The plugin is called to claim symbols in an archive element from
plugin_object_p. But those symbols aren't needed to create output.
They are defined and referenced only within IR. get_symbols should
return resolution based on IR symbol kinds.
PR ld/20070
* Makefile.am (noinst_LTLIBRARIES): Add libldtestplug4.la.
(libldtestplug4_la_SOURCES): New.
(libldtestplug4_la_CFLAGS): Likewise.
(libldtestplug4_la_LDFLAGS): Likewise.
* Makefile.in: Regenerated.
* plugin.c (get_symbols): Return resolution based on IR symbol
kinds for symbols defined/referenced only within IR.
* testplug4.c: New file.
* ld/testsuite/ld-plugin/pr20070.d: Likewise.
* ld/testsuite/ld-plugin/pr20070a.c: Likewise.
* ld/testsuite/ld-plugin/pr20070b.c: Likewise.
* testsuite/ld-plugin/plugin.exp (plugin4_name): New.
(plugin4_path): Likewise.
Add a test for ld/20070.
2016-05-10 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elf32-arm.c (elf32_arm_size_stubs): Use new macros
ARM_GET_SYM_BRANCH_TYPE and ARM_SET_SYM_BRANCH_TYPE to respectively get
and set branch type of a symbol.
(bfd_elf32_arm_process_before_allocation): Likewise.
(elf32_arm_relocate_section): Likewise and fix identation along the
way.
(allocate_dynrelocs_for_symbol): Likewise.
(elf32_arm_finish_dynamic_symbol): Likewise.
(elf32_arm_swap_symbol_in): Likewise.
(elf32_arm_swap_symbol_out): Likewise.
gas/
* config/tc-arm.c (arm_adjust_symtab): Use ARM_SET_SYM_BRANCH_TYPE to
set branch type of a symbol.
gdb/
* arm-tdep.c (arm_elf_make_msymbol_special): Use
ARM_GET_SYM_BRANCH_TYPE to get branch type of a symbol.
include/
* arm.h (enum arm_st_branch_type): Add new ST_BRANCH_ENUM_SIZE
enumerator.
(NUM_ENUM_ARM_ST_BRANCH_TYPE_BITS): New macro.
(ENUM_ARM_ST_BRANCH_TYPE_BITMASK): Likewise.
(ARM_SYM_BRANCH_TYPE): Replace by ...
(ARM_GET_SYM_BRANCH_TYPE): This and ...
(ARM_SET_SYM_BRANCH_TYPE): This in two versions depending on whether
BFD_ASSERT is defined or not.
ld/
* emultempl/armelf.em (gld${EMULATION_NAME}_finish): Use
ARM_GET_SYM_BRANCH_TYPE to get branch type of a symbol.
opcodes/
* arm-dis.c (get_sym_code_type): Use ARM_GET_SYM_BRANCH_TYPE to get
branch type of a symbol.
(print_insn): Likewise.
2016-05-10 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* bfd-in.h (elf32_arm_size_stubs): Add an output section parameter.
* bfd-in2.h: Regenerated.
* elf32-arm.c (struct elf32_arm_link_hash_table): Add an output section
parameter to add_stub_section callback.
(elf32_arm_create_or_find_stub_sec): Get output section from link_sec
and pass it down to add_stub_section.
(elf32_arm_add_stub): Set section to stub_sec if NULL before using it
for error message.
(elf32_arm_size_stubs): Add output section parameter to
add_stub_section function pointer parameter.
ld/
* emultempl/armelf.em (elf32_arm_add_stub_section): Add output_section
parameter and rename input_section parameter to after_input_section.
Append input stub section to the output section if after_input_section
is NULL.
We don't want this to match .rela.text or similar.
* testsuite/ld-scripts/pr14962-2.t: Match .text, not *.text.
* testsuite/ld-scripts/rgn-at5.t: Similarly, .sec not *.sec.
* testsuite/ld-scripts/section-match-1.t: Likewise.
When a global symbol is defined in COMDAT group, we shouldn't leave an
undefined symbol in symbol table when the symbol section is discarded
unless there is a reference to the symbol outside of COMDAT group.
bfd/
PR ld/17550
* elf-bfd.h (elf_link_hash_entry): Update comments for indx,
documenting that indx == -3 if symbol is defined in a discarded
section.
* elflink.c (elf_link_add_object_symbols): Set indx to -3 if
symbol is defined in a discarded section.
(elf_link_output_extsym): Strip a global symbol defined in a
discarded section.
ld/
PR ld/17550
* testsuite/ld-elf/pr17550-1.s: New file.
* testsuite/ld-elf/pr17550-2.s: Likewise.
* testsuite/ld-elf/pr17550-3.s: Likewise.
* testsuite/ld-elf/pr17550-4.s: Likewise.
* testsuite/ld-elf/pr17550a.d: Likewise.
* testsuite/ld-elf/pr17550b.d: Likewise.
* testsuite/ld-elf/pr17550c.d: Likewise.
* testsuite/ld-elf/pr17550d.d: Likewise.
Some targets are only really, or at least regularly, regression-tested
in a crossed configuration. Currently we only have native compiled test
cases for the STB_GNU_UNIQUE feature in the linker test suite. This is
nice, covering run-time semantics even, but quite often not run at all.
Consequently a regression may remain unnoticed for long.
Add a simple test case then to provide basic linker coverage with no
need for a compiler or a native toolchain.
ld/
* testsuite/ld-unique/unique.d: New test.
* testsuite/ld-unique/unique.exp: Run the new test. Adjust
messages for compiled tests.
binutils* testsuite/lib/binutils-common.exp (is_elf_format): Add avr-*-*.
ld * testsuite/ld-elf/pr18735.d: Allow other symbols.
* testsuite/ld-elf/sec64k.exp: Skip 64ksec for avr.
* testsuite/ld-gc/pr14265.d: Allow other symbols.
* testsuite/ld-plugin/plugin.exp: Add PR ld/17973 to
plugin_tests only if check_shared_lib_support is true.
* testsuite/ld-selective/selective.exp: Add --section-start
flag for avr.
When handling absolute relocations for global symbols bind within the
shared object, AArch64 will generate one dynamic RELATIVE relocation,
but won't apply the value for this absolution relocations at static
linking stage. This is different from AArch64 gold linker and x86-64.
This is not a bug as AArch64 is RELA, there is only guarantee that
relocation addend is placed in the relocation entry. But some
system softwares originally writen for x86-64 might assume AArch64
bfd linker gets the same behavior as x86-64, then they could take
advantage of this buy skipping those RELATIVE dynamic relocations
if the load address is the same as the static linking address.
This patch makes AArch64 BFD linker applies absolution relocations at
static linking stage for scenario described above. Meanwhile old AArch64
android loader has a bug (PR19163) which relies on current linker behavior
as a workaround, so the same option --no-apply-dynamic-relocs added.
There is no need to download source if we aren't on remote host.
Otherwise, each ld test run on local host leaves behind a couple
test files.
* config/default.exp (NOPIE_CFLAGS): Download source only on
remote host.
(NOPIE_LDFLAGS): Likewise.
* testsuite/lib/ld-lib.exp (check_lto_available): Likewise.
(check_lto_fat_available): Likewise.
(check_lto_shared_available): Likewise.
(check_ifunc_available): Likewise.
(check_ifunc_attribute_available): Likewise.
Since not all ELF targets use the elf.em emulation to support ld option:
--compress-debug-sections=zlib-gnu, limit compressed1b.d to Linux/GNU
targets.
* testsuite/ld-elf/compressed1b.d: Only run for Linux/GNU targets.
Skip debug sections when estimating distances between output sections
since compressed_size is used to compress debug sections and debug
sections aren't excluded from distances between output sections.
bfd/
PR ld/20006
* elf64-x86-64.c (elf_x86_64_convert_load): Skip debug sections
when estimating distances between output sections.
ld/
PR ld/20006
* testsuite/ld-elfvsb/elfvsb.exp (COMPRESS_LDFLAG): New.
(visibility_run): Pass COMPRESS_LDFLAG to visibility_test on
ELF targets.
Since ld may generate compressed debug sections by default, pass
--compress-debug-sections=none to ld to avoid compressed debug
sections.
* ld-elf/compressed1b.d: Pass --compress-debug-sections=none
to ld.
* ld-elf/compressed1c.d: Likewise.
Check for LTO availability will hide LTO bugs in ld. Since GCC 4.9 adds
-ffat-lto-objects, we always run LTO tests on Linux with GCC 4.9 or newer.
* testsuite/lib/ld-lib.exp (check_lto_available): Return 1 on
Linux with GCC 4.9 or newer.
(check_lto_fat_available): Likewise.
(check_lto_shared_available): Likewise.
Fixes failures on hppa-linux and alpha-linux due to not merging
.data.* and .sdata into .data. cross3.t modified too since it is the
template for the NOCROSSREFS_TO scripts.
* testsuite/ld-scripts/cross3.t: Add commonly used data
and text section names to output section statements.
* testsuite/ld-scripts/cross4.t: Likewise.
* testsuite/ld-scripts/cross5.t: Likewise.
* testsuite/ld-scripts/cross6.t: Likewise.
* testsuite/ld-scripts/cross7.t: Likewise.
Move ELF relocation check after lang_gc_sections so that all the
reference counting code for plt and got relocs can be removed. This
only affects ELF targets which check relocations after opening all
input file.
* ldlang.c (lang_check_relocs): New function.
(lang_process): Call lang_check_relocs after lang_gc_sections.
* emultempl/elf32.em (gld${EMULATION_NAME}_before_parse): Don't
call _bfd_elf_link_check_relocs here.
There is no need for run-time relocation when converting pointers
in .eh_frame section to DW_EH_PE_pcrel encoding. R_386_NONE and
R_X86_64_NONE are expected since the space for run-time relocation
has been allocated. This is an optimization.
PR ld/19972
* testsuite/ld-elf/eh6.d: Pass -rW to readelf and check for
R_386_NONE or R_X86_64_NONE.
Since elf_x86_64_check_relocs is called after opening all input files,
we can detect dynamic R_X86_64_32 relocation overflow there.
bfd/
PR ld/19969
* elf64-x86-64.c (check_relocs_failed): New.
(elf_x86_64_need_pic): Moved before elf_x86_64_check_relocs.
Support relocation agaist local symbol. Set check_relocs_failed.
(elf_x86_64_check_relocs): Use elf_x86_64_need_pic. Check
R_X86_64_32 relocation overflow.
(elf_x86_64_relocate_section): Skip if check_relocs failed.
Update one elf_x86_64_need_pic and remove one elf_x86_64_need_pic.
ld/
PR ld/19969
* testsuite/ld-x86-64/pr19969.d: New file.
* testsuite/ld-x86-64/pr19969a.S: Likewise.
* testsuite/ld-x86-64/pr19969b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19969 tests.
Delaying checking ELF relocations until opening all input files so
that symbol information is final when relocations are checked. This
is only enabled for x86 targets.
bfd/
* elf-bfd.h (_bfd_elf_link_check_relocs): New.
* elflink.c (_bfd_elf_link_check_relocs): New function.
(elf_link_add_object_symbols): Call _bfd_elf_link_check_relocs
if check_relocs_after_open_input is FALSE.
include/
* bfdlink.h (bfd_link_info): Add check_relocs_after_open_input.
ld/
* emulparams/elf32_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
New.
* emulparams/elf_i386.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_be.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_chaos.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_ldso.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_vxworks.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/i386nto.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emultempl/elf32.em (gld${EMULATION_NAME}_before_parse):
Set check_relocs_after_open_input to TRUE if
CHECK_RELOCS_AFTER_OPEN_INPUT is yes.
(gld${EMULATION_NAME}_after_open): Call
_bfd_elf_link_check_relocs on all inputs if
check_relocs_after_open_input is TRUE.
This test checks run-time relocation overflow with GOT relocation and
32-bit relocation against the same symbol.
PR ld/19719
* testsuite/ld-x86-64/pr19719.d: New file.
* testsuite/ld-x86-64/pr19719.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19719.
NOCROSSREFS_TO is similar to the existing NOCROSSREFS command but only
checks one direction of cross referencing.
ld/ChangeLog
* ld.texinfo: Document NOCROSSREFS_TO script command.
* ldlang.h (struct lang_nocrossrefs): Add onlyfirst field.
(lang_add_nocrossref_to): New prototype.
* ldcref.c (check_local_sym_xref): Use onlyfirst to only look for
symbols defined in the first section.
(check_nocrossref): Likewise.
* ldgram.y (NOCROSSREFS_TO): New script command.
* ldlang.c (lang_add_nocrossref): Set onlyfirst to FALSE.
(lang_add_nocrossref_to): New function.
* ldlex.l (NOCROSSREFS_TO): New token.
* NEWS: Mention NOCROSSREFS_TO.
* testsuite/ld-scripts/cross4.t: New file.
* testsuite/ld-scripts/cross5.t: Likewise.
* testsuite/ld-scripts/cross6.t: Likewise.
* testsuite/ld-scripts/cross7.t: Likewise.
* testsuite/ld-scripts/crossref.exp: Run 4 new NOCROSSREFS_TO
tests.
Add support for arc/nps400 cmem instructions, these load and store
instructions are hard-wired to access "0x57f00000 + 16-bit-offset".
Supporting this relocation required some additions to the arc relocation
handling in the bfd library, as well as the standard changes required to
add a new relocation type.
There's a test of the new instructions in the assembler, and a test of
the relocation in the linker.
bfd/ChangeLog:
* reloc.c: Add BFD_RELOC_ARC_NPS_CMEM16 entry.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* elf32-arc.c: Add 'opcode/arc.h' include.
(struct arc_relocation_data): Add symbol_name.
(arc_special_overflow_checks): New function.
(arc_do_relocation): Use arc_special_overflow_checks, reindent as
required, add an extra comment.
(elf_arc_relocate_section): Setup symbol_name in reloc_data.
gas/ChangeLog:
* testsuite/gas/arc/nps400-3.d: New file.
* testsuite/gas/arc/nps400-3.s: New file.
include/ChangeLog:
* elf/arc-reloc.def: Add ARC_NPS_CMEM16 reloc.
* opcode/arc.h (NPS_CMEM_HIGH_VALUE): Define.
ld/ChangeLog:
* testsuite/ld-arc/arc.exp: New file.
* testsuite/ld-arc/nps-1.s: New file.
* testsuite/ld-arc/nps-1a.d: New file.
* testsuite/ld-arc/nps-1b.d: New file.
* testsuite/ld-arc/nps-1b.err: New file.
opcodes/ChangeLog:
* arc-nps400-tbl.h: Add xldb, xldw, xld, xstb, xstw, and xst
instructions.
* arc-opc.c (insert_nps_cmem_uimm16): New function.
(extract_nps_cmem_uimm16): New function.
(arc_operands): Add NPS_XLDST_UIMM16 operand.
In some cases a variable could be left uninitialised and then an attempt
made to read this variable, resulting in a tcl error. This commit
initialises the variable in all cases.
ld/ChangeLog:
* testsuite/lib/ld-lib.exp (run_dump_test): Initialise
check_ld(terminal).
Since compiler may pass --as-needed to ld by default, link .o file
before .so file in x86-64 tests.
PR ld/19774
* testsuite/ld-x86-64/x86-64.exp: Link tmpdir/pr17689b.o before
tmpdir/pr17689.so, fix gotpcrel1 test and add more --as-needed
tests.
We shouldn't issue an error for read-only segment with dynamic IFUNC
relocations when dynamic relocations are against normal symbols.
bfd/
PR ld/19939
* elf-bfd.h (_bfd_elf_allocate_ifunc_dyn_relocs): Add a pointer
to bfd_boolean.
* elf-ifunc.c (_bfd_elf_allocate_ifunc_dyn_relocs): Updated.
Set *readonly_dynrelocs_against_ifunc_p to TRUE if dynamic reloc
applies to read-only section.
* elf32-i386.c (elf_i386_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_i386_allocate_dynrelocs): Updated.
(elf_i386_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elf64-x86-64.c (elf_x86_64_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_x86_64_allocate_dynrelocs): Updated.
(elf_x86_64_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elfnn-aarch64.c (elfNN_aarch64_allocate_ifunc_dynrelocs):
Updated.
ld/
PR ld/19939
* testsuite/ld-i386/i386.exp: Run PR ld/19939 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19939.s: New file.
* testsuite/ld-i386/pr19939a.d: Likewise.
* testsuite/ld-i386/pr19939b.d: Likewise.
* testsuite/ld-x86-64/pr19939.s: Likewise.
* testsuite/ld-x86-64/pr19939a.d: Likewise.
* testsuite/ld-x86-64/pr19939b.d: Likewise.