise. * value.c: Likewise. * xtensa-tdep.c: Likewise. * cli/cli-cmds.c: Likewise. * compile/compile-object-load.c: Likewise.
2016-09-16 20:55:17 +02:00
count = std::max (count, sub_count);
}
/* There must be no padding. */
if (count == 0)
return TYPE_LENGTH (type) == 0 ? 0 : -1;
else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
return -1;
return count;
}
break;
default:
break;
}
return -1;
}
/* If an argument of type TYPE is a homogeneous float or vector aggregate
that shall be passed in FP/vector registers according to the ELFv2 ABI,
return the homogeneous element type in *ELT_TYPE and the number of
elements in *N_ELTS, and return non-zero. Otherwise, return zero. */
static int
ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
struct type **elt_type, int *n_elts)
{
/* Complex types at the top level are treated separately. However,
complex types can be elements of homogeneous aggregates. */
if (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION
|| (type->code () == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)))
{
struct type *field_type = NULL;
LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);
if (field_count > 0)
{
int n_regs = ((field_type->code () == TYPE_CODE_FLT
|| field_type->code () == TYPE_CODE_DECFLOAT)?
(TYPE_LENGTH (field_type) + 7) >> 3 : 1);
/* The ELFv2 ABI allows homogeneous aggregates to occupy
up to 8 registers. */
if (field_count * n_regs <= 8)
{
if (elt_type)
*elt_type = field_type;
if (n_elts)
*n_elts = (int) field_count;
/* Note that field_count is LONGEST since it may hold the size
of an array, while *n_elts is int since its value is bounded
by the number of registers used for argument passing. The
cast cannot overflow due to the bounds checking above. */
return 1;
}
}
}
return 0;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Structure holding the next argument position. */
struct ppc64_sysv_argpos
{
/* Register cache holding argument registers. If this is NULL,
we only simulate argument processing without actually updating
any registers or memory. */
struct regcache *regcache;
/* Next available general-purpose argument register. */
int greg;
/* Next available floating-point argument register. */
int freg;
/* Next available vector argument register. */
int vreg;
/* The address, at which the next general purpose parameter
(integer, struct, float, vector, ...) should be saved. */
CORE_ADDR gparam;
/* The address, at which the next by-reference parameter
(non-Altivec vector, variably-sized type) should be saved. */
CORE_ADDR refparam;
};
/* VAL is a value of length LEN. Store it into the argument area on the
stack and load it into the corresponding general-purpose registers
required by the ABI, and update ARGPOS.
If ALIGN is nonzero, it specifies the minimum alignment required
for the on-stack copy of the argument. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
static void
ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
const bfd_byte *val, int len, int align,
struct ppc64_sysv_argpos *argpos)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int offset = 0;
/* Enforce alignment of stack location, if requested. */
if (align > tdep->wordsize)
{
CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);
argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
argpos->gparam = aligned_gparam;
}
/* The ABI (version 1.9) specifies that values smaller than one
doubleword are right-aligned and those larger are left-aligned.
GCC versions before 3.4 implemented this incorrectly; see
<http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
if (len < tdep->wordsize
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
offset = tdep->wordsize - len;
if (argpos->regcache)
write_memory (argpos->gparam + offset, val, len);
argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);
while (len >= tdep->wordsize)
{
if (argpos->regcache && argpos->greg <= 10)
argpos->regcache->cooked_write (tdep->ppc_gp0_regnum + argpos->greg,
val);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->greg++;
len -= tdep->wordsize;
val += tdep->wordsize;
}
if (len > 0)
{
if (argpos->regcache && argpos->greg <= 10)
argpos->regcache->cooked_write_part
(tdep->ppc_gp0_regnum + argpos->greg, offset, len, val);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->greg++;
}
}
/* The same as ppc64_sysv_abi_push_val, but using a single-word integer
value VAL as argument. */
static void
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
struct ppc64_sysv_argpos *argpos)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[PPC_MAX_REGISTER_SIZE];
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (argpos->regcache)
store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
}
/* VAL is a value of TYPE, a (binary or decimal) floating-point type.
Load it into a floating-point register if required by the ABI,
and update ARGPOS. */
static void
ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
struct type *type, const bfd_byte *val,
struct ppc64_sysv_argpos *argpos)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep->soft_float)
return;
if (TYPE_LENGTH (type) <= 8
&& type->code () == TYPE_CODE_FLT)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Floats and doubles go in f1 .. f13. 32-bit floats are converted
to double first. */
if (argpos->regcache && argpos->freg <= 13)
{
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
struct type *regtype = register_type (gdbarch, regnum);
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (val, type, regval, regtype);
argpos->regcache->cooked_write (regnum, regval);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->freg++;
}
else if (TYPE_LENGTH (type) <= 8
&& type->code () == TYPE_CODE_DECFLOAT)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
/* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
placed in the least significant word. */
if (argpos->regcache && argpos->freg <= 13)
{
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
int offset = 0;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 8 - TYPE_LENGTH (type);
argpos->regcache->cooked_write_part (regnum, offset,
TYPE_LENGTH (type), val);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->freg++;
}
else if (TYPE_LENGTH (type) == 16
&& type->code () == TYPE_CODE_FLT
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& (gdbarch_long_double_format (gdbarch)
== floatformats_ibm_long_double))
{
/* IBM long double stored in two consecutive FPRs. */
if (argpos->regcache && argpos->freg <= 13)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
argpos->regcache->cooked_write (regnum, val);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (argpos->freg <= 12)
argpos->regcache->cooked_write (regnum + 1, val + 8);
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->freg += 2;
}
else if (TYPE_LENGTH (type) == 16
&& type->code () == TYPE_CODE_DECFLOAT)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
/* 128-bit decimal floating-point values are stored in and even/odd
pair of FPRs, with the even FPR holding the most significant half. */
argpos->freg += argpos->freg & 1;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (argpos->regcache && argpos->freg <= 12)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
argpos->regcache->cooked_write (regnum, val + hipart);
argpos->regcache->cooked_write (regnum + 1, val + lopart);
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->freg += 2;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
/* VAL is a value of AltiVec vector type. Load it into a vector register
if required by the ABI, and update ARGPOS. */
static void
ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
struct ppc64_sysv_argpos *argpos)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (argpos->regcache && argpos->vreg <= 13)
argpos->regcache->cooked_write (tdep->ppc_vr0_regnum + argpos->vreg, val);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos->vreg++;
}
/* VAL is a value of TYPE. Load it into memory and/or registers
as required by the ABI, and update ARGPOS. */
static void
ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
struct type *type, const bfd_byte *val,
struct ppc64_sysv_argpos *argpos)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (type->code () == TYPE_CODE_FLT
|| type->code () == TYPE_CODE_DECFLOAT)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
/* Floating-point scalars are passed in floating-point registers. */
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
}
else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
&& TYPE_LENGTH (type) == 16)
{
/* AltiVec vectors are passed aligned, and in vector registers. */
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 16, argpos);
ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
}
else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& TYPE_LENGTH (type) >= 16)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Non-Altivec vectors are passed by reference. */
/* Copy value onto the stack ... */
CORE_ADDR addr = align_up (argpos->refparam, 16);
if (argpos->regcache)
write_memory (addr, val, TYPE_LENGTH (type));
argpos->refparam = align_up (addr + TYPE_LENGTH (type), tdep->wordsize);
/* ... and pass a pointer to the copy as parameter. */
ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
}
else if ((type->code () == TYPE_CODE_INT
|| type->code () == TYPE_CODE_ENUM
|| type->code () == TYPE_CODE_BOOL
|| type->code () == TYPE_CODE_CHAR
|| type->code () == TYPE_CODE_PTR
Convert lvalue reference type check to general reference type check In almost all contexts (except for overload resolution rules and expression semantics), lvalue and rvalue references are equivalent. That means that in all but these cases we can replace a TYPE_CODE_REF check to a TYPE_IS_REFERENCE check and, for switch statements, add a case label for a rvalue reference type next to a case label for an lvalue reference type. This patch does exactly that. gdb/ChangeLog PR gdb/14441 * aarch64-tdep.c (aarch64_type_align) (aarch64_extract_return_value, aarch64_store_return_value): Change lvalue reference type checks to general reference type checks. * amd64-tdep.c (amd64_classify): Likewise. * amd64-windows-tdep.c (amd64_windows_passed_by_integer_register): Likewise. * arm-tdep.c (arm_type_align, arm_extract_return_value) (arm_store_return_value): Likewise. * ax-gdb.c (gen_fetch, gen_cast): Likewise. * c-typeprint.c (c_print_type): Likewise. * c-varobj.c (adjust_value_for_child_access, c_value_of_variable) (cplus_number_of_children, cplus_describe_child): Likewise. * compile/compile-c-symbols.c (generate_vla_size): Likewise. * completer.c (expression_completer): Likewise. * cp-support.c (make_symbol_overload_list_adl_namespace): Likewise. * darwin-nat-info.c (info_mach_region_command): Likewise. * dwarf2loc.c (entry_data_value_coerce_ref) (value_of_dwarf_reg_entry): Likewise. * eval.c (ptrmath_type_p, evaluate_subexp_standard) (evaluate_subexp_for_address, evaluate_subexp_for_sizeof): Likewise. * findvar.c (extract_typed_address, store_typed_address): Likewise. * gdbtypes.c (rank_one_type): Likewise. * hppa-tdep.c (hppa64_integral_or_pointer_p): Likewise. * infcall.c (value_arg_coerce): Likewise. * language.c (pointer_type): Likewise. * m32c-tdep.c (m32c_reg_arg_type, m32c_m16c_address_to_pointer): Likewise. * m88k-tdep.c (m88k_integral_or_pointer_p): Likewise. * mn10300-tdep.c (mn10300_type_align): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * ppc-sysv-tdep.c (do_ppc_sysv_return_value) (ppc64_sysv_abi_push_param, ppc64_sysv_abi_return_value): Likewise. * printcmd.c (print_formatted, x_command): Likewise. * python/py-type.c (typy_get_composite, typy_template_argument): Likewise. * python/py-value.c (valpy_referenced_value) (valpy_get_dynamic_type, value_has_field): Likewise. * s390-linux-tdep.c (s390_function_arg_integer): Likewise. * sparc-tdep.c (sparc_integral_or_pointer_p): Likewise. * sparc64-tdep.c (sparc64_integral_or_pointer_p): Likewise. * spu-tdep.c (spu_scalar_value_p): Likewise. * symtab.c (lookup_symbol_aux): Likewise. * typeprint.c (whatis_exp, print_type_scalar): Likewise. * valarith.c (binop_types_user_defined_p, unop_user_defined_p): Likewise. * valops.c (value_cast_pointers, value_cast) (value_reinterpret_cast, value_dynamic_cast, value_addr, typecmp) (value_struct_elt, value_struct_elt_bitpos) (value_find_oload_method_list, find_overload_match) (value_rtti_indirect_type): Likewise. * valprint.c (val_print_scalar_type_p, generic_val_print): Likewise. * value.c (value_actual_type, value_as_address, unpack_long) (pack_long, pack_unsigned_long, coerce_ref_if_computed) (coerce_ref): Likewise. * varobj.c (varobj_get_value_type): Likewise.
2017-03-20 21:47:54 +01:00
|| TYPE_IS_REFERENCE (type))
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& TYPE_LENGTH (type) <= tdep->wordsize)
{
ULONGEST word = 0;
if (argpos->regcache)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Sign extend the value, then store it unsigned. */
word = unpack_long (type, val);
/* Convert any function code addresses into descriptors. */
if (tdep->elf_abi == POWERPC_ELF_V1
&& (type->code () == TYPE_CODE_PTR
|| type->code () == TYPE_CODE_REF))
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
struct type *target_type
= check_typedef (TYPE_TARGET_TYPE (type));
if (target_type->code () == TYPE_CODE_FUNC
|| target_type->code () == TYPE_CODE_METHOD)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
CORE_ADDR desc = word;
convert_code_addr_to_desc_addr (word, &desc);
word = desc;
}
}
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
}
else
{
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
/* The ABI (version 1.9) specifies that structs containing a
single floating-point value, at any level of nesting of
single-member structs, are passed in floating-point registers. */
if (type->code () == TYPE_CODE_STRUCT
&& type->num_fields () == 1)
{
while (type->code () == TYPE_CODE_STRUCT
&& type->num_fields () == 1)
type = check_typedef (type->field (0).type ());
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (type->code () == TYPE_CODE_FLT)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
}
/* In the ELFv2 ABI, homogeneous floating-point or vector
aggregates are passed in a series of registers. */
if (tdep->elf_abi == POWERPC_ELF_V2)
{
struct type *eltype;
int i, nelt;
if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt))
for (i = 0; i < nelt; i++)
{
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
if (eltype->code () == TYPE_CODE_FLT
|| eltype->code () == TYPE_CODE_DECFLOAT)
ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
else if (eltype->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (eltype)
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
&& TYPE_LENGTH (eltype) == 16)
ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
}
}
}
}
/* Pass the arguments in either registers, or in the stack. Using the
ppc 64 bit SysV ABI.
This implements a dumbed down version of the ABI. It always writes
values to memory, GPR and FPR, even when not necessary. Doing this
greatly simplifies the logic. */
CORE_ADDR
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 12:21:04 +01:00
function_call_return_method return_method,
CORE_ADDR struct_addr)
{
2004-06-06 Randolph Chung <tausq@debian.org> * gdbarch.sh (PUSH_DUMMY_CALL): Change CORE_ADDR func_addr argument to struct value *function. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * infcall.c (call_function_by_hand): Pass entire function value to push_dummy_call. * Makefile.in (alpha-tdep.o, frv-tdep.o, ia64-tdep.o, mips-tdep.o) (ppc-sysv-tdep.o, rs6000-tdep.o): Update dependencies. * alpha-tdep.c (alpha_push_dummy_call): Update call signature. * amd64-tdep.c (amd64_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * d10v-tdep.c (d10v_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call) (hppa64_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * m88k-tdep.c (m88k_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call) (mips_o32_push_dummy_call, mips_o64_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * rs6000-tdep.c (rs6000_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu) (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise.
2004-06-07 04:02:55 +02:00
CORE_ADDR func_addr = find_function_addr (function, NULL);
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
ULONGEST back_chain;
/* See for-loop comment below. */
int write_pass;
/* Size of the by-reference parameter copy region, the final value is
computed in the for-loop below. */
LONGEST refparam_size = 0;
/* Size of the general parameter region, the final value is computed
in the for-loop below. */
LONGEST gparam_size = 0;
/* Kevin writes ... I don't mind seeing tdep->wordsize used in the
calls to align_up(), align_down(), etc. because this makes it
easier to reuse this code (in a copy/paste sense) in the future,
but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
at some point makes it easier to verify that this function is
correct without having to do a non-local analysis to figure out
the possible values of tdep->wordsize. */
gdb_assert (tdep->wordsize == 8);
/* This function exists to support a calling convention that
requires floating-point registers. It shouldn't be used on
processors that lack them. */
gdb_assert (ppc_floating_point_unit_p (gdbarch));
/* By this stage in the proceedings, SP has been decremented by "red
zone size" + "struct return size". Fetch the stack-pointer from
before this and use that as the BACK_CHAIN. */
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
2007-06-18 Markus Deuling <deuling@de.ibm.com> * gdbarch.sh (SP_REGNUM): Replace by gdbarch_sp_regnum. * v850-tdep.c (v850_unwind_sp): Likewise. * std-regs.c (value_of_builtin_frame_sp_reg): Likewise. * stack.c (frame_info): Likewise. * stabsread.c (define_symbol): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu) (sh_dwarf2_frame_init_reg, sh_frame_cache, sh_frame_prev_register) (sh_unwind_sp): Likewise. * sh64-tdep.c (sh64_push_dummy_call, sh64_frame_cache) (sh64_frame_prev_register, sh64_unwind_sp): Likewise. * rs6000-tdep.c (rs6000_push_dummy_call, rs6000_unwind_dummy_id) (rs6000_frame_cache): Likewise. * rs6000-nat.c (store_register): Likewise. * remote-mips.c (mips_wait): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (ppc64_sysv_abi_push_dummy_call): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * m32r-rom.c (m32r_supply_register): Likewise. * frame.c (frame_sp_unwind): Likewise. * mips-tdep.c (mips_insn16_frame_cache) (mips_insn32_frame_cache): Likewise (comment). * m68klinux-nat.c (supply_gregset): Likewise. * m68k-tdep.c (m68k_get_longjmp_target): Likewise. * ia64-tdep.c (ia64_frame_prev_register): Likewise. * i386-tdep.c (i386_get_longjmp_target): Likewise. * dwarf2-frame.c (dwarf2_frame_default_init_reg): Likewise. * cris-tdep.c (cris_regnums, cris_sigcontext_addr) (cris_sigtramp_frame_unwind_cache, cris_push_dummy_call) (cris_scan_prologue, crisv32_scan_prologue, cris_unwind_sp) (cris_register_type, crisv32_register_type) (cris_dwarf2_frame_init_reg): Likewise. * arch-utils.c (legacy_virtual_frame_pointer): Likewise. * amd64-tdep.c (amd64_frame_prev_register): Likewise. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Likewise. * libunwind-frame.c (libunwind_frame_cache): Likewise. * gdbarch.sh (PC_REGNUM): Replace by gdbarch_pc_regnum. * regcache.c (read_pc_pid, generic_target_write_pc): Likewise. * xtensa-tdep.c (xtensa_register_type, xtensa_supply_gregset) (xtensa_unwind_pc, xtensa_frame_cache, xtensa_frame_prev_register) (xtensa_extract_return_value, xtensa_store_return_value): Likewise. * v850-tdep.c (v850_unwind_pc): Likewise. * stack.c (frame_info): Likewise. * sh-tdep.c (sh_generic_show_regs, sh3_show_regs, sh2e_show_regs) (sh2a_show_regs, sh2a_nofpu_show_regs, sh3e_show_regs) (sh3_dsp_show_regs, sh4_show_regs, sh4_nofpu_show_regs) (sh_dwarf2_frame_init_reg, sh_frame_prev_register, sh_unwind_pc) (sh_dsp_show_regs): Likewise. * shnbsd-tdep.c (shnbsd_supply_gregset) (shnbsd_collect_gregset): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Likewise. * sh64-tdep.c (sh64_compact_reg_base_num, sh64_show_media_regs) (sh64_frame_prev_register, sh64_unwind_pc): Likewise. * rs6000-tdep.c (ppc_supply_gregset, ppc_collect_gregset) (6000_register_reggroup_p, rs6000_unwind_pc) (rs6000_frame_cache): Likewise. * rs6000-nat.c (regmap, rs6000_fetch_inferior_registers) (rs6000_store_inferior_registers): Likewise. * remote-mips.c (mips_wait, mips_load): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcnbsd-nat.c (getregs_supplies, ppcnbsd_supply_pcb): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * ppc-linux-nat.c (ppc_register_u_addr, fetch_ppc_registers) (store_ppc_registers, fill_gregset): Likewise. * mips-tdep.c (mips_stub_frame_cache, mips_gdbarch_init): Likewise. * mipsnbsd-tdep.c (mipsnbsd_supply_reg, mipsnbsd_fill_reg): Likewise. * mipsnbsd-nat.c (getregs_supplies): Likewise. * m68k-tdep.c (m68k_register_type, m68k_unwind_pc): Likewise. * m68klinux-nat.c (supply_gregset): Likewise. * irix5-nat.c (fill_gregset): Likewise. * i386-tdep.c (i386_unwind_pc): Likewise. * i386-linux-nat.c (i386_linux_resume): Likewise. * frame.c (get_prev_frame_1): Likewise. * dwarf2-frame.c (dwarf2_frame_default_init_reg): Likewise. * dbug-rom.c (dbug_supply_register): Likewise. * cris-tdep.c (cris_sigtramp_frame_unwind_cache, cris_scan_prologue) (crisv32_scan_prologue, cris_unwind_pc, cris_register_size) (cris_register_type, crisv32_register_type, crisv32_register_name) (cris_dwarf2_frame_init_reg, find_step_target) (cris_software_single_step, cris_supply_gregset) (cris_regnums): Likewise. * alpha-linux-nat.c (alpha_linux_register_u_offset): Likewise. * aix-thread.c (special_register_p, supply_sprs64, supply_sprs32) (fill_sprs64, fill_sprs32, store_regs_user_thread): Likewise. * mips-linux-tdep.c (mips_linux_write_pc): Likewise. * gdbarch.sh (PS_REGNUM): Replace by gdbarch_ps_regnum. * dbug-rom.c (dbug_supply_register): Likewise. * xtensa-tdep.c (xtensa_supply_gregset, xtensa_frame_cache) (xtensa_frame_prev_register, xtensa_push_dummy_call): Likewise. * win32-nat.c (win32_resume): Likewise. * std-regs.c (value_of_builtin_frame_ps_reg) (value_of_builtin_frame_pc_reg): Likewise. * m68k-tdep.c (m68k_register_type): Likewise. * m68klinux-nat.c (supply_gregset): Likewise. * gdbarch.sh (FP0_REGNUM): Replace by gdbarch_fp0_regnum. * sh-tdep.c (sh_extract_return_value_fpu, sh_store_return_value_fpu) (sh2e_show_regs, sh2a_show_regs, sh3e_show_regs, sh4_show_regs) (sh_sh2a_register_type, sh_sh3e_register_type, sh_sh4_register_type) (fv_reg_base_num, dr_reg_base_num): Likewise. * sh64-tdep.c (sh64_fv_reg_base_num, sh64_dr_reg_base_num) (sh64_fpp_reg_base_num, sh64_compact_reg_base_num, sh64_push_dummy_call) (sh64_extract_return_value, sh64_store_return_value) (sh64_show_media_regs, sh64_show_compact_regs, sh64_register_type) (sh64_do_fp_register, sh64_media_print_registers_info): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers) (invalidate_cache): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache): Likewise. * mipsnbsd-tdep.c (mipsnbsd_supply_fpreg) (mipsnbsd_fill_fpreg): Likewise. * mipsnbsd-nat.c (mipsnbsd_fetch_inferior_registers) (mipsnbsd_store_inferior_registers): Likewise. * mips-linux-tdep.c (mips_supply_fpregset, mips_fill_fpregset) (mips64_supply_fpregset, mips64_fill_fpregset): Likewise. * mips-linux-nat.c (mips64_linux_register_addr): Likewise. * m68k-tdep.c (m68k_register_type, m68k_convert_register_p): Likewise. * m68klinux-nat.c (getfpregs_supplies, supply_fpregset) (fill_fpregset): Likewise. * irix5-nat.c (supply_fpregset, fill_fpregset): Likewise. * i386-tdep.h (struct_return): Likewise (comment). * i386-nto-tdep.c (i386nto_register_area): Likewise. * go32-nat.c (fetch_register, go32_fetch_registers, store_register) (go32_store_registers): Likewise. * alpha-tdep.c (alpha_next_pc): Likewise. * alpha-linux-nat.c (alpha_linux_register_u_offset): Likewise. * alphabsd-nat.c (alphabsd_fetch_inferior_registers) (alphabsd_store_inferior_registers): Likewise. * core-regset.c (fetch_core_registers): Likewise. * i386v4-nat.c (supply_fpregset, fill_fpregset): Likewise. * gdbarch.c, gdbarch.h: Regenerate.
2007-06-18 19:45:26 +02:00
&back_chain);
/* Go through the argument list twice.
Pass 1: Compute the function call's stack space and register
requirements.
Pass 2: Replay the same computation but this time also write the
values out to the target. */
for (write_pass = 0; write_pass < 2; write_pass++)
{
int argno;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
struct ppc64_sysv_argpos argpos;
argpos.greg = 3;
argpos.freg = 1;
argpos.vreg = 2;
if (!write_pass)
{
/* During the first pass, GPARAM and REFPARAM are more like
offsets (start address zero) than addresses. That way
they accumulate the total stack space each region
requires. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos.regcache = NULL;
argpos.gparam = 0;
argpos.refparam = 0;
}
else
{
/* Decrement the stack pointer making space for the Altivec
and general on-stack parameters. Set refparam and gparam
to their corresponding regions. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
argpos.regcache = regcache;
argpos.refparam = align_down (sp - refparam_size, 16);
argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
/* Add in space for the TOC, link editor double word (v1 only),
compiler double word (v1 only), LR save area, CR save area,
and backchain. */
if (tdep->elf_abi == POWERPC_ELF_V1)
sp = align_down (argpos.gparam - 48, 16);
else
sp = align_down (argpos.gparam - 32, 16);
}
/* If the function is returning a `struct', then there is an
extra hidden parameter (which will be passed in r3)
containing the address of that struct.. In that case we
should advance one word and start from r4 register to copy
parameters. This also consumes one on-stack parameter slot. */
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 12:21:04 +01:00
if (return_method == return_method_struct)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);
for (argno = 0; argno < nargs; argno++)
{
struct value *arg = args[argno];
struct type *type = check_typedef (value_type (arg));
const bfd_byte *val = value_contents (arg);
if (type->code () == TYPE_CODE_COMPLEX)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Complex types are passed as if two independent scalars. */
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
ppc64_sysv_abi_push_param (gdbarch, eltype,
val + TYPE_LENGTH (eltype), &argpos);
}
else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
&& opencl_abi)
{
/* OpenCL vectors shorter than 16 bytes are passed as if
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
a series of independent scalars; OpenCL vectors 16 bytes
or longer are passed as if a series of AltiVec vectors. */
struct type *eltype;
int i, nelt;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (TYPE_LENGTH (type) < 16)
eltype = check_typedef (TYPE_TARGET_TYPE (type));
else
eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
for (i = 0; i < nelt; i++)
{
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
}
}
else
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* All other types are passed as single arguments. */
ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
}
}
if (!write_pass)
{
/* Save the true region sizes ready for the second pass. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
refparam_size = argpos.refparam;
/* Make certain that the general parameter save area is at
least the minimum 8 registers (or doublewords) in size. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (argpos.greg < 8)
gparam_size = 8 * tdep->wordsize;
else
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
gparam_size = argpos.gparam;
}
}
/* Update %sp. */
2007-11-16 Markus Deuling <deuling@de.ibm.com> * m32r-rom.c (m32r_supply_register): Use get_regcache_arch to get at the current architecture by regcache. * ppcnbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register) (fetch_register, supply_vrregset, fetch_ppc_registers) (store_altivec_register, store_spe_register, store_register) (fill_vrregset, store_ppc_registers): Likewise. * ppcobsd-nat.c (ppcobsd_supply_pcb): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers) (do_win32_store_inferior_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers) (m32r_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Replace current_gdbarch by gdbarch. * user-regs.c (user_reg_map_name_to_regnum): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call) (do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call) (ppc64_sysv_abi_return_value): Likewise. * m32c-tdep.c (m32c_register_reggroup_p): Likewise. * m2-lang.c (build_m2_types): Likewise. * ppc-linux-tdep.c (ppc_linux_sigtramp_cache * ppcnbsd-tdep.c (ppcnbsd_sigtramp_cache_init): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * rs6000-tdep.c (ppc_dwarf2_frame_init_reg): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Use get_frame_arch to get at the current architecture by frame_info. * gcore.c (derive_stack_segment): Likewise. * shnbsd-nat.c (GETREGS_SUPPLIES): Add gdbarch parameter. (shnbsd_fetch_inferior_registers, shnbsd_store_inferior_registers): Add gdbarch to GETREGS_SUPPLIES call.
2007-11-16 05:53:46 +01:00
regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
/* Write the backchain (it occupies WORDSIZED bytes). */
* defs.h (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
2009-07-02 19:25:59 +02:00
write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
/* Point the inferior function call's return address at the dummy's
breakpoint. */
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
/* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
that to find the TOC. If we're calling via a function pointer,
the pointer itself identifies the descriptor. */
if (tdep->elf_abi == POWERPC_ELF_V1)
{
struct type *ftype = check_typedef (value_type (function));
CORE_ADDR desc_addr = value_as_address (function);
if (ftype->code () == TYPE_CODE_PTR
|| convert_code_addr_to_desc_addr (func_addr, &desc_addr))
{
/* The TOC is the second double word in the descriptor. */
CORE_ADDR toc =
read_memory_unsigned_integer (desc_addr + tdep->wordsize,
tdep->wordsize, byte_order);
regcache_cooked_write_unsigned (regcache,
tdep->ppc_gp0_regnum + 2, toc);
}
}
/* In the ELFv2 ABI, we need to pass the target address in r12 since
we may be calling a global entry point. */
if (tdep->elf_abi == POWERPC_ELF_V2)
regcache_cooked_write_unsigned (regcache,
tdep->ppc_gp0_regnum + 12, func_addr);
return sp;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
integer, floating-point, and AltiVec vector types.
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
This routine also handles components of aggregate return types;
INDEX describes which part of the aggregate is to be handled.
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
Returns true if VALTYPE is some such base type that could be handled,
false otherwise. */
static int
ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
struct regcache *regcache, gdb_byte *readbuf,
const gdb_byte *writebuf, int index)
{
2003-11-07 Andrew Cagney <cagney@redhat.com> * ppc-linux-tdep.c (ppc_linux_init_abi): When 32-bit GNU/Linux, set "return_value" instead of "use_struct_convention". (ppc_linux_use_struct_convention): Delete function. (ppc_linux_return_value): New function. * ppc-sysv-tdep.c (ppc_sysv_abi_return_value): New function. (ppc_sysv_abi_broken_return_value): New function. (do_ppc_sysv_return_value): Add "gdbarch" parameter. (ppc64_sysv_abi_push_dummy_call): Add "gdbarch" parameter, drop static. (ppc_sysv_abi_extract_return_value): Delete function. (ppc_sysv_abi_broken_extract_return_value): Delete function. (ppc_sysv_abi_store_return_value): Delete function. (ppc_sysv_abi_broken_store_return_value): Delete function. (ppc_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_use_struct_convention): Delete function. (ppc64_sysv_abi_extract_return_value): Delete function. (ppc64_sysv_abi_store_return_value): Delete function. * ppcnbsd-tdep.c (ppcnbsd_return_value): New function. (ppcnbsd_init_abi): Set "return_value", instead of "use_struct_convention", "extract_return_value", and "store_return_value". (ppcnbsd_use_struct_convention): Delete function. * ppc-tdep.h (ppc64_sysv_abi_return_value): Declare. (ppc_sysv_abi_return_value): Declare. (ppc_sysv_abi_broken_return_value): Declare. (ppc_sysv_abi_use_struct_convention): Delete. (ppc_sysv_abi_store_return_value): Delete. (ppc_sysv_abi_extract_return_value): Delete. (ppc_sysv_abi_broken_store_return_value): Delete. (ppc_sysv_abi_broken_extract_return_value): Delete. (ppc64_sysv_abi_use_struct_convention): Delete. (ppc64_sysv_abi_extract_return_value): Delete. (ppc64_sysv_abi_store_return_value): Delete. * rs6000-tdep.c (rs6000_gdbarch_init): For 32-bit and 64-bit SYSV, set "return_value" instead of "extract_return_value", "store_return_value", and "use_struct_convention".
2003-11-07 21:44:51 +01:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Integers live in GPRs starting at r3. */
if ((valtype->code () == TYPE_CODE_INT
|| valtype->code () == TYPE_CODE_ENUM
|| valtype->code () == TYPE_CODE_CHAR
|| valtype->code () == TYPE_CODE_BOOL)
&& TYPE_LENGTH (valtype) <= 8)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_gp0_regnum + 3 + index;
if (writebuf != NULL)
{
/* Be careful to sign extend the value. */
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
regcache_cooked_write_unsigned (regcache, regnum,
unpack_long (valtype, writebuf));
}
if (readbuf != NULL)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Extract the integer from GPR. Since this is truncating the
value, there isn't a sign extension problem. */
ULONGEST regval;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
regcache_cooked_read_unsigned (regcache, regnum, &regval);
store_unsigned_integer (readbuf, TYPE_LENGTH (valtype),
gdbarch_byte_order (gdbarch), regval);
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Floats and doubles go in f1 .. f13. 32-bit floats are converted
to double first. */
if (TYPE_LENGTH (valtype) <= 8
&& valtype->code () == TYPE_CODE_FLT)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_fp0_regnum + 1 + index;
struct type *regtype = register_type (gdbarch, regnum);
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (writebuf != NULL)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (writebuf, valtype, regval, regtype);
regcache->cooked_write (regnum, regval);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
if (readbuf != NULL)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
regcache->cooked_read (regnum, regval);
Target FP: Remove convert_typed_floating from tdep files This patch mechanically replaces convert_typed_floating with the equivalent target_float_convert throughout tdep files, to prepare for the removal of doublest.{c,h}. No functional change intended. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * i386-tdep.c: Include "target-float.h". Do not include "doublest.h". (i386_extract_return_value): Use target_float_convert. (i386_store_return_value): Likewise. * i387-tdep.c (i387_register_to_value): Use target_float_convert. (i387_value_to_register): Likewise. * ia64-tdep.c: Include "target-float.h". Do not include "doublest.h". (ia64_register_to_value): Use target_float_convert. (ia64_value_to_register): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (ia64_push_dummy_call): Likewise. * m68k-tdep.c: Include "target-float.h". (m68k_register_to_value): Use target_float_convert. (m68k_value_to_register): Likewise. (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * ppc-sysv-tdep.c: Include "target-float.h". (ppc_sysv_abi_push_dummy_call): Use target_float_convert. (do_ppc_sysv_return_value): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_return_value_base): Likewise. * rs6000-aix-tdep.c: Include "target-float.h". (rs6000_push_dummy_call): Use target_float_convert. (rs6000_return_value): Likewise. * rs6000-lynx178-tdep.c: Include "target-float.h". (rs6000_lynx178_push_dummy_call): Use target_float_convert. (rs6000_lynx178_return_value): Likewise. * rs6000-tdep.c: Include "target-float.h". Do not include "doublest.h". (rs6000_register_to_value): Use target_float_convert. (rs6000_value_to_register): Likewise. * arm-tdep.c: Include "target-float.h". Do not include "doublest.h". (arm_extract_return_value): Use target_float_convert. (arm_store_return_value): Likewise. * sh-tdep.c: Include "target-float.h". Do not include "doublest.h". (sh_register_convert_to_virtual): Use target_float_convert. (sh_register_convert_to_raw): Likewise. * sh64-tdep.c: Include "target-float.h". (sh64_extract_return_value): Use target_float_convert. (sh64_register_convert_to_virtual): Likewise. (sh64_register_convert_to_raw): Likewise. Fix argument types.
2017-11-06 16:01:37 +01:00
target_float_convert (regval, regtype, readbuf, valtype);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
placed in the least significant word. */
if (TYPE_LENGTH (valtype) <= 8
&& valtype->code () == TYPE_CODE_DECFLOAT)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
{
int regnum = tdep->ppc_fp0_regnum + 1 + index;
int offset = 0;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 8 - TYPE_LENGTH (valtype);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (writebuf != NULL)
regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
writebuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
readbuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* IBM long double stored in two consecutive FPRs. */
if (TYPE_LENGTH (valtype) == 16
&& valtype->code () == TYPE_CODE_FLT
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& (gdbarch_long_double_format (gdbarch)
== floatformats_ibm_long_double))
{
int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (writebuf != NULL)
{
regcache->cooked_write (regnum, writebuf);
regcache->cooked_write (regnum + 1, writebuf + 8);
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
{
regcache->cooked_read (regnum, readbuf);
regcache->cooked_read (regnum + 1, readbuf + 8);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* 128-bit decimal floating-point values are stored in an even/odd
pair of FPRs, with the even FPR holding the most significant half. */
if (TYPE_LENGTH (valtype) == 16
&& valtype->code () == TYPE_CODE_DECFLOAT)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (writebuf != NULL)
{
regcache->cooked_write (regnum, writebuf + hipart);
regcache->cooked_write (regnum + 1, writebuf + lopart);
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
{
regcache->cooked_read (regnum, readbuf + hipart);
regcache->cooked_read (regnum + 1, readbuf + lopart);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
}
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* AltiVec vectors are returned in VRs starting at v2. */
if (TYPE_LENGTH (valtype) == 16
&& valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_vr0_regnum + 2 + index;
if (writebuf != NULL)
regcache->cooked_write (regnum, writebuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
regcache->cooked_read (regnum, readbuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Short vectors are returned in GPRs starting at r3. */
if (TYPE_LENGTH (valtype) <= 8
&& valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype))
{
int regnum = tdep->ppc_gp0_regnum + 3 + index;
int offset = 0;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 8 - TYPE_LENGTH (valtype);
if (writebuf != NULL)
regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
writebuf);
if (readbuf != NULL)
regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
readbuf);
return 1;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
return 0;
}
/* The 64 bit ABI return value convention.
Return non-zero if the return-value is stored in a register, return
0 if the return-value is instead stored on the stack (a.k.a.,
struct return convention).
For a return-value stored in a register: when WRITEBUF is non-NULL,
copy the buffer to the corresponding register return-value location
location; when READBUF is non-NULL, fill the buffer from the
corresponding register return-value location. */
enum return_value_convention
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct type *func_type = function ? value_type (function) : NULL;
int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
struct type *eltype;
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 00:16:27 +02:00
int nelt, ok;
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* This function exists to support a calling convention that
requires floating-point registers. It shouldn't be used on
processors that lack them. */
gdb_assert (ppc_floating_point_unit_p (gdbarch));
/* Complex types are returned as if two independent scalars. */
if (valtype->code () == TYPE_CODE_COMPLEX)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 00:16:27 +02:00
for (int i = 0; i < 2; i++)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
readbuf, writebuf, i);
gdb_assert (ok);
if (readbuf)
readbuf += TYPE_LENGTH (eltype);
if (writebuf)
writebuf += TYPE_LENGTH (eltype);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* OpenCL vectors shorter than 16 bytes are returned as if
a series of independent scalars; OpenCL vectors 16 bytes
or longer are returned as if a series of AltiVec vectors. */
if (valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& opencl_abi)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (TYPE_LENGTH (valtype) < 16)
eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
else
eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 00:16:27 +02:00
for (int i = 0; i < nelt; i++)
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
readbuf, writebuf, i);
gdb_assert (ok);
if (readbuf)
readbuf += TYPE_LENGTH (eltype);
if (writebuf)
writebuf += TYPE_LENGTH (eltype);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* All pointers live in r3. */
if (valtype->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (valtype))
{
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
int regnum = tdep->ppc_gp0_regnum + 3;
if (writebuf != NULL)
regcache->cooked_write (regnum, writebuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
regcache->cooked_read (regnum, readbuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Small character arrays are returned, right justified, in r3. */
if (valtype->code () == TYPE_CODE_ARRAY
&& !TYPE_VECTOR (valtype)
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& TYPE_LENGTH (valtype) <= 8
&& TYPE_TARGET_TYPE (valtype)->code () == TYPE_CODE_INT
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
&& TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
{
int regnum = tdep->ppc_gp0_regnum + 3;
int offset = (register_size (gdbarch, regnum) - TYPE_LENGTH (valtype));
if (writebuf != NULL)
regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
writebuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
if (readbuf != NULL)
regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
readbuf);
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* In the ELFv2 ABI, homogeneous floating-point or vector
aggregates are returned in registers. */
if (tdep->elf_abi == POWERPC_ELF_V2
&& ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt)
&& (eltype->code () == TYPE_CODE_FLT
|| eltype->code () == TYPE_CODE_DECFLOAT
|| (eltype->code () == TYPE_CODE_ARRAY
&& TYPE_VECTOR (eltype)
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
&& TYPE_LENGTH (eltype) == 16)))
{
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 00:16:27 +02:00
for (int i = 0; i < nelt; i++)
{
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
readbuf, writebuf, i);
gdb_assert (ok);
if (readbuf)
readbuf += TYPE_LENGTH (eltype);
if (writebuf)
writebuf += TYPE_LENGTH (eltype);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* In the ELFv2 ABI, aggregate types of up to 16 bytes are
returned in registers r3:r4. */
if (tdep->elf_abi == POWERPC_ELF_V2
&& TYPE_LENGTH (valtype) <= 16
&& (valtype->code () == TYPE_CODE_STRUCT
|| valtype->code () == TYPE_CODE_UNION
|| (valtype->code () == TYPE_CODE_ARRAY
&& !TYPE_VECTOR (valtype))))
{
int n_regs = ((TYPE_LENGTH (valtype) + tdep->wordsize - 1)
/ tdep->wordsize);
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 00:16:27 +02:00
for (int i = 0; i < n_regs; i++)
{
gdb_byte regval[PPC_MAX_REGISTER_SIZE];
int regnum = tdep->ppc_gp0_regnum + 3 + i;
int offset = i * tdep->wordsize;
int len = TYPE_LENGTH (valtype) - offset;
if (len > tdep->wordsize)
len = tdep->wordsize;
if (writebuf != NULL)
{
memset (regval, 0, sizeof regval);
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& offset == 0)
memcpy (regval + tdep->wordsize - len, writebuf, len);
else
memcpy (regval, writebuf + offset, len);
regcache->cooked_write (regnum, regval);
}
if (readbuf != NULL)
{
regcache->cooked_read (regnum, regval);
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& offset == 0)
memcpy (readbuf, regval + tdep->wordsize - len, len);
else
memcpy (readbuf + offset, regval, len);
}
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
Refactor ppc64 function call and return value handling This patch refactors the ppc64 function call and return value handling code in ppc-sysv-tdep.c. The main problem to be addressed by this refactoring is the code duplication caused by certain aggregate types: According to the ABI, some types are to be decomposed into component types for parameter and return value handling. For example, complex types are to be passed as if the real and imaginary component were separate arguments. Similarly, certain OpenCL vector types are passed as if they were multiple separate arguments of the vector element type. With the new ELFv2 ABI, there is another case: "homogeneous aggregates" (e.g. a struct containing 4 floats) are passed in multiple floating point registers as well. Unfortunately, the current code is not structured to easily model these ABI properties. For example, code to pass complex values re-implements code to pass the underlying (floating-point) type. This has already led to some unfortunate code duplication, and with the addition of ELFv2 ABI support, I would have had to add yet more such duplication. To avoid that, I've decided to refactor the code in order to re-use subroutines that handle the "base" types when handling those aggregate types. This was not intended to cause any difference on current (ELFv1) ABI code, but in fact it fixes a bug: FAIL: gdb.base/varargs.exp: print find_max_float_real(4, fc1, fc2, fc3, fc4) This was caused by the old code in ppc64_sysv_abi_push_float incorrectly handling floating-point arguments to vararg routines, which just happens to work out correctly automatically in the refactored code ... gdb/ChangeLog: * ppc-sysv-tdep.c (get_decimal_float_return_value): Update comment. (struct ppc64_sysv_argpos): New data structure. (ppc64_sysv_abi_push_float): Remove. (ppc64_sysv_abi_push_val): New function. (ppc64_sysv_abi_push_integer): Likewise. (ppc64_sysv_abi_push_freg): Likewise. (ppc64_sysv_abi_push_vreg): Likewise. (ppc64_sysv_abi_push_param): Likewise. (ppc64_sysv_abi_push_dummy_call): Refactor to use those new routines. (ppc64_sysv_abi_return_value_base): New function. (ppc64_sysv_abi_return_value): Refactor to use it.
2014-02-04 18:24:42 +01:00
/* Handle plain base types. */
if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
readbuf, writebuf, 0))
return RETURN_VALUE_REGISTER_CONVENTION;
return RETURN_VALUE_STRUCT_CONVENTION;
}