Parsing a vector mov instruction currently leads to a phantom undefined
symbol being added to the symbol table. e.g.:
.text
mov x0, v0.D[0]
Produces an undefined symbol called "v0.D".
gas/ChangeLog:
2013-11-05 Will Newton <will.newton@linaro.org>
PR gas/16103
* config/tc-aarch64.c (parse_operands): Avoid trying to
parse a vector register as an immediate.
gas/testsuite/ChangeLog:
2013-11-05 Will Newton <will.newton@linaro.org>
* gas/aarch64/advsimd-mov-bad.d: New file.
* gas/aarch64/advsimd-mov-bad.s: Likewise.
I can't see any good reason why anyone would want a dynamic .TOC., so
hide it in a way that is respected by _bfd_elf_export_symbol. This
also fixes an abort in relocate_section on not finding sreloc for .TOC.
* elf64-ppc.c (ppc64_elf_func_desc_adjust): Make .TOC. defined and
hidden.
(ppc64_elf_set_toc): Adjust.
These shortcuts to dynamic sections in ppc_link_hash_table predated
their geneneric elf hash table equivalents.
* elf64-ppc.c (struct ppc_link_hash_table): Remove got, plt, relplt,
iplt, reliplt. Update all references to use elf.sgot, elf.splt,
elf.srelplt, elf.iplt and elf.irelplt.
This switches "make check" to fully parallel mode.
One primary issue facing full parallelization is the overhead of
"runtest". On my machine, if I "touch gdb.base/empty.exp", making a
new file, and then "time runtest.exp", it takes 0.08 seconds.
Multiply this by the 1008 (in my configuration) tests and you get ~80
seconds. This is the overhead that would theoretically be present if
all tests were run in parallel.
However, the problem isn't nearly as bad as this, for two reasons.
First, you must divide by the number of jobs, assuming perfect
parallelization -- reasonably true for small -j numbers, based on the
results I see.
Second, the current test suite parallelization approach bundles the
tests, largely by directory, but also splitting up gdb.base into two
halves.
I was curious to see how the current bundling played out in practice,
so I ran "make -j1 check RUNTEST='/bin/time runtest'". This invokes
the parallel mode (thus the bundling) and then shows the time taken by
each invocation of runtest.
Then, I ran "/bin/time make -j3 check". (See below about -j2.)
The time for the entire -j3 test run was the same as the time for
"gdb.base1". What this means is that gdb.base1 is currently the
time-limiting run, preventing further parallelization gains.
So, I reason, whatever overhead we see from full parallelization will
only be seen by "-j1" and "-j2".
I then tried a -j2 test run. This does take longer than a -j3 build,
meaning that the gdb.base1 job finishes and then proceeds to other
runtest invocations.
Finally I tried a -j2 test run with the appended patch.
This was 9% slower than the -j2 run without the patch.
I think that is a reasonable slowdown for what is probably a rare
case. I believe this patch will yield faster test results for all -j
values greater than 2. For -j3 on my machine, the test suite is a few
seconds faster; I didn't try any larger -j values.
For -j1, I went ahead and changed the Makefile so that, if no -j
option is given, then the "check-single" mode is used. You can still
use "make -j1 check" to get single-job parallel-mode, though of course
there's no good reason to do so.
This change is likely to speed up the plain "make check" scenario a
little as we will now bypass dg-extract-results.sh.
One drawback of this change is that "make -jN check" is now much more
verbose. I generally only look at the .sum and .log files, but
perhaps this will bother some.
Another interesting question is scalability of the result. The
slowest test, which limits the scalability, took 80.78 seconds. The
mean of the remaining tests is 1.08 seconds. (Note that this is just
a rough estimate, since there are still outliers.)
This means we can run 80.78 / 1.08 =~ 74 tests in the time available.
And, in this data set (slightly older than the above, but materially
the same) there were 948 tests. So, I think the current test suite
should scale ok up to about -j12.
We could improve this number if need be by breaking up the biggest
tests.
2013-11-04 Tom Tromey <tromey@redhat.com>
* Makefile.in (TEST_DIRS): Remove.
(TEST_TARGETS, check-parallel): Rewrite.
(check-gdb.%, BASE1_FILES, BASE2_FILES, check-gdb.base%)
(subdir_do, subdirs): Remove.
(do-check-parallel, check/%): New targets.
(clean): Remove outputs, temp, and cache directories.
(saw_dash_j): New variable.
(CHECK_TARGET): Use it.
(check): Depend on all, site.exp. Rewrite.
(check-single): Remove dependencies.
(slow_tests, all_tests, reordered_tests): New variables.
A couple of Fission tests rely on the current directory layout. This
assumption is not valid in parallel mode.
This patch fixes the problem by removing the relative directory from
the .S files and instead having the tests set debug-file-directory
before opening the main file.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.dwarf2/fission-base.S: Remove "gdb.dwarf/".
* gdb.dwarf2/fission-base.exp: Set debug-file-directory
before loading binfile.
* gdb.dwarf2/fission-loclists.S: Remove "gdb.dwarf/".
* gdb.dwarf2/fission-loclists.exp: Set debug-file-directory
before loading binfile.
A few tests run an inferior that execs some other program. The name
of this exec'd program is compiled in. These tests assume the current
test suite directory layout, but fail in parallel mode.
This patch fixes these tests by letting the .exp files pass in the
directory names at compile time.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/foll-exec.c (main): Use BASEDIR.
* gdb.base/foll-exec.exp: Define BASEDIR during compilation.
* gdb.base/foll-vfork.c (main): Use BASEDIR.
* gdb.base/foll-vfork.exp: Define BASEDIR during compilation.
* gdb.multi/bkpt-multi-exec.c (main): Use BASEDIR.
* gdb.multi/bkpt-multi-exec.exp: Define BASEDIR during compilation.
argv0-symlink.exp doesn't work properly if standard_output_file puts
files into a per-test subdirectory. That's because it assumes that
files appear in $subdir, which is no longer true.
This patch fixes the problem by computing the correct directory at
runtime.
Tested both with and without GDB_PARALLEL on x86-64 Fedora 18.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/argv0-symlink.exp: Compute executable's directory
dynamically.
This introduces a new relative_filename proc to gdb.exp and changes
some tests to use it. This helps make these tests parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/fullname.exp: Use standard_output_file,
relative_filename.
* gdb.base/hashline1.exp: Use standard_testfile,
standard_output_file, relative_filename, clean_restart.
* gdb.base/hashline2.exp: Use standard_testfile,
standard_output_file.
* gdb.base/hashline3.exp: Use standard_testfile,
standard_output_file, relative_filename.
* lib/gdb.exp (relative_filename): New proc.
This updates the fileio test to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/fileio.c (test_open, test_write, test_read)
(test_lseek, test_close, test_stat, test_fstat)
(test_isatty, test_system, test_rename, test_unlink):
Use OUTDIR define.
* gdb.base/fileio.exp: Define OUTDIR during compilation.
Use standard_output_file.
This fixes the "checkpoint" test to use the standard output directory.
This makes the test be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/checkpoint.c (main): Use PI_TXT and COPY1_TXT
defines.
* gdb.base/checkpoint.exp: Define PI_TXT and COPY1_TXT during
compilation. Use prepare_for_testing, standard_output_file.
This makes more changes in gdb.base to make it parallel-safe. I think
the changes in this particular patch are relatively straightforward,
so I've grouped them all together.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/advance.exp: Use standard_testfile and
prepare_for_testing.
* gdb.base/bigcore.exp: Use standard_output_file. "cd" to
appropriate directory when local.
* gdb.base/dump.exp: Use standard_output_file. Update all
"dump" and "restore" filenames.
* gdb.base/interact.exp: Use standard_output_file.
* gdb.base/jit-so.exp: Don't download file when local.
* gdb.base/jit.exp (compile_jit_test): Don't download file
when local.
* gdb.base/list.exp: Use gdb_remote_download.
* gdb.base/maint.exp: Use standard_output_file.
* gdb.base/prelink.exp: Use standard_output_file.
* gdb.base/save-bp.exp: Use standard_output_file.
* gdb.base/sepdebug.exp: Use standard_testfile,
standard_output_file.
(test_different_dir): Don't declare objdir.
* gdb.base/solib-search.exp: Use standard_output_file.
* gdb.base/step-line.exp: Use gdb_remote_download.
* gdb.base/trace-commands.exp: Use standard_output_file.
This fixes gdb.trace to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.trace/mi-traceframe-changed.exp: Pass -DTFILE_DIR
to compilation. Use standard_output_file.
(test_tfind_tfile): Update.
* gdb.trace/tfile.c (write_basic_trace_file)
(write_error_trace_file): Use TFILE_DIR.
* gdb.trace/tfile.exp: Pass -DTFILE_DIR to compilation. Use
standard_output_file.
This fixes gdb.mi to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.mi/mi-cmd-param-changed.exp (test_command_param_changed):
Use "dwarf2 always-disassemble" for the "maint set" test.
* gdb.mi/mi-file-transfer.exp (test_file_transfer): Use
standard_output_file.
* gdb.mi/mi-logging.exp: Use standard_output_file.
This fixes the gdb.xml tests to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.xml/tdesc-arch.exp: Use standard_output_file. Make
downloads conditional on remote host.
(set_arch): Likewise.
* gdb.xml/tdesc-regs.exp: Use gdb_remote_download.
(load_description): Use standard_output_file.
This fixes the gdb.gdb tests to be parallel-safe, by ensuring that the
new "xgdb" file ends up in the standard output directory during the
tests.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.gdb/selftest.exp: Use standard_output_file.
* lib/selftest-support.exp (do_self_tests): Use
standard_output_file.
This fixes up gdb.stabs/weird.exp for parallel testing. This just
means using gdb_remote_download and standard_output_file, so that the
tests end up in the right place.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.stabs/weird.exp: Use gdb_remote_download and
standard_output_file.
This fixes some parallelization thinkos from a while ago. I'm not
sure how the problems ever slipped through. In addition to a thinko
fix in twice.exp, this also finishes fixing it up for parallelization.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/gcore-buffer-overflow.exp: Use
standard_output_file, not standard_testfile.
* gdb.base/twice.exp: Use standard_testfile, not
standard_output_file. Use gdb_remote_download.
Currently a proc in gdb.exp toggles the expect (and thus dejagnu)
logging. This is not a super idea, but it is there to avoid putting
some preprocessor output into the log.
In the right circumstances, this can result in the log file being
mysteriously truncated. I think this happens because it doesn't
necessarily write to the correct log file again.
The fix is to use "log_file -info" to save the previous log file.
2013-11-04 Tom Tromey <tromey@redhat.com>
* lib/gdb.exp (get_compiler_info): Use log_file -info and
restore from that.
Without this, constructs like "orw %rax, (%rax)" aren't being rejected
(other than any other wrong suffix/register combination).
gas/
2013-11-04 Jan Beulich <jbeulich@suse.com>
* config/tc-i386.c (check_long_reg): Correct comment indentation.
(check_qword_reg): Correct comment and its indentation.
(check_word_reg): Extend comment and correct its indentation. Also
check for 64-bit register.
gas/testsuite/
2013-11-04 Jan Beulich <jbeulich@suse.com>
* gas/i386/x86-64-suffix-bad.[sl]: New.
* gas/i386/i386.exp: Run new test.
I noticed a large (100MB) restore took hours to complete. The problem
is memory_xfer_partial repeatedly mallocs and memcpys the entire
100MB buffer for breakpoint shadow handling only to find a small
portion of it is actually written.
The testcase that originally took hours now takes 50 seconds.
gdb/
2013-07-29 Anton Blanchard <anton@samba.org>
* target.c (memory_xfer_partial): Cap write to 4KB.
This adds an extra flag for needs_dynamic_reloc() in order to remove
the copy of this function and use_plt_offset() in powerpc.cc, and
tweaks the powerpc get_reference_flags() to return the flag as
appropriate. ELFv2 does not want ELFv1 behaviour here.
* symtab.h (Symbol::Reference_flags): Add FUNC_DESC_ABI.
(Symbol::needs_dynamic_reloc): Test new flag.
* powerpc.cc (needs_dynamic_reloc, use_plt_offset): Delete.
(Target_powerpc::Scan::get_reference_flags): Add target param.
Return FUNC_DESC_ABI for 64-bit ELFv1.
(Target_powerpc::Branch_info::make_stub): Adjust get_reference_flags
call.
(Target_powerpc::Scan::global): Use Symbol::needs_dynamic_reloc.
(Target_powerpc::Relocate::relocate): Use Symbol::use_plt_offset.
Changing addis r2,r12,..; addi r2,r2,.. to lis r2,..; addi r2,r2..
in non-PIC executables has the benefit of removing a dependency on r12.
bfd/
* elf64-ppc.c (ppc64_elf_relocate_section): Edit global entry
prologue to non-PIC in non-PIC executables.
ld/testsuite/
* ld-powerpc/elfv2exe.d: Adjust for non-PIC global entry.
In a non-pic executable, ELFv2 like other targets, needs to emit a plt
entry even for non-call references to functions defined in shared
libraries, and define the function on the plt code.
* elf64-ppc.c (ppc64_elf_copy_indirect_symbol): Copy
pointer_equality_needed flag.
(ppc64_elf_check_relocs): For ELFv2 arrange to emit plt
entries for references to functions in shared libraries on
non-call relocs.
(readonly_dynrelocs): Split into function of the same name and..
(maybe_set_textrel): ..this new function. Update call.
(ppc64_elf_adjust_dynamic_symbol): Don't emit dynrelocs for
ELFv2 in most cases if we have a plt entry. Use new
readonly_relocs.
(allocate_dynrelocs): For ELFv2, don't allocate dynreloc space
for ifunc in static executables.
(size_global_entry_stubs): New function.
(ppc64_elf_size_dynamic_sections): Call size_global_entry_stubs.
Save end of glink branch table.
(ppc64_elf_hash_symbol): New function.
(build_global_entry_stubs): New function.
(ppc64_elf_build_stubs): Call build_global_entry_stubs. Adjust
glink sizing.
(ppc64_elf_relocate_section): Tidy plt16/32/64 reloc code.
(ppc64_elf_finish_dynamic_symbol): For ELFv2, adjust symbols
defined on plt code.
On PowerPC64 ELFv2 readelf emits [<localentry>: 8] describing extra
symbol st_other bits.
* ld-elfvers/vers24.rd: Allow extra readelf output after
symbol visibility.
* ld-ifunc/ifunc.exp: Likewise.
I think HJ has already fixed the binutils and ld tests with his
2013-09-27 readelf change, but this allows them to pass with wider
address output as per Nick's 2013-09-12 readelf change.
binutils/testsuite/
* binutils-all/x86-64/compressed-1a.d: Allow wide display of addresses.
gas/testsuite/
* gas/cfi/cfi-x86_64.d: Match when lacking end of section padding.
ld/testsuite/
* ld-pe/cfi.d: Allow wide display of addresses.
Every function has a nominal toc pointer value, even if it isn't used,
so set toc_off for every code section to the value used in that object
file. The thinking here was that if a code section didn't use the toc
it could use the previous object file's toc pointer value. It can,
but doing so is only a gain if functions in that section are called
mostly from previous objects sharing the same toc. We lose if the
functions in question are called mostly from the current object or
following objects, and it's a good bet they will probably mostly be
called from the current object.
* elf64-ppc.c (ppc64_elf_next_input_section): Always set toc_off
to value for object file.
bfd/
* elf-nacl.c (segment_eligible_for_headers): Drop requirement that
some section have SEC_HAS_CONTENTS set. It's not set for
.note.gnu.build-id, and a segment of only read-only SHT_NOBITS
sections is implausible and not really supportable anyway.
As discussed on the GDB ML[1], libc probes for longjmp were not being
loaded if a custom <arch>_get_longjmp_target function was not
implemented.
This is trivially fixed by moving the 'if (!gdbarch_get_longjmp_target_p
(gdbarch))' down, just bellow libc probe code and above the per-objfile
cache lookup.
While the condition could also be removed altogether with no
side-effects, it is in fact an optimization to avoid searching for
symbols if the arch doesn't provide support for get_longjmp_target().
This has been tested on PPC and PPC64.
[1] https://sourceware.org/ml/gdb/2013-10/msg00191.html
gdb/
2013-11-01 Tiago Stürmer Daitx <tdaitx@linux.vnet.ibm.com>
* breakpoint.c (create_longjmp_master_breakpoint): Allow libc
probe scan even when the arch provides no get_longjmp_target.
IMO, it doesn't make sense to map random syscall, fork, etc. events to
GDB_SIGNAL_TRAP, and possible have the debuggee see that trap. This
just seems conceptually wrong to me - these aren't real signals a
debuggee would ever see. In fact, when stopped for those events, on
Linux, the debuggee isn't in a signal-stop -- there's no way to
resume-and-deliver-signal at that point, for example. E.g., when
stopped at a fork event:
(gdb) catch fork
Catchpoint 2 (fork)
(gdb) c
Continuing.
Catchpoint 2 (forked process 4570), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) set debug infrun 1
(gdb) signal SIGTRAP
Continuing with signal SIGTRAP.
infrun: clear_proceed_status_thread (process 4566)
infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0)
infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4566] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4566 [process 4566],
infrun: status->kind = exited, status = 0
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_EXITED
[Inferior 1 (process 4566) exited normally]
infrun: stop_stepping
(gdb)
Note the signal went nowhere. It was swallowed.
Resuming with a SIGTRAP from a syscall event does queue the signal,
but doesn't deliver it immediately, like "signal SIGTRAP" from a real
signal would. It's still an artificial SIGTRAP:
(gdb) catch syscall
Catchpoint 2 (any syscall)
(gdb) c
Continuing.
Catchpoint 2 (call to syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) set debug infrun 1
(gdb) signal SIGTRAP
Continuing with signal SIGTRAP.
infrun: clear_proceed_status_thread (process 4622)
infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0)
infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4622 [process 4622],
infrun: status->kind = exited syscall
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_SYSCALL_RETURN
infrun: syscall number = '56'
infrun: BPSTAT_WHAT_STOP_NOISY
infrun: stop_stepping
Catchpoint 2 (returned from syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (process 4622)
infrun: proceed (addr=0xffffffffffffffff, signal=144, step=0)
infrun: resume (step=0, signal=0), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4622 [process 4622],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4ba7c4
infrun: random signal 5
Program received signal SIGTRAP, Trace/breakpoint trap.
infrun: stop_stepping
0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb)
In all the above, I used 'signal SIGTRAP' to emulate 'handle SIGTRAP
pass'. As described in "keep_going", 'handle SIGTRAP pass' does have
its place:
/* Do not deliver GDB_SIGNAL_TRAP (except when the user
explicitly specifies that such a signal should be delivered
to the target program). Typically, that would occur when a
user is debugging a target monitor on a simulator: the target
monitor sets a breakpoint; the simulator encounters this
breakpoint and halts the simulation handing control to GDB;
GDB, noting that the stop address doesn't map to any known
breakpoint, returns control back to the simulator; the
simulator then delivers the hardware equivalent of a
GDB_SIGNAL_TRAP to the program being debugged. */
... and I've made use of that myself when implementing/debugging
stubs/monitors. But in these cases, treating these events as SIGTRAP
possibly injects signals in the debuggee they'd never see otherwise,
because you need to use ptrace to enable these special events, which
aren't real signals.
There's more. Take this bit of handle_inferior_event, where we
determine whether a real signal (TARGET_WAITKIND_STOPPED) was random
or not:
if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
ecs->random_signal
= !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
GDB_SIGNAL_TRAP)
!= BPSTAT_SIGNAL_NO)
|| stopped_by_watchpoint
|| ecs->event_thread->control.trap_expected
|| (ecs->event_thread->control.step_range_end
&& (ecs->event_thread->control.step_resume_breakpoint
== NULL)));
else
{
enum bpstat_signal_value sval;
sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
ecs->event_thread->suspend.stop_signal);
ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
if (sval == BPSTAT_SIGNAL_HIDE)
ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
}
Note that the
if (sval == BPSTAT_SIGNAL_HIDE)
ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
bit is only reacheable for signals != GDB_SIGNAL_TRAP. AFAICS, sval
can only be BPSTAT_SIGNAL_HIDE if nothing in the bpstat returns
BPSTAT_SIGNAL_PASS. So that excludes a "catch signal" for the signal
in question in the bpstat. All other catchpoints that aren't based on
breakpoints behind the scenes call process_event_stop_test directly
(don't pass through here) (well, almost all: TARGET_WAITKIND_LOADED
does have a fall through, but only for STOP_QUIETLY or
STOP_QUIETLY_NO_SIGSTOP, which still return before this code is
reached). Catchpoints that are implemented as breakpoints behind the
scenes can only appear in the bpstat if the signal was GDB_SIGNAL_TRAP
(bkpt_breakpoint_hit returns false otherwise). So that leaves a
target reporting a hardware watchpoint hit with a signal other than
GDB_SIGNAL_TRAP. And even then it looks quite wrong to me to
magically convert the signal into a GDB_SIGNAL_TRAP here too -- if the
user has set SIGTRAP to "handle pass", the program will see a trap
that gdb invented, not one the program would ever see without gdb in
the picture.
Tested on x86_64 Fedora 17.
gdb/
2013-10-31 Pedro Alves <palves@redhat.com>
* infrun.c (handle_syscall_event): Don't set or clear stop_signal.
(handle_inferior_event) <TARGET_WAITKIND_FORKED,
TARGET_WAITKIND_VFORKED>: Don't set stop_signal to
GDB_SIGNAL_TRAP, or clear it. Pass GDB_SIGNAL_0 to
bpstat_explains signal, instead of GDB_SIGNAL_TRAP.
<bpstat handling>: If the bpstat chain wants the signal to be
hidden, then set stop_signal to GDB_SIGNAL_0 instead of
GDB_SIGNAL_TRAP.
gold/
* dwarf_reader.cc (Dwarf_info_reader::visit_type_unit): Add
tu_length parameter. Adjust all callers.
* dwarf_reader.h (Dwarf_info_reader::visit_type_unit): Likewise.
* dwp.cc: Include dwarf.h.
(Section_bounds): New struct type.
(Unit_set): New struct type.
(Dwo_file::Dwo_file): Initialize new data member.
(Dwo_file::read_compunit_index, Dwo_file::read_typeunit_index):
Combine and rename to...
(Dwo_file::read_unit_index): ...this.
(Dwo_file::sized_read_compunit_index)
(Dwo_file::sized_read_typeunit_index): Combine and rename to...
(Dwo_file::sized_read_unit_index): ...this.
(Dwo_file::copy_section): Remove section_name, is_str_offsets
parameters; add section_id parameter.
(Dwo_file::add_cu_set, Dwo_file::add_tu_set): Combine and rename to...
(Dwo_file::add_unit_set): ...this.
(Dwo_file::shndx_map_): Remove.
(Dwo_file::sect_offsets_): New data member.
(Dwp_output_file::Dwp_output_file): Initialize new data members.
(Dwp_output_file::add_section): Rename to...
(Dwp_output_file::add_contribution): ...this.
(Dwp_output_file::add_cu_set): Combine parameters into a struct.
(Dwp_output_file::add_tu_set): Likewise.
(Dwp_output_file::Contribution): New type.
(Dwp_output_file::Section::contributions): New data member.
(Dwp_output_file::Cu_or_tu_set): Remove.
(Dwp_output_file::Section::Section): New ctor.
(Dwp_output_file::Dwp_index::Shndx_pool): Remove.
(Dwp_output_file::Dwp_index::Section_table): New type.
(Dwp_output_file::Dwp_index::Dwp_index): Initialize new data members.
(Dwp_output_file::Dwp_index::enter_set): Change type of "set"
parameter.
(Dwp_output_file::Dwp_index::shndx_pool): Remove.
(Dwp_output_file::Dwp_index::shndx_pool_end): Remove.
(Dwp_output_file::Dwp_index::section_table): New member function.
(Dwp_output_file::Dwp_index::section_table_end): New member function.
(Dwp_output_file::Dwp_index::shndx_pool_size): Remove.
(Dwp_output_file::Dwp_index::section_table_rows): New member function.
(Dwp_output_file::Dwp_index::section_table_cols): New member function.
(Dwp_output_file::Dwp_index::shndx_pool_): Remove.
(Dwp_output_file::Dwp_index::section_table_): New data member.
(Dwp_output_file::Dwp_index::section_mask_): New data member.
(Dwp_output_file::add_output_section): New member function.
(Dwp_output_file::write_new_section): New member function.
(Dwp_output_file::write_contributions): New member function.
(Dwp_output_file::section_id_map_): New data member.
(class Dwo_id_info_reader): Remove.
(class Unit_reader): New class.
(get_dwarf_section_name): New function.
(Dwo_file::read_executable): Adjust initializations of class data.
(Dwo_file::read): Add support for v2 package file format.
(Dwo_file::read_unit_index): Likewise.
(Dwo_file::sized_read_unit_index): Likewise.
(Dwo_file::copy_section): Likewise.
(Dwo_file::add_unit_set): Likewise.
(Dwp_output_file::add_output_section): Likewise.
(Dwp_output_file::add_contribution): Likewise.
(Dwp_output_file::Dwp_index::find_or_add): Use row index to check
for empty slot.
(Dwp_output_file::Dwp_index::enter_set): Add support for v2 package
file format.
(Dwp_output_file::Dwp_index::grow): Use row index to check for empty
slot.
(Dwp_output_file::initialize): Remove unused function.
(Dwp_output_file::finalize): Add support for v2 package file format.
(Dwp_output_file::write_index): Likewise.
* gdb-index.cc (Gdb_index_info_reader::visit_type_unit): Adjust
function prototype.