With version 7.3 GCC supports new options
-mindirect-branch=<choice>
-mfunction-return=<choice>
The choices are:
keep behaves as before
thunk jumps through a thunk
thunk-external jumps through an external thunk
thunk-inline jumps through an inlined thunk
For thunk and thunk-external, GDB would, on a call to the thunk, step into
the thunk and then resume to its caller assuming that this is an
undebuggable function. On a return thunk, GDB would stop inside the
thunk.
Make GDB step through such thunks instead.
Before:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
30 }
After:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
inc (x=41) at gdb.base/step-indirect-call-thunk.c:23
23 return x + 1;
This is independent of the step-mode. In order to step into the thunk,
you would need to use stepi.
When stepping over an indirect call thunk, GDB would first step through
the thunk, then recognize that it stepped into a sub-routine and resume to
the caller (of the thunk). Not sure whether this is worth optimizing.
Thunk detection is implemented via gdbarch. I implemented the methods for
IA. Other architectures may run into unexpected fails.
The tests assume a fixed number of instruction steps to reach a thunk.
This depends on the compiler as well as the architecture. They may need
adjustments when we add support for more architectures. Or we can simply
drop those tests that cover being able to step into thunks using
instruction stepping.
When using an older GCC, the tests will fail to build and will be reported
as untested:
Running .../gdb.base/step-indirect-call-thunk.exp ...
gdb compile failed, \
gcc: error: unrecognized command line option '-mindirect-branch=thunk'
gcc: error: unrecognized command line option '-mfunction-return=thunk'
=== gdb Summary ===
# of untested testcases 1
gdb/
* infrun.c (process_event_stop_test): Call
gdbarch_in_indirect_branch_thunk.
* gdbarch.sh (in_indirect_branch_thunk): New.
* gdbarch.c: Regenerated.
* gdbarch.h: Regenerated.
* x86-tdep.h: New.
* x86-tdep.c: New.
* Makefile.in (ALL_TARGET_OBS): Add x86-tdep.o.
(HFILES_NO_SRCDIR): Add x86-tdep.h.
(ALLDEPFILES): Add x86-tdep.c.
* arch-utils.h (default_in_indirect_branch_thunk): New.
* arch-utils.c (default_in_indirect_branch_thunk): New.
* i386-tdep: Include x86-tdep.h.
(i386_in_indirect_branch_thunk): New.
(i386_elf_init_abi): Set in_indirect_branch_thunk gdbarch
function.
* amd64-tdep: Include x86-tdep.h.
(amd64_in_indirect_branch_thunk): New.
(amd64_init_abi): Set in_indirect_branch_thunk gdbarch function.
testsuite/
* gdb.base/step-indirect-call-thunk.exp: New.
* gdb.base/step-indirect-call-thunk.c: New.
* gdb.reverse/step-indirect-call-thunk.exp: New.
* gdb.reverse/step-indirect-call-thunk.c: New.
When a 64-bits (x86-64) gdbarch is created, it is first born as a
32-bits gdbarch in i386_gdbarch_init. The call gdbarch_init_osabi will
call the handler register for the selected (arch, osabi) pair, such as
amd64_linux_init_abi. The various amd64 handlers call amd64_init_abi,
which turns the gdbarch into a 64-bits one.
When selecting the i386:x86-64 architecture with no osabi, no such
handler is ever called, so the gdbarch stays (wrongfully) a 32-bits one.
My first idea was to manually call amd64_init_abi & al in
i386_gdbarch_init when the osabi is GDB_OSABI_NONE. However, this
doesn't work in a build of GDB where i386 is included as a target but
not amd64. My next option (implemented in this patch), is to allow
registering handlers for GDB_OSABI_NONE. I added two such handlers in
amd64-tdep.c, so now it works the same as for the "normal" osabis. It
required re-ordering things in gdbarch_init_osabi to allow running
handlers for GDB_OSABI_NONE.
Without this patch applied (but with the previous one*) :
(gdb) set osabi none
(gdb) set architecture i386:x86-64
The target architecture is assumed to be i386:x86-64
(gdb) p sizeof(void*)
$1 = 4
and now:
(gdb) set osabi none
(gdb) set architecture i386:x86-64
The target architecture is assumed to be i386:x86-64
(gdb) p sizeof(void*)
$1 = 8
* Before the previous patch, which fixed "set osabi none", this bug was
hidden because we didn't actually try to generate a gdbarch for no
osabi, it would always fall back on Linux. Generating the gdbarch for
amd64/linux did work.
gdb/ChangeLog:
PR gdb/22979
* amd64-tdep.c (amd64_none_init_abi): New function.
(amd64_x32_none_init_abi): New function.
(_initialize_amd64_tdep): Register handlers for x86-64 and
x64_32 with GDB_OSABI_NONE.
* osabi.c (gdbarch_init_osabi): Allow running handlers for the
GDB_OSABI_NONE osabi.
gdb/testsuite/ChangeLog:
PR gdb/22979
* gdb.arch/amd64-osabi.exp: New file.
In some cases passing an argument to a function on amd64, or attempting
to fetch the return value, can trigger an assertion failure within GDB.
An example of a type that would trigger such an error is:
struct foo_t
{
long double a;
struct {
struct {
/* Empty. */
} es1;
} s1;
};
GCC does permit empty structures, so we should probably support this.
The test that exposes this bug is in the next commit along with the
RiscV support.
gdb/ChangeLog:
* amd64-tdep.c (amd64_classify_aggregate): Ignore zero sized
fields within aggregates.
pseudo registers are either from raw registers or memory, so
gdbarch methods pseudo_register_read and pseudo_register_read_value
should have regcache object which only have read methods. In other
words, we should disallow writing to regcache in these two gdbarch
methods. In order to apply this restriction, this patch adds a new
class readable_regcache, derived from reg_buffer, and it only has
raw_read and cooked_read methods. regcache is derived from
readable_regcache. This patch also passes readable_regcache instead of
regcache to gdbarch methods pseudo_register_read and
pseudo_register_read_value.
This patch moves raw_read* and cooked_read* methods to readable_regcache,
which is straightforward. One thing not straightforward is that I split
regcache::xfer_part to readable_regcache::read_part and regcache::write_part,
because readable_regcache can only have methods to read.
readable_regcache is an abstract base class, and it has a pure virtual
function raw_update, because I don't want readable_regcache know where
these raw registers are from. They can be from either the target
(readwrite regcache) or the regcache itself (readonly regcache).
gdb:
2018-02-21 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_pseudo_register_read_value): Change
parameter type to 'readable_regcache *'.
* amd64-tdep.c (amd64_pseudo_register_read_value): Likewise.
* arm-tdep.c (arm_neon_quad_read): Likewise.
(arm_pseudo_read): Likewise.
* avr-tdep.c (avr_pseudo_register_read): Likewise.
* bfin-tdep.c (bfin_pseudo_register_read): Likewise.
* frv-tdep.c (frv_pseudo_register_read): Likewise.
* gdbarch.c: Re-generated.
* gdbarch.h: Re-generated.
* gdbarch.sh (pseudo_register_read): Change parameter type to
'readable_regcache *'.
(pseudo_register_read_value): Likewise.
* h8300-tdep.c (pseudo_from_raw_register): Likewise.
(h8300_pseudo_register_read): Likewise.
* hppa-tdep.c (hppa_pseudo_register_read): Likewise.
* i386-tdep.c (i386_mmx_regnum_to_fp_regnum): Likewise.
(i386_pseudo_register_read_into_value): Likewise.
(i386_pseudo_register_read_value): Likewise.
* i386-tdep.h (i386_pseudo_register_read_into_value): Update
declaration.
* ia64-tdep.c (ia64_pseudo_register_read): Likewise.
* m32c-tdep.c (m32c_raw_read): Likewise.
(m32c_read_flg): Likewise.
(m32c_banked_register): Likewise.
(m32c_banked_read): Likewise.
(m32c_sb_read): Likewise.
(m32c_part_read): Likewise.
(m32c_cat_read): Likewise.
(m32c_r3r2r1r0_read): Likewise.
(m32c_pseudo_register_read): Likewise.
* m68hc11-tdep.c (m68hc11_pseudo_register_read): Likewise.
* mep-tdep.c (mep_pseudo_cr32_read): Likewise.
(mep_pseudo_cr64_read): Likewise.
(mep_pseudo_register_read): Likewise.
* mips-tdep.c (mips_pseudo_register_read): Likewise.
* msp430-tdep.c (msp430_pseudo_register_read): Likewise.
* nds32-tdep.c (nds32_pseudo_register_read): Likewise.
* regcache.c (regcache::raw_read): Move it to readable_regcache.
(regcache::cooked_read): Likewise.
(regcache::cooked_read_value): Likewise.
(regcache_cooked_read_signed):
(regcache::cooked_read): Likewise.
* regcache.h (readable_regcache): New class.
(regcache): Inherit readable_regcache. Move some methods to
readable_regcache.
* rl78-tdep.c (rl78_pseudo_register_read): Change
parameter type to 'readable_regcache *'.
* rs6000-tdep.c (do_regcache_raw_read): Remove.
(e500_pseudo_register_read): Change parameter type to
'readable_regcache *'.
(dfp_pseudo_register_read): Likewise.
(vsx_pseudo_register_read): Likewise.
(efpr_pseudo_register_read): Likewise.
* s390-tdep.c (s390_pseudo_register_read): Likewise.
* sh-tdep.c (sh_pseudo_register_read): Likewise.
* sh64-tdep.c (pseudo_register_read_portions): Likewise.
(sh64_pseudo_register_read): Likewise.
* sparc-tdep.c (sparc32_pseudo_register_read): Likewise.
* sparc64-tdep.c (sparc64_pseudo_register_read): Likewise.
* spu-tdep.c (spu_pseudo_register_read_spu): Likewise.
(spu_pseudo_register_read): Likewise.
* xtensa-tdep.c (xtensa_register_read_masked): Likewise.
(xtensa_pseudo_register_read): Likewise.
The patch later in this series will move regcache's raw_read and
cooked_read methods to a new class regcache_read, and regcache is
dervied from it. Also pass regcache_read instead of regcache to gdbarch
methods pseudo_register_read and pseudo_register_read_value. In order
to prepare for this change, this patch changes regcache_raw_read to
regcache->raw_read. On the other hand, since we are in C++, I prefer
using class method (regcache->raw_read).
gdb:
2018-01-22 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_pseudo_read_value): Call regcache
method raw_read instead of regcache_raw_read.
* amd64-tdep.c (amd64_pseudo_register_read_value): Likewise.
* arm-tdep.c (arm_neon_quad_read): Likewise.
* avr-tdep.c (avr_pseudo_register_read): Likewise.
* bfin-tdep.c (bfin_pseudo_register_read): Likewise.
* frv-tdep.c (frv_pseudo_register_read): Likewise.
* h8300-tdep.c (h8300_pseudo_register_read): Likewise.
* i386-tdep.c (i386_mmx_regnum_to_fp_regnum): Likewise.
(i386_pseudo_register_read_into_value): Likewise.
* mep-tdep.c (mep_pseudo_cr32_read): Likewise.
* msp430-tdep.c (msp430_pseudo_register_read): Likewise.
* nds32-tdep.c (nds32_pseudo_register_read): Likewise.
* rl78-tdep.c (rl78_pseudo_register_read): Likewise.
* s390-linux-tdep.c (s390_pseudo_register_read): Likewise.
* sparc-tdep.c (sparc32_pseudo_register_read): Likewise.
* sparc64-tdep.c (sparc64_pseudo_register_read): Likewise.
* spu-tdep.c (spu_pseudo_register_read_spu): Likewise.
* xtensa-tdep.c (xtensa_pseudo_register_read): Likewise.
PR gdb/22499 is about a latent bug exposed by the switch to "maint set
target-non-stop on" by default on x86-64 GNU/Linux, a while ago. With
that on, GDB is also preferring to use displaced-stepping by default.
The testcase in the bug is failing because GDB ends up incorrectly
displaced-stepping over a RIP-relative VEX-encoded instruction, like
this:
0x00000000004007f5 <+15>: c5 fb 10 05 8b 01 00 00 vmovsd 0x18b(%rip),%xmm0 # 0x400988
While RIP-relative instructions need adjustment when relocated to the
scratch pad, GDB ends up just copying VEX-encoded instructions to the
scratch pad unmodified, with the end result that the inferior ends up
executing an instruction that fetches/writes memory from the wrong
address...
This patch teaches GDB about the VEX-encoding prefixes, fixing the
problem, and adds a testcase that fails without the GDB fix.
I think we may need a similar treatment for EVEX-encoded instructions,
but I didn't address that simply because I couldn't find any
EVEX-encoded RIP-relative instruction in the gas testsuite. In any
case, this commit is forward progress as-is already.
gdb/ChangeLog:
2017-12-04 Pedro Alves <palves@redhat.com>
PR gdb/22499
* amd64-tdep.c (amd64_insn::rex_offset): Rename to...
(amd64_insn::enc_prefix_offset): ... this, and tweak comment.
(vex2_prefix_p, vex3_prefix_p): New functions.
(amd64_get_insn_details): Adjust to rename. Also skip VEX2 and
VEX3 prefixes.
(fixup_riprel): Set VEX3.!B.
gdb/testsuite/ChangeLog:
2017-12-04 Pedro Alves <palves@redhat.com>
PR gdb/22499
* gdb.arch/amd64-disp-step-avx.S: New file.
* gdb.arch/amd64-disp-step-avx.exp: New file.
displaced_step_closure is a type defined in multiple -tdep.c files.
Trying to xfree it from the common code (infrun.c) is a problem when we
try to poison xfree for non-POD types. Because there can be multiple of
these types in the same build, this patch makes a hierarchy of classes
with a virtual destructor. When the common code deletes the object
through a displaced_step_closure pointer, it will invoke the right
destructor.
The amd64 used a last-member array with a variable size. That doesn't
work with new, so I changed it for an std::vector. Other architectures
which used a simple byte buffer as a closure now use a shared
buf_displaced_step_closure, a closure type that only contains a
gdb::byte_vector.
Reg-tested on the buildbot.
gdb/ChangeLog:
* infrun.h: Include common/byte-vector.h.
(struct displaced_step_closure): New struct.
(struct buf_displaced_step_closure): New struct.
* infrun.c (displaced_step_closure::~displaced_step_closure):
Provide default implementation.
(displaced_step_clear): Deallocate step closure with delete.
* aarch64-tdep.c (displaced_step_closure): Rename to ...
(aarch64_displaced_step_closure): ... this, extend
displaced_step_closure.
(aarch64_displaced_step_data) <dsc>: Change type to
aarch64_displaced_step_closure.
(aarch64_displaced_step_copy_insn): Adjust to type change, use
unique_ptr.
(aarch64_displaced_step_fixup): Add cast for displaced step
closure.
* amd64-tdep.c (displaced_step_closure): Rename to ...
(amd64_displaced_step_closure): ... this, extend
displaced_step_closure.
<insn_buf>: Change type to std::vector<gdb_byte>.
<max_len>: Remove.
(fixup_riprel): Change type of DSC parameter, adjust to type
change of insn_buf.
(fixup_displaced_copy): Change type of DSC parameter.
(amd64_displaced_step_copy_insn): Instantiate
amd64_displaced_step_closure.
(amd64_displaced_step_fixup): Add cast for closure type, adjust
to type change of insn_buf.
* arm-linux-tdep.c (arm_linux_cleanup_svc): Change type of
parameter DSC.
(arm_linux_copy_svc): Likewise.
(cleanup_kernel_helper_return): Likewise.
(arm_catch_kernel_helper_return): Likewise.
(arm_linux_displaced_step_copy_insn): Instantiate
arm_displaced_step_closure.
* arm-tdep.c (arm_pc_is_thumb): Add cast for closure.
(displaced_read_reg): Change type of parameter DSC.
(branch_write_pc): Likewise.
(load_write_pc): Likewise.
(alu_write_pc): Likewise.
(displaced_write_reg): Likewise.
(arm_copy_unmodified): Likewise.
(thumb_copy_unmodified_32bit): Likewise.
(thumb_copy_unmodified_16bit): Likewise.
(cleanup_preload): Likewise.
(install_preload): Likewise.
(arm_copy_preload): Likewise.
(thumb2_copy_preload): Likewise.
(install_preload_reg): Likewise.
(arm_copy_preload_reg): Likewise.
(cleanup_copro_load_store): Likewise.
(install_copro_load_store): Likewise.
(arm_copy_copro_load_store) Likewise.
(thumb2_copy_copro_load_store): Likewise.
(cleanup_branch): Likewise.
(install_b_bl_blx): Likewise.
(arm_copy_b_bl_blx): Likewise.
(thumb2_copy_b_bl_blx): Likewise.
(thumb_copy_b): Likewise.
(install_bx_blx_reg): Likewise.
(arm_copy_bx_blx_reg): Likewise.
(thumb_copy_bx_blx_reg): Likewise.
(cleanup_alu_imm): Likewise.
(arm_copy_alu_imm): Likewise.
(thumb2_copy_alu_imm): Likewise.
(cleanup_alu_reg): Likewise.
(install_alu_reg): Likewise.
(arm_copy_alu_reg): Likewise.
(thumb_copy_alu_reg): Likewise.
(cleanup_alu_shifted_reg): Likewise.
(install_alu_shifted_reg): Likewise.
(arm_copy_alu_shifted_reg): Likewise.
(cleanup_load): Likewise.
(cleanup_store): Likewise.
(arm_copy_extra_ld_st): Likewise.
(install_load_store): Likewise.
(thumb2_copy_load_literal): Likewise.
(thumb2_copy_load_reg_imm): Likewise.
(arm_copy_ldr_str_ldrb_strb): Likewise.
(cleanup_block_load_all): Likewise.
(cleanup_block_store_pc): Likewise.
(cleanup_block_load_pc): Likewise.
(arm_copy_block_xfer): Likewise.
(thumb2_copy_block_xfer): Likewise.
(cleanup_svc): Likewise.
(install_svc): Likewise.
(arm_copy_svc): Likewise.
(thumb_copy_svc): Likewise.
(arm_copy_undef): Likewise.
(thumb_32bit_copy_undef): Likewise.
(arm_copy_unpred): Likewise.
(arm_decode_misc_memhint_neon): Likewise.
(arm_decode_unconditional): Likewise.
(arm_decode_miscellaneous): Likewise.
(arm_decode_dp_misc): Likewise.
(arm_decode_ld_st_word_ubyte): Likewise.
(arm_decode_media): Likewise.
(arm_decode_b_bl_ldmstm): Likewise.
(arm_decode_ext_reg_ld_st): Likewise.
(thumb2_decode_dp_shift_reg): Likewise.
(thumb2_decode_ext_reg_ld_st): Likewise.
(arm_decode_svc_copro): Likewise.
(thumb2_decode_svc_copro): Likewise.
(install_pc_relative): Likewise.
(thumb_copy_pc_relative_16bit): Likewise.
(thumb_decode_pc_relative_16bit): Likewise.
(thumb_copy_pc_relative_32bit): Likewise.
(thumb_copy_16bit_ldr_literal): Likewise.
(thumb_copy_cbnz_cbz): Likewise.
(thumb2_copy_table_branch): Likewise.
(cleanup_pop_pc_16bit_all): Likewise.
(thumb_copy_pop_pc_16bit): Likewise.
(thumb_process_displaced_16bit_insn): Likewise.
(decode_thumb_32bit_ld_mem_hints): Likewise.
(thumb_process_displaced_32bit_insn): Likewise.
(thumb_process_displaced_insn): Likewise.
(arm_process_displaced_insn): Likewise.
(arm_displaced_init_closure): Likewise.
(arm_displaced_step_fixup): Add cast for closure.
* arm-tdep.h: Include infrun.h.
(displaced_step_closure): Rename to ...
(arm_displaced_step_closure): ... this, extend
displaced_step_closure.
<u::svc::copy_svc_os>: Change type of parameter DSC.
<cleanup>: Likewise.
(arm_process_displaced_insn): Likewise.
(arm_displaced_init_closure): Likewise.
(displaced_read_reg): Likewise.
(displaced_write_reg): Likewise.
* i386-linux-tdep.c (i386_linux_displaced_step_copy_insn):
Adjust.
* i386-tdep.h: Include infrun.h.
(i386_displaced_step_closure): New typedef.
* i386-tdep.c (i386_displaced_step_copy_insn): Use
i386_displaced_step_closure.
(i386_displaced_step_fixup): Adjust.
* rs6000-tdep.c (ppc_displaced_step_closure): New typedef.
(ppc_displaced_step_copy_insn): Use ppc_displaced_step_closure
and unique_ptr.
(ppc_displaced_step_fixup): Adjust.
* s390-linux-tdep.c (s390_displaced_step_closure): New typedef.
(s390_displaced_step_copy_insn): Use s390_displaced_step_closure
and unique_ptr.
(s390_displaced_step_fixup): Adjust.
Ref: https://sourceware.org/ml/gdb-patches/2017-07/msg00162.html
Debugging x86-64 GNU/Linux programs currently crashes GDB in
tdesc_use_registers during gdbarch initialization:
Program received signal SIGSEGV, Segmentation fault.
0x0000000001093eaf in htab_remove_elt_with_hash (htab=0x2ef9fa0, element=0x26af960, hash=557151073) at src/libiberty/hashtab.c:728
728 if (*slot == HTAB_EMPTY_ENTRY)
(top-gdb) p slot
$1 = (void **) 0x0
(top-gdb) bt
#0 0x0000000001093eaf in htab_remove_elt_with_hash (htab=0x2ef9fa0, element=0x26af960, hash=557151073) at src/libiberty/hashtab.c:728
#1 0x0000000001093e79 in htab_remove_elt (htab=0x2ef9fa0, element=0x26af960) at src/libiberty/hashtab.c:714
#2 0x00000000009121b0 in tdesc_use_registers (gdbarch=0x3001240, target_desc=0x2659cb0, early_data=0x2881cb0)
at src/gdb/target-descriptions.c:1328
#3 0x000000000047c93e in i386_gdbarch_init (info=..., arches=0x0) at src/gdb/i386-tdep.c:8634
#4 0x0000000000818d5f in gdbarch_find_by_info (info=...) at src/gdb/gdbarch.c:5394
#5 0x00000000007198a8 in set_gdbarch_from_file (abfd=0x2f48250) at src/gdb/arch-utils.c:618
#6 0x00000000007f21cb in exec_file_attach (filename=0x7fffffffddb0 "/home/pedro/gdb/tests/threads", from_tty=1) at src/gdb/exec.c:380
#7 0x0000000000865c18 in catch_command_errors_const (command=0x7f1d83 <exec_file_attach(char const*, int)>, arg=0x7fffffffddb0 "/home/pedro/gdb/tests/threads",
from_tty=1) at src/gdb/main.c:403
#8 0x00000000008669cf in captured_main_1 (context=0x7fffffffd860) at src/gdb/main.c:1035
#9 0x0000000000866de2 in captured_main (data=0x7fffffffd860) at src/gdb/main.c:1142
#10 0x0000000000866e24 in gdb_main (args=0x7fffffffd860) at src/gdb/main.c:1160
#11 0x000000000041312d in main (argc=3, argv=0x7fffffffd968) at src/gdb/gdb.c:32
The direct cause of the crash is that we tried to remove an element
from the hash which supposedly exists, but does not. (htab_remove_elt
shouldn't really crash in this case, but that's secondary.)
The real problem is that early_data passed to tdesc_use_registers
includes regs from a target description that is not the target_desc,
which violates its assumptions. The registers in question are the
fs_base/gs_base registers, added by amd64_init_abi:
tdesc_numbered_register (feature, tdesc_data_segments,
AMD64_FSBASE_REGNUM, "fs_base");
tdesc_numbered_register (feature, tdesc_data_segments,
AMD64_GSBASE_REGNUM, "gs_base");
and that happens because amd64_linux_init_abi uses amd64_init_abi as
helper, but they don't coordinate on which fallback tdesc to use.
amd64_init_abi does:
if (! tdesc_has_registers (tdesc))
tdesc = tdesc_amd64;
and then adds the fs_base/gs_base registers of the "tdesc_amd64" tdesc
to the tdesc_arch_data.
After amd64_init_abi returns, amd64_linux_init_abi does:
if (! tdesc_has_registers (tdesc))
tdesc = tdesc_amd64_linux;
tdep->tdesc = tdesc;
and we end up tdesc_amd64_linux installed in tdep->tdesc.
The fix is to make sure that amd64_linux_init_abi and amd64_init_abi
agree on default tdesc, by adding a "default tdesc" parameter to
amd64_init_abi, instead of having amd64_init_abi hardcode a default.
With this, amd64_init_abi creates the fs_base/gs_base registers using
the tdesc_amd64_linux tdesc.
Tested on x86-64 GNU/Linux, -m64. I don't have an x32 setup handy.
Thanks to John Baldwin, Yao Qi and Simon Marchi for the investigation.
gdb/ChangeLog:
2017-07-13 Pedro Alves <palves@redhat.com>
* amd64-darwin-tdep.c (x86_darwin_init_abi_64): Pass tdesc_amd64
as default tdesc.
* amd64-dicos-tdep.c (amd64_dicos_init_abi):
* amd64-fbsd-tdep.c (amd64fbsd_init_abi):
* amd64-linux-tdep.c (amd64_linux_init_abi): Pass
tdesc_amd64_linux as default tdesc. Get final tdesc from the
tdep.
(amd64_x32_linux_init_abi): Pass tdesc_x32_linux as default tdesc.
Get final tdesc from the tdep.
* amd64-nbsd-tdep.c (amd64nbsd_init_abi): Pass tdesc_amd64 as
default tdesc.
* amd64-obsd-tdep.c (amd64obsd_init_abi): Likewise.
* amd64-sol2-tdep.c (amd64_sol2_init_abi): Likewise.
* amd64-tdep.c (amd64_init_abi): Add 'default_tdesc' parameter.
Use it as default tdesc.
(amd64_x32_init_abi): Add 'default_tdesc' parameter, and pass it
down to amd_init_abi. No longer handle fallback tdesc here.
* amd64-tdep.h (tdesc_x32): Declare.
(amd64_init_abi, amd64_x32_init_abi): Add 'default_tdesc'
parameter.
* amd64-windows-tdep.c (amd64_windows_init_abi): Pass tdesc_amd64
as default tdesc.
This patch initializes the BND registers before executing the inferior
call. BND registers can be in arbitrary values at the moment of the
inferior call. In case the function being called uses as part of the
parameters BND register, e.g. when passing a pointer as parameter, the
current value of the register will be used. This can cause boundary
violations that are not due to a real bug or even desired by the user.
In this sense the best to be done is set the BND registers to allow
access to the whole memory, i.e. initialized state, before pushing the
inferior call.
2017-03-07 Walfred Tedeschi <walfred.tedeschi@intel.com>
gdb/ChangeLog:
* i387-tdep.h (i387_reset_bnd_regs): Add function definition.
* i387-tdep.c (i387_reset_bnd_regs): Add function implementation.
* i386-tdep.c (i386_push_dummy_call): Call i387_reset_bnd_regs.
* amd64-tdep (amd64_push_dummy_call): Call i387_reset_bnd_regs.
gdb/testsuite/ChangeLog:
* i386-mpx-call.c: New file.
* i386-mpx-call.exp: New file.
gdb/doc/ChangeLog:
* Memory Protection Extensions: Add information about inferior
calls.
This patch allows examination of the registers FS_BASE and GS_BASE
for Linux Systems running on 64bit. Tests for simple read and write
of the new registers is also added with this patch.
2017-01-27 Walfred Tedeschi <walfred.tedeschi@intel.com>
Richard Henderson <rth@redhat.com>
gdb/ChangeLog:
* amd64-linux-nat.c (PTRACE_ARCH_PRCTL): New define.
(amd64_linux_fetch_inferior_registers): Add case to fetch FS_BASE
GS_BASE for older kernels.
(amd64_linux_store_inferior_registers): Add case to store FS_BASE
GS_BASE for older kernels.
* amd64-linux-tdep.c (amd64_linux_gregset_reg_offset): Add FS_BASE
and GS_BASE to the offset table.
(amd64_linux_register_reggroup_p): Add FS_BASE and GS_BASE to the
system register group.
* amd64-nat.c (amd64_native_gregset_reg_offset): Implements case
for older kernels.
* amd64-tdep.c (amd64_init_abi): Add segment registers for the
amd64 ABI.
* amd64-tdep.h (amd64_regnum): Add AMD64_FSBASE_REGNUM and
AMD64_GSBASE_REGNUM.
(AMD64_NUM_REGS): Set to AMD64_GSBASE_REGNUM + 1.
* features/Makefile (amd64-linux.dat, amd64-avx-linux.dat)
(amd64-mpx-linux.dat, amd64-avx512-linux.dat, x32-linux.dat)
(x32-avx-linux.dat, x32-avx512-linux.dat): Add
i386/64bit-segments.xml in those rules.
* features/i386/64bit-segments.xml: New file.
* features/i386/amd64-avx-mpx-linux.xml: Add 64bit-segments.xml.
* features/i386/amd64-avx-linux.xml: Add 64bit-segments.xml.
* features/i386/amd64-avx512-linux.xml: Add 64bit-segments.xml.
* features/i386/amd64-mpx-linux.xml: Add 64bit-segments.xml.
* features/i386/x32-avx512-linux.xml: Add 64bit-segments.xml.
* features/i386/x32-avx-linux.xml: Add 64bit-segments.xml.
* features/i386/amd64-linux.xml: Add 64bit-segments.xml.
* features/i386/amd64-avx-linux.c: Regenerated.
* features/i386/amd64-avx-mpx-linux.c: Regenerated.
* features/i386/amd64-avx-mpx.c: Regenerated.
* features/i386/amd64-avx512-linux.c: Regenerated.
* features/i386/amd64-linux.c: Regenerated.
* features/i386/amd64-mpx-linux.c: Regenerated.
* features/i386/i386-avx-mpx-linux.c: Regenerated.
* features/i386/i386-avx-mpx.c: Regenerated.
* features/i386/x32-avx-linux.c: Regenerated.
* features/i386/x32-avx512-linux.c: Regenerated.
* regformats/i386/amd64-avx-linux.dat: Regenerated.
* regformats/i386/amd64-avx-mpx-linux.dat: Regenerated.
* regformats/i386/amd64-avx512-linux.dat: Regenerated.
* regformats/i386/amd64-linux.dat: Regenerated.
* regformats/i386/amd64-mpx-linux.dat: Regenerated.
* regformats/i386/x32-avx-linux.dat: Regenerated.
* regformats/i386/x32-avx512-linux.dat: Regenerated.
* regformats/i386/x32-linux.dat: Regenerated.
gdb/doc/ChangeLog:
* gdb.texinfo (i386 Features): Add system segment registers
as feature.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_64_regmap): Add fs_base and gs_base
to the register table.
(x86_fill_gregset): Add support for old kernels for the
fs_base and gs_base system registers.
(x86_store_gregset): Likewise.
* configure.srv (srv_i386_64bit_xmlfiles): Add 64bit-segments.xml.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-gs_base.c: New file.
* gdb.arch/amd64-gs_base.exp: New file.
Change-Id: I2e0eeb93058a2320d4d3b045082643cfe4aff963
Signed-off-by: Walfred Tedeschi <walfred.tedeschi@intel.com>
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
Running the fast tracepoints tests against x32 gdbserver exposes a
latent bug. E.g.,:
(gdb)
continue
Continuing.
Reading /media/sf_host-pedro/gdb/mygit/build-ubuntu-x32/gdb/testsuite/outputs/gdb.trace/change-loc/change-loc-2.sl from remote target...
Thread 1 "change-loc" received signal SIGSEGV, Segmentation fault.
func4 () at /home/pedro/gdb/src/gdb/testsuite/gdb.trace/change-loc.h:24
24 }
(gdb) FAIL: gdb.trace/change-loc.exp: 1 ftrace: continue to marker 2
The test sets a fast tracepoint on a shared library. On x32, shared
libraries end up loaded somewhere in the upper 2GB of the 4GB address
space x32 has access to. When gdbserver needs to copy an instruction
to execute it in the jump pad, it asks gdb to relocate/adjust it, with
the qRelocInsn packet. gdb converts "call" instructions into a "push
$<2GB-4GB addr> + jmp" sequence, however, the "pushq" instruction sign
extends its operand, so later when the called function returns, it
returns to an incorrectly sign-extended address. E.g.,
0xfffffffffabc0000 instead of 0xfabc0000, resulting in the
segmentation fault.
Fix this by converting calls at such addresses to "sub + mov + jmp"
sequences instead.
gdb/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* amd64-tdep.c (amd64_relocate_instruction) <callq>: Handle return
addresses over 0x7fffffff.
The current MPX target descriptions assume that MPX is always combined
with AVX, however that's not correct. We can have machines with MPX
and without AVX; or machines with AVX and without MPX.
This patch adds new target descriptions for machines that support
both MPX and AVX, as duplicates of the existing MPX descriptions.
The following commit will remove AVX from the MPX-only descriptions.
2016-04-16 Walfred Tedeschi <walfred.tedeschi@intel.com>
gdb/ChangeLog:
* amd64-linux-tdep.c (features/i386/amd64-avx-mpx-linux.c):
New include.
(amd64_linux_core_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
(_initialize_amd64_linux_tdep): Call initialize_tdesc_amd64_avx_mpx_linux.
* amd64-linux-tdep.h (tdesc_amd64_avx_mpx_linux): New definition.
* amd64-tdep.c (features/i386/amd64-avx-mpx.c): New include.
(amd64_target_description): Add case for X86_XSTATE_AVX_MPX_MASK.
(_initialize_amd64_tdep): Call initialize_tdesc_amd64_avx_mpx.
* common/x86-xstate.h (X86_XSTATE_MPX_MASK): Remove AVX bits.
(X86_XSTATE_AVX_MPX_MASK): New case.
* features/Makefile (i386/i386-avx-mpx, i386/i386-avx-mpx-linux)
(i386/amd64-avx-mpx, i386/amd64-avx-mpx-linux): New rules.
(i386/i386-avx-mpx-expedite, i386/i386-avx-mpx-linux-expedite)
(i386/amd64-avx-mpx-expedite, i386/amd64-avx-mpx-linux-expedite):
New expedites.
* i386-linux-tdep.c (features/i386/i386-avx-mpx-linux.c): New
include.
(i386_linux_core_read_description): Add case
X86_XSTATE_AVX_MPX_MASK.
(_initialize_i386_linux_tdep): Call
initialize_tdesc_i386_avx_mpx_linux.
* i386-linux-tdep.h (tdesc_i386_avx_mpx_linux): New include.
* i386-tdep.c (features/i386/i386-avx-mpx.c): New include.
(i386_target_description): Add case for X86_XSTATE_AVX_MPX_MASK.
* x86-linux-nat.c (x86_linux_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
* features/i386/amd64-avx-mpx-linux.xml: New file.
* features/i386/i386-avx-mpx-linux.xml: New file.
* features/i386/i386-avx-mpx.xml: New file.
* features/i386/amd64-avx-mpx.xml: New file.
* features/i386/amd64-avx-mpx-linux.c: Generated.
* features/i386/amd64-avx-mpx.c: Generated.
* features/i386/i386-avx-mpx-linux.c: Generated.
* features/i386/i386-avx-mpx.c: Generated.
* regformats/i386/amd64-avx-mpx-linux.dat: Generated.
* regformats/i386/amd64-avx-mpx.dat: Generated.
* regformats/i386/i386-avx-mpx-linux.dat: Generated.
* regformats/i386/i386-avx-mpx.dat: Generated.
gdb/gdbserver/ChangeLog:
* Makefile.in (clean): Add removal for i386-avx-mpx.c,
i386-avx-mpx-linux.c, amd64-avx-mpx.c and amd64-avx-mpx-linux.c.
(i386-avx-mpx.c, i386-avx-mpx-linux.c, amd64-avx-mpx.c)
(amd64-avx-mpx-linux.c): New rules.
(amd64-avx-mpx-linux-ipa.o, i386-avx-mpx-linux-ipa.o): New rule.
* configure.srv (srv_i386_regobj): Add i386-avx-mpx.o.
(srv_i386_linux_regobj): Add i386-avx-mpx-linux.o.
(srv_amd64_regobj): Add amd64-avx-mpx.o.
(srv_amd64_linux_regobj): Add amd64-avx-mpx-linux.o.
(srv_i386_xmlfiles): Add i386/i386-avx-mpx.xml.
(srv_amd64_xmlfiles): Add i386/amd64-avx-mpx.xml.
(srv_i386_linux_xmlfiles): Add i386/i386-avx-mpx-linux.xml.
(srv_amd64_linux_xmlfiles): Add i386/amd64-avx-mpx-linux.xml.
(ipa_i386_linux_regobj): Add i386-avx-mpx-linux-ipa.o.
(ipa_amd64_linux_regobj): Add amd64-avx-mpx-linux-ipa.o.
* linux-x86-low.c (x86_linux_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
(x86_get_ipa_tdesc_idx): Add cases for avx_mpx.
(initialize_low_arch): Call init_registers_amd64_avx_mpx_linux and
init_registers_i386_avx_mpx_linux.
* linux-i386-ipa.c (get_ipa_tdesc): Add case for avx_mpx.
(initialize_low_tracepoint): Call
init_registers_i386_avx_mpx_linux.
* linux-amd64-ipa.c (get_ipa_tdesc): Add case for avx_mpx.
(initialize_low_tracepoint): Call
init_registers_amd64_avx_mpx_linux.
* linux-x86-tdesc.h (X86_TDESC_AVX_MPX): New enum value.
(init_registers_amd64_avx_mpx_linux, tdesc_amd64_avx_mpx_linux)
(init_registers_i386_avx_mpx_linux, tdesc_i386_avx_mpx_linux): New
declarations.
Making all-stop run on top of non-stop caused a small regression
in behavior. This was observed on x86_64-linux. The attached testcase
is in C whereas the investigation was done with an Ada program,
but it's the same scenario, and using a C testcase allows wider testing.
Basically: I am debugging a single-threaded program, and currently
stopped inside a function provided by a shared-library, at a line
calling a subprogram provided by a second shared library, and trying
to "next" over that function call.
Before we changed the default all-stop behavior, we had:
7 Impl_Initialize; -- Stop here and try "next" over this line
(gdb) n
8 return 5; <<-- OK
But now, "next" just stops much earlier:
(gdb) n
0x00007ffff7bd8560 in impl.initialize@plt () from /[...]/lib/libpck.so
What happens is that next stops at a call instruction, which calls
the function's PLT, and GDB fails to notice that the inferior stepped
into a subroutine, and so decides that we're done. We can see another
symptom of the same issue by looking at the backtrace at the point
GDB stopped:
(gdb) bt
#0 0x00007ffff7bd8560 in impl.initialize@plt ()
from /[...]/lib/libpck.so
#1 0x00000000f7bd86f9 in ?? ()
#2 0x00007fffffffdf50 in ?? ()
#3 0x0000000000401893 in a () at /[...]/a.adb:7
Backtrace stopped: frame did not save the PC
With a functioning GDB, the backtrace looks like the following instead:
#0 0x00007ffff7bd8560 in impl.initialize@plt ()
from /[...]/lib/libpck.so
#1 0x00007ffff7bd86f9 in sub () at /[...]/pck.adb:7
#2 0x0000000000401893 in a () at /[...]/a.adb:7
Note how, for frame #1, the address looks quite similar, except
for the high-order bits not being set:
#1 0x00007ffff7bd86f9 in sub () at /[...]/pck.adb:7 <<<-- OK
#1 0x00000000f7bd86f9 in ?? () <<<-- WRONG
^^^^
||||
Wrong
Investigating this further led me to displaced stepping.
As we are "next"-ing from a location where a breakpoint is inserted,
we need to step out of it, and since we're on non-stop mode, we need
to do it using displaced stepping. And looking at
amd64-tdep.c:amd64_displaced_step_fixup, I found the code that handles
the return address:
regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
retaddr = (retaddr - insn_offset) & 0xffffffffUL;
The mask used to compute retaddr looks wrong to me, keeping only
4 bytes instead of 8, and explains why the high order bits of
the backtrace are unset. What happens is that, after the displaced
stepping has completed, GDB restores that return address at the location
where the program expects it. But because the top half bits of
the address have been masked out, the return address is now invalid.
The incorrect behavior of the "next" command and the backtrace at
that location are the first symptoms of that. Another symptom is
that this actually alters the behavior of the program, where a "cont"
from there soon leads to a SEGV when the inferior tries to jump back
to that incorrect return address:
(gdb) c
Continuing.
Program received signal SIGSEGV, Segmentation fault.
0x00000000f7bd86f9 in ?? ()
^^^^^^^^^^^^^^^^^^
This patch fixes the issue by using a mask that seems more appropriate
for this architecture.
gdb/ChangeLog:
* amd64-tdep.c (amd64_displaced_step_fixup): Fix the mask used to
compute RETADDR.
gdb/testsuite/ChangeLog:
* gdb.base/dso2dso-dso2.c, gdb.base/dso2dso-dso2.h,
gdb.base/dso2dso-dso1.c, gdb.base/dso2dso-dso1.h, gdb.base/dso2dso.c,
gdb.base/dso2dso.exp: New files.
Tested on x86_64-linux, no regression.
We concluded that gdbarch_in_function_epilogue_p is misnamed, since it
returns true if the given PC is one instruction after the one that
destroyed the stack (which isn't necessarily inside an epilogue),
therefore it should be renamed to stack_frame_destroyed_p.
I also took the liberty of renaming the arch-specific implementations to
*_stack_frame_destroyed_p as well for consistency.
gdb:
2015-05-26 Martin Galvan <martin.galvan@tallertechnologies.com>
* amd64-tdep.c: Replace in_function_epilogue_p with
stack_frame_destroyed_p throughout.
* arch-utils.c: Ditto.
* arch-utils.h: Ditto.
* arm-tdep.c: Ditto.
* breakpoint.c: Ditto.
* gdbarch.sh: Ditto.
* hppa-tdep.c: Ditto.
* i386-tdep.c: Ditto.
* mips-tdep.c: Ditto.
* nios2-tdep.c: Ditto.
* rs6000-tdep.c: Ditto.
* s390-linux-tdep.c: Ditto.
* score-tdep.c: Ditto.
* sh-tdep.c: Ditto.
* sparc-tdep.c: Ditto.
* sparc-tdep.h: Ditto.
* sparc64-tdep.c: Ditto.
* spu-tdep.c: Ditto.
* tic6x-tdep.c: Ditto.
* tilegx-tdep.c: Ditto.
* xstormy16-tdep.c: Ditto.
* gdbarch.c, gdbarch.h: Re-generated.
Recognize NT_X86_XSTATE notes in FreeBSD process cores. Recent
FreeBSD versions include a note containing the XSAVE state for each
thread in the process when XSAVE is in use. The note stores a copy of
the current XSAVE mask in a reserved section of the machine-defined
XSAVE state at the same offset as Linux's NT_X86_XSTATE note.
For native processes, use the PT_GETXSTATE_INFO ptrace request to
determine if XSAVE is enabled, and if so the active XSAVE state mask
(that is, the value of %xcr0 for the target process) as well as the
size of XSAVE state area. Use the PT_GETXSTATE and PT_SETXSTATE requests
to fetch and store the XSAVE state, respectively, in the BSD x86
native targets.
In addition, the FreeBSD amd64 and i386 native targets now include
"read_description" target methods to determine the correct x86 target
description for the current XSAVE mask. On FreeBSD amd64 this also
properly returns an i386 target description for 32-bit binaries which
allows the 64-bit GDB to run 32-bit binaries.
Note that the ptrace changes are in the BSD native targets, not the
FreeBSD-specific native targets since that is where the other ptrace
register accesses occur. Of the other BSDs, NetBSD and DragonFly use
XSAVE in the kernel but do not currently export the extended state via
ptrace(2). OpenBSD does not currently support XSAVE.
bfd/ChangeLog:
* elf.c (elfcore_grok_note): Recognize NT_X86_XSTATE on
FreeBSD.
(elfcore_write_xstatereg): Use correct note name on FreeBSD.
gdb/ChangeLog:
* amd64-tdep.c (amd64_target_description): New function.
* amd64-tdep.h: Export amd64_target_description and tdesc_amd64.
* amd64bsd-nat.c [PT_GETXSTATE_INFO]: New variable amd64bsd_xsave_len.
(amd64bsd_fetch_inferior_registers) [PT_GETXSTATE_INFO]: Handle
x86 extended save area.
(amd64bsd_store_inferior_registers) [PT_GETXSTATE_INFO]: Likewise.
* amd64bsd-nat.h: Export amd64bsd_xsave_len.
* amd64fbsd-nat.c (amd64fbsd_read_description): New function.
(_initialize_amd64fbsd_nat): Set "to_read_description" to
"amd64fbsd_read_description".
* amd64fbsd-tdep.c (amd64fbsd_core_read_description): New function.
(amd64fbsd_supply_xstateregset): New function.
(amd64fbsd_collect_xstateregset): New function.
Add "amd64fbsd_xstateregset".
(amd64fbsd_iterate_over_regset_sections): New function.
(amd64fbsd_init_abi): Set "xsave_xcr0_offset" to
"I386_FBSD_XSAVE_XCR0_OFFSET".
Add "iterate_over_regset_sections" gdbarch method.
Add "core_read_description" gdbarch method.
* i386-tdep.c (i386_target_description): New function.
* i386-tdep.h: Export i386_target_description and tdesc_i386.
* i386bsd-nat.c [PT_GETXSTATE_INFO]: New variable i386bsd_xsave_len.
(i386bsd_fetch_inferior_registers) [PT_GETXSTATE_INFO]: Handle
x86 extended save area.
(i386bsd_store_inferior_registers) [PT_GETXSTATE_INFO]: Likewise.
* i386bsd-nat.h: Export i386bsd_xsave_len.
* i386fbsd-nat.c (i386fbsd_read_description): New function.
(_initialize_i386fbsd_nat): Set "to_read_description" to
"i386fbsd_read_description".
* i386fbsd-tdep.c (i386fbsd_core_read_xcr0): New function.
(i386fbsd_core_read_description): New function.
(i386fbsd_supply_xstateregset): New function.
(i386fbsd_collect_xstateregset): New function.
Add "i386fbsd_xstateregset".
(i386fbsd_iterate_over_regset_sections): New function.
(i386fbsd4_init_abi): Set "xsave_xcr0_offset" to
"I386_FBSD_XSAVE_XCR0_OFFSET".
Add "iterate_over_regset_sections" gdbarch method.
Add "core_read_description" gdbarch method.
* i386fbsd-tdep.h: New file.
This patch splits the TRY_CATCH macro into three, so that we go from
this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
}
if (ex.reason < 0)
{
}
~~~
to this:
~~~
TRY
{
}
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
~~~
Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.
This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.
TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:
TRY
{
}
// some code here.
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
Just like it isn't valid to do that with C++'s native try/catch.
By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.
The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved. After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch]. The result was folded into this patch so that GDB
still builds at each incremental step.
END_CATCH is necessary for two reasons:
First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:
#define CATCH(EXCEPTION, mask) \
for (struct gdb_exception EXCEPTION; \
exceptions_state_mc_catch (&EXCEPTION, MASK); \
EXCEPTION = exception_none)
would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.
Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow. That will
be done in END_CATCH.
After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.
IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.
gdb/ChangeLog.
2015-03-07 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <exception>: No
longer a pointer to volatile exception. Now an exception value.
<mask>: Delete field.
(exceptions_state_mc_init): Remove all parameters. Adjust.
(exceptions_state_mc): No longer pop the catcher here.
(exceptions_state_mc_catch): New function.
(throw_exception): Adjust.
* common/common-exceptions.h (exceptions_state_mc_init): Remove
all parameters.
(exceptions_state_mc_catch): Declare.
(TRY_CATCH): Rename to ...
(TRY): ... this. Remove EXCEPTION and MASK parameters.
(CATCH, END_CATCH): New.
All callers adjusted.
gdb/gdbserver/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
instead.
This normalizes some exception catch blocks that check for ex.reason
to look like this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ALL)
{
...
}
if (ex.reason < 0)
{
...
}
~~~
This is a preparation step for running a script that converts all
TRY_CATCH uses to look like this instead:
~~~
TRY
{
...
}
CATCH (ex, RETURN_MASK_ALL)
{
...
}
END_CATCH
~~~
The motivation for that change is being able to reimplent TRY/CATCH in
terms of C++ try/catch.
This commit makes it so that:
- no condition other than ex.reason < 0 is checked in the if
predicate
- there's no "else" block to check whether no exception was caught
- there's no code between the TRY_CATCH (TRY) block and the
'if (ex.reason < 0)' block (CATCH).
- the exception object is no longer referred to outside the if/catch
block. Note the local volatile exception objects that are
currently defined inside functions that use TRY_CATCH will
disappear. In cases it's more convenient to still refer to the
exception outside the catch block, a new non-volatile local is
added and copy to that object is made within the catch block.
The following patches should make this all clearer.
gdb/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
* amd64-tdep.c (amd64_frame_cache, amd64_sigtramp_frame_cache)
(amd64_epilogue_frame_cache): Normal exception handling code.
* break-catch-throw.c (check_status_exception_catchpoint)
(re_set_exception_catchpoint): Ditto.
* cli/cli-interp.c (safe_execute_command):
* cli/cli-script.c (script_from_file): Ditto.
* compile/compile-c-symbols.c (generate_c_for_for_one_variable):
Ditto.
* compile/compile-object-run.c (compile_object_run): Ditto.
* cp-abi.c (baseclass_offset): Ditto.
* cp-valprint.c (cp_print_value): Ditto.
* exceptions.c (catch_exceptions_with_msg):
* frame-unwind.c (frame_unwind_try_unwinder): Ditto.
* frame.c (get_frame_address_in_block_if_available): Ditto.
* i386-tdep.c (i386_frame_cache, i386_epilogue_frame_cache)
(i386_sigtramp_frame_cache): Ditto.
* infcmd.c (post_create_inferior): Ditto.
* linespec.c (parse_linespec, find_linespec_symbols):
* p-valprint.c (pascal_object_print_value): Ditto.
* parse.c (parse_expression_for_completion): Ditto.
* python/py-finishbreakpoint.c (bpfinishpy_init): Ditto.
* remote.c (remote_get_noisy_reply): Ditto.
* s390-linux-tdep.c (s390_frame_unwind_cache): Ditto.
* solib-svr4.c (solib_svr4_r_map): Ditto.
This commit introduces a new inline common function "startswith"
which takes two string arguments and returns nonzero if the first
string starts with the second. It also updates the 295 places
where this logic was written out longhand to use the new function.
gdb/ChangeLog:
* common/common-utils.h (startswith): New inline function.
All places where this logic was used updated to use the above.
This patch renames symbols that happen to have names which are
reserved keywords in C++.
Most of this was generated with Tromey's cxx-conversion.el script.
Some places where later hand massaged a bit, to fix formatting, etc.
And this was rebased several times meanwhile, along with re-running
the script, so re-running the script from scratch probably does not
result in the exact same output. I don't think that matters anyway.
gdb/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
gdb/gdbserver/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
As reported in PR 17808, a test case with a forged (invalid) core file
can crash GDB with an assertion failure. In that particular case the
prstatus of an i386 core file looks like that from an AMD64 core file.
Consequently the respective regset supply function i386_supply_gregset
is invoked with a larger buffer than usual. But i386_supply_gregset
asserts a specific buffer size, and this assertion fails.
The patch relaxes all buffer size assertions in regset supply
functions such that they merely check for a sufficiently large buffer.
For consistency the regset collect functions are adjusted as well.
gdb/ChangeLog:
PR corefiles/17808:
* gdbarch.sh (iterate_over_regset_sections_cb): Document this
function type, particularly its SIZE parameter.
* gdbarch.h: Regenerate.
* amd64-tdep.c (amd64_supply_fpregset): In gdb_assert, compare
actual against required size using ">=" instead of "==".
(amd64_collect_fpregset): Likewise.
* i386-tdep.c (i386_supply_gregset): Likewise.
(i386_collect_gregset): Likewise.
(i386_supply_fpregset): Likewise.
(i386_collect_fpregset): Likewise.
* mips-linux-tdep.c (mips_supply_gregset_wrapper): Likewise.
(mips_fill_gregset_wrapper): Likewise.
(mips_supply_fpregset_wrapper): Likewise.
(mips_fill_fpregset_wrapper): Likewise.
(mips64_supply_gregset_wrapper): Likewise.
(mips64_fill_gregset_wrapper): Likewise.
(mips64_supply_fpregset_wrapper): Likewise.
(mips64_fill_fpregset_wrapper): Likewise.
* mn10300-linux-tdep.c (am33_supply_gregset_method): Likewise.
(am33_supply_fpregset_method): Likewise.
(am33_collect_gregset_method): Likewise.
(am33_collect_fpregset_method): Likewise.
Dwarf register numbers are defined in "System V Application Binary
Interface AMD64 Architecture Processor Supplement Draft Version 0.99.6"
The amd64_dwarf_regmap array is missing the 8 MMX registers in Figure
3.36: DWARF Register Number Mapping page 57. This leads to a wrong
value for the registers past this point.
gdb/ChangeLog:
Pushed by Joel Brobecker <brobecker@adacore.com>.
* amd64-tdep.c (amd64_dwarf_regmap array): Add missing MMX
registers.
Tested on x86_64-linux.
Currently "symtabs" in gdb are stored as a single linked list of
struct symtab that contains both symbol symtabs (the blockvectors)
and file symtabs (the linetables).
This has led to confusion, bugs, and performance issues.
This patch is conceptually very simple: split struct symtab into
two pieces: one part containing things common across the entire
compilation unit, and one part containing things specific to each
source file.
Example.
For the case of a program built out of these files:
foo.c
foo1.h
foo2.h
bar.c
foo1.h
bar.h
Today we have a single list of struct symtabs:
objfile -> foo.c -> foo1.h -> foo2.h -> bar.c -> foo1.h -> bar.h -> NULL
where "->" means the "next" pointer in struct symtab.
With this patch, that turns into:
objfile -> foo.c(cu) -> bar.c(cu) -> NULL
| |
v v
foo.c bar.c
| |
v v
foo1.h foo1.h
| |
v v
foo2.h bar.h
| |
v v
NULL NULL
where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
and the files foo.c, etc. are struct symtab objects.
So now, for example, when we want to iterate over all blockvectors
we can now just iterate over the compunit_symtab list.
Plus a lot of the data that was either unused or replicated for each
symtab in a compilation unit now lives in struct compunit_symtab.
E.g., the objfile pointer, the producer string, etc.
I thought of moving "language" out of struct symtab but there is
logic to try to compute the language based on previously seen files,
and I think that's best left as is for now.
With my standard monster benchmark with -readnow (which I can't actually
do, but based on my calculations), whereas today the list requires
77MB to store all the struct symtabs, it now only requires 37MB.
A modest space savings given the gigabytes needed for all the debug info,
etc. Still, it's nice. Plus, whereas today we create a copy of dirname
for each source file symtab in a compilation unit, we now only create one
for the compunit.
So this patch is basically just a data structure reorg,
I don't expect significant performance improvements from it.
Notes:
1) A followup patch can do a similar split for struct partial_symtab.
I have left that until after I get the changes I want in to
better utilize .gdb_index (it may affect how we do partial syms).
2) Another followup patch *could* rename struct symtab.
The term "symtab" is ambiguous and has been a source of confusion.
In this patch I'm leaving it alone, calling it the "historical" name
of "filetabs", which is what they are now: just the file-name + line-table.
gdb/ChangeLog:
Split struct symtab into two: struct symtab and compunit_symtab.
* amd64-tdep.c (amd64_skip_xmm_prologue): Fetch producer from compunit.
* block.c (blockvector_for_pc_sect): Change "struct symtab *" argument
to "struct compunit_symtab *". All callers updated.
(set_block_compunit_symtab): Renamed from set_block_symtab. Change
"struct symtab *" argument to "struct compunit_symtab *".
All callers updated.
(get_block_compunit_symtab): Renamed from get_block_symtab. Change
result to "struct compunit_symtab *". All callers updated.
(find_iterator_compunit_symtab): Renamed from find_iterator_symtab.
Change result to "struct compunit_symtab *". All callers updated.
* block.h (struct global_block) <compunit_symtab>: Renamed from symtab.
hange type to "struct compunit_symtab *". All uses updated.
(struct block_iterator) <d.compunit_symtab>: Renamed from "d.symtab".
Change type to "struct compunit_symtab *". All uses updated.
* buildsym.c (struct buildsym_compunit): New struct.
(subfiles, buildsym_compdir, buildsym_objfile, main_subfile): Delete.
(buildsym_compunit): New static global.
(finish_block_internal): Update to fetch objfile from
buildsym_compunit.
(make_blockvector): Delete objfile argument.
(start_subfile): Rewrite to use buildsym_compunit. Don't initialize
debugformat, producer.
(start_buildsym_compunit): New function.
(free_buildsym_compunit): Renamed from free_subfiles_list.
All callers updated.
(patch_subfile_names): Rewrite to use buildsym_compunit.
(get_compunit_symtab): New function.
(get_macro_table): Delete argument comp_dir. All callers updated.
(start_symtab): Change result to "struct compunit_symtab *".
All callers updated. Create the subfile of the main source file.
(watch_main_source_file_lossage): Rewrite to use buildsym_compunit.
(reset_symtab_globals): Update.
(end_symtab_get_static_block): Update to use buildsym_compunit.
(end_symtab_without_blockvector): Rewrite.
(end_symtab_with_blockvector): Change result to
"struct compunit_symtab *". All callers updated.
Update to use buildsym_compunit. Don't set symtab->dirname,
instead set it in the compunit.
Explicitly make sure main symtab is first in its list.
Set debugformat, producer, blockvector, block_line_section, and
macrotable in the compunit.
(end_symtab_from_static_block): Change result to
"struct compunit_symtab *". All callers updated.
(end_symtab, end_expandable_symtab): Ditto.
(set_missing_symtab): Change symtab argument to
"struct compunit_symtab *". All callers updated.
(augment_type_symtab): Ditto.
(record_debugformat): Update to use buildsym_compunit.
(record_producer): Update to use buildsym_compunit.
* buildsym.h (struct subfile) <dirname>: Delete.
<producer, debugformat>: Delete.
<buildsym_compunit>: New member.
(get_compunit_symtab): Declare.
* dwarf2read.c (struct type_unit_group) <compunit_symtab>: Renamed
from primary_symtab. Change type to "struct compunit_symtab *".
All uses updated.
(dwarf2_start_symtab): Change result to "struct compunit_symtab *".
All callers updated.
(dwarf_decode_macros): Delete comp_dir argument. All callers updated.
(struct dwarf2_per_cu_quick_data) <compunit_symtab>: Renamed from
symtab. Change type to "struct compunit_symtab *". All uses updated.
(dw2_instantiate_symtab): Change result to "struct compunit_symtab *".
All callers updated.
(dw2_find_last_source_symtab): Ditto.
(dw2_lookup_symbol): Ditto.
(recursively_find_pc_sect_compunit_symtab): Renamed from
recursively_find_pc_sect_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(dw2_find_pc_sect_compunit_symtab): Renamed from
dw2_find_pc_sect_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(get_compunit_symtab): Renamed from get_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(recursively_compute_inclusions): Change type of immediate_parent
argument to "struct compunit_symtab *". All callers updated.
(compute_compunit_symtab_includes): Renamed from
compute_symtab_includes. All callers updated. Rewrite to compute
includes of compunit_symtabs and not symtabs.
(process_full_comp_unit): Update to work with struct compunit_symtab.
(process_full_type_unit): Ditto.
(dwarf_decode_lines_1): Delete argument comp_dir. All callers updated.
(dwarf_decode_lines): Remove special case handling of main subfile.
(macro_start_file): Delete argument comp_dir. All callers updated.
(dwarf_decode_macro_bytes): Ditto.
* guile/scm-block.c (bkscm_print_block_syms_progress_smob): Update to
use struct compunit_symtab.
* i386-tdep.c (i386_skip_prologue): Fetch producer from compunit.
* jit.c (finalize_symtab): Build compunit_symtab.
* jv-lang.c (get_java_class_symtab): Change result to
"struct compunit_symtab *". All callers updated.
* macroscope.c (sal_macro_scope): Fetch macro table from compunit.
* macrotab.c (struct macro_table) <compunit_symtab>: Renamed from
comp_dir. Change type to "struct compunit_symtab *".
All uses updated.
(new_macro_table): Change comp_dir argument to cust,
"struct compunit_symtab *". All callers updated.
* maint.c (struct cmd_stats) <nr_compunit_symtabs>: Renamed from
nr_primary_symtabs. All uses updated.
(count_symtabs_and_blocks): Update to handle compunits.
(report_command_stats): Update output, "primary symtabs" renamed to
"compunits".
* mdebugread.c (new_symtab): Change result to
"struct compunit_symtab *". All callers updated.
(parse_procedure): Change type of search_symtab argument to
"struct compunit_symtab *". All callers updated.
* objfiles.c (objfile_relocate1): Loop over blockvectors in a
separate loop.
* objfiles.h (struct objfile) <compunit_symtabs>: Renamed from
symtabs. Change type to "struct compunit_symtab *". All uses updated.
(ALL_OBJFILE_FILETABS): Renamed from ALL_OBJFILE_SYMTABS.
All uses updated.
(ALL_OBJFILE_COMPUNITS): Renamed from ALL_OBJFILE_PRIMARY_SYMTABS.
All uses updated.
(ALL_FILETABS): Renamed from ALL_SYMTABS. All uses updated.
(ALL_COMPUNITS): Renamed from ALL_PRIMARY_SYMTABS. All uses updated.
* psympriv.h (struct partial_symtab) <compunit_symtab>: Renamed from
symtab. Change type to "struct compunit_symtab *". All uses updated.
* psymtab.c (psymtab_to_symtab): Change result type to
"struct compunit_symtab *". All callers updated.
(find_pc_sect_compunit_symtab_from_partial): Renamed from
find_pc_sect_symtab_from_partial. Change result type to
"struct compunit_symtab *". All callers updated.
(lookup_symbol_aux_psymtabs): Change result type to
"struct compunit_symtab *". All callers updated.
(find_last_source_symtab_from_partial): Ditto.
* python/py-symtab.c (stpy_get_producer): Fetch producer from compunit.
* source.c (forget_cached_source_info_for_objfile): Fetch debugformat
and macro_table from compunit.
* symfile-debug.c (debug_qf_find_last_source_symtab): Change result
type to "struct compunit_symtab *". All callers updated.
(debug_qf_lookup_symbol): Ditto.
(debug_qf_find_pc_sect_compunit_symtab): Renamed from
debug_qf_find_pc_sect_symtab, change result type to
"struct compunit_symtab *". All callers updated.
* symfile.c (allocate_symtab): Delete objfile argument.
New argument cust.
(allocate_compunit_symtab): New function.
(add_compunit_symtab_to_objfile): New function.
* symfile.h (struct quick_symbol_functions) <lookup_symbol>:
Change result type to "struct compunit_symtab *". All uses updated.
<find_pc_sect_compunit_symtab>: Renamed from find_pc_sect_symtab.
Change result type to "struct compunit_symtab *". All uses updated.
* symmisc.c (print_objfile_statistics): Compute blockvector count in
separate loop.
(dump_symtab_1): Update test for primary source symtab.
(maintenance_info_symtabs): Update to handle compunit symtabs.
(maintenance_check_symtabs): Ditto.
* symtab.c (set_primary_symtab): Delete.
(compunit_primary_filetab): New function.
(compunit_language): New function.
(iterate_over_some_symtabs): Change type of arguments "first",
"after_last" to "struct compunit_symtab *". All callers updated.
Update to loop over symtabs in each compunit.
(error_in_psymtab_expansion): Rename symtab argument to cust,
and change type to "struct compunit_symtab *". All callers updated.
(find_pc_sect_compunit_symtab): Renamed from find_pc_sect_symtab.
Change result type to "struct compunit_symtab *". All callers updated.
(find_pc_compunit_symtab): Renamed from find_pc_symtab.
Change result type to "struct compunit_symtab *". All callers updated.
(find_pc_sect_line): Only loop over symtabs within selected compunit
instead of all symtabs in the objfile.
* symtab.h (struct symtab) <blockvector>: Moved to compunit_symtab.
<compunit_symtab> New member.
<block_line_section>: Moved to compunit_symtab.
<locations_valid>: Ditto.
<epilogue_unwind_valid>: Ditto.
<macro_table>: Ditto.
<dirname>: Ditto.
<debugformat>: Ditto.
<producer>: Ditto.
<objfile>: Ditto.
<call_site_htab>: Ditto.
<includes>: Ditto.
<user>: Ditto.
<primary>: Delete
(SYMTAB_COMPUNIT): New macro.
(SYMTAB_BLOCKVECTOR): Update definition.
(SYMTAB_OBJFILE): Update definition.
(SYMTAB_DIRNAME): Update definition.
(struct compunit_symtab): New type. Common members among all source
symtabs within a compilation unit moved here. All uses updated.
(COMPUNIT_OBJFILE): New macro.
(COMPUNIT_FILETABS): New macro.
(COMPUNIT_DEBUGFORMAT): New macro.
(COMPUNIT_PRODUCER): New macro.
(COMPUNIT_DIRNAME): New macro.
(COMPUNIT_BLOCKVECTOR): New macro.
(COMPUNIT_BLOCK_LINE_SECTION): New macro.
(COMPUNIT_LOCATIONS_VALID): New macro.
(COMPUNIT_EPILOGUE_UNWIND_VALID): New macro.
(COMPUNIT_CALL_SITE_HTAB): New macro.
(COMPUNIT_MACRO_TABLE): New macro.
(ALL_COMPUNIT_FILETABS): New macro.
(compunit_symtab_ptr): New typedef.
(DEF_VEC_P (compunit_symtab_ptr)): New vector type.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Update expected output.
This adds the 'regset' parameter to the iterator callback.
Consequently the 'regset_from_core_section' method is dropped for all
targets that provide the iterator method.
This change prepares for replacing regset_from_core_section
everywhere, thereby eliminating one gdbarch interface. Since the
iterator is usually no more complex than regset_from_core_section
alone, targets that previously didn't define core_regset_sections will
then gain multi-arch capable core file generation support without
increased complexity.
gdb/ChangeLog:
* gdbarch.sh (iterate_over_regset_sections_cb): Add regset
parameter.
* gdbarch.h: Regenerate.
* corelow.c (sniff_core_bfd): Don't sniff if gdbarch has a regset
iterator.
(get_core_register_section): Add parameter 'regset' and use it, if
set. Add parameter 'min_size' and verify the bfd section size
against it.
(get_core_registers_cb): Add parameter 'regset' and pass it to
get_core_register section. For the "standard" register sections
".reg" and ".reg2", set an appropriate default for human_name.
(get_core_registers): Don't abort when the gdbarch has an iterator
but no regset_from_core_section. Add NULL/0 for parameters
'regset'/'min_size' in calls to get_core_register_section.
* linux-tdep.c (linux_collect_regset_section_cb): Add parameter
'regset' and use it instead of calling the
regset_from_core_section gdbarch method.
* i386-tdep.h (struct gdbarch_tdep): Add field 'fpregset'.
* i386-tdep.c (i386_supply_xstateregset)
(i386_collect_xstateregset, i386_xstateregset): Moved to
i386-linux-tdep.c.
(i386_regset_from_core_section): Drop handling for .reg-xfp and
.reg-xstate.
(i386_gdbarch_init): Set tdep field 'fpregset'. Enable generic
core file support only if the regset iterator hasn't been set.
* i386-linux-tdep.c (i386_linux_supply_xstateregset)
(i386_linux_collect_xstateregset, i386_linux_xstateregset): New.
Moved from i386-tdep.c and renamed to *_linux*.
(i386_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation. Allow any .reg-xstate size when reading
from a core file.
* amd64-tdep.c (amd64_supply_xstateregset)
(amd64_collect_xstateregset, amd64_xstateregset): Moved to
amd64-linux-tdep.c.
(amd64_regset_from_core_section): Remove.
(amd64_init_abi): Set new tdep field 'fpregset'. No longer
install an amd64-specific regset_from_core_section gdbarch method.
* amd64-linux-tdep.c (amd64_linux_supply_xstateregset)
(amd64_linux_collect_xstateregset, amd64_linux_xstateregset): New.
Moved from amd64-tdep.c and renamed to *_linux*.
(amd64_linux_iterate_over_regset_sections): Add regset parameter
to each callback invocation. Allow any .reg-xstate size when
reading from a core file.
* arm-linux-tdep.c (arm_linux_regset_from_core_section): Remove.
(arm_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(arm_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* ppc-linux-tdep.c (ppc_linux_regset_from_core_section): Remove.
(ppc_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(ppc_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* s390-linux-tdep.c (struct gdbarch_tdep): Remove the fields
gregset, sizeof_gregset, fpregset, and sizeof_fpregset.
(s390_regset_from_core_section): Remove.
(s390_iterate_over_regset_sections): Add regset parameter to each
callback invocation.
(s390_gdbarch_init): No longer set the regset_from_core_section
gdbarch method. Drop initialization of deleted tdep fields.
We would like to wrap examples, output or code snippet in comments with
blank lines, and move */ to a new line if the comment is ended with the
example.
gdb:
2014-08-20 Yao Qi <yao@codesourcery.com>
* amd64-tdep.c (amd64_classify): Add a blank line after the
example. Move "*/" to a new line.
* arm-tdep.c (arm_vfp_cprc_sub_candidate): Likewise.
* arm-wince-tdep.c (arm_pe_skip_trampoline_code): Likewise.
* dwarf2read.c (psymtab_include_file_name): Likewise.
Move infrun.c declarations out of inferior.h to a new infrun.h file.
Tested by building on:
i686-w64-mingw32, enable-targets=all
x86_64-linux, enable-targets=all
i586-pc-msdosdjgpp
And also grepped the whole tree for each symbol moved to find where
infrun.h might be necessary.
gdb/
2014-05-22 Pedro Alves <palves@redhat.com>
* inferior.h (debug_infrun, debug_displaced, stop_on_solib_events)
(sync_execution, sched_multi, step_stop_if_no_debug, non_stop)
(disable_randomization, enum exec_direction_kind)
(execution_direction, stop_registers, start_remote)
(clear_proceed_status, proceed, resume, user_visible_resume_ptid)
(wait_for_inferior, normal_stop, get_last_target_status)
(prepare_for_detach, fetch_inferior_event, init_wait_for_inferior)
(insert_step_resume_breakpoint_at_sal)
(follow_inferior_reset_breakpoints, stepping_past_instruction_at)
(set_step_info, print_stop_event, signal_stop_state)
(signal_print_state, signal_pass_state, signal_stop_update)
(signal_print_update, signal_pass_update)
(update_signals_program_target, clear_exit_convenience_vars)
(displaced_step_dump_bytes, update_observer_mode)
(signal_catch_update, gdb_signal_from_command): Move
declarations ...
* infrun.h: ... to this new file.
* amd64-tdep.c: Include infrun.h.
* annotate.c: Include infrun.h.
* arch-utils.c: Include infrun.h.
* arm-linux-tdep.c: Include infrun.h.
* arm-tdep.c: Include infrun.h.
* break-catch-sig.c: Include infrun.h.
* breakpoint.c: Include infrun.h.
* common/agent.c: Include infrun.h instead of inferior.h.
* corelow.c: Include infrun.h.
* event-top.c: Include infrun.h.
* go32-nat.c: Include infrun.h.
* i386-tdep.c: Include infrun.h.
* inf-loop.c: Include infrun.h.
* infcall.c: Include infrun.h.
* infcmd.c: Include infrun.h.
* infrun.c: Include infrun.h.
* linux-fork.c: Include infrun.h.
* linux-nat.c: Include infrun.h.
* linux-thread-db.c: Include infrun.h.
* monitor.c: Include infrun.h.
* nto-tdep.c: Include infrun.h.
* procfs.c: Include infrun.h.
* record-btrace.c: Include infrun.h.
* record-full.c: Include infrun.h.
* remote-m32r-sdi.c: Include infrun.h.
* remote-mips.c: Include infrun.h.
* remote-notif.c: Include infrun.h.
* remote-sim.c: Include infrun.h.
* remote.c: Include infrun.h.
* reverse.c: Include infrun.h.
* rs6000-tdep.c: Include infrun.h.
* s390-linux-tdep.c: Include infrun.h.
* solib-irix.c: Include infrun.h.
* solib-osf.c: Include infrun.h.
* solib-svr4.c: Include infrun.h.
* target.c: Include infrun.h.
* top.c: Include infrun.h.
* windows-nat.c: Include infrun.h.
* mi/mi-interp.c: Include infrun.h.
* mi/mi-main.c: Include infrun.h.
* python/py-threadevent.c: Include infrun.h.
Removes the 'arch' field from the regset structure, since it
represents the only "dynamic" data in a regset. It was referenced in
some regset supply- and collect routines, to get access to the gdbarch
associated with the regset. Naturally, the affected routines always
have access to the regcache to be supplied to or collected from. Thus
the gdbarch associated with that regcache can be used instead.