gdb/ChangeLog:
* top.c (print_gdb_version): Set copyright year to 2014.
gdb/gdbserver/ChangeLog:
* gdbserver.c (gdbserver_version): Set copyright year to 2014.
* gdbreplay.c (gdbreplay_version): Likewise.
Continuing my series of fixes on the SystemTap SDT support for the
ARM/AArch64 architectures, this patch now extends how ARM's SDT specific
parser handles literal numbers (immediates).
Currently, it only accepts "#" as the prefix. However, according to
"info '(as) ARM-Chars'", expressions can also have "$" and nothing as a
prefix. This patch extends the parser to accept those options.
2013-12-28 Sergio Durigan Junior <sergiodj@redhat.com>
* arm-linux-tdep.c (arm_stap_is_single_operand): Accept "$" as a
literal prefix. Also accept no prefix at all.
(arm_stap_parse_special_token): Likewise.
(arm_linux_init_abi): Likewise.
This commit implements the needed bits for SystemTap SDT probe support
on AArch64 architectures.
First, I started by looking at AArch64 assembly specification and
filling the necessary options on gdbarch's stap machinery in order to
make the generic asm parser (implemented in stap-probe.c) recognize
AArch64's asm.
After my last patch for the SystemTap SDT API, which extends it in order
to accept multiple prefixes and suffixes, this patch became simpler. I
also followed Marcus suggestion and did not shared code between 32- and
64-bit ARM.
Tom asked me in a previous message how I did my tests. I believe I
replied that, but just in case: I ran the tests on
gdb.base/stap-probe.exp by hand. I also managed to run the tests on
real hardware, and they pass without regressions.
2013-12-28 Sergio Durigan Junior <sergiodj@redhat.com>
PR tdep/15653
* NEWS: Mention SystemTap SDT probe support for AArch64 GNU/Linux.
* aarch64-linux-tdep.c: Include necessary headers for parsing of
SystemTap SDT probes.
(aarch64_stap_is_single_operand): New function.
(aarch64_stap_parse_special_token): Likewise.
(aarch64_linux_init_abi): Declare SystemTap SDT probe argument
prefixes and suffixes. Initialize gdbarch with them.
The following patch ...
| commit 14e75d8ea4fe9ed4dbf292ae4a9745e33e2ff353
| Date: Wed Apr 18 06:46:47 2012 +0000
|
| gdb/
| PR symtab/7259:
| [...]
... discussed under ...
[PATCH] Allow 64-bit enum values
http://www.sourceware.org/ml/gdb-patches/2012-03/msg00772.html
... introduced a change in the gdb.Fields API without documenting it:
| I took a separate approach from the one I took in:
|
| http://sourceware.org/ml/gdb-patches/2012-02/msg00403.html
|
| and removed the overloaded meaning of the bitpos location variable to
| fix PR symtab/7259. In the following patch, I introduce a separate
| field_location union member 'enumval' which can accept LONGEST and
| hence expand enum values to 64-bit signed values. With this change,
| bitpos now only is used for (non-negative) offsets into structures,
| since the other overload of bitpos (range bounds) were already
| separated into struct range_bound.
This patch updates the documentation to reflect that change.
gdb/doc/ChangeLog:
* gdb.texinfo (Types In Python): Fix the documentation of
attribute "bitpos" in class gdb.Field for enum types. Add
documentation for attribute "enumval" in that same class.
This is to make it easier to discover the various options displayed
by the -list-features command.
gdb/doc/ChangeLog:
* gdb.texinfo (GDB/MI Support Commands): Change @table into
@ftable.
* gdb.texinfo (Auto-loading): Move menu up. Move discussion of
auto-loaded objfile scripts and .debug_gdb_scripts section to their
corresponding section in Extending GDB.
(Extending GDB): Move menu up. New menu item "Auto-loading
extensions".
(Sequences): New menu item "Auto-loading sequences".
(Auto-loading sequences): New node.
(Python): Rename section from Scripting GDB to Extending GDB.
(Python Auto-loading): Update xref, refer to "Auto-loading extensions".
Move docs on ways to auto-load extensions to ...
(Auto-loading extensions): ... here. New node.
This patch does some basic cleanups on the SystemTap SDT probes API. It
removes spurious newlines, brackets, reindents some code, and do
explicit checks for NULL, NUL, and 0 where applicable.
2013-12-23 Sergio Durigan JUnior <sergiodj@redhat.com>
* stap-probe.c (struct stap_probe) <args_parsed>: Add comment.
(stap_is_generic_prefix): Delete extra brackets. Reindent.
(stap_parse_register_operand): Remove spurious newlines. Simplify
code to parse special token.
(stap_parse_argument_conditionally): Add gdb_assert.
(stap_parse_argument_1): Likewise. Explicitly check for NULL and
NUL.
(stap_parse_probe_arguments): Likewise.
(handle_stap_probe): Likewise. Reindent code.
(get_stap_base_address): Explicitly check for NULL.
(stap_get_probes): Likewise. Reindent code.
(stap_relocate): Explicitly check for 0.
(stap_gen_info_probes_table_values): Likewise.
A number of commands provide the capability to query the debugger
about support for various features, and one of them in particular
(-list-features), is expected to grow as new features get added.
-list-target-features should also grow a bit over time, but probably
slower.
These commands deserve their own section and @node.
gdb/doc/ChangeLog:
* gdb.texinfo (GDB/MI): Add "GDB/MI Support Commands" entry
in menu.
(GDB/MI Variable Objects): Adjust reference to "-list-features"
command, now in a new node.
(GDB/MI Support Commands): New node, with its contents being
extracted from the "GDB/MI Miscellaneous Commands" node.
A small paragraph introducing the section is also added at
the start.
(GDB/MI Miscellaneous Commands): Delete the description of the
-info-gdb-mi-command, -list-features and -list-target-features
commands, now hosted in the "GDB/MI Support Commands" node.
Don't attempt to merge CIEs with a larger number of insns than will
fit in the buffer.
* elf-eh-frame.c (cie_eq): Return false when initial_insn_length
is too large.
(cie_compute_hash): Don't exceed bounds of initial_instructions.
(_bfd_elf_parse_eh_frame): Always set initial_insn_length, and
save as much of insns to initial_instructions[] as will fit.
PREFIX_ADDR isn't a prefix to opcode. This patch masks out PREFIX_ADDR
when adding prefix to opcode.
PR gdb/16305
* i386-tdep.c (i386_process_record): Mask out PREFIX_ADDR when
adding prefix to opcode.
64-bit mode doesn't use 16-bit address. We should always check SIB byte
for address in 64-bit mode.
PR gdb/16304
* i386-tdep.c (i386_record_lea_modrm_addr): Don't use 16-bit
address in 64-bit mode.
When there is ADDR32 prefix in 64-bit mode, we should zero-extend
address from 32-bit to 64-bit.
PR gdb/16304
* i386-tdep.c (i386_record_lea_modrm_addr): Zero-extend 32-bit
address to 64-bit in 64-bit mode.
X32 Linux system calls are diffferent from amd64 Linux system calls in
system call numbers as well as parameter types/values. This patch adds
amd64_x32_linux_record_tdep and amd64_x32_syscall for x32.
PR gdb/16304
* amd64-linux-tdep.c (amd64_canonicalize_syscall): Handle x32
system calls.
(amd64_x32_linux_record_tdep): New.
(amd64_linux_syscall_record_common): New function.
(amd64_linux_syscall_record): Call
amd64_linux_syscall_record_common with amd64_linux_record_tdep.
(amd64_x32_linux_syscall_record): Call
amd64_linux_syscall_record_common with
amd64_x32_linux_record_tdep.
(amd64_linux_init_abi_common): Move amd64_linux_record_tdep
initialization and tdep->i386_syscall_record setup to ...
(amd64_linux_init_abi): Here.
(amd64_x32_linux_init_abi): Initialize
amd64_x32_linux_record_tdep. Set tdep->i386_syscall_record to
amd64_x32_linux_syscall_record.
* amd64-linux-tdep.h (amd64_x32_syscall): New enum.
This patch extends the current generic parser for SystemTap SDT probe
arguments. It can be almost considered a cleanup, but the main point of
it is actually to allow the generic parser to accept multiple prefixes
and suffixes for the its operands (i.e., integers, register names, and
register indirection).
I have chosen to implement this as a list of const strings, and declare
this list as "static" inside each target's method used to initialize
gdbarch.
This patch is actually a preparation for an upcoming patch for ARM,
which implements the support for multiple integer prefixes (as defined
by ARM's asm spec). And AArch64 will also need this, for the same
reason.
This patch was regtested on all architectures that it touches (i.e.,
i386, x86_64, ARM, PPC/PPC64, s390x and IA-64). No regressions were found.
2013-12-19 Sergio Durigan Junior <sergiodj@redhat.com>
* amd64-tdep.c (amd64_init_abi): Declare SystemTap SDT probe
argument prefixes and suffixes. Initialize gdbarch with them.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
* gdbarch.sh (stap_integer_prefix, stap_integer_suffix)
(stap_register_prefix, stap_register_suffix)
(stap_register_indirection_prefix)
(stap_register_indirection_suffix): Declare as "const char *const
*" instead of "const char *". Adjust printing function. Rename
all of the variables to the plural.
(pstring_list): New function.
* i386-tdep.c (i386_elf_init_abi): Declare SystemTap SDT probe
argument prefixes and suffixes. Initialize gdbarch with them.
* ia64-linux-tdep.c (ia64_linux_init_abi): Likewise.
* ppc-linux-tdep.c (ppc_linux_init_abi): Likewise.
* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
* stap-probe.c (stap_is_generic_prefix): New function.
(stap_is_register_prefix): Likewise.
(stap_is_register_indirection_prefix): Likewise.
(stap_is_integer_prefix): Likewise.
(stap_generic_check_suffix): Likewise.
(stap_check_integer_suffix): Likewise.
(stap_check_register_suffix): Likewise.
(stap_check_register_indirection_suffix): Likewise.
(stap_parse_register_operand): Remove unecessary declarations for
variables holding prefix and suffix information. Use the new
functions listed above for checking for prefixes and suffixes.
(stap_parse_single_operand): Likewise.
It is a good pratice to set the SHF_INFO_LINK bit when the sh_info field
represents a section header index.
bfd/
PR binutils/16317
* elf.c (assign_section_numbers): Set the SHF_INFO_LINK bit for
SHT_REL/SHT_RELA sections when setting the sh_info field.
binutils/testsuite/
PR binutils/16317
* binutils-all/readelf.s: Updated.
* binutils-all/readelf.s-64: Likewise.
ld/testsuite/
PR binutils/16317
* ld-elf/linkinfo1.s: New file.
* ld-elf/linkinfo1a.d: Likewise.
* ld-elf/linkinfo1b.d: Likewise.
Code rationale
==============
by: Gabriel Krisman Bertazi
This is a fix for bug 16297. The problem occurs when the user attempts
to catch any syscall 0 (such as syscall read on Linux/x86_64). GDB was
not able to catch the syscall and was missing the breakpoint.
Now, breakpoint_hit_catch_syscall returns immediately when it finds the
correct syscall number, avoiding a following check for the end of the
search vector, that returns a no hit if the syscall number was zero.
Testcase rationale
==================
by: Sergio Durigan Junior
This testcase is a little difficult to write. By doing a quick
inspection at the Linux source, one can see that, in many targets, the
syscall number 0 is restart_syscall, which is forbidden to be called
from userspace. Therefore, on many targets, there's just no way to test
this safely.
My decision was to take the simpler route and just adds the "read"
syscall on the default test. Its number on x86_64 is zero, which is
"good enough" since many people here do their tests on x86_64 anyway and
it is a popular architecture.
However, there was another little gotcha. When using "read" passing 0
as the third parameter (i.e., asking it to read 0 bytes), current libc
implementations could choose not to effectively call the syscall.
Therefore, the best solution was to create a temporary pipe, write 1
byte into it, and then read this byte from it.
gdb/ChangeLog
2013-12-19 Gabriel Krisman Bertazi <gabriel@krisman.be>
PR breakpoints/16297
* breakpoint.c (breakpoint_hit_catch_syscall): Return immediately
when expected syscall is hit.
gdb/testsuite/ChangeLog
2013-12-19 Sergio Durigan Junior <sergiodj@redhat.com>
PR breakpoints/16297
* gdb.base/catch-syscall.c (read_syscall, pipe_syscall)
(write_syscall): New variables.
(main): Create a pipe, write 1 byte in it, and read 1 byte from
it.
* gdb.base/catch-syscall.exp (all_syscalls): Include "pipe,
"write" and "read" syscalls.
(fill_all_syscalls_numbers): Improve the way to obtain syscalls
numbers.
Now that struct serial_ops is const everywhere, we can easily turn the
instances into globals. This patch implements this idea.
On the one hand I think this is nicer since it makes a bit more data
readonly and slightly reduces allocations. On the other hand it
reduces readability somewhat.
If the readability is a concern to anyone I was thinking I could write
a macro that conditionally uses GCC's designated initializer
extension.
Tested by rebuilding on x86-64 Fedora 18, both natively and using the
mingw cross tools.
2013-12-19 Tom Tromey <tromey@redhat.com>
* ser-unix.c (hardwire_ops): New global.
(_initialize_ser_hardwire): Use it.
* ser-tcp.c (tcp_ops): New global.
(_initialize_ser_tcp): Use it.
* ser-pipe.c (pipe_ops): New global.
(_initialize_ser_pipe): Use it.
* ser-mingw.c (hardwire_ops, tty_ops, pipe_ops, tcp_ops): New
globals.
(_initialize_ser_windows): Use them.
I noticed that the serial_ops vtable is not const, but really it ought
to be.
This patch constifies it, removing the only mutable field in the
process.
Tested by rebuilding on x86-64 Fedora 18, both natively and using the
mingw cross tools.
2013-12-19 Tom Tromey <tromey@redhat.com>
* serial.c (serial_ops_p): New typedef.
(serial_ops_list): Now a VEC.
(serial_interface_lookup): Return const. Use VEC_iterate.
(serial_add_interface): Make parameter const.
(serial_open): Update.
(serial_fdopen_ops): Make 'ops' const.
(serial_pipe): Update.
* ser-tcp.c (_initialize_ser_tcp): Update.
* ser-pipe.c (_initialize_ser_pipe): Update.
* ser-unix.c (_initialize_ser_hardwire): Update.
* ser-mingw.c (_initialize_ser_windows): Update.
* ser-go32.c (dos_ops): Now const. Update.
* serial.h (struct serial) <ops>: Now const.
(struct serial_ops) <next>: Remove.
(serial_add_interface): Make parameter const.
I happened to run readelf on an ELF file created by Guile. readelf
complained about invalid values for DW_FORM_strp. At first I assumed
this was just a Guile bug, but eu-readelf did the right thing, so I
looked a bit deeper.
I came across some old Mach-O code to bias some offsets by section
addresses. Guile, unlike many ELF writers, sets the address for the
various DWARF-related sections, causing this unusual code to be run.
This code came from an old commit:
2005-09-30 H.J. Lu <hongjiu.lu@intel.com>
* dwarf.c (fetch_indirect_string): Adjust for section address.
(process_debug_info): Likewise.
(display_debug_loc): Likewise.
(display_debug_ranges): Likewise.
* objdump.c (mach_o_dwarf_sections): New.
(generic_dwarf_sections): Likewise.
(check_mach_o_dwarf): Likewise.
(dump_dwarf): Call check_mach_o_dwarf.
However it was partially reverted here:
https://sourceware.org/ml/binutils/2008-11/msg00134.html
This patch just completes the reversion.
Built and regtested on x86-64 Fedora 18. I also ran the resulting
readelf against the Guile-created object with success.
I have no way of testing this on Mach-O, so your feedback is
solicited.
2013-12-19 Tom Tromey <tromey@redhat.com>
* dwarf.c (fetch_indirect_string): Don't bias by section address.
(fetch_indexed_string): Likewise.
(process_debug_info): Likewise.
(display_debug_loc): Likewise.
(display_debug_ranges): Likewise.
__CYGWIN__ or __MINGW32__ macro is defined.
(rsrc_cmp): Fix Windows host version and version without wchar header.
[__CYGWIN__, __MINGW32__]: Introduce rsrccmp macro.
Fix coding standard issues.
Added new domain MODULE_DOMAIN for fortran modules to avoid
issues with sharing namespaces (e.g. when a variable currently
in scope has the same name as a module).
(gdb) ptype modname
old> No symbol "modname" in current context.
new> type = module modname
This fixes PR 15209 and also addresses the issue
with sharing namespaces:
https://sourceware.org/ml/gdb-patches/2013-02/msg00643.html
2013-11-19 Keven Boell <keven.boell@intel.com>
Sanimir Agovic <sanimir.agovic@intel.com>
* cp-namespace.c (cp_lookup_nested_symbol): Enable
nested lookups for fortran modules.
* dwarf2read.c (read_module): Add fortran module to
the symbol table.
(add_partial_symbol, add_partial_module): Add fortran
module to the partial symbol table.
(new_symbol_full): Create full symbol for fortran module.
* f-exp.y (yylex): Add new module domain to be parsed.
* symtab.h: New domain for fortran modules.
testsuite/
* gdb.fortran/module.exp: Completion matches fortran module
names as well. ptype/whatis on modules return a proper type.
Add new check for having the correct scope.