Commit Graph

367 Commits

Author SHA1 Message Date
Joel Brobecker b811d2c292 Update copyright year range in all GDB files.
gdb/ChangeLog:

        Update copyright year range in all GDB files.
2020-01-01 10:20:53 +04:00
Tankut Baris Aktemur d0922fcf02 Use enum bitfield for the calling_convention attribute of a subroutine
This is a refactoring.  Instead of a plain unsigned value, use an enum
bitfield.

gdb/ChangeLog:
2019-12-20  Tankut Baris Aktemur  <tankut.baris.aktemur@intel.com>

	* dwarf2read.c (is_valid_DW_AT_calling_convention_for_subroutine):
	New function.
	(read_subroutine_type): Validate the parsed
	DW_AT_calling_convention value before assigning it to a
	subroutine's calling_convention attribute.
	* gdbtypes.h (struct func_type) <calling_convention>: Use
	an enum bitfield as its type, instead of plain unsigned.

Change-Id: Ibc6b2f71e885cbc5c3c9d49734f7125acbfd1bcd
2019-12-20 19:27:29 +01:00
Tankut Baris Aktemur e35000a7f8 gdb: recognize new DWARF attributes: defaulted, deleted, calling conv.
Extend GDB's internal representation of types to include the
DW_AT_calling_convention, DW_AT_defaulted, and DW_AT_deleted attributes
that were introduced in DWARF5.

These attributes will be helpful in a future patch about infcall'ing
functions with call-by-value parameters.  GDB will use the attributes
to decide whether the type of a call-by-value parameter is implicitly
pass-by-reference.

gdb/ChangeLog:
2019-12-20  Tankut Baris Aktemur  <tankut.baris.aktemur@intel.com>

	* dwarf2read.c (dwarf2_add_member_fn): Read the DW_AT_defaulted
	and DW_AT_deleted attributes of a function.
	(read_structure_type): Read the DW_AT_calling_convention attribute
	of a type.
	(is_valid_DW_AT_defaulted): New function.
	(is_valid_DW_AT_calling_convention_for_type): New function.
	* gdbtypes.h: Include dwarf2.h.
	(struct fn_field)<defaulted>: New field to store the
	DW_AT_defaulted attribute.
	(struct fn_field)<is_deleted>: New field to store the
	DW_AT_deleted attribute.
	(struct cplus_struct_type)<calling_convention>: New field to store
	the DW_AT_calling_convention attribute.
	(TYPE_FN_FIELD_DEFAULTED): New macro.
	(TYPE_FN_FIELD_DELETED): New macro.
	(TYPE_CPLUS_CALLING_CONVENTION): New macro.
	* gdbtypes.c (dump_fn_fieldlists): Update for the changes made
	to the .h file.
	(print_cplus_stuff): Likewise.

Change-Id: I54192f363115b78ec7435a8563b73fcace420765
2019-12-20 17:43:06 +01:00
Tankut Baris Aktemur 06acc08f0a gdb: fix overload resolution for see-through references
The overload resolution mechanism assigns badness values to the
necessary conversions to be made on types to pick a champion.  A
badness value consists of a "rank" that scores the conversion and a
"subrank" to differentiate conversions of the same kind.

An auxiliary function, 'sum_ranks', is used for adding two badness
values.  In all of its uses, except two, 'sum_ranks' is used for
populating the subrank of a badness value.  The two exceptions are in
'rank_one_type':

~~~
  /* See through references, since we can almost make non-references
     references.  */

  if (TYPE_IS_REFERENCE (arg))
    return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
		       REFERENCE_CONVERSION_BADNESS));
  if (TYPE_IS_REFERENCE (parm))
    return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
		       REFERENCE_CONVERSION_BADNESS));
~~~

Here, the result of a recursive call is combined with
REFERENCE_CONVERSION_BADNESS.  This leads to the problem of
over-punishment by combining two ranks.  Consider this:

    void an_overloaded_function (const foo &);
    void an_overloaded_function (const foo &&);
    ...
    foo arg;
    an_overloaded_function(arg);

When ranking 'an_overloaded_function (const foo &)', the badness
values REFERENCE_CONVERSION_BADNESS and CV_CONVERSION_BADNESS are
combined, whereas 'rank_one_type' assigns only the
REFERENCE_CONVERSION_BADNESS value to 'an_overloaded_function (const
foo &&)' (there is a different execution flow for that).  This yields
in GDB picking the latter function as the overload champion instead of
the former.

In fact, the 'rank_one_type' function should have given
'an_overloaded_function (const foo &)' the CV_CONVERSION_BADNESS
value, with the see-through referencing increasing the subrank a
little bit.  This can be achieved by introducing a new badness value,
REFERENCE_SEE_THROUGH_BADNESS, which bumps up the subrank only, and
using it in the two "exceptional" cases of 'sum_ranks'.

gdb/ChangeLog:
2019-12-06  Tankut Baris Aktemur  <tankut.baris.aktemur@intel.com>

	* gdbtypes.h: Define the REFERENCE_SEE_THROUGH_BADNESS value.
	* gdbtypes.c (rank_one_type): Use REFERENCE_SEE_THROUGH_BADNESS
	for ranking see-through reference cases.

gdb/testsuite/ChangeLog:
2019-12-06  Tankut Baris Aktemur  <tankut.baris.aktemur@intel.com>

	* gdb.cp/rvalue-ref-overload.cc: Add a case that involves both
	CV and reference conversion for overload resolution.
	* gdb.cp/rvalue-ref-overload.exp: Test it.

Change-Id: I39ae6505ab85ad0bd21915368c82540ceeb3aae9
2019-12-06 08:01:18 +01:00
Simon Marchi b858499daf Remove gdbarch parameter of lookup_typename
I noticed that the gdbarch parameter of lookup_typename was unused, so I
removed it (as well as from lookup_signed_typename and
lookup_unsigned_typename) and updated all callers.

Tested by rebuilding.

gdb/ChangeLog:

	* c-exp.y: Update calls to lookup_typename,
	lookup_signed_typename and lookup_unsigned_typename.
	* c-lang.c (evaluate_subexp_c): Likewise.
	* cp-namespace.c (cp_lookup_symbol_imports_or_template):
	Likewise.
	* eval.c (binop_promote): Likewise.
	* gdbtypes.c (lookup_typename): Remove gdbarch parameter.
	(lookup_unsigned_typename): Likewise.
	(lookup_signed_typename): Likewise.
	* gdbtypes.h (lookup_unsigned_typename): Likewise.
	(lookup_signed_typename): Likewise.
	(lookup_typename): Likewise.
	* guile/scm-type.c (tyscm_lookup_typename): Update calls to
	lookup_typename, lookup_signed_typename,
	lookup_unsigned_typename.
	* m2-exp.y: Likewise.
	* printcmd.c (printf_wide_c_string): Likewise.
	(ui_printf): Likewise.
	* python/py-type.c (typy_lookup_typename): Likewise.
	* python/py-xmethods.c (python_xmethod_worker::invoke):
	Likewise.
	* rust-exp.y: Likewise.
2019-12-05 13:44:30 -05:00
Tom Tromey d5a22e77b5 Remove gdbarch_bits_big_endian
From what I can tell, set_gdbarch_bits_big_endian has never been used.
That is, all architectures since its introduction have simply used the
default, which is simply check the architecture's byte-endianness.

Because this interferes with the scalar_storage_order code, this patch
removes this gdbarch setting entirely.  In some places,
type_byte_order is used rather than the plain gdbarch.

gdb/ChangeLog
2019-12-04  Tom Tromey  <tromey@adacore.com>

	* ada-lang.c (decode_constrained_packed_array)
	(ada_value_assign, value_assign_to_component): Update.
	* dwarf2loc.c (rw_pieced_value, access_memory)
	(dwarf2_compile_expr_to_ax): Update.
	* dwarf2read.c (dwarf2_add_field): Update.
	* eval.c (evaluate_subexp_standard): Update.
	* gdbarch.c, gdbarch.h: Rebuild.
	* gdbarch.sh (bits_big_endian): Remove.
	* gdbtypes.h (union field_location): Update comment.
	* target-descriptions.c (make_gdb_type): Update.
	* valarith.c (value_bit_index): Update.
	* value.c (struct value) <bitpos>: Update comment.
	(unpack_bits_as_long, modify_field): Update.
	* value.h (value_bitpos): Update comment.

Change-Id: I379b5e0c408ec8742f7a6c6b721108e73ed1b018
2019-12-04 09:31:18 -07:00
Tom Tromey 103a685e7f Add scalar_storage_order support for floating point
Testing the scalar_storage_order patch pointed out that it does not
handle floating point properly.  This patch fixes this problem.

gdb/ChangeLog
2019-12-04  Tom Tromey  <tromey@adacore.com>

	* dwarf2read.c (dwarf2_init_float_type)
	(dwarf2_init_complex_target_type): Add byte_order parameter.
	(read_base_type): Compute byte order earlier.
	* gdbtypes.c (init_float_type): Add byte_order parameter.
	* gdbtypes.h (init_float_type): Add byte_order parameter.

gdb/testsuite/ChangeLog
2019-12-04  Tom Tromey  <tromey@adacore.com>

	* gdb.base/endianity.c (struct otherendian) <f>: New field.
	(main): Initialize it.
	* gdb.base/endianity.exp: Update.

Change-Id: Ic02eb711d80ce678ef0ecf8c506a626e441b8440
2019-12-04 09:31:18 -07:00
Andrew Burgess 5bbd8269fa gdb/fortran: array stride support
Currently GDB supports a byte or bit stride on arrays, in DWARF this
would be DW_AT_bit_stride or DW_AT_byte_stride on DW_TAG_array_type.
However, DWARF can also support DW_AT_byte_stride or DW_AT_bit_stride
on DW_TAG_subrange_type, the tag used to describe each dimension of an
array.

Strides on subranges are used by gFortran to represent Fortran arrays,
and this commit adds support for this to GDB.

I've extended the range_bounds struct to include the stride
information.  The name is possibly a little inaccurate now, but this
still sort of makes sense, the structure represents information about
the bounds of the range, and also how to move from the lower to the
upper bound (the stride).

I've added initial support for bit strides, but I've never actually
seen an example of this being generated.  Further, I don't really see
right now how GDB would currently handle a bit stride that was not a
multiple of the byte size as the code in, for example,
valarith.c:value_subscripted_rvalue seems geared around byte
addressing.  As a consequence if we see a bit stride that is not a
multiple of 8 then GDB will give an error.

gdb/ChangeLog:

	* dwarf2read.c (read_subrange_type): Read bit and byte stride and
	create a range with stride where appropriate.
	* f-valprint.c: Include 'gdbarch.h'.
	(f77_print_array_1): Take the stride into account when walking the
	array.  Also convert the stride into addressable units.
	* gdbtypes.c (create_range_type): Initialise the stride to
	constant zero.
	(create_range_type_with_stride): New function, initialise the
	range as normal, and then setup the stride.
	(has_static_range): Include the stride here.  Also change the
	return type to bool.
	(create_array_type_with_stride): Consider the range stride if the
	array isn't given its own stride.
	(resolve_dynamic_range): Resolve the stride if needed.
	* gdbtypes.h (struct range_bounds) <stride>: New member variable.
	(struct range_bounds) <flag_is_byte_stride>: New member variable.
	(TYPE_BIT_STRIDE): Define.
	(TYPE_ARRAY_BIT_STRIDE): Define.
	(create_range_type_with_stride): Declare.
	* valarith.c (value_subscripted_rvalue): Take range stride into
	account when walking the array.

gdb/testsuite/ChangeLog:

	* gdb.fortran/derived-type-striding.exp: New file.
	* gdb.fortran/derived-type-striding.f90: New file.
	* gdb.fortran/array-slices.exp: New file.
	* gdb.fortran/array-slices.f90: New file.

Change-Id: I9af2bcd1f2d4c56f76f5f3f9f89d8f06bef10d9a
2019-12-01 22:31:30 +00:00
Tom Tromey bab05c83ac Make two range_bounds bitfields unsigned
While debugging gdb, I noticed that the bitfields in a range_bounds
were signed, causing the values of these fields to be -1.

I think this is odd; and while we haven't yet committed to boolean
bitfields, I think it is a small improvement to change these types to
unsigned.

gdb/ChangeLog
2019-11-28  Tom Tromey  <tom@tromey.com>

	* gdbtypes.h (struct range_bounds) <flag_upper_bound_is_count,
	flag_bound_evaluated>: Now unsigned.

Change-Id: Ia377fd931594bbf8653180d4dcb4e60354d90139
2019-11-28 08:04:10 -07:00
Peeter Joot 34877895ca Adjust byte order variable display/change if DW_AT_endianity is present.
- Rationale:
It is possible for compilers to indicate the desired byte order
interpretation of scalar variables using the DWARF attribute:
   DW_AT_endianity

A type flagged with this variable would typically use one of:
   DW_END_big
   DW_END_little
which instructs the debugger what the desired byte order interpretation
of the variable should be.

The GCC compiler (as of V6) has a mechanism for setting the desired byte
ordering of the fields within a structure or union.  For, example, on a
little endian target, a structure declared as:
   struct big {
       int v;
       short a[4];
   } __attribute__( ( scalar_storage_order( "big-endian" ) ) );
could be used to ensure all the structure members have a big-endian
interpretation (the compiler would automatically insert byte swap
instructions before and after respective store and load instructions).

- To reproduce
GCC V8 is required to correctly emit DW_AT_endianity DWARF attributes
in all situations when the scalar_storage_order attribute is used.

A fix for (dwarf endianity instrumentation) for GCC V6-V7 can be found
in the URL field of the following PR:
   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509

- Test-case:
A new test case (testsuite/gdb.base/endianity.*) is included with this
patch.

Manual testing for mixed endianity code has also been done with GCC V8.
See:
   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509#c4

- Observed vs. expected:

Without this change, using scalar_storage_order that doesn't match the
target, such as

struct otherendian
{
  int v;
} __attribute__( ( scalar_storage_order( "big-endian" ) ) );

would behave like the following on a little endian target:

   Breakpoint 1 at 0x401135: file endianity.c, line 41.
   (gdb) run
   Starting program: /home/pjoot/freeware/t/a.out
   Missing separate debuginfos, use: debuginfo-install glibc-2.17-292.el7.x86_64

   Breakpoint 1, main () at endianity.c:41
   41        struct otherendian o = {3};
   (gdb) n
   43        do_nothing (&o); /* START */
   (gdb) p o
   $1 = {v = 50331648}
   (gdb) p /x
   $2 = {v = 0x3000000}

whereas with this gdb enhancement we can access the variable with the user
specified endianity:

   Breakpoint 1, main () at endianity.c:41
   41        struct otherendian o = {3};
   (gdb) p o
   $1 = {v = 0}
   (gdb) n
   43        do_nothing (&o); /* START */
   (gdb) p o
   $2 = {v = 3}
   (gdb) p o.v = 4
   $3 = 4
   (gdb) p o.v
   $4 = 4
   (gdb) x/4xb &o.v
   0x7fffffffd90c: 0x00    0x00    0x00    0x04

(observe that the 4 byte int variable has a big endian representation in the
 hex dump.)

gdb/ChangeLog
2019-11-21  Peeter Joot  <peeter.joot@lzlabs.com>

	Byte reverse display of variables with DW_END_big, DW_END_little
	(DW_AT_endianity) dwarf attributes if different than the native
	byte order.
	* ada-lang.c (ada_value_binop):
	Use type_byte_order instead of gdbarch_byte_order.
	* ada-valprint.c (printstr):
	(ada_val_print_string):
	* ada-lang.c (value_pointer):
	(ada_value_binop):
	Use type_byte_order instead of gdbarch_byte_order.
	* c-lang.c (c_get_string):
	Use type_byte_order instead of gdbarch_byte_order.
	* c-valprint.c (c_val_print_array):
	Use type_byte_order instead of gdbarch_byte_order.
	* cp-valprint.c (cp_print_class_member):
	Use type_byte_order instead of gdbarch_byte_order.
	* dwarf2loc.c (rw_pieced_value):
	Use type_byte_order instead of gdbarch_byte_order.
	* dwarf2read.c (read_base_type): Handle DW_END_big,
	DW_END_little
	* f-lang.c (f_get_encoding):
	Use type_byte_order instead of gdbarch_byte_order.
	* findvar.c (default_read_var_value):
	Use type_byte_order instead of gdbarch_byte_order.
	* gdbtypes.c (check_types_equal):
	Require matching TYPE_ENDIANITY_NOT_DEFAULT if set.
	(recursive_dump_type): Print TYPE_ENDIANITY_BIG,
	and TYPE_ENDIANITY_LITTLE if set.
	(type_byte_order): new function.
	* gdbtypes.h (TYPE_ENDIANITY_NOT_DEFAULT): New macro.
	(struct main_type) <flag_endianity_not_default>:
	New field.
	(type_byte_order): New function.
	* infcmd.c (default_print_one_register_info):
	Use type_byte_order instead of gdbarch_byte_order.
	* p-lang.c (pascal_printstr):
	Use type_byte_order instead of gdbarch_byte_order.
	* p-valprint.c (pascal_val_print):
	Use type_byte_order instead of gdbarch_byte_order.
	* printcmd.c (print_scalar_formatted):
	Use type_byte_order instead of gdbarch_byte_order.
	* solib-darwin.c (darwin_current_sos):
	Use type_byte_order instead of gdbarch_byte_order.
	* solib-svr4.c (solib_svr4_r_ldsomap):
	Use type_byte_order instead of gdbarch_byte_order.
	* stap-probe.c (stap_modify_semaphore):
	Use type_byte_order instead of gdbarch_byte_order.
	* target-float.c (target_float_same_format_p):
	Use type_byte_order instead of gdbarch_byte_order.
	* valarith.c (scalar_binop):
	(value_bit_index):
	Use type_byte_order instead of gdbarch_byte_order.
	* valops.c (value_cast):
	Use type_byte_order instead of gdbarch_byte_order.
	* valprint.c (generic_emit_char):
	(generic_printstr):
	(val_print_string):
	Use type_byte_order instead of gdbarch_byte_order.
	* value.c (unpack_long):
	(unpack_bits_as_long):
	(unpack_value_bitfield):
	(modify_field):
	(pack_long):
	(pack_unsigned_long):
	Use type_byte_order instead of gdbarch_byte_order.
	* findvar.c (unsigned_pointer_to_address):
	(signed_pointer_to_address):
	(unsigned_address_to_pointer):
	(address_to_signed_pointer):
	(default_read_var_value):
	(default_value_from_register):
	Use type_byte_order instead of gdbarch_byte_order.
	* gnu-v3-abi.c (gnuv3_make_method_ptr):
	Use type_byte_order instead of gdbarch_byte_order.
	* riscv-tdep.c (riscv_print_one_register_info):
	Use type_byte_order instead of gdbarch_byte_order.

gdb/testsuite/ChangeLog
2019-11-21  Peeter Joot  <peeter.joot@lzlabs.com>

	* gdb.base/endianity.c: New test.
	* gdb.base/endianity.exp: New file.

Change-Id: I4bd98c1b4508c2d7c5a5dbb15d7b7b1cb4e667e2
2019-11-21 11:48:59 -07:00
Tom de Vries 30baf67b65 [gdb] Fix more typos in comments (2)
Fix typos in comments.  NFC.

Tested on x86_64-linux.

gdb/ChangeLog:

2019-10-26  Tom de Vries  <tdevries@suse.de>

	* aarch64-linux-tdep.c: Fix typos in comments.
	* aarch64-tdep.c: Same.
	* ada-lang.c: Same.
	* amd64-nat.c: Same.
	* arc-tdep.c: Same.
	* arch/aarch64-insn.c: Same.
	* block.c: Same.
	* breakpoint.h: Same.
	* btrace.h: Same.
	* c-varobj.c: Same.
	* cli/cli-decode.c: Same.
	* cli/cli-script.c: Same.
	* cli/cli-utils.h: Same.
	* coff-pe-read.c: Same.
	* coffread.c: Same.
	* compile/compile-cplus-symbols.c: Same.
	* compile/compile-object-run.c: Same.
	* completer.c: Same.
	* corelow.c: Same.
	* cp-support.c: Same.
	* demangle.c: Same.
	* dwarf-index-write.c: Same.
	* dwarf2-frame.c: Same.
	* dwarf2-frame.h: Same.
	* eval.c: Same.
	* frame-base.h: Same.
	* frame.h: Same.
	* gdbcmd.h: Same.
	* gdbtypes.h: Same.
	* gnu-nat.c: Same.
	* guile/scm-objfile.c: Same.
	* i386-tdep.c: Same.
	* i386-tdep.h: Same.
	* infcall.c: Same.
	* infcall.h: Same.
	* linux-nat.c: Same.
	* m68k-tdep.c: Same.
	* macroexp.c: Same.
	* memattr.c: Same.
	* mi/mi-cmd-disas.c: Same.
	* mi/mi-getopt.h: Same.
	* mi/mi-main.c: Same.
	* minsyms.c: Same.
	* nat/aarch64-sve-linux-sigcontext.h: Same.
	* objfiles.h: Same.
	* ppc-linux-nat.c: Same.
	* ppc-linux-tdep.c: Same.
	* ppc-tdep.h: Same.
	* progspace.h: Same.
	* prologue-value.h: Same.
	* python/py-evtregistry.c: Same.
	* python/py-instruction.h: Same.
	* record-btrace.c: Same.
	* record-full.c: Same.
	* remote.c: Same.
	* rs6000-tdep.c: Same.
	* ser-tcp.c: Same.
	* sol-thread.c: Same.
	* sparc-sol2-tdep.c: Same.
	* sparc64-tdep.c: Same.
	* stabsread.c: Same.
	* symfile.c: Same.
	* symtab.h: Same.
	* target.c: Same.
	* tracepoint.c: Same.
	* tui/tui-data.h: Same.
	* tui/tui-io.c: Same.
	* tui/tui-win.c: Same.
	* tui/tui.c: Same.
	* unittests/rsp-low-selftests.c: Same.
	* user-regs.h: Same.
	* utils.c: Same.
	* utils.h: Same.
	* valarith.c: Same.
	* valops.c: Same.
	* valprint.c: Same.
	* valprint.h: Same.
	* value.c: Same.
	* value.h: Same.
	* varobj.c: Same.
	* x86-nat.h: Same.
	* xtensa-tdep.c: Same.

gdb/gdbserver/ChangeLog:

2019-10-26  Tom de Vries  <tdevries@suse.de>

	* linux-aarch64-low.c: Fix typos in comments.
	* linux-arm-low.c: Same.
	* linux-low.c: Same.
	* linux-ppc-low.c: Same.
	* proc-service.c: Same.
	* regcache.h: Same.
	* server.c: Same.
	* tracepoint.c: Same.
	* win32-low.c: Same.

gdb/stubs/ChangeLog:

2019-10-26  Tom de Vries  <tdevries@suse.de>

	* ia64vms-stub.c: Fix typos in comments.
	* m32r-stub.c: Same.
	* m68k-stub.c: Same.
	* sh-stub.c: Same.

gdb/testsuite/ChangeLog:

2019-10-26  Tom de Vries  <tdevries@suse.de>

	* gdb.base/bigcore.c: Fix typos in comments.
	* gdb.base/ctf-ptype.c: Same.
	* gdb.base/long_long.c: Same.
	* gdb.dwarf2/dw2-op-out-param.S: Same.
	* gdb.python/py-evthreads.c: Same.
	* gdb.reverse/i387-stack-reverse.c: Same.
	* gdb.trace/tfile.c: Same.
	* lib/compiler.c: Same.
	* lib/compiler.cc: Same.

Change-Id: I8573d84a577894270179ae30f46c48d806fc1beb
2019-10-26 09:55:32 +02:00
Christian Biesinger 79bb1944d6 Move declaration of overload_debug to header
gdb/ChangeLog:

2019-10-08  Christian Biesinger  <cbiesinger@google.com>

	* gdbtypes.c (overload_debug): Move comment to header.
	* gdbtypes.h (overload_debug): Declare.
	* valops.c: Remove declaration of overload_debug, instead
	include gdbtypes.h.
2019-10-08 10:16:48 -05:00
Tom Tromey 4e962e74e4 Handle biased types
In Ada, the programmer can request that a range type with a non-zero
base be stored in the minimal number of bits required for the range.
This is done by biasing the values; so, for example, a range of -7..-4
may be stored as two bits with a bias of -7.

This patch implements this for gdb.  It is done by adding a bias to
struct range_bounds and then adjusting a few spots to handle this.

The test case is written to use -fgnat-encodings=minimal, but a future
compiler patch will change the compiler to emit DW_AT_GNU_bias with
-fgnat-encodings=gdb.  It seemed good to get the gdb patch in first.

Tested on x86-64 Fedora 29; plus a variety of targets using AdaCore's
internal test suite.

gdb/ChangeLog
2019-09-03  Tom Tromey  <tromey@adacore.com>

	* ada-valprint.c (ada_val_print_num): Don't recurse for range
	types.
	(has_negatives): Unbias a range type bound.
	* dwarf2read.c (read_subrange_type): Handle DW_AT_GNU_bias.
	* gdbtypes.c (operator==): Handle new field.
	(create_range_type): Add "bias" parameter.
	(create_static_range_type, resolve_dynamic_range): Update.
	* gdbtypes.h (struct range_bounds) <bias>: New member.
	(create_range_type): Add bias parameter.
	* printcmd.c (print_scalar_formatted): Unbias range types.
	* value.c (unpack_long): Unbias range types.
	(pack_long): Bias range types.

gdb/testsuite/ChangeLog
2019-09-03  Tom Tromey  <tromey@adacore.com>

	* gdb.ada/bias.exp: New file.
	* gdb.ada/bias/bias.adb: New file.
	* gdb.ada/print_chars.exp: Add regression test.
	* gdb.ada/print_chars/foo.adb (My_Character): New type.
	(MC): New variable.
2019-09-03 10:20:40 -06:00
Tom Tromey 0d12e84cfc Don't include gdbarch.h from defs.h
I touched symtab.h and was surprised to see how many files were
rebuilt.  I looked into it a bit, and found that defs.h includes
gdbarch.h, which in turn includes many things.

gdbarch.h is only needed by a minority ofthe files in gdb, so this
patch removes the include from defs.h and updates the fallout.

I did "wc -l" on the files in build/gdb/.deps; this patch reduces the
line count from 139935 to 137030; so there are definitely future
build-time savings here.

Note that while I configured with --enable-targets=all, it's possible
that some *-nat.c file needs an update.  I could not test all of
these.  The buildbot caught a few problems along these lines.

gdb/ChangeLog
2019-07-10  Tom Tromey  <tom@tromey.com>

	* defs.h: Don't include gdbarch.h.
	* aarch64-ravenscar-thread.c, aarch64-tdep.c, alpha-bsd-tdep.h,
	alpha-linux-tdep.c, alpha-mdebug-tdep.c, arch-utils.h, arm-tdep.h,
	ax-general.c, btrace.c, buildsym-legacy.c, buildsym.h, c-lang.c,
	cli/cli-decode.h, cli/cli-dump.c, cli/cli-script.h,
	cli/cli-style.h, coff-pe-read.h, compile/compile-c-support.c,
	compile/compile-cplus.h, compile/compile-loc2c.c, corefile.c,
	cp-valprint.c, cris-linux-tdep.c, ctf.c, d-lang.c, d-namespace.c,
	dcache.c, dicos-tdep.c, dictionary.c, disasm-selftests.c,
	dummy-frame.c, dummy-frame.h, dwarf2-frame-tailcall.c,
	dwarf2expr.c, expression.h, f-lang.c, frame-base.c,
	frame-unwind.c, frv-linux-tdep.c, gdbarch-selftests.c, gdbtypes.h,
	go-lang.c, hppa-nbsd-tdep.c, hppa-obsd-tdep.c, i386-dicos-tdep.c,
	i386-tdep.h, ia64-vms-tdep.c, interps.h, language.c,
	linux-record.c, location.h, m2-lang.c, m32r-linux-tdep.c,
	mem-break.c, memattr.c, mn10300-linux-tdep.c, nios2-linux-tdep.c,
	objfiles.h, opencl-lang.c, or1k-linux-tdep.c, p-lang.c,
	parser-defs.h, ppc-tdep.h, probe.h, python/py-record-btrace.c,
	record-btrace.c, record.h, regcache-dump.c, regcache.h,
	riscv-fbsd-tdep.c, riscv-linux-tdep.c, rust-exp.y,
	sh-linux-tdep.c, sh-nbsd-tdep.c, source-cache.c,
	sparc-nbsd-tdep.c, sparc-obsd-tdep.c, sparc-ravenscar-thread.c,
	sparc64-fbsd-tdep.c, std-regs.c, target-descriptions.h,
	target-float.c, tic6x-linux-tdep.c, tilegx-linux-tdep.c, top.c,
	tracefile.c, trad-frame.c, type-stack.h, ui-style.c, utils.c,
	utils.h, valarith.c, valprint.c, varobj.c, x86-tdep.c,
	xml-support.h, xtensa-linux-tdep.c, cli/cli-cmds.h: Update.
	* s390-linux-nat.c, procfs.c, inf-ptrace.c: Likewise.
2019-07-10 14:53:53 -06:00
Tom Tromey 268a13a5a3 Rename common to gdbsupport
This is the next patch in the ongoing series to move gdbsever to the
top level.

This patch just renames the "common" directory.  The idea is to do
this move in two parts: first rename the directory (this patch), then
move the directory to the top.  This approach makes the patches a bit
more tractable.

I chose the name "gdbsupport" for the directory.  However, as this
patch was largely written by sed, we could pick a new name without too
much difficulty.

Tested by the buildbot.

gdb/ChangeLog
2019-07-09  Tom Tromey  <tom@tromey.com>

	* contrib/ari/gdb_ari.sh: Change common to gdbsupport.
	* configure: Rebuild.
	* configure.ac: Change common to gdbsupport.
	* gdbsupport: Rename from common.
	* acinclude.m4: Change common to gdbsupport.
	* Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES)
	(HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to
	gdbsupport.
	* aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c,
	amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c,
	amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c,
	amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c,
	amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c,
	arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c,
	arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c,
	arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c,
	arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c,
	auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h,
	btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c,
	charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c,
	cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c,
	coff-pe-read.c, command.h, compile/compile-c-support.c,
	compile/compile-c.h, compile/compile-cplus-symbols.c,
	compile/compile-cplus-types.c, compile/compile-cplus.h,
	compile/compile-loc2c.c, compile/compile.c, completer.c,
	completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c,
	cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c,
	darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c,
	disasm.h, dtrace-probe.c, dwarf-index-cache.c,
	dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c,
	dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c,
	event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c,
	features/aarch64-core.c, features/aarch64-fpu.c,
	features/aarch64-pauth.c, features/aarch64-sve.c,
	features/i386/32bit-avx.c, features/i386/32bit-avx512.c,
	features/i386/32bit-core.c, features/i386/32bit-linux.c,
	features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c,
	features/i386/32bit-segments.c, features/i386/32bit-sse.c,
	features/i386/64bit-avx.c, features/i386/64bit-avx512.c,
	features/i386/64bit-core.c, features/i386/64bit-linux.c,
	features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c,
	features/i386/64bit-segments.c, features/i386/64bit-sse.c,
	features/i386/x32-core.c, features/riscv/32bit-cpu.c,
	features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c,
	features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c,
	features/riscv/64bit-fpu.c, features/tic6x-c6xp.c,
	features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h,
	findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h,
	gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c,
	gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c,
	go32-nat.c, guile/guile.c, guile/scm-ports.c,
	guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c,
	i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c,
	i386-linux-tdep.c, i386-tdep.c, i387-tdep.c,
	ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c,
	inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h,
	inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h,
	inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c,
	linux-tdep.c, linux-thread-db.c, location.c, machoread.c,
	macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h,
	mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c,
	mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h,
	minsyms.c, mips-linux-tdep.c, namespace.h,
	nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h,
	nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c,
	nat/amd64-linux-siginfo.c, nat/fork-inferior.c,
	nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c,
	nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c,
	nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h,
	nat/linux-waitpid.c, nat/mips-linux-watch.c,
	nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c,
	nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c,
	nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h,
	obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c,
	parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c,
	procfs.c, producer.c, progspace.h, psymtab.h,
	python/py-framefilter.c, python/py-inferior.c, python/py-ref.h,
	python/py-type.c, python/python.c, record-btrace.c, record-full.c,
	record.c, record.h, regcache-dump.c, regcache.c, regcache.h,
	remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c,
	riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c,
	selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c,
	ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c,
	source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c,
	stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h,
	symtab.c, symtab.h, target-descriptions.c, target-descriptions.h,
	target-memory.c, target.c, target.h, target/waitstatus.c,
	target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c,
	top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c,
	tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h,
	unittests/array-view-selftests.c,
	unittests/child-path-selftests.c, unittests/cli-utils-selftests.c,
	unittests/common-utils-selftests.c,
	unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c,
	unittests/format_pieces-selftests.c,
	unittests/function-view-selftests.c,
	unittests/lookup_name_info-selftests.c,
	unittests/memory-map-selftests.c, unittests/memrange-selftests.c,
	unittests/mkdir-recursive-selftests.c,
	unittests/observable-selftests.c,
	unittests/offset-type-selftests.c, unittests/optional-selftests.c,
	unittests/parse-connection-spec-selftests.c,
	unittests/ptid-selftests.c, unittests/rsp-low-selftests.c,
	unittests/scoped_fd-selftests.c,
	unittests/scoped_mmap-selftests.c,
	unittests/scoped_restore-selftests.c,
	unittests/string_view-selftests.c, unittests/style-selftests.c,
	unittests/tracepoint-selftests.c, unittests/unpack-selftests.c,
	unittests/utils-selftests.c, unittests/xml-utils-selftests.c,
	utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c,
	value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c,
	xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c,
	xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport.

gdb/gdbserver/ChangeLog
2019-07-09  Tom Tromey  <tom@tromey.com>

	* configure: Rebuild.
	* configure.ac: Change common to gdbsupport.
	* acinclude.m4: Change common to gdbsupport.
	* Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS)
	(version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change
	common to gdbsupport.
	* ax.c, event-loop.c, fork-child.c, gdb_proc_service.h,
	gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c,
	inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c,
	linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c,
	linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c,
	linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h,
	nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c,
	server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h,
	thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change
	common to gdbsupport.
2019-07-09 07:45:38 -06:00
Tom Tromey bfcdb85206 Two comment fixes in gdbtypes.h
This fixes a couple of comments in gdbtypes.h.  One comment had a
typo; and another comment referred to "Moto", which is presumably some
long-gone Motorola-related project.

Tested by rebuilding.

gdb/ChangeLog
2019-05-30  Tom Tromey  <tromey@adacore.com>

	* gdbtypes.h (struct range_bounds) <flag_upper_bound_is_count>:
	Fix comment.
	(TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED): Rewrite comment.
2019-05-30 08:54:05 -06:00
Alan Hayward a6d0f2490c AArch64: Add half float view to V registers
AArch64 can fill the vector registers with half precision floats.
Add a view for this.

Add builtin type ieee half and connect this to the existing
floatformats_ieee_half.

gdb/ChangeLog:

2019-05-14  Alan Hayward  <alan.hayward@arm.com>

	* aarch64-tdep.c (aarch64_vnh_type): Add half view.
	(aarch64_vnv_type): Likewise.
	* target-descriptions.c (make_gdb_type): Add TDESC_TYPE_IEEE_HALF.
	* common/tdesc.c: Likewise.
	* common/tdesc.h (enum tdesc_type_kind): Likewise.
	* features/aarch64-fpu.c (create_feature_aarch64_fpu): Regenerate.
	* features/aarch64-fpu.xml: Add ieee half view.
	* features/aarch64-sve.c (create_feature_aarch64_fpu): Likewise.
	* gdbtypes.c (gdbtypes_post_init): Add builtin_half
	* gdbtypes.h (struct builtin_type): Likewise.
	(struct objfile_type): Likewise.
2019-05-14 10:10:56 +01:00
Andrew Burgess bc68014d16 gdb/fortran: Add allocatable type qualifier
Types in Fortran can have the 'allocatable' qualifier attached to
indicate that memory needs to be explicitly allocated by the user.
This patch extends GDB to show this qualifier when printing types.

Lots of tests results are then updated to include this new qualifier
in the expected results.

gdb/ChangeLog:

	* f-typeprint.c (f_type_print_base): Print 'allocatable' type
	qualifier.
	* gdbtypes.h (TYPE_IS_ALLOCATABLE): Define.

gdb/testsuite/ChangeLog:

	* gdb.fortran/vla-datatypes.exp: Update expected results.
	* gdb.fortran/vla-ptype.exp: Likewise.
	* gdb.fortran/vla-type.exp: Likewise.
	* gdb.fortran/vla-value.exp: Likewise.
2019-04-30 10:36:57 +01:00
Tom Tromey 61f4b35041 Make copy_name return std::string
This changes copy_name to return a std::string, updating all the
callers.  In some cases, an extra copy was removed.  This also
required a little bit of constification.

Tested by the buildbot.

gdb/ChangeLog
2019-04-19  Tom Tromey  <tom@tromey.com>

	* type-stack.h (struct type_stack) <insert>: Constify string.
	* type-stack.c (type_stack::insert): Constify string.
	* gdbtypes.h (lookup_template_type): Update.
	(address_space_name_to_int): Update.
	* gdbtypes.c (address_space_name_to_int): Make space_identifier
	const.
	(lookup_template_type): Make name const.
	* c-exp.y: Update rules.
	(lex_one_token, classify_name, classify_inner_name)
	(c_print_token): Update.
	* p-exp.y: Update rules.
	(yylex): Update.
	* f-exp.y: Update rules.
	(yylex): Update.
	* d-exp.y: Update rules.
	(lex_one_token, classify_name, classify_inner_name): Update.
	* parse.c (write_dollar_variable, copy_name): Return std::string.
	* parser-defs.h (copy_name): Change return type.
	* m2-exp.y: Update rules.
	(yylex): Update.
	* go-exp.y (lex_one_token): Update.
	Update rules.
	(classify_unsafe_function, classify_packaged_name)
	(classify_name, yylex): Update.
2019-04-19 14:10:23 -06:00
Tom Tromey 8ecb59f856 Print non-Ada unions without crashing
ada-lang.c is a bit too eager trying to decode unions in the Ada style
-- looking for discriminants and such.  This causes crashes when
printing a non-Ada union in Ada mode, something that can easily happen
when printing a value from history or certain registers on AArch64.

This patch fixes the bug by changing ada-lang.c to only apply special
Ada treatment to types coming from an Ada CU.  This in turn required a
couple of surprising changes.

First, some of the Ada code was already using HAVE_GNAT_AUX_INFO to
decide whether a type had already been fixed -- such types had
INIT_CPLUS_SPECIFIC called on them.  This patch changes these spots to
use the "none" identifier instead.

This then required changing value_rtti_type to avoid changing the
language-specific object attached to an Ada type, which seems like a
good change regardless.

Tested on x86-64 Fedora 29.

gdb/ChangeLog
2019-04-19  Tom Tromey  <tromey@adacore.com>

	* ada-lang.c (ada_is_variant_part, ada_to_fixed_type_1):
	Check ADA_TYPE_P.
	(empty_record, ada_template_to_fixed_record_type_1)
	(template_to_static_fixed_type)
	(to_record_with_fixed_variant_part): Use INIT_NONE_SPECIFIC.
	* cp-abi.c (value_rtti_type): Check HAVE_CPLUS_STRUCT.
	* gdbtypes.h (INIT_NONE_SPECIFIC, ADA_TYPE_P): New
	macros.

gdb/testsuite/ChangeLog
2019-04-19  Tom Tromey  <tromey@adacore.com>

	* gdb.ada/ptype_union.c: New file.
	* gdb.ada/ptype_union.exp: New file.
2019-04-19 13:23:05 -06:00
Keith Seitz cc1defb1dc Allow really large fortran array bounds: TYPE_LENGTH to ULONGEST
This series is revisit of Siddhesh Poyarekar's patch from back in
2012. The last status on the patch is in the following gdb-patches
thread:

  https://sourceware.org/ml/gdb-patches/2012-08/msg00562.html

It appears that Tom approved the patch, but Jan had some issues
with a compiler error that made the test fail on -m32 test runs.
He wrote up a hand-tweaked .S file to deal with it. Siddesh said
he would update tests. Then nothing.

Siddesh and Jan have both moved on since.

The patch originally required a large precursor patch to work.
I have whittled this down to/rewritten the bare minimum, and this
first patch is the result, changing the type of TYPE_LENGTH
to ULONGEST from unsigned int.

The majority of the changes involve changing printf format
strings to use %s and pulongest instead of %d.

gdb/ChangeLog:

	* ada-lang.c (ada_template_to_fixed_record_type_1): Use
	%s/pulongest for TYPE_LENGTH instead of %d in format
	strings.
	* ada-typerint.c (ada_print_type): Likewise.
	* amd64-windows-tdep.c (amd64_windows_store_arg_in_reg): Likewise.
	* compile/compile-c-support.c (generate_register_struct): Likewise.
	* gdbtypes.c (recursive_dump_type): Likewise.
	* gdbtypes.h (struct type) <length>: Change type to ULONGEST.
	* m2-typeprint.c (m2_array):  Use %s/pulongest for TYPE_LENGTH
	instead of %d in format strings.
	* riscv-tdep.c (riscv_type_alignment): Cast second argument
	to std::min to ULONGEST.
	* symmisc.c (print_symbol): Use %s/pulongest for TYPE_LENGTH
	instead of %d in format strings.
	* tracepoint.c (info_scope_command): Likewise.
	* typeprint.c (print_offset_data::update)
	(print_offset_data::finish): Likewise.
	* xtensa-tdep.c (xtensa_store_return_value)
	(xtensa_push_dummy_call): Likewise.
2019-03-29 10:15:38 -07:00
John Baldwin ef0bd2046f Add a more general version of lookup_struct_elt_type.
lookup_struct_elt is a new function which returns a tuple of
information about a component of a structure or union.  The returned
tuple contains a pointer to the struct field object for the component
as well as a bit offset of that field within the structure.  If the
field names a field in an anonymous substructure, the offset is the
"global" offset relative to the original structure type.  If noerr is
set, then the returned tuple will set the field pointer to NULL to
indicate a missing component rather than throwing an error.

lookup_struct_elt_type is now reimplemented in terms of this new
function.  It simply returns the type of the returned field.

gdb/ChangeLog:

	* gdbtypes.c (lookup_struct_elt): New function.
	(lookup_struct_elt_type): Reimplement via lookup_struct_elt.
	* gdbtypes.h (struct struct_elt): New type.
	(lookup_struct_elt): New prototype.
2019-03-12 13:45:48 -07:00
Joel Brobecker 42a4f53d2b Update copyright year range in all GDB files.
This commit applies all changes made after running the gdb/copyright.py
script.

Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.

gdb/ChangeLog:

	Update copyright year range in all GDB files.
2019-01-01 10:01:51 +04:00
Pedro Alves 82ceee5014 C++ify badness_vector, fix leaks
badness_vector is currently an open coded vector.  This reimplements
it as a std::vector.

This fixes a few leaks as well:

 - find_oload_champ is leaking every badness vector calculated bar the
   one returned.

 - bv->rank is always leaked, since callers of rank_function only
   xfree the badness_vector pointer, not bv->rank.

gdb/ChangeLog:
2018-11-21  Pedro Alves  <palves@redhat.com>

	* gdbtypes.c (compare_badness): Change type of parameters to const
	reference.  Adjust to badness_vector being a std::vector now.
	(rank_function): Adjust to badness_vector being a std::vector now.
	* gdbtypes.h (badness_vector): Now a typedef to std::vector.
	(LENGTH_MATCH): Delete.
	(compare_badness): Change type of parameters to const reference.
	(rank_function): Return a badness_vector by value now.
	(find_overload_match): Adjust to badness_vector being a
	std::vector now.  Remove cleanups.
	(find_oload_champ_namespace): 'oload_champ_bv' parameter now a
	badness_vector pointer.
	(find_oload_champ_namespace_loop): 'oload_champ_bv' parameter now
	a badness_vector pointer.  Adjust to badness_vector being a
	std::vector now.  Remove cleanups.
	(find_oload_champ): 'oload_champ_bv' parameter now
	a badness_vector pointer.  Adjust to badness_vector being a
	std::vector now.  Remove cleanups.
2018-11-21 12:06:51 +00:00
Pedro Alves 6b1747cd13 invoke_xmethod & array_view
This replaces more pointer+length with gdb::array_view.  This time,
around invoke_xmethod, and then propagating the fallout around, which
inevitably leaks to the overload resolution code.

There are several places in the code that want to grab a slice of an
array, by advancing the array pointer, and decreasing the length
pointer.  This patch introduces a pair of new
gdb::array_view::slice(...) methods to make that convenient and clear.
Unit test included.

gdb/ChangeLog:
2018-11-21  Pedro Alves  <palves@redhat.com>

	* common/array-view.h (array_view::splice(size_type, size_t)): New.
	(array_view::splice(size_type)): New.
	* eval.c (eval_call, evaluate_funcall): Adjust to use array_view.
	* extension.c (xmethod_worker::get_arg_types): Adjust to return an
	std::vector.
	(xmethod_worker::get_result_type): Adjust to use gdb::array_view.
	* extension.h: Include "common/array-view.h".
	(xmethod_worker::invoke): Adjust to use gdb::array_view.
	(xmethod_worker::get_arg_types): Adjust to return an std::vector.
	(xmethod_worker::get_result_type): Adjust to use gdb::array_view.
	(xmethod_worker::do_get_arg_types): Adjust to use std::vector.
	(xmethod_worker::do_get_result_type): Adjust to use
	gdb::array_view.
	* gdbtypes.c (rank_function): Adjust to use gdb::array_view.
	* gdbtypes.h: Include "common/array-view.h".
	(rank_function): Adjust to use gdb::array_view.
	* python/py-xmethods.c (python_xmethod_worker::invoke)
	(python_xmethod_worker::do_get_arg_types)
	(python_xmethod_worker::do_get_result_type)
	(python_xmethod_worker::invoke): Adjust to new interfaces.
	* valarith.c (value_user_defined_cpp_op, value_user_defined_op)
	(value_x_binop, value_x_unop): Adjust to use gdb::array_view.
	* valops.c (find_overload_match, find_oload_champ_namespace)
	(find_oload_champ_namespace_loop, find_oload_champ): Adjust to use
	gdb:array_view and the new xmethod_worker interfaces.
	* value.c (result_type_of_xmethod, call_xmethod): Adjust to use
	gdb::array_view.
	* value.h (find_overload_match, result_type_of_xmethod)
	(call_xmethod): Adjust to use gdb::array_view.
	* unittests/array-view-selftests.c: Add slicing tests.
2018-11-21 12:06:20 +00:00
Tom Tromey ad69edbb4b Use unsigned as base type for some enums
-fsanitize=undefined complains about using operator~ on various enum
types that are used with DEF_ENUM_FLAGS_TYPE.  This patch fixes these
problems by explicitly setting the base type for these enums to
unsigned.  It also adds a static assert to enum_flags to ensure that
future enums used this way have an unsigned underlying type.

gdb/ChangeLog
2018-10-03  Tom Tromey  <tom@tromey.com>

	* common/enum-flags.h (enum_flags::operator~): Add static assert.
	* symfile-add-flags.h (enum symfile_add_flag): Use unsigned as
	base type.
	* objfile-flags.h (enum objfile_flag): Use unsigned as base type.
	* gdbtypes.h (enum type_instance_flag_value): Use unsigned as base
	type.
	* c-lang.h (enum c_string_type_values): Use unsigned as base
	type.
	* btrace.h (enum btrace_thread_flag): Use unsigned as base type.
2018-10-03 15:19:06 -06:00
Andrew Burgess 2fabdf3381 gdb: Don't leak memory with TYPE_ALLOC / TYPE_ZALLOC
This patch started as an observation from valgrind that GDB appeared
to be loosing track of some memory associated with types.  An example
valgrind stack would be:

  24 bytes in 1 blocks are possibly lost in loss record 419 of 5,361
     at 0x4C2EA1E: calloc (vg_replace_malloc.c:711)
     by 0x623D26: xcalloc (common-utils.c:85)
     by 0x623D65: xzalloc(unsigned long) (common-utils.c:95)
     by 0x72A066: make_function_type(type*, type**) (gdbtypes.c:510)
     by 0x72A098: lookup_function_type(type*) (gdbtypes.c:521)
     by 0x73635D: gdbtypes_post_init(gdbarch*) (gdbtypes.c:5439)
     by 0x727590: gdbarch_data(gdbarch*, gdbarch_data*) (gdbarch.c:5230)
     by 0x735B99: builtin_type(gdbarch*) (gdbtypes.c:5313)
     by 0x514D95: elf_rel_plt_read(minimal_symbol_reader&, objfile*, bfd_symbol**) (elfread.c:542)
     by 0x51662F: elf_read_minimal_symbols(objfile*, int, elfinfo const*) (elfread.c:1121)
     by 0x5168A5: elf_symfile_read(objfile*, enum_flags<symfile_add_flag>) (elfread.c:1207)
     by 0x8520F5: read_symbols(objfile*, enum_flags<symfile_add_flag>) (symfile.c:794)

When we look in make_function_type we find a call to TYPE_ZALLOC
(inside the INIT_FUNC_SPECIFIC macro).  It is this call to TYPE_ZALLOC
that is allocating memory with xcalloc, that is then getting lost.

The problem is tht calling TYPE_ALLOC or TYPE_ZALLOC currently
allocates memory from either the objfile obstack or by using malloc.
The problem with this is that types are allocated either on the
objfile obstack, or on the gdbarch obstack.

As a result, if we discard a type associated with an objfile then
auxiliary data allocated with TYPE_(Z)ALLOC will be correctly
discarded.  But, if we were ever to discard a gdbarch then any
auxiliary type data would be leaked.  Right now there are very few
places in GDB where a gdbarch is ever discarded, but it shouldn't hurt
to close down these bugs as we spot them.

This commit ensures that auxiliary type data is allocated from the
same obstack as the type itself, which should reduce leaked memory.

The one problem case that I found with this change was in eval.c,
where in one place we allocate a local type structure, and then used
TYPE_ZALLOC to allocate some space for the type.  This local type is
neither object file owned, nor gdbarch owned, and so the updated
TYPE_ALLOC code is unable to find an objstack to allocate space on.

My proposed solution for this issue is that the space should be
allocated with a direct call to xzalloc.  We could extend TYPE_ALLOC
to check for type->gdbarch being null, and then fall back to a direct
call to xzalloc, however, I think that making this rare case of a
local type require special handling is not a bad thing, this serves to
highlight that clearing up the memory will require special handling
too.

This special case of a local type is interesting as the types owner
field (contained within the main_type) is completely null.  While
reflecting on this I looked at how types use the get_type_arch
function.  It seems clear that, based on how this is used, it is never
intended that null will be returned from this function.  This only
goes to reinforce, how locally alloctaed types, with no owner, are
both special, and need to be handled carefully.  To help spot errors
earlier, I added an assert into get_type_arch that the returned arch
is not null.

Inside gdbarch.c I found a few other places where auxiliary type data
was being allocated directly on the heap rather than on the types
obstack.  I have fixed these to call TYPE_ALLOC now.

Finally, it is worth noting that as we don't clean up our gdbarch
objects yet, then this will not make much of an impact on the amount
of memory reported as lost at program termination time.  Memory
allocated for auxiliary type information is still not freed, however,
it is now on the correct obstack.  If we do ever start freeing our
gdbarch structures then the associated type data will be cleaned up
correctly.

Tested on X86-64 GNU/Linux with no regressions.

gdb/ChangeLog:

	* eval.c (fake_method::fake_method): Call xzalloc directly for a
	type that is neither object file owned, nor gdbarch owned.
	* gdbtypes.c (get_type_gdbarch): Add an assert that returned
	gdbarch is non-NULL.
	(alloc_type_instance): Allocate non-objfile owned types on the
	gdbarch obstack.
	(copy_type_recursive): Allocate TYPE_FIELDS and TYPE_RANGE_DATA
	using TYPE_ALLOC to ensure memory is allocated on the correct
	obstack.
	* gdbtypes.h (TYPE_ALLOC): Allocate space on either the objfile
	obstack, or the gdbarch obstack.
	(TYPE_ZALLOC): Rewrite using TYPE_ALLOC.
2018-09-14 23:10:09 +01:00
John Darrington d1908f2d6b gdb: Add builtin types for 24 bit integers.
Add int24 and uint24.  These are used by the upcoming S12Z target, but will be
needed for any arch which features 24 bit registers.

* gdb/gdbtypes.h (struct builtin_type): New members builtin_int24
  and builtin_uint24;
* gdb/gdbtypes.c: Initialize them.
* gdb/doc/gdb.texinfo (Predefined Target Types): Mention types int24 and uint24.
2018-09-08 13:21:30 +02:00
Tom Tromey a737d952e0 Remove type_name_no_tag and rename type_name_no_tag_or_error
type_name_no_tag is just a plain wrapper for TYPE_NAME now, so this
patch removes it.  And, because tag names no longer exist, this
renames type_name_no_tag_or_error to type_name_or_error.

gdb/ChangeLog
2018-06-01  Tom Tromey  <tom@tromey.com>

	* valops.c (value_cast_structs, destructor_name_p): Update.
	* symtab.c (gdb_mangle_name): Update.
	* stabsread.c (define_symbol, read_cpp_abbrev, read_baseclasses):
	Update.
	* p-valprint.c (pascal_object_is_vtbl_ptr_type)
	(pascal_object_print_value_fields, pascal_object_print_value):
	Update.
	* p-typeprint.c (pascal_type_print_derivation_info): Update.
	* linespec.c (find_methods): Update.
	* gdbtypes.h (type_name_no_tag): Remove.
	(type_name_or_error): Rename from type_name_no_tag_or_error.
	* gdbtypes.c (type_name_no_tag): Remove.
	(type_name_or_error): Rename from type_name_no_tag_or_error.
	(lookup_struct_elt_type, check_typedef): Update.
	* expprint.c (print_subexp_standard): Update.
	* dwarf2read.c (dwarf2_add_field, load_partial_dies): Update.
	* d-namespace.c (d_lookup_nested_symbol): Update.
	* cp-valprint.c (cp_is_vtbl_ptr_type, cp_print_value_fields)
	(cp_print_class_member): Update.
	* cp-namespace.c (cp_lookup_nested_symbol): Update.
	* completer.c (add_struct_fields): Update.
	* c-typeprint.c (cp_type_print_derivation_info)
	(c_type_print_varspec_prefix, c_type_print_base_struct_union):
	Update.
	* ada-lang.c (parse_old_style_renaming, xget_renaming_scope)
	(ada_prefer_type, ada_is_exception_sym): Update.
2018-06-01 10:19:55 -06:00
Tom Tromey e86ca25fd6 Remove TYPE_TAG_NAME
TYPE_TAG_NAME has been an occasional source of confusion and bugs.  It
seems to me that it is only useful for C and C++ -- but even there,
not so much, because at least with DWARF there doesn't seem to be any
way to wind up with a type where the name and the tag name are both
non-NULL and different.

So, this patch removes TYPE_TAG_NAME entirely.  This should save a
little memory, but more importantly, it simplifies this part of gdb.

A few minor test suite adjustments were needed.  In some situations
the new code does not yield identical output to the old code.

gdb/ChangeLog
2018-06-01  Tom Tromey  <tom@tromey.com>

	* valops.c (enum_constant_from_type, value_namespace_elt)
	(value_maybe_namespace_elt): Update.
	* valarith.c (find_size_for_pointer_math): Update.
	* target-descriptions.c (make_gdb_type): Update.
	* symmisc.c (print_symbol): Update.
	* stabsread.c (define_symbol, read_type)
	(complain_about_struct_wipeout, add_undefined_type)
	(cleanup_undefined_types_1): Update.
	* rust-lang.c (rust_tuple_type_p, rust_slice_type_p)
	(rust_range_type_p, val_print_struct, rust_print_struct_def)
	(rust_internal_print_type, rust_composite_type)
	(rust_evaluate_funcall, rust_evaluate_subexp)
	(rust_inclusive_range_type_p): Update.
	* python/py-type.c (typy_get_tag): Update.
	* p-typeprint.c (pascal_type_print_base): Update.
	* mdebugread.c (parse_symbol, parse_type): Update.
	* m2-typeprint.c (m2_long_set, m2_record_fields, m2_enum):
	Update.
	* guile/scm-type.c (gdbscm_type_tag): Update.
	* go-lang.c (sixg_string_p): Update.
	* gnu-v3-abi.c (build_gdb_vtable_type, build_std_type_info_type):
	Update.
	* gdbtypes.h (struct main_type) <tag_name>: Remove.
	(TYPE_TAG_NAME): Remove.
	* gdbtypes.c (type_name_no_tag): Simplify.
	(check_typedef, check_types_equal, recursive_dump_type)
	(copy_type_recursive, arch_composite_type): Update.
	* f-typeprint.c (f_type_print_base): Update.  Print "Type" prefix
	in summary mode when needed.
	* eval.c (evaluate_funcall): Update.
	* dwarf2read.c (fixup_go_packaging, read_structure_type)
	(process_structure_scope, read_enumeration_type)
	(read_namespace_type, read_module_type, determine_prefix): Update.
	* cp-support.c (inspect_type): Update.
	* coffread.c (process_coff_symbol, decode_base_type): Update.
	* c-varobj.c (c_is_path_expr_parent): Update.
	* c-typeprint.c (c_type_print_base_struct_union): Update.
	(c_type_print_base_1): Update.  Print struct/class/union/enum in
	summary when using C language.
	* ax-gdb.c (gen_struct_ref, gen_namespace_elt)
	(gen_maybe_namespace_elt): Update.
	* ada-lang.c (ada_type_name): Simplify.
	(empty_record, ada_template_to_fixed_record_type_1)
	(template_to_static_fixed_type)
	(to_record_with_fixed_variant_part, ada_check_typedef): Update.

gdb/testsuite/ChangeLog
2018-06-01  Tom Tromey  <tom@tromey.com>

	* gdb.xml/tdesc-regs.exp (load_description): Update expected
	results.
	* gdb.dwarf2/method-ptr.exp: Set language to C++.
	* gdb.dwarf2/member-ptr-forwardref.exp: Set language to C++.
	* gdb.cp/typeid.exp (do_typeid_tests): Update type_re.
	* gdb.base/maint.exp (maint_pass_if): Update.
2018-06-01 10:19:55 -06:00
Tom Tromey 894882e344 Remove a VEC from type.c
This removes a VEC from type.c, by using std::vector.

While doing this I also took the opportunity to change
types_deeply_equal to return bool.  This caught some weird code in
typy_richcompare, now fixed.

And, since I was changing types_deeply_equal, it seemed like a good
idea to also change types_equal, so this patch includes that as well.

Tested by the buildbot.

ChangeLog
2018-05-29  Tom Tromey  <tom@tromey.com>

	* python/py-type.c (typy_richcompare): Update.
	* guile/scm-type.c (tyscm_equal_p_type_smob): Update.
	* gdbtypes.h (types_deeply_equal): Return bool.
	(types_equal): Likewise.
	* gdbtypes.c (type_equality_entry_d): Remove typedef.  Don't
	declare VEC.
	(check_types_equal): Change worklist to std::vector.  Return
	bool.
	(struct type_equality_entry): Add constructor.
	(compare_maybe_null_strings): Return bool.
	(check_types_worklist): Return bool.  Change worklist to
	std::vector.
	(types_deeply_equal): Use std::vector.
	(types_equal): Return bool.
	(compare_maybe_null_strings): Simplify.
2018-05-29 11:44:12 -06:00
Tom Tromey 2b4424c35b Add initial type alignment support
This adds some basic type alignment support to gdb.  It changes struct
type to store the alignment, and updates dwarf2read.c to handle
DW_AT_alignment.  It also adds a new gdbarch method and updates
i386-tdep.c.

None of this new functionality is used anywhere yet, so tests will
wait until the next patch.

2018-04-30  Tom Tromey  <tom@tromey.com>

	* i386-tdep.c (i386_type_align): New function.
	(i386_gdbarch_init): Update.
	* gdbarch.sh (type_align): New method.
	* gdbarch.c, gdbarch.h: Rebuild.
	* arch-utils.h (default_type_align): Declare.
	* arch-utils.c (default_type_align): New function.
	* gdbtypes.h (TYPE_ALIGN_BITS): New define.
	(struct type) <align_log2>: New field.
	<instance_flags>: Now a bitfield.
	(TYPE_RAW_ALIGN): New macro.
	(type_align, type_raw_align, set_type_align): Declare.
	* gdbtypes.c (type_align, type_raw_align, set_type_align): New
	functions.
	* dwarf2read.c (quirk_rust_enum): Set type alignment.
	(get_alignment, maybe_set_alignment): New functions.
	(read_structure_type, read_enumeration_type, read_array_type)
	(read_set_type, read_tag_pointer_type, read_tag_reference_type)
	(read_subrange_type, read_base_type): Set type alignment.
2018-04-30 11:25:30 -06:00
Tom Tromey 7c22600aab Initial support for variant parts
This adds some initial support for variant parts to gdbtypes.h.  A
variant part is represented as a union.  The union has a flag
indicating that it has a discriminant, and information about the
discriminant is attached using the dynamic property system.

2018-02-26  Tom Tromey  <tom@tromey.com>

	* value.h (value_union_variant): Declare.
	* valops.c (value_union_variant): New function.
	* gdbtypes.h (TYPE_FLAG_DISCRIMINATED_UNION): New macro.
	(struct discriminant_info): New.
	(enum dynamic_prop_node_kind) <DYN_PROP_DISCRIMINATED>: New
	enumerator.
	(struct main_type) <flag_discriminated_union>: New field.
2018-02-26 09:21:08 -07:00
Simon Marchi 9d8780f0d0 dwarf: Make sect_offset 64-bits
Does anybody have an opinion about this?  It would be nice to unbreak
the "default" build with clang (i.e. without passing special -Wno-error=
flags).

Here's a version rebased on today's master.

From 47d28075117fa2ddb93584ec50881e33777a85e5 Mon Sep 17 00:00:00 2001
From: Simon Marchi <simon.marchi@ericsson.com>
Date: Sat, 30 Dec 2017 22:48:18 -0500
Subject: [PATCH] dwarf: Make sect_offset 64-bits

Compiling with Clang 6 shows these errors:

/home/emaisin/src/binutils-gdb/gdb/dwarf2read.c:26610:43: error: result of comparison of constant 4294967296 with expression of type 'typename std::underlying_type<sect_offset>::type' (a
ka 'unsigned int') is always false [-Werror,-Wtautological-constant-out-of-range-compare]
      if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/emaisin/src/binutils-gdb/gdb/dwarf2read.c:26618:43: error: result of comparison of constant 4294967296 with expression of type 'typename std::underlying_type<sect_offset>::type' (a
ka 'unsigned int') is always false [-Werror,-Wtautological-constant-out-of-range-compare]
      if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The code in question checks if there is any offset exceeding 32 bits,
and therefore if we need to use the 64-bit DWARF format when writing the
.debug_names section.  The type we use currently to represent section
offsets is an unsigned int (32-bits), which means a value of this type
will never exceed 32 bits, hence the errors above.

There are many signs that we want to support 64-bits DWARF (although I
haven't tested), such as:

 - We correctly read initial length fields (read_initial_length)
 - We take that into account when reading offsets (read_offset_1)
 - The check_dwarf64_offsets function

However, I don't see how it can work if sect_offset is a 32-bits type.
Every time we record a section offset, we risk truncating the value.
And if a file uses the 64-bit DWARF format, it's most likely because
there are such offset values that overflow 32 bits.

Because of this, I think the way forward is to change sect_offset to be
a uint64_t.  It will be able to represent any offset, regardless of the
bitness of the DWARF info.

This patch was regtested on the buildbot.

gdb/ChangeLog:

	* gdbtypes.h (sect_offset): Change type to uint64_t.
	(sect_offset_str): New function.
	* dwarf2read.c (create_addrmap_from_aranges): Use
	sect_offset_str.
	(error_check_comp_unit_head): Likewise.
	(create_debug_type_hash_table): Likewise.
	(read_cutu_die_from_dwo): Likewise.
	(init_cutu_and_read_dies): Likewise.
	(init_cutu_and_read_dies_no_follow): Likewise.
	(process_psymtab_comp_unit_reader): Likewise.
	(partial_die_parent_scope): Likewise.
	(peek_die_abbrev): Likewise.
	(process_queue): Likewise.
	(dwarf2_physname): Likewise.
	(read_namespace_alias): Likewise.
	(read_import_statement): Likewise.
	(create_dwo_cu_reader): Likewise.
	(create_cus_hash_table): Likewise.
	(lookup_dwo_cutu): Likewise.
	(inherit_abstract_dies): Likewise.
	(read_func_scope): Likewise.
	(read_call_site_scope): Likewise.
	(dwarf2_add_member_fn): Likewise.
	(read_common_block): Likewise.
	(read_module_type): Likewise.
	(read_typedef): Likewise.
	(read_subrange_type): Likewise.
	(load_partial_dies): Likewise.
	(read_partial_die): Likewise.
	(find_partial_die): Likewise.
	(read_str_index): Likewise.
	(dwarf2_string_attr): Likewise.
	(build_error_marker_type): Likewise.
	(lookup_die_type): Likewise.
	(dump_die_shallow): Likewise.
	(follow_die_ref): Likewise.
	(dwarf2_fetch_die_loc_sect_off): Likewise.
	(dwarf2_fetch_constant_bytes): Likewise.
	(follow_die_sig): Likewise.
	(get_signatured_type): Likewise.
	(get_DW_AT_signature_type): Likewise.
	(dwarf2_find_containing_comp_unit): Likewise.
	(set_die_type): Likewise.
2018-02-23 13:03:33 -05:00
Pedro Alves 0f59d5fc1c Fix GCC PR83906 - [8 Regression] Random FAIL: libstdc++-prettyprinters/80276.cc whatis p4
GCC PR83906 [1] is about a GCC/libstdc++ GDB/Python type printer
testcase failing randomly, as shown by running (in libstdc++'s
testsuite):

 make check RUNTESTFLAGS=prettyprinters.exp=80276.cc

in a loop.  Sometimes you get this:

 FAIL: libstdc++-prettyprinters/80276.cc whatis p4

I.e., this:
 type = std::unique_ptr<std::vector<std::unique_ptr<std::list<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >>[]>>[99]>

instead of this:
 type = std::unique_ptr<std::vector<std::unique_ptr<std::list<std::string>[]>>[99]>

Jonathan Wakely tracked it on the printer side to this bit in
libstdc++'s type printer:

            if self.type_obj == type_obj:
                return strip_inline_namespaces(self.name)

This assumes the two types resolve to the same gdb.Type but some times
the comparison unexpectedly fails.

Running the testcase manually under Valgrind finds the problem in GDB:

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ==6118== Conditional jump or move depends on uninitialised value(s)
 ==6118==    at 0x4C35CB0: bcmp (vg_replace_strmem.c:1100)
 ==6118==    by 0x6F773A: check_types_equal(type*, type*, VEC_type_equality_entry_d**) (gdbtypes.c:3515)
 ==6118==    by 0x6F7B00: check_types_worklist(VEC_type_equality_entry_d**, bcache*) (gdbtypes.c:3618)
 ==6118==    by 0x6F7C03: types_deeply_equal(type*, type*) (gdbtypes.c:3655)
 ==6118==    by 0x4D5B06: typy_richcompare(_object*, _object*, int) (py-type.c:1007)
 ==6118==    by 0x63D7E6C: PyObject_RichCompare (object.c:961)
 ==6118==    by 0x646EAEC: PyEval_EvalFrameEx (ceval.c:4960)
 ==6118==    by 0x646DC08: PyEval_EvalFrameEx (ceval.c:4519)
 ==6118==    by 0x646DC08: PyEval_EvalFrameEx (ceval.c:4519)
 ==6118==    by 0x646DC08: PyEval_EvalFrameEx (ceval.c:4519)
 ==6118==    by 0x646DC08: PyEval_EvalFrameEx (ceval.c:4519)
 ==6118==    by 0x646DC08: PyEval_EvalFrameEx (ceval.c:4519)
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

That "bcmp" call is really a memcmp call in check_types_equal.  The
problem is that gdb is memcmp'ing two objects that are equal in value:

 (top-gdb) p *TYPE_RANGE_DATA (type1)
 $1 = {low = {kind = PROP_CONST, data = {const_val = 0, baton = 0x0}}, high = {kind = PROP_CONST, data = {const_val = 15, baton = 0xf}}, flag_upper_bound_is_count = 0,
   flag_bound_evaluated = 0}
 (top-gdb) p *TYPE_RANGE_DATA (type2)
 $2 = {low = {kind = PROP_CONST, data = {const_val = 0, baton = 0x0}}, high = {kind = PROP_CONST, data = {const_val = 15, baton = 0xf}}, flag_upper_bound_is_count = 0,
   flag_bound_evaluated = 0}

but differ in padding.  Notice the 4-byte hole:

  (top-gdb) ptype /o range_bounds
  /* offset    |  size */  type = struct range_bounds {
  /*    0      |    16 */    struct dynamic_prop {
  /*    0      |     4 */        dynamic_prop_kind kind;
  /* XXX  4-byte hole  */
  /*    8      |     8 */        union dynamic_prop_data {
  /*                 8 */            LONGEST const_val;
  /*                 8 */            void *baton;

				     /* total size (bytes):    8 */
				 } data;

which is filled with garbage:

  (top-gdb) x /40bx TYPE_RANGE_DATA (type1)
  0x2fa7ea0:      0x01    0x00    0x00    0x00    0x43    0x01    0x00    0x00
						  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  0x2fa7ea8:      0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  0x2fa7eb0:      0x01    0x00    0x00    0x00    0xfe    0x7f    0x00    0x00
  0x2fa7eb8:      0x0f    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  0x2fa7ec0:      0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  (top-gdb) x /40bx TYPE_RANGE_DATA (type2)
  0x20379b0:      0x01    0x00    0x00    0x00    0xfe    0x7f    0x00    0x00
						  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  0x20379b8:      0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  0x20379c0:      0x01    0x00    0x00    0x00    0xfe    0x7f    0x00    0x00
  0x20379c8:      0x0f    0x00    0x00    0x00    0x00    0x00    0x00    0x00
  0x20379d0:      0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00

  (top-gdb) p memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2), sizeof (*TYPE_RANGE_DATA (type1)))
  $3 = -187

In some cases objects of type range_bounds are memset when allocated,
but then their dynamic_prop low/high fields are copied over from some
template dynamic_prop object that wasn't memset.  E.g.,
create_static_range_type's low/high locals are left with garbage in
the padding, and then that padding is copied over to the range_bounds
object's low/high fields.

At first, I considered making sure to always memset range_bounds
objects, thinking that maybe type objects are being put in some bcache
instance somewhere.  But then I hacked bcache/bcache_full to poison
non-pod types, and made dynamic_prop a non-pod, and GDB still
compiled.

So given that, it seems safest to not assume padding will always be
memset, and instead treat them as regular value types, implementing
(in)equality operators and using those instead of memcmp.

This fixes the random FAILs in GCC's testcase.

[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83906

gdb/ChangeLog:
2018-01-24  Pedro Alves  <palves@redhat.com>

	GCC PR libstdc++/83906
	* gdbtypes.c (operator==(const dynamic_prop &,
	const dynamic_prop &)): New.
	(operator==(const range_bounds &, const range_bounds &)): New.
	(check_types_equal): Use them instead of memcmp.
	* gdbtypes.h (operator==(const dynamic_prop &,
	const dynamic_prop &)): Declare.
	(operator!=(const dynamic_prop &, const dynamic_prop &)): Declare.
	(operator==(const range_bounds &, const range_bounds &)): Declare.
	(operator!=(const range_bounds &, const range_bounds &)): Declare.
2018-01-24 17:22:05 +00:00
Tom Tromey 50a820477b Remove objfile argument from add_dyn_prop
The objfile argument to add_dyn_prop is redundant, so this patch
removes it.

2018-01-17  Tom Tromey  <tom@tromey.com>

	* gdbtypes.h (add_dyn_prop): Remove objfile parameter.
	* gdbtypes.c (add_dyn_prop): Remove objfile parameter.
	(create_array_type_with_stride): Update.
	* dwarf2read.c (set_die_type): Update.
2018-01-17 11:28:44 -07:00
Joel Brobecker a405673cc5 Add support for dynamic DW_AT_byte_stride.
This patch adds support for DW_AT_byte_stride, using Ada as one
example of where this would be useful. However, the implementation
is language-agnostic.

Consider the following Ada code:

   procedure Nested (L, U : Integer) is
      subtype Small_Type is Integer range L .. U;
      type Record_Type (I : Small_Type := L) is record
         S : String (1 .. I);
      end record;
      type Array_Type is array (Integer range <>) of Record_Type;

      A1 : Array_Type :=
        (1 => (I => 0, S => <>),
         2 => (I => 1, S => "A"),
         3 => (I => 2, S => "AB"));

      procedure Discard (R : Record_Type) is
      begin
         null;
      end Discard;

   begin
      Discard (A1 (1));  -- STOP
   end;

It defines an array A1 of Record_Type, which is a variant record
type whose maximum size actually depends on the value of the
parameters passed when calling Nested. As a result, the stride
of the array A1 cannot be known statically, which leads the compiler
to generate a dynamic DW_AT_byte_stride attribute for our type.
Here is what the debugging info looks like with GNAT:

        .uleb128 0x10   # (DIE (0x14e) DW_TAG_array_type)
        .long   .LASF17 # DW_AT_name: "foo__nested__T18b"
        .long   0x141   # DW_AT_byte_stride
        .long   0xdc    # DW_AT_type
        .uleb128 0x11   # (DIE (0x15f) DW_TAG_subrange_type)
        .long   0x166   # DW_AT_type
        .byte   0x3     # DW_AT_upper_bound
        .byte   0       # end of children of DIE 0x14e

There DW_AT_byte_stride is a reference to a local (internal)
variable:

        .uleb128 0x9    # (DIE (0x141) DW_TAG_variable)
        .long   .LASF6  # DW_AT_name: "foo__nested__T18b___PAD___XVZ"

This patch enhances GDB to handle this dynamic byte stride attribute
by first adding a new dynamic_prop_node_kind (DYN_PROP_BYTE_STRIDE)
to store the array dynamic stride info (when dynamic). It then enhances
the dynamic type resolver to handle this dynamic property.

Before applying this patch, trying to print the value of some of
A1's elements after having stopped at the "STOP" comment does not
work. For instance:

    (gdb) p a1(2)
    Cannot access memory at address 0x80000268dec0

With this patch applied, GDB now prints the value of all 3 elements
correctly:

    (gdb) print A1(1)
    $1 = (i => 0, s => "")
    (gdb) print A1(2)
    $2 = (i => 1, s => "A")
    (gdb) print A1(3)
    $3 = (i => 2, s => "AB")

gdb/ChangeLog:

        * gdbtypes.h (enum dynamic_prop_node_kind) <DYN_PROP_BYTE_STRIDE>:
        New enum value.
        (create_array_type_with_stride): Add byte_stride_prop parameter.
        * gdbtypes.c (create_array_type_with_stride) <byte_stride_prop>:
        New parameter.  Update all callers in this file.
        (array_type_has_dynamic_stride): New function.
        (is_dynamic_type_internal, resolve_dynamic_array): Add handling
        of arrays with dynamic byte strides.
        * dwarf2read.c (read_array_type): Add support for dynamic
        DW_AT_byte_stride attributes.

gdb/testsuite/ChangeLog:

        * gdb.ada/dyn_stride: New testcase.

Tested on x86_64-linux.
2018-01-01 22:50:13 -05:00
Joel Brobecker e2882c8578 Update copyright year range in all GDB files
gdb/ChangeLog:

        Update copyright year range in all GDB files
2018-01-02 07:38:06 +04:00
Keith Seitz 883fd55ab1 Record nested types
GDB currently does not track types defined in classes.  Consider:

class A
{
  public:

  class B
  {
    public:
      class C { };
  };
};

(gdb) ptype A
type = class A {
   <no data fields>
}

This patch changes this behavior so that GDB records these nested types
and displays them to the user when he has set the (new) "print type"
option "nested-type-limit."

Example:

(gdb) set print type nested-type-limit 1
(gdb) ptype A
type = class A {
    <no data fields>
    class A::B {
        <no data fields>
    };
}
(gdb) set print type nested-type-limit 2
type = class A {
    <no data fields>
    class A::B {
        <no data fields>
        class A::B::C {
            <no data fields>
        };
    };
}

By default, the code maintains the status quo, that is, it will not print
any nested type definitions at all.

Testing is carried out via cp_ptype_class which required quite a bit of
modification to permit recursive calling (for the nested types).  This
was most easily facilitated by turning the ptype command output into a
queue.  Upshot: the test suite now has stack and queue data structures that
may be used by test writers.

gdb/ChangeLog

	* NEWS (New commands): Mention set/show print type nested-type-limit.
	* c-typeprint.c (c_type_print_base): Print out nested types.
	* dwarf2read.c (struct typedef_field_list): Rename to ...
	(struct decl_field_list): ... this.  Change all uses.
	(struct field_info) <nested_types_list, nested_types_list_count>:
	New fields.
	(add_partial_symbol): Look for nested type definitions in C++, too.
	(dwarf2_add_typedef): Rename to ...
	(dwarf2_add_type_defn): ... this.
	(type_can_define_types): New function.
	Update assertion to use type_can_define_types.
	Permit NULL for a field's name.
	(process_structure_scope): Handle child DIEs of types that can
	define types.
	Copy the list of nested types into the type struct.
	* gdbtypes.h (struct typedef_field): Rename to ...
	(struct decl_field): ... this.  Change all uses.
	[is_protected, is_private]: New fields.
	(struct cplus_struct_type) <nested_types, nested_types_count>: New
	fields.
	(TYPE_NESTED_TYPES_ARRAY, TYPE_NESTED_TYPES_FIELD)
	(TYPE_NESTED_TYPES_FIELD_NAME, TYPE_NESTED_TYPES_FIELD_TYPE)
	(TYPE_NESTED_TYPES_COUNT, TYPE_NESTED_TYPES_FIELD_PROTECTED)
	(TYPE_NESTED_TYPES_FIELD_PRIVATE): New macros.
	* typeprint.c (type_print_raw_options, default_ptype_flags): Add
	default value for print_nested_type_limit.
	(print_nested_type_limit): New static variable.
	(set_print_type_nested_types, show_print_type_nested_types): New
	functions.
	(_initialize_typeprint): Register new commands for set/show
	`print-nested-type-limit'.
	* typeprint.h (struct type_print_options) [print_nested_type_limit]:
	New field.

gdb/testsuite/ChangeLog

	* gdb.cp/nested-types.cc: New file.
	* gdb.cp/nested-types.exp: New file.
	* lib/cp-support.exp: Load data-structures.exp library.
	(debug_cp_test_ptype_class): New global.
	(cp_ptype_class_verbose, next_line): New procedures.
	(cp_test_ptype_class): Add and document new parameter `recursive_qid'.
	Add and document new return value.
	Switch the list of lines to a queue.
	Add support for new `type' key for nested type definitions.
	Add debugging/troubleshooting messages.
	* lib/data-structures.exp: New file.

gdb/doc/ChangeLog

	* gdb.texinfo (Symbols): Document "set print type nested-type-limit"
	and "show print type nested-type-limit".
2017-12-07 15:01:30 -08:00
Ulrich Weigand 701000146a Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}.  In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.

To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP.  For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.

However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.

The new routine is used in both value_logical_not and valpy_nonzero.

There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero.  That routine
performs an extra task: it detects invalid floating-point values
and raises an error.  In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.

To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check.  Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.

In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.

The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.

ChangeLog:
2017-11-06  Ulrich Weigand  <uweigand@de.ibm.com>

	* Makefile.c (SFILES): Add target-float.c.
	(HFILES_NO_SRCDIR): Add target-float.h.
	(COMMON_OBS): Add target-float.o.
	* target-float.h: New file.
	* target-float.c: New file.

	* doublest.c (floatformat_classify): Fix detection of float_zero.

	* gdbtypes.c (is_floating_type): New function.
	* gdbtypes.h (is_floating_type): Add prototype.

	* value.c: Do not include "floatformat.h".
	(unpack_double): Use target_float_is_valid.
	(is_floating_value): New function.
	* value.h (is_floating_value): Add prototype-

	* valarith.c: Include "target-float.h".
	(value_logical_not): Use target_float_is_zero.

	* python/py-value.c: Include "target-float.h".
	(valpy_nonzero): Use target_float_is_zero.
2017-11-06 15:56:02 +01:00
Keith Seitz c191a6875b Record and output access specifiers for nested typedefs
We currently do not record access information for typedefs defined inside
classes.  Consider:

struct foo
{
   typedef int PUBLIC;
 private:
   typedef int PRIVATE;
   PRIVATE b;
};

(gdb) ptype foo
type = struct foo {
  private:
    PRIVATE b;

    typedef int PRIVATE;
    typedef int PUBLIC;
}

This patch fixes this:

(gdb) ptype foo
type = struct foo {
  private:
    PRIVATE b;

    typedef int PRIVATE;
  public:
    typedef int PUBLIC;
}

gdb/ChangeLog:

	* c-typeprint.c (enum access_specifier): Moved here from
	c_type_print_base.
	(output_access_specifier): New function.
	(c_type_print_base): Consider typedefs when assessing
	whether access labels are needed.
	Use output_access_specifier as needed.
	Output access specifier for typedefs, if needed.
	* dwarf2read.c (dwarf2_add_typedef): Record DW_AT_accessibility.
	* gdbtypes.h (struct typedef_field) <is_protected, is_private>: New
	fields.
	(TYPE_TYPEDEF_FIELD_PROTECTED, TYPE_TYPEDEF_FIELD_PRIVATE): New
	accessor macros.

gdb/testsuite/ChangeLog:

	* gdb.cp/classes.cc (class_with_typedefs, class_with_public_typedef)
	(class_with_protected_typedef, class_with_private_typedef)
	(struct_with_public_typedef, struct_with_protected_typedef)
	(struct_with_private_typedef): New classes/structs.
	* gdb.cp/classes.exp (test_ptype_class_objects): Add tests for
	typedefs and access specifiers.
2017-10-16 17:19:29 -07:00
Ulrich Weigand 0db7851f9f Simplify floatformat_from_type
For historical reasons, the TYPE_FLOATFORMAT element is still set to hold
an array of two floatformat structs, one for big-endian and the other for
little-endian.  When accessing the element via floatformat_from_type,
the code would check the type's byte order and return the appropriate
floatformat.

However, these days this is quite unnecessary, since the type's byte order
is already known at the time the type is allocated and the floatformat is
installed into TYPE_FLOATFORMAT.  Therefore, we can just install the correct
version here.

Also, moves the (now trivially simple) floatformat_from_type accessor to
gdbtypes.{c,h}, since it doesn't really need to be in doublest.c now.

gdb/ChangeLog
2017-09-27  Ulrich Weigand  <uweigand@de.ibm.com>

	* doublest.h (floatformat_from_type): Move to gdbtypes.h.
	* doublest.c (floatformat_from_type): Move to gdbtypes.c.

	* gdbtypes.h (union type_specific): Make field floatformat hold
	just a single struct floatformat, not an array.
	(floatformat_from_type): Move here.
	* gdbtypes.c (floatformat_from_type): Move here.  Update to
	changed TYPE_FLOATFORMAT definition.
	(verify_floatformat): Update to changed TYPE_FLOATFORMAT.
	(recursive_dump_type): Likewise.
	(init_float_type): Install correct floatformat for byte order.
	(arch_float_type): Likewise.
2017-09-27 19:03:36 +02:00
Ulrich Weigand 77b7c781e9 Make init_type/arch_type take a size in bits
This changes the interfaces to init_type and arch_type to take the
type length in bits as input (instead of as bytes).  The routines
assert that the length is a multiple of TARGET_CHAR_BIT.

For consistency, arch_flags_type is changed likewise, so that now
all type creation interfaces always use length in bits.

All callers are updated in the straightforward manner.

The assert actually found a bug in read_range_type, where the
init_integer_type routine was called with a wrong argument (probably
a bug introduced with the conversion to use init_integer_type).

gdb/ChangeLog
2017-09-27  Ulrich Weigand  <uweigand@de.ibm.com>

	* gdbtypes.c (init_type): Change incoming argument from
	length-in-bytes to length-in-bits.  Assert length is a
	multiple of TARGET_CHAR_BITS.
	(arch_type, arch_flags_type): Likewise.
	(init_integer_type): Update call to init_type.
	(init_character_type): Likewise.
	(init_boolean_type): Likewise.
	(init_float_type): Likewise.
	(init_decfloat_type): Likewise.
	(init_complex_type): Likewise.
	(init_pointer_type): Likewise.
	(objfile_type): Likewise.
	(arch_integer_type): Update call to arch_type.
	(arch_character_type): Likewise.
	(arch_boolean_type): Likewise.
	(arch_float_type): Likewise.
	(arch_decfloat_type): Likewise.
	(arch_complex_type): Likewise.
	(arch_pointer_type): Likewise.
	(gdbtypes_post_init): Likewise.

	* dwarf2read.c (dwarf2_init_float_type): Update call to init_type.
	(read_base_type): Likewise.
	* mdebugread.c (basic_type): Likewise.
	* stabsread.c (dbx_init_float_type): Likewise.
	(rs6000_builtin_type): Likewise.
	(read_range_type): Likewise.  Also, fix call to init_integer_type
	with erroneous length argument.

	* ada-lang.c (ada_language_arch_info): Update call to arch_type.
	* d-lang.c (build_d_types): Likewise.
	* f-lang.c (build_fortran_types): Likewise.
	* go-lang.c (build_go_types): Likewise.
	* opencl-lang.c (build_opencl_types): Likewise.
	* jit.c (finalize_symtab): Likewise.
	* gnu-v3-abi.c (build_gdb_vtable_type): Likewise.
	(build_std_type_info_type): Likewise.
	* target-descriptions.c (tdesc_gdb_type): Likewise.  Also,
	update call to arch_flags_type.

	* linux-tdep.c (linux_get_siginfo_type_with_fields): Update call to
	arch_type.
	* fbsd-tdep.c (fbsd_get_siginfo_type): Likewise.
	* windows-tdep.c (windows_get_tlb_type): Likewise.

	* avr-tdep.c (avr_gdbarch_init): Update call to arch_type.
	* ft32-tdep.c (ft32_gdbarch_init): Likewise.
	* m32c-tdep.c (make_types): Likewise.
	* rl78-tdep.c (rl78_gdbarch_init): Likewise.
	(rl78_psw_type): Update call to arch_flags_type.
	* m68k-tdep.c (m68k_ps_type): Update call to arch_flags_type.
	* rx-tdep.c (rx_psw_type): Likewise.
	(rx_fpsw_type): Likewise.
	* sparc-tdep.c (sparc_psr_type): Likewise.
	(sparc_fsr_type): Likewise.
	* sparc64-tdep.c (sparc64_pstate_type): Likewise.
	(sparc64_ccr_type): Likewise.
	(sparc64_fsr_type): Likewise.
	(sparc64_fprs_type): Likewise.
2017-09-27 19:02:00 +02:00
Tom Tromey 5897114462 Constify commands maint.c, plus maintenance_print_type
In addition to the constification, this fixes a command-repeat bug.

gdb/ChangeLog
2017-09-27  Tom Tromey  <tom@tromey.com>

	* typeprint.c (maintenance_print_type): Constify.
	* maint.c (maintenance_dump_me, maintenance_demangle)
	(maintenance_time_display, maintenance_info_sections)
	(maintenance_print_statistics, maintenance_deprecate)
	(maintenance_undeprecate): Constify.
	(maintenance_do_deprecate): Constify.  Use std::string.
	(maintenance_selftest): Constify.
	* gdbtypes.h (maintenance_print_type): Constify.
2017-09-27 08:44:43 -06:00
Pedro Alves 3693fdb3c8 Make "p S::method() const::static_var" work too
Trying to print a function local static variable of a const-qualified
method still doesn't work after the previous fixes:

  (gdb) p 'S::method() const'::static_var
  $1 = {i1 = 1, i2 = 2, i3 = 3}
  (gdb) p S::method() const::static_var
  No symbol "static_var" in specified context.

The reason is that the expression parser/evaluator loses the "const",
and the above unquoted case is just like trying to print a variable of
the non-const overload, if it exists, even.  As if the above unquoted
case had been written as:

  (gdb) p S::method()::static_var
  No symbol "static_var" in specified context.

We can see the problem without static vars in the picture.  With:

 struct S
 {
    void method ();
    void method () const;
 };

Compare:

  (gdb) print 'S::method(void) const'
  $1 = {void (const S * const)} 0x400606 <S::method() const>
  (gdb) print S::method(void) const
  $2 = {void (S * const)} 0x4005d8 <S::method()>   # wrong method!

That's what we need to fix.  If we fix that, the function local static
case starts working.

The grammar production for function/method types is this one:

  exp:       exp '(' parameter_typelist ')' const_or_volatile

This results in a TYPE_INSTANCE expression evaluator operator.  For
the example above, we get something like this ("set debug expression 1"):

...
            0  TYPE_INSTANCE         1 TypeInstance: Type @0x560fda958be0 (void)
            5    OP_SCOPE              Type @0x560fdaa544d8 (S) Field name: `method'
...

While evaluating TYPE_INSTANCE, we end up in
value_struct_elt_for_reference, trying to find the method named
"method" that has the prototype recorded in TYPE_INSTANCE.  In this
case, TYPE_INSTANCE says that we're looking for a method that has
"(void)" as parameters (that's what "1 TypeInstance: Type
@0x560fda958be0 (void)" above means.  The trouble is that nowhere in
this mechanism do we communicate to value_struct_elt_for_reference
that we're looking for the _const_ overload.
value_struct_elt_for_reference only compared parameters, and the
non-const "method()" overload has matching parameters, so it's
considered the right match...

Conveniently, the "const_or_volatile" production in the grammar
already records "const" and "volatile" info in the type stack.  The
type stack is not used in this code path, but we can borrow the
information.  The patch converts the info in the type stack to an
"instance flags" enum, and adds that as another element in
TYPE_INSTANCE operators.  This type instance flags is then applied to
the temporary type that is passed to value_struct_elt_for_reference
for matching.

The other side of the problem is that methods in the debug info aren't
marked const/volatile, so with that in place, the matching never finds
const/volatile-qualified methods.

The problem is that in the DWARF, there's no indication at all whether
a method is const/volatile qualified...  For example (c++filt applied
to the linkage name for convenience):

   <2><d3>: Abbrev Number: 6 (DW_TAG_subprogram)
      <d4>   DW_AT_external    : 1
      <d4>   DW_AT_name        : (indirect string, offset: 0x3df): method
      <d8>   DW_AT_decl_file   : 1
      <d9>   DW_AT_decl_line   : 58
      <da>   DW_AT_linkage_name: (indirect string, offset: 0x5b2): S::method() const
      <de>   DW_AT_declaration : 1
      <de>   DW_AT_object_pointer: <0xe6>
      <e2>   DW_AT_sibling     : <0xec>

I see the same with both GCC and Clang.  The patch works around this
by extracting the cv qualification from the "const" and "volatile" in
the demangled name.  This will need further tweaking for "&" and
"const &" overloads, but we don't support them in the parser yet,
anyway.

The TYPE_CONST changes were necessary otherwise the comparisons in valops.c:

  if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
    continue;

would fail, because when both TYPE_CONST() TYPE_FN_FIELD_CONST() were
true, their values were different.

BTW, I'm recording the const/volatile-ness of methods in the
TYPE_FN_FIELD info because #1 - I'm not sure it's kosher to change the
method's type directly (vs having to call make_cv_type to create a new
type), and #2 it's what stabsread.c does:

...
	    case 'A':		/* Normal functions.  */
	      new_sublist->fn_field.is_const = 0;
	      new_sublist->fn_field.is_volatile = 0;
	      (*pp)++;
	      break;
	    case 'B':		/* `const' member functions.  */
	      new_sublist->fn_field.is_const = 1;
	      new_sublist->fn_field.is_volatile = 0;
...

After all this, this finally all works:

  print S::method(void) const
  $1 = {void (const S * const)} 0x400606 <S::method() const>
  (gdb) p S::method() const::static_var
  $2 = {i1 = 1, i2 = 2, i3 = 3}

gdb/ChangeLog:
2017-09-04  Pedro Alves  <palves@redhat.com>

	* c-exp.y (function_method, function_method_void): Add current
	instance flags to TYPE_INSTANCE.
	* dwarf2read.c (check_modifier): New.
	(compute_delayed_physnames): Assert that only C++ adds delayed
	physnames.  Mark fn_fields as const/volatile depending on
	physname.
	* eval.c (make_params): New type_instance_flags parameter.  Use
	it as the new type's instance flags.
	(evaluate_subexp_standard) <TYPE_INSTANCE>: Extract the instance
	flags element and pass it to make_params.
	* expprint.c (print_subexp_standard) <TYPE_INSTANCE>: Handle
	instance flags element.
	(dump_subexp_body_standard) <TYPE_INSTANCE>: Likewise.
	* gdbtypes.h: Include "enum-flags.h".
	(type_instance_flags): New enum-flags type.
	(TYPE_CONST, TYPE_VOLATILE, TYPE_RESTRICT, TYPE_ATOMIC)
	(TYPE_CODE_SPACE, TYPE_DATA_SPACE): Return boolean.
	* parse.c (operator_length_standard) <TYPE_INSTANCE>: Adjust.
	(follow_type_instance_flags): New function.
	(operator_check_standard) <TYPE_INSTANCE>: Adjust.
	* parser-defs.h (follow_type_instance_flags): Declare.
	* valops.c (value_struct_elt_for_reference): const/volatile must
	match too.

gdb/testsuite/ChangeLog:
2017-09-04  Pedro Alves  <palves@redhat.com>

	* gdb.base/func-static.c (S::method const, S::method volatile)
	(S::method volatile const): New methods.
	(c_s, v_s, cv_s): New instances.
	(main): Call method() on them.
	* gdb.base/func-static.exp (syntax_re, cannot_resolve_re): New variables.
	(cannot_resolve): New procedure.
	(cxx_scopes_list): Test cv methods.  Add print-scope-quote and
	print-quote-unquoted columns.
	(do_test): Test printing each scope too.
2017-09-04 20:21:16 +01:00
Pedro Alves 4da3eb35ef Garbage collect TYPE_STATIC and several TYPE_FN_FIELD_x
Nothing uses these.  Most of the TYPE_FN_FIELD_ ones were probably
used by the gcj support.

gdb/ChangeLog:
2017-07-04  Pedro Alves  <palves@redhat.com>

	* gdbtypes.c (recursive_dump_type): Don't reference TYPE_STATIC.
	* gdbtypes.h (TYPE_STATIC): Delete.
	(struct fn_field) <is_public, is_abstract, is_static, is_final,
	is_synchronized, is_native>: Delete.
	<dummy>: Bump.
	(TYPE_FN_FIELD_PUBLIC, TYPE_FN_FIELD_STATIC, TYPE_FN_FIELD_FINAL)
	(TYPE_FN_FIELD_SYNCHRONIZED, TYPE_FN_FIELD_NATIVE)
	(TYPE_FN_FIELD_ABSTRACT): Delete.
2017-07-04 18:40:26 +01:00
Keith Seitz e15c3eb45b Fix overload resolution involving rvalue references and cv qualifiers.
The following patch fixes several outstanding overload resolution problems
with rvalue references and cv qualifiers in the test suite. The tests for
these problems typically passed with one compiler version and failed with
another. This behavior occurs because of the ordering of the overloaded
functions in the debug info. So the first best match "won out" over the
a subsequent better match.

One of the bugs addressed by this patch is the failure of rank_one_type to
account for type equality of two overloads based on CV qualifiers.  This was
leading directly to problems evaluating rvalue reference overload quality,
but it is also highlighted in gdb.cp/oranking.exp, where two test KFAIL as
a result of this shortcoming.

I found the overload resolution code committed with the rvalue reference
patch (f9aeb8d49) needlessly over-complicated, and I have greatly simplified
it. This fixes some KFAILing tests in gdb.exp/rvalue-ref-overload.exp.

gdb/ChangeLog

	* gdbtypes.c (LVALUE_REFERENCE_TO_RVALUE_BINDING_BADNESS)
	DIFFERENT_REFERENCE_TYPE_BADNESS): Remove.
	(CV_CONVERSION_BADNESS): Define.
	(rank_one_type): Remove overly restrictive rvalue reference
	rank checks.
	Add cv-qualifier checks and subranks for type equality.
	* gdbtypes.h (REFERENCE_CONVERSION_RVALUE,
	REFERENCE_CONVERSION_CONST_LVALUE, CV_CONVERSION_BADNESS,
	CV_CONVERSION_CONST, CV_CONVERSION_VOLATILE): Declare.

gdb/testsuite/ChangeLog

	* gdb.cp/oranking.cc (test15): New function.
	(main): Call test15 and declare additional variables for testing.
	* gdb.cp/oranking.exp: Remove kfail status for "p foo4(&a)" and
	"p foo101('abc')" tests.
	* gdb.cp/rvalue-ref-overloads.exp: Remove kfail status for
	"lvalue reference overload" test.
	* gdb.cp/rvalue-ref-params.exp: Remove kfail status for
	"print value of f1 on Child&& in f2" test.
2017-04-27 15:58:54 -07:00
Pedro Alves 53375380e9 Teach GDB that wchar_t is a built-in type in C++ mode
GDB is currently not aware that wchar_t is a built-in type in C++
mode.  This is usually not a problem because the debug info describes
the type, so when you have a program loaded, you don't notice this.
However, if you try expressions involving wchar_t before a program is
loaded, gdb errors out:

 (gdb) p (wchar_t)-1
 No symbol table is loaded.  Use the "file" command.
 (gdb) p L"hello"
 No type named wchar_t.
 (gdb) ptype L"hello"
 No type named wchar_t.

This commit teaches gdb about the type.  After:

 (gdb) p (wchar_t)-1
 $1 = -1 L'\xffffffff'
 (gdb) p L"hello"
 $2 = L"hello"
 (gdb) ptype L"hello"
 type = wchar_t [6]

Unlike char16_t/char32_t, unfortunately, the underlying type of
wchar_t is implementation dependent, both size and signness.  So this
requires adding a couple new gdbarch hooks.

I grepped the GCC code base for WCHAR_TYPE and WCHAR_TYPE_SIZE, and it
seems to me that the majority of the ABIs have a 4-byte signed
wchar_t, so that's what I made the default for GDB too.  And then I
looked for which ports have a 16-bit and/or unsigned wchar_t, and made
GDB follow suit.

gdb/ChangeLog:
2017-04-12  Pedro Alves  <palves@redhat.com>

	PR gdb/21323
	* c-lang.c (cplus_primitive_types) <cplus_primitive_type_wchar_t>:
	New enum value.
	(cplus_language_arch_info): Register cplus_primitive_type_wchar_t.
	* gdbtypes.h (struct builtin_type) <builtin_wchar>: New field.
	* gdbtypes.c (gdbtypes_post_init): Create the "wchar_t" type.
	* gdbarch.sh (wchar_bit, wchar_signed): New per-arch values.
	* gdbarch.h, gdbarch.c: Regenerate.
	* aarch64-tdep.c (aarch64_gdbarch_init): Override
	gdbarch_wchar_bit and gdbarch_wchar_signed.
	* alpha-tdep.c (alpha_gdbarch_init): Likewise.
	* arm-tdep.c (arm_gdbarch_init): Likewise.
	* avr-tdep.c (avr_gdbarch_init): Likewise.
	* h8300-tdep.c (h8300_gdbarch_init): Likewise.
	* i386-nto-tdep.c (i386nto_init_abi): Likewise.
	* i386-tdep.c (i386_go32_init_abi): Likewise.
	* m32r-tdep.c (m32r_gdbarch_init): Likewise.
	* moxie-tdep.c (moxie_gdbarch_init): Likewise.
	* nds32-tdep.c (nds32_gdbarch_init): Likewise.
	* rs6000-aix-tdep.c (rs6000_aix_init_osabi): Likewise.
	* sh-tdep.c (sh_gdbarch_init): Likewise.
	* sparc-tdep.c (sparc32_gdbarch_init): Likewise.
	* sparc64-tdep.c (sparc64_init_abi): Likewise.
	* windows-tdep.c (windows_init_abi): Likewise.
	* xstormy16-tdep.c (xstormy16_gdbarch_init): Likewise.

gdb/testsuite/ChangeLog:
2017-04-12  Pedro Alves  <palves@redhat.com>

	PR gdb/21323
	* gdb.cp/wide_char_types.c: Include <wchar.h>.
	(wchar): New global.
	* gdb.cp/wide_char_types.exp (wide_char_types_program)
	(do_test_wide_char, wide_char_types_no_program, top level): Add
	wchar_t testing.
2017-04-12 14:06:40 +01:00
Pedro Alves 9c54172556 Make sect_offset and cu_offset strong typedefs instead of structs
A while ago, back when GDB was a C program, the sect_offset and
cu_offset types were made structs in order to prevent incorrect mixing
of those offsets.  Now that we require C++11, we can make them
integers again, while keeping the safety, by exploiting "enum class".
We can add a bit more safety, even, by defining operators that the
types _should_ support, helping making the suspicious uses stand out
more.

Getting at the underlying type is done with the new to_underlying
function added by the previous patch, which also helps better spot
where do we need to step out of the safety net.  Mostly, that's around
parsing the DWARF, and when we print the offset for complaint/debug
purposes.  But there are other occasional uses.

Since we have to define the sect_offset/cu_offset types in a header
anyway, I went ahead and generalized/library-fied the idea of "offset"
types, making it trivial to add more such types if we find a use.  See
common/offset-type.h and the DEFINE_OFFSET_TYPE macro.

I needed a couple generaly-useful preprocessor bits (e.g., yet another
CONCAT implementation), so I started a new common/preprocessor.h file.

I included units tests covering the "offset" types API.  These are
mostly compile-time tests, using SFINAE to check that expressions that
shouldn't compile (e.g., comparing unrelated offset types) really are
invalid and would fail to compile.  This same idea appeared in my
pending enum-flags revamp from a few months ago (though this version
is a bit further modernized compared to what I had posted), and I plan
on reusing the "check valid expression" bits added here in that
series, so I went ahead and defined the CHECK_VALID_EXPR macro in its
own header -- common/valid-expr.h.  I think that's nicer regardless.

I was borderline between calling the new types "offset" types, or
"index" types, BTW.  I stuck with "offset" simply because that's what
we're already calling them, mostly.

gdb/ChangeLog:
2017-04-04  Pedro Alves  <palves@redhat.com>

	* Makefile.in (SUBDIR_UNITTESTS_SRCS): Add
	unittests/offset-type-selftests.c.
	(SUBDIR_UNITTESTS_OBS): Add offset-type-selftests.o.
	* common/offset-type.h: New file.
	* common/preprocessor.h: New file.
	* common/traits.h: New file.
	* common/valid-expr.h: New file.
	* dwarf2expr.c: Include "common/underlying.h".  Adjust to use
	sect_offset and cu_offset strong typedefs throughout.
	* dwarf2expr.h: Adjust to use sect_offset and cu_offset strong
	typedefs throughout.
	* dwarf2loc.c: Include "common/underlying.h".  Adjust to use
	sect_offset and cu_offset strong typedefs throughout.
	* dwarf2read.c: Adjust to use sect_offset and cu_offset strong
	typedefs throughout.
	* gdbtypes.h: Include "common/offset-type.h".
	(cu_offset): Now an offset type (strong typedef) instead of a
	struct.
	(sect_offset): Likewise.
	(union call_site_parameter_u): Rename "param_offset" field to
	"param_cu_off".
	* unittests/offset-type-selftests.c: New file.
2017-04-04 20:03:26 +01:00
Artemiy Volkov 3b22433085 Change {lookup,make}_reference_type API
Parameterize lookup_reference_type() and make_reference_type() by the kind of
reference type we want to look up. Create two wrapper functions
lookup_{lvalue,rvalue}_reference_type() for lookup_reference_type() to simplify
the API. Change all callers to use the new API.

gdb/Changelog

	PR gdb/14441
	* dwarf2read.c (read_tag_reference_type): Use
	lookup_lvalue_reference_type() instead of lookup_reference_type().
	* eval.c (evaluate_subexp_standard): Likewise.
	* f-exp.y: Likewise.
	* gdbtypes.c (make_reference_type, lookup_reference_type):
	Generalize with rvalue reference types.
	(lookup_lvalue_reference_type, lookup_rvalue_reference_type): New
	convenience wrappers for lookup_reference_type().
	* gdbtypes.h (make_reference_type, lookup_reference_type): Add a
	reference kind parameter.
	(lookup_lvalue_reference_type, lookup_rvalue_reference_type): Add
	wrappers for lookup_reference_type().
	* guile/scm-type.c (gdbscm_type_reference): Use
	lookup_lvalue_reference_type() instead of lookup_reference_type().
	* guile/scm-value.c (gdbscm_value_dynamic_type): Likewise.
	* parse.c (follow_types): Likewise.
	* python/py-type.c (typy_reference, typy_lookup_type): Likewise.
	* python/py-value.c (valpy_get_dynamic_type, valpy_getitem):
	Likewise.
	* python/py-xmethods.c (gdbpy_get_xmethod_result_type)
	(gdbpy_invoke_xmethod): Likewise.
	* stabsread.c: Provide extra argument to make_reference_type()
	call.
	* valops.c (value_ref, value_rtti_indirect_type): Use
	lookup_lvalue_reference_type() instead of lookup_reference_type().
2017-03-20 13:47:39 -07:00