PR ld/20059
* elfxx-target.h (bfd_elfNN_bfd_copy_link_hash_symbol_type):
Define as _bfd_generic_copy_link_hash_symbol_type when using
generic hash table.
PR binutils/20063
* elf.c (bfd_elf_get_elf_syms): Check for out of range sh_link
field before accessing sections array.
* readelf.c (get_32bit_section_headers): Warn if an out of range
sh_link or sh_info field is encountered.
(get_64bit_section_headers): Likewise.
When a global symbol is defined in COMDAT group, we shouldn't leave an
undefined symbol in symbol table when the symbol section is discarded
unless there is a reference to the symbol outside of COMDAT group.
bfd/
PR ld/17550
* elf-bfd.h (elf_link_hash_entry): Update comments for indx,
documenting that indx == -3 if symbol is defined in a discarded
section.
* elflink.c (elf_link_add_object_symbols): Set indx to -3 if
symbol is defined in a discarded section.
(elf_link_output_extsym): Strip a global symbol defined in a
discarded section.
ld/
PR ld/17550
* testsuite/ld-elf/pr17550-1.s: New file.
* testsuite/ld-elf/pr17550-2.s: Likewise.
* testsuite/ld-elf/pr17550-3.s: Likewise.
* testsuite/ld-elf/pr17550-4.s: Likewise.
* testsuite/ld-elf/pr17550a.d: Likewise.
* testsuite/ld-elf/pr17550b.d: Likewise.
* testsuite/ld-elf/pr17550c.d: Likewise.
* testsuite/ld-elf/pr17550d.d: Likewise.
elf_backend_add_symbol_hook is undefined for FreeBSD. Define it for
Intel MCU to support STB_GNU_UNIQUE for Intel MCU and NaCl.
* elf32-i386.c (elf_backend_add_symbol_hook): Defined for Intel
MCU.
* elf32-i386.c (elf_i386_convert_load): Extract the GOT load
conversion to ...
(elf_i386_convert_load_reloc): This. New function.
* elf64-x86-64.c (elf_x86_64_convert_load): Extract the GOT load
conversion to ...
(elf_x86_64_convert_load_reloc): This. New function.
Cache the section contents in x86 check_relocs for sections without
TLS relocations.
* elf32-i386.c (elf_i386_check_tls_transition): Remove abfd.
Don't check if contents == NULL.
(elf_i386_tls_transition): Add from_relocate_section. Check
from_relocate_section instead of contents != NULL. Update
elf_i386_check_tls_transition call.
(elf_i386_check_relocs): Cache the section contents if
keep_memory is FALSE. Pass FALSE as from_relocate_section to
elf_i386_tls_transition.
(elf_i386_relocate_section): Pass TRUE as from_relocate_section
to elf_i386_tls_transition.
(elf_backend_caches_rawsize): New.
* elf64-x86-64.c (elf_x86_64_check_tls_transition): Don't check
if contents == NULL.
(elf_x86_64_tls_transition): Add from_relocate_section. Check
from_relocate_section instead of contents != NULL.
(elf_x86_64_check_relocs): Cache the section contents if
keep_memory is FALSE. Pass FALSE as from_relocate_section to
elf_x86_64_tls_transition.
(elf_x86_64_relocate_section): Pass TRUE as from_relocate_section
to elf_x86_64_tls_transition.
(elf_backend_caches_rawsize): New.
When handling absolute relocations for global symbols bind within the
shared object, AArch64 will generate one dynamic RELATIVE relocation,
but won't apply the value for this absolution relocations at static
linking stage. This is different from AArch64 gold linker and x86-64.
This is not a bug as AArch64 is RELA, there is only guarantee that
relocation addend is placed in the relocation entry. But some
system softwares originally writen for x86-64 might assume AArch64
bfd linker gets the same behavior as x86-64, then they could take
advantage of this buy skipping those RELATIVE dynamic relocations
if the load address is the same as the static linking address.
This patch makes AArch64 BFD linker applies absolution relocations at
static linking stage for scenario described above. Meanwhile old AArch64
android loader has a bug (PR19163) which relies on current linker behavior
as a workaround, so the same option --no-apply-dynamic-relocs added.
Set interpreter in x86 create_dynamic_sections to make this information
available to x86 check_relocs.
* elf32-i386.c (elf_i386_size_dynamic_sections): Move interp
setting to ...
(elf_i386_create_dynamic_sections): Here.
* elf64-x86-64.c (elf_x86_64_size_dynamic_sections): Move
interp setting to ...
(elf_x86_64_create_dynamic_sections): Here.
When UNDEFINED_WEAK_RESOLVED_TO_ZERO is checked to convert load via
GOT, has_got_reloc is always TRUE. This patch adds GOT_RELOC, which
is TRUE in x86 convert_load, to UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elf32-i386.c (UNDEFINED_WEAK_RESOLVED_TO_ZERO): Take GOT_RELOC
and replace (EH)->has_got_reloc with GOT_RELOC.
(elf_i386_fixup_symbol): Pass has_got_reloc to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
(elf_i386_allocate_dynrelocs): Likewise.
(elf_i386_relocate_section): Likewise.
(elf_i386_finish_dynamic_symbol): Likewise.
(elf_i386_convert_load): Pass TRUE to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elf64-x86-64.c (UNDEFINED_WEAK_RESOLVED_TO_ZERO): Take
GOT_RELOC and replace (EH)->has_got_reloc with GOT_RELOC.
(elf_x86_64_fixup_symbol): Pass has_got_reloc to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
(elf_x86_64_allocate_dynrelocs): Likewise.
(elf_x86_64_relocate_section): Likewise.
(elf_x86_64_finish_dynamic_symbol): Likewise.
(elf_x86_64_convert_load): Pass TRUE to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
No need to relocate section when check_relocs failed.
* elf32-i386.c (check_relocs_failed): New.
(elf_i386_check_relocs): Set check_relocs_failed on error.
(elf_i386_relocate_section): Skip if check_relocs failed.
PR 19938
bfd * elf-bfd.h (struct elf_backend_data): Rename
elf_backend_set_special_section_info_and_link to
elf_backend_copy_special_section_fields.
* elfxx-target.h: Likewise.
* elf.c (section_match): Ignore the SHF_INFO_LINK flag when
comparing section flags.
(copy_special_section_fields): New function.
(_bfd_elf_copy_private_bfd_data): Copy the EI_ABIVERSION field.
Perform two scans over special sections. The first one looks for
a direct mapping between the output section and an input section.
The second scan looks for a possible match based upon section
characteristics.
* elf32-arm.c (elf32_arm_copy_special_section_fields): New
function. Handle setting the sh_link field of SHT_ARM_EXIDX
sections.
* elf32-i386.c (elf32_i386_set_special_info_link): Rename to
elf32_i386_copy_solaris_special_section_fields.
* elf32-sparc.c (elf32_sparc_set_special_section_info_link):
Rename to elf32_sparc_copy_solaris_special_section_fields.
* elf64-x86-64.c (elf64_x86_64_set_special_info_link): Rename to
elf64_x86_64_copy_solaris_special_section_fields.
binutils* readelf.c (get_solaris_segment_type): New function.
(get_segment_type): Call it.
Skip debug sections when estimating distances between output sections
since compressed_size is used to compress debug sections and debug
sections aren't excluded from distances between output sections.
bfd/
PR ld/20006
* elf64-x86-64.c (elf_x86_64_convert_load): Skip debug sections
when estimating distances between output sections.
ld/
PR ld/20006
* testsuite/ld-elfvsb/elfvsb.exp (COMPRESS_LDFLAG): New.
(visibility_run): Pass COMPRESS_LDFLAG to visibility_test on
ELF targets.
include/
* bfdlink.h (struct bfd_link_hash_entry): Add "section" field to
undef. Formatting.
bfd/
* elflink.c (_bfd_elf_is_start_stop): New function.
(_bfd_elf_gc_mark_rsec): Use it.
* elf-bfd.h (_bfd_elf_is_start_stop): Declare.
arithmetic on void * is undefined in ISO C, so we should avoid it. In
GNU C sizeof void * is defined as 1, and that is pretty clearly what
this code wants, so change it to do arithmetic on bfd_byte *.
Unfortunately most of the argument types come from virtual function
interfaces so changing the types to bfd_byte * isn't trivial though it
might make the code clearer. So for the moment its easiest to leave the
variable types as void * and cast before doing arithmetic.
bfd/ChangeLog:
2016-04-26 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* elf32-rx.c (rx_set_section_contents): Avoid arithmetic on void *.
* mmo.c (mmo_get_section_contents): Likewise.
(mmo_set_section_contents): Likewise.
There is an unused NULL entry at the head of dynamic symbol table which
we must account for in our count even if the table is empty or unused
since it is intended for the mandatory DT_SYMTAB tag (.dynsym section)
in .dynamic section.
* elf-bfd.h (elf_link_hash_table): Update comments for
dynsymcount.
* elflink.c (_bfd_elf_link_renumber_dynsyms): Always count for
the unused NULL entry at the head of dynamic symbol table.
(bfd_elf_size_dynsym_hash_dynstr): Remove dynsymcount != 0
checks.
Some ELF targets create a "linker stubs" fake bfd. Don't use it to
set dynobj.
* elflink.c (_bfd_elf_link_create_dynstrtab): Exclude linker
created file from dynobj.
When check_relocs is called after gc-sections has run,
_bfd_elf_link_create_dynstrtab may be called with an dynamic object
and hash_table->dynobj may be NULL. We may not set dynobj, an input
file holding linker created dynamic sections to the dynamic object,
which has its own dynamic sections. We need to find a normal input
file to hold linker created sections if possible. Otherwise ld will
crash during LTO input rescan when linker created dynamic section
overrides input dynamic section.
* elflink.c (_bfd_elf_link_create_dynstrtab): Set dynobj to a
normal input file if possible.
Since x86 backends never see the removed sections, there is no need
for gc_sweep_hook.
* elf32-i386.c (elf_i386_gc_sweep_hook): Removed.
(elf_backend_gc_sweep_hook): Likewise.
* elf64-x86-64.c (elf_x86_64_gc_sweep_hook): Likewise.
(elf_backend_gc_sweep_hook): Likewise.
When checking relocations after gc-sections has run, the unused sections
have been removed. Don't check relocations in excluded sections.
* elflink.c (_bfd_elf_link_check_relocs): Don't check relocations
in excluded sections
Since elf_x86_64_check_relocs is called after opening all input files,
we can detect dynamic R_X86_64_32 relocation overflow there.
bfd/
PR ld/19969
* elf64-x86-64.c (check_relocs_failed): New.
(elf_x86_64_need_pic): Moved before elf_x86_64_check_relocs.
Support relocation agaist local symbol. Set check_relocs_failed.
(elf_x86_64_check_relocs): Use elf_x86_64_need_pic. Check
R_X86_64_32 relocation overflow.
(elf_x86_64_relocate_section): Skip if check_relocs failed.
Update one elf_x86_64_need_pic and remove one elf_x86_64_need_pic.
ld/
PR ld/19969
* testsuite/ld-x86-64/pr19969.d: New file.
* testsuite/ld-x86-64/pr19969a.S: Likewise.
* testsuite/ld-x86-64/pr19969b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19969 tests.
Since x86 check_relocs is called after opening all input files, we
need to call _bfd_elf_create_ifunc_sections only for STT_GNU_IFUNC
symbols.
* elf32-i386.c (elf_i386_check_relocs): Call
_bfd_elf_create_ifunc_sections only for STT_GNU_IFUNC symbol.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
Delaying checking ELF relocations until opening all input files so
that symbol information is final when relocations are checked. This
is only enabled for x86 targets.
bfd/
* elf-bfd.h (_bfd_elf_link_check_relocs): New.
* elflink.c (_bfd_elf_link_check_relocs): New function.
(elf_link_add_object_symbols): Call _bfd_elf_link_check_relocs
if check_relocs_after_open_input is FALSE.
include/
* bfdlink.h (bfd_link_info): Add check_relocs_after_open_input.
ld/
* emulparams/elf32_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
New.
* emulparams/elf_i386.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_be.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_chaos.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_ldso.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_vxworks.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/i386nto.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emultempl/elf32.em (gld${EMULATION_NAME}_before_parse):
Set check_relocs_after_open_input to TRUE if
CHECK_RELOCS_AFTER_OPEN_INPUT is yes.
(gld${EMULATION_NAME}_after_open): Call
_bfd_elf_link_check_relocs on all inputs if
check_relocs_after_open_input is TRUE.
We operate on the pointer's target as a set of bytes, and this avoids doing
arithmetic on void * which is undefined in ISO C.
bfd/ChangeLog:
2016-04-20 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* elf32-arm.c (put_thumb2_insn): Change argument type to bfd_byte *.
Add support for arc/nps400 cmem instructions, these load and store
instructions are hard-wired to access "0x57f00000 + 16-bit-offset".
Supporting this relocation required some additions to the arc relocation
handling in the bfd library, as well as the standard changes required to
add a new relocation type.
There's a test of the new instructions in the assembler, and a test of
the relocation in the linker.
bfd/ChangeLog:
* reloc.c: Add BFD_RELOC_ARC_NPS_CMEM16 entry.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* elf32-arc.c: Add 'opcode/arc.h' include.
(struct arc_relocation_data): Add symbol_name.
(arc_special_overflow_checks): New function.
(arc_do_relocation): Use arc_special_overflow_checks, reindent as
required, add an extra comment.
(elf_arc_relocate_section): Setup symbol_name in reloc_data.
gas/ChangeLog:
* testsuite/gas/arc/nps400-3.d: New file.
* testsuite/gas/arc/nps400-3.s: New file.
include/ChangeLog:
* elf/arc-reloc.def: Add ARC_NPS_CMEM16 reloc.
* opcode/arc.h (NPS_CMEM_HIGH_VALUE): Define.
ld/ChangeLog:
* testsuite/ld-arc/arc.exp: New file.
* testsuite/ld-arc/nps-1.s: New file.
* testsuite/ld-arc/nps-1a.d: New file.
* testsuite/ld-arc/nps-1b.d: New file.
* testsuite/ld-arc/nps-1b.err: New file.
opcodes/ChangeLog:
* arc-nps400-tbl.h: Add xldb, xldw, xld, xstb, xstw, and xst
instructions.
* arc-opc.c (insert_nps_cmem_uimm16): New function.
(extract_nps_cmem_uimm16): New function.
(arc_operands): Add NPS_XLDST_UIMM16 operand.
In bfd/elf32-arc.c an enum is created that contains entries with generic
names like 'NONE' and 'OFF'. This has been fine for now, but I had a
need to include opcode/arc.h into bfd/elf32-arc.c. Unfortunately
opcode/arc.h includes a different enum with identical generic names.
Given that changing the enum in the header file could mean wide-ranging
changes, while changing the enum in the .c file is limited to only
changing the one file, I've added a prefix to the enum in the .c file.
This commit does not add the new include, that will come later. There
should be no functional change with this commit.
bfd/ChangeLog:
* elf32-arc.c (tls_got_entries): Add 'TLS_GOT_' prefix to all
entries.
(elf_arc_relocate_section): Update enum uses.
(elf_arc_check_relocs): Likewise.
(elf_arc_finish_dynamic_symbol): Likewise.
On Linux/x86, GCC 4.2 issues a warning:
bfd/elf.c: In function ‘_bfd_elf_copy_private_bfd_data’:
bfd/elf.c:1334: warning: declaration of ‘link’ shadows a global declaration
/usr/include/unistd.h:757: warning: shadowed declaration is here
make[6]: *** [elf.lo] Error 1
Replace "link" with "sh_link" fixes it.
* elf.c (_bfd_elf_copy_private_bfd_data): Replace "link" with
"sh_link".
PR target/19938
bfd * elf-bbfd.h (struct elf_backend_data): New field:
elf_strtab_flags.
New field: elf_backend_set_special_section_info_and_link
* elfxx-target.h (elf_backend_strtab_flags): Define if not already
defined.
(elf_backend_set_special_section_info_and_link): Define if not
already defined.
(elfNN_bed): Use elf_backend_set_special_section_info_and_link and
elf_backend_strtab_flags macros to initialise fields in structure.
* elf.c (_bfd_elf_make_section_from_shdr): Check for SHF_STRINGS
being set even if SHF_MERGE is not set.
(elf_fake_sections): Likewise.
(section_match): New function. Matches two ELF sections based
upon fixed characteristics.
(find_link): New function. Locates a section in a BFD that
matches a section in a different BFD.
(_bfd_elf_copy_private_bfd_data): Copy the sh_info and sh_link
fields of reserved sections.
(bfd_elf_compute_section_file_positions): Set the flags for the
.shstrtab section based upon the elf_strtab_flags field in the
elf_backend_data structure.
(swap_out_syms): Likewise for the .strtab section.
* elflink.c (bfd_elf_final_link): Set the flags for the
.strtab section based upon the elf_strtab_flags field in the
elf_backend_data structure.
* elf32-i386.c (elf32_i386_set_special_info_link): New function.
(elf_backend_strtab_flags): Set to SHF_STRINGS for Solaris
targets.
(elf_backend_set_special_section_info_and_link): Define for
Solaris targets.
* elf32-sparc.c: Likewise.
* elf64-x86-64.c: Likewise.
binutils* testsuite/binutils-all/i386/compressed-1b.d: Allow for the
string sections possibly having the SHF_STRINGS flag bit set.
* testsuite/binutils-all/i386/compressed-1c.d: Likewise.
* testsuite/binutils-all/readelf.s: Likewise.
* testsuite/binutils-all/readelf.s-64: Likewise.
* testsuite/binutils-all/x86-64/compressed-1b.d: Likewise.
* testsuite/binutils-all/x86-64/compressed-1c.d: Likewise.
gas * testsuite/gas/i386/ilp32/x86-64-unwind.d: Allow for the string
sections possibly having the SHF_STRINGS flag bit set.
* testsuite/gas/i386/x86-64-unwind.d: Likewise.
We shouldn't issue an error for read-only segment with dynamic IFUNC
relocations when dynamic relocations are against normal symbols.
bfd/
PR ld/19939
* elf-bfd.h (_bfd_elf_allocate_ifunc_dyn_relocs): Add a pointer
to bfd_boolean.
* elf-ifunc.c (_bfd_elf_allocate_ifunc_dyn_relocs): Updated.
Set *readonly_dynrelocs_against_ifunc_p to TRUE if dynamic reloc
applies to read-only section.
* elf32-i386.c (elf_i386_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_i386_allocate_dynrelocs): Updated.
(elf_i386_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elf64-x86-64.c (elf_x86_64_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_x86_64_allocate_dynrelocs): Updated.
(elf_x86_64_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elfnn-aarch64.c (elfNN_aarch64_allocate_ifunc_dynrelocs):
Updated.
ld/
PR ld/19939
* testsuite/ld-i386/i386.exp: Run PR ld/19939 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19939.s: New file.
* testsuite/ld-i386/pr19939a.d: Likewise.
* testsuite/ld-i386/pr19939b.d: Likewise.
* testsuite/ld-x86-64/pr19939.s: Likewise.
* testsuite/ld-x86-64/pr19939a.d: Likewise.
* testsuite/ld-x86-64/pr19939b.d: Likewise.
2016-04-06 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elf32-arm.c (elf32_arm_size_stubs): Move error_ret_free_local to be
a fall through from error_ret_free_internal. Free local_syms in
error_ret_free_local if allocated from bfd_elf_get_elf_syms ().
bfd/
2016-04-05 Cupertino Miranda <cmiranda@synopsys.com>
* elf32-arc.c (name_for_global_symbol): Added assert to check for
symbol index.
(elf_arc_relocate_section): Added and changed asserts, validating
the synamic symbol index.
(elf_arc_finish_dynamic_symbol): Do not fill the dynamic
relocation if symbol has dynindx set to -1.
Always turn hidden and internal symbols which have a dynamic index into
local ones. This is required by the the ELF gABI[1]:
"A hidden symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
"An internal symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
The ELF linker usually respects this requirement, however in the case
where a dynamic symbol has been preallocated due to a reference of the
default export class aka visibility from the object being linked, and
then merged with a hidden or internal symbol definition from within the
same object, then the original export class is carried over to the
output dynamic symbol table, because while merging the generic ELF
linker only converts affected dynamic symbols to local when they are
defined or referenced by the object being linked and a dynamic object
involved in the link both at a time.
The dynamic symbol produced confuses then the dynamic loader at the run
time -- the hidden or internal export class is ignored and the symbol
follows preemption rules as with the default export class.
In the MIPS target it happens when `mips_elf_record_global_got_symbol'
creates a dynamic symbol when a call relocation is encountered.
Additionally if the undefined symbol referred by such a relocation does
specify the intended export class, then a local dynamic symbol is
created instead, which is harmless and allowed, but useless. Normally
no local dynamic symbols are created, except for a single dummy one at
the beginning.
Correct the problem by removing the extra check for a dynamic symbol
being defined or referenced by the object being linked and a dynamic
object involved in the link both at a time. The test cases included
cover the internal and hidden symbol cases, as well as a protected
symbol for a reference, the handling of which is unchanged by this fix.
Both cases described above are covered, that is where an internal or
hidden dynamic symbol is produced and where a local one is.
NB this change affects CRIS results where some symbols in the static
table produced in a final link are now converted from STV_HIDDEN to
STB_LOCAL. This happens whenever the `elf_backend_hide_symbol' handler
is called, so the affected symbols must have been chosen for entering
into the dynamic symbol table, except in these test cases no such symbol
table is produced. In fully linked binaries the static symbol table is
only used for debugging though, so such a change is fine.
References:
[1] "System V Application Binary Interface - DRAFT - 24 April 2001",
The Santa Cruz Operation, Inc., "Symbol Table",
<http://www.sco.com/developers/gabi/2001-04-24/ch4.symtab.html>
bfd/
PR ld/19908
* elflink.c (elf_link_add_object_symbols): Always turn hidden
and internal symbols which have a dynamic index into local
ones.
ld/
PR ld/19908
* testsuite/ld-cris/tls-e-20.d: Adjust for hidden symbol
handling fix.
* testsuite/ld-cris/tls-e-20a.d: Likewise.
* testsuite/ld-cris/tls-e-21.d: Likewise.
* testsuite/ld-cris/tls-e-23.d: Likewise.
* testsuite/ld-cris/tls-e-80.d: Likewise.
* testsuite/ld-cris/tls-gd-3h.d: Likewise.
* testsuite/ld-cris/tls-leie-19.d: Likewise.
* testsuite/ld-mips-elf/export-class-ref-lib.sd: New test.
* testsuite/ld-mips-elf/export-hidden-ref.sd: New test.
* testsuite/ld-mips-elf/export-internal-ref.sd: New test.
* testsuite/ld-mips-elf/export-protected-ref.sd: New test.
* testsuite/ld-mips-elf/export-class-ref-f0.s: New test source.
* testsuite/ld-mips-elf/export-class-ref-f1.s: New test source.
* testsuite/ld-mips-elf/export-class-ref-f2.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
PR 19872
bfd * dwarf2.c (parse_comp_unit): Skip warning about unrecognised
version number if the version is zero.
bin * dwarf.c (display_debug_aranges): Skip warning about unrecognised
version number if the version is zero.
This isn't perfect in checking whether libraries will be loaded since
elf_link_add_object_symbols doesn't recurse down DT_NEEDED links.
(That happens later in ld/emultempl/elf32.em after_open.) So in
effect this recursive check really only looks one level down the
DT_NEEDED tree. Which is enough for the most common case, and
libc.so/ld.so in particular.
PR 19886
* elflink.c (on_needed_list): Recursively check needed status.
(elf_link_add_object_symbols): Adjust.
PR 17334
* elf32-bfin.c (elf32_bfinfdpic_finish_dynamic_sections): Relax
assertion on the size of the got section to allow it to be bigger
than the number of relocs.