binutils-gdb/sim/mips/cp1.c
Chris Demetriou ba46ddd0cf 2002-06-04 Chris Demetriou <cgd@broadcom.com>
Ed Satterthwaite  <ehs@broadcom.com>

        * cp1.c (Infinity): Remove.
        * sim-main.h (Infinity): Likewise.

        * cp1.c (fp_unary, fp_binary): New functions.
        (fp_abs, fp_neg, fp_add, fp_sub, fp_mul, fp_div, fp_recip)
        (fp_sqrt): New functions, implemented in terms of the above.
        (AbsoluteValue, Negate, Add, Sub, Multiply, Divide)
        (Recip, SquareRoot): Remove (replaced by functions above).
        * sim-main.h (fp_abs, fp_neg, fp_add, fp_sub, fp_mul, fp_div)
        (fp_recip, fp_sqrt): New prototypes.
        (AbsoluteValue, Negate, Add, Sub, Multiply, Divide)
        (Recip, SquareRoot): Replace prototypes with #defines which
        invoke the functions above.
2002-06-04 16:17:20 +00:00

747 lines
15 KiB
C

/*> cp1.c <*/
/* Floating Point Support for gdb MIPS simulators
This file is part of the MIPS sim
THIS SOFTWARE IS NOT COPYRIGHTED
Cygnus offers the following for use in the public domain. Cygnus
makes no warranty with regard to the software or it's performance
and the user accepts the software "AS IS" with all faults.
CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
(Originally, this code was in interp.c)
*/
#include "sim-main.h"
#include "sim-fpu.h"
/* Within cp1.c we refer to sim_cpu directly. */
#define CPU cpu
#define SD CPU_STATE(cpu)
/*-- FPU support routines ---------------------------------------------------*/
/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
formats conform to ANSI/IEEE Std 754-1985.
SINGLE precision floating:
seeeeeeeefffffffffffffffffffffff
s = 1bit = sign
e = 8bits = exponent
f = 23bits = fraction
SINGLE precision fixed:
siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s = 1bit = sign
i = 31bits = integer
DOUBLE precision floating:
seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
s = 1bit = sign
e = 11bits = exponent
f = 52bits = fraction
DOUBLE precision fixed:
siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s = 1bit = sign
i = 63bits = integer
*/
/* Explicit QNaN values used when value required: */
#define FPQNaN_SINGLE (0x7FBFFFFF)
#define FPQNaN_WORD (0x7FFFFFFF)
#define FPQNaN_DOUBLE (UNSIGNED64 (0x7FF7FFFFFFFFFFFF))
#define FPQNaN_LONG (UNSIGNED64 (0x7FFFFFFFFFFFFFFF))
static const char *fpu_format_name (FP_formats fmt);
#ifdef DEBUG
static const char *fpu_rounding_mode_name (int rm);
#endif
uword64
value_fpr (sim_cpu *cpu,
address_word cia,
int fpr,
FP_formats fmt)
{
uword64 value = 0;
int err = 0;
/* Treat unused register values, as fixed-point 64bit values: */
if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
{
#if 1
/* If request to read data as "uninterpreted", then use the current
encoding: */
fmt = FPR_STATE[fpr];
#else
fmt = fmt_long;
#endif
}
/* For values not yet accessed, set to the desired format: */
if (FPR_STATE[fpr] == fmt_uninterpreted)
{
FPR_STATE[fpr] = fmt;
#ifdef DEBUG
printf ("DBG: Register %d was fmt_uninterpreted. Now %s\n", fpr,
fpu_format_name (fmt));
#endif /* DEBUG */
}
if (fmt != FPR_STATE[fpr])
{
sim_io_eprintf (SD, "FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",
fpr, fpu_format_name (FPR_STATE[fpr]),
fpu_format_name (fmt), pr_addr (cia));
FPR_STATE[fpr] = fmt_unknown;
}
if (FPR_STATE[fpr] == fmt_unknown)
{
/* Set QNaN value: */
switch (fmt)
{
case fmt_single:
value = FPQNaN_SINGLE;
break;
case fmt_double:
value = FPQNaN_DOUBLE;
break;
case fmt_word:
value = FPQNaN_WORD;
break;
case fmt_long:
value = FPQNaN_LONG;
break;
default:
err = -1;
break;
}
}
else if (SizeFGR () == 64)
{
switch (fmt)
{
case fmt_single:
case fmt_word:
value = (FGR[fpr] & 0xFFFFFFFF);
break;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
value = FGR[fpr];
break;
default:
err = -1;
break;
}
}
else
{
switch (fmt)
{
case fmt_single:
case fmt_word:
value = (FGR[fpr] & 0xFFFFFFFF);
break;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
if ((fpr & 1) == 0)
{
/* even registers only */
#ifdef DEBUG
printf ("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
fpr + 1, pr_uword64 ((uword64) FGR[fpr+1]),
fpr, pr_uword64 ((uword64) FGR[fpr]));
#endif
value = ((((uword64) FGR[fpr+1]) << 32)
| (FGR[fpr] & 0xFFFFFFFF));
}
else
{
SignalException (ReservedInstruction, 0);
}
break;
default:
err = -1;
break;
}
}
if (err)
SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR ()");
#ifdef DEBUG
printf ("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d\n",
fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
SizeFGR ());
#endif /* DEBUG */
return (value);
}
void
store_fpr (sim_cpu *cpu,
address_word cia,
int fpr,
FP_formats fmt,
uword64 value)
{
int err = 0;
#ifdef DEBUG
printf ("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d, \n",
fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
SizeFGR ());
#endif /* DEBUG */
if (SizeFGR () == 64)
{
switch (fmt)
{
case fmt_uninterpreted_32:
fmt = fmt_uninterpreted;
case fmt_single:
case fmt_word:
if (STATE_VERBOSE_P (SD))
sim_io_eprintf (SD,
"Warning: PC 0x%s: interp.c store_fpr DEADCODE\n",
pr_addr (cia));
FGR[fpr] = (((uword64) 0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
FPR_STATE[fpr] = fmt;
break;
case fmt_uninterpreted_64:
fmt = fmt_uninterpreted;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
FGR[fpr] = value;
FPR_STATE[fpr] = fmt;
break;
default:
FPR_STATE[fpr] = fmt_unknown;
err = -1;
break;
}
}
else
{
switch (fmt)
{
case fmt_uninterpreted_32:
fmt = fmt_uninterpreted;
case fmt_single:
case fmt_word:
FGR[fpr] = (value & 0xFFFFFFFF);
FPR_STATE[fpr] = fmt;
break;
case fmt_uninterpreted_64:
fmt = fmt_uninterpreted;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
if ((fpr & 1) == 0)
{
/* even register number only */
FGR[fpr+1] = (value >> 32);
FGR[fpr] = (value & 0xFFFFFFFF);
FPR_STATE[fpr + 1] = fmt;
FPR_STATE[fpr] = fmt;
}
else
{
FPR_STATE[fpr] = fmt_unknown;
FPR_STATE[fpr + 1] = fmt_unknown;
SignalException (ReservedInstruction, 0);
}
break;
default:
FPR_STATE[fpr] = fmt_unknown;
err = -1;
break;
}
}
if (err)
SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR ()");
#ifdef DEBUG
printf ("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",
fpr, pr_uword64 (FGR[fpr]), fpu_format_name (fmt));
#endif /* DEBUG */
return;
}
int
NaN (op, fmt)
uword64 op;
FP_formats fmt;
{
int boolean = 0;
switch (fmt)
{
case fmt_single:
case fmt_word:
{
sim_fpu wop;
sim_fpu_32to (&wop, op);
boolean = sim_fpu_is_nan (&wop);
break;
}
case fmt_double:
case fmt_long:
{
sim_fpu wop;
sim_fpu_64to (&wop, op);
boolean = sim_fpu_is_nan (&wop);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf ("DBG: NaN: returning %d for 0x%s (format = %s)\n",
boolean, pr_addr (op), fpu_format_name (fmt));
#endif /* DEBUG */
return (boolean);
}
int
Less (op1, op2, fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
int boolean = 0;
/* Argument checking already performed by the FPCOMPARE code */
#ifdef DEBUG
printf ("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",
fpu_format_name (fmt), pr_addr (op1), pr_addr (op2));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt)
{
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
boolean = sim_fpu_is_lt (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
boolean = sim_fpu_is_lt (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf ("DBG: Less: returning %d (format = %s)\n",
boolean, fpu_format_name (fmt));
#endif /* DEBUG */
return (boolean);
}
int
Equal (op1, op2, fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
int boolean = 0;
/* Argument checking already performed by the FPCOMPARE code */
#ifdef DEBUG
printf ("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",
fpu_format_name (fmt), pr_addr (op1), pr_addr (op2));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt)
{
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
boolean = sim_fpu_is_eq (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
boolean = sim_fpu_is_eq (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf ("DBG: Equal: returning %d (format = %s)\n",
boolean, fpu_format_name (fmt));
#endif /* DEBUG */
return (boolean);
}
/* Basic arithmetic operations. */
static unsigned64
fp_unary(sim_cpu *cpu,
address_word cia,
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *),
unsigned64 op,
FP_formats fmt)
{
sim_fpu wop;
sim_fpu ans;
unsigned64 result = 0;
/* The format type has already been checked: */
switch (fmt)
{
case fmt_single:
{
unsigned32 res;
sim_fpu_32to (&wop, op);
(*sim_fpu_op) (&ans, &wop);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
unsigned64 res;
sim_fpu_64to (&wop, op);
(*sim_fpu_op) (&ans, &wop);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
sim_io_eprintf (SD, "Bad switch\n");
abort ();
}
return result;
}
static unsigned64
fp_binary(sim_cpu *cpu,
address_word cia,
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
unsigned64 op1,
unsigned64 op2,
FP_formats fmt)
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned64 result = 0;
/* The format type has already been checked: */
switch (fmt)
{
case fmt_single:
{
unsigned32 res;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
(*sim_fpu_op) (&ans, &wop1, &wop2);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
unsigned64 res;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
(*sim_fpu_op) (&ans, &wop1, &wop2);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
sim_io_eprintf (SD, "Bad switch\n");
abort ();
}
return result;
}
unsigned64
fp_abs(sim_cpu *cpu,
address_word cia,
unsigned64 op,
FP_formats fmt)
{
return fp_unary(cpu, cia, &sim_fpu_abs, op, fmt);
}
unsigned64
fp_neg(sim_cpu *cpu,
address_word cia,
unsigned64 op,
FP_formats fmt)
{
return fp_unary(cpu, cia, &sim_fpu_neg, op, fmt);
}
unsigned64
fp_add(sim_cpu *cpu,
address_word cia,
unsigned64 op1,
unsigned64 op2,
FP_formats fmt)
{
return fp_binary(cpu, cia, &sim_fpu_add, op1, op2, fmt);
}
unsigned64
fp_sub(sim_cpu *cpu,
address_word cia,
unsigned64 op1,
unsigned64 op2,
FP_formats fmt)
{
return fp_binary(cpu, cia, &sim_fpu_sub, op1, op2, fmt);
}
unsigned64
fp_mul(sim_cpu *cpu,
address_word cia,
unsigned64 op1,
unsigned64 op2,
FP_formats fmt)
{
return fp_binary(cpu, cia, &sim_fpu_mul, op1, op2, fmt);
}
unsigned64
fp_div(sim_cpu *cpu,
address_word cia,
unsigned64 op1,
unsigned64 op2,
FP_formats fmt)
{
return fp_binary(cpu, cia, &sim_fpu_div, op1, op2, fmt);
}
unsigned64
fp_recip(sim_cpu *cpu,
address_word cia,
unsigned64 op,
FP_formats fmt)
{
return fp_unary(cpu, cia, &sim_fpu_inv, op, fmt);
}
unsigned64
fp_sqrt(sim_cpu *cpu,
address_word cia,
unsigned64 op,
FP_formats fmt)
{
return fp_unary(cpu, cia, &sim_fpu_sqrt, op, fmt);
}
uword64
convert (sim_cpu *cpu,
address_word cia,
int rm,
uword64 op,
FP_formats from,
FP_formats to)
{
sim_fpu wop;
sim_fpu_round round;
unsigned32 result32;
unsigned64 result64;
#ifdef DEBUG
#if 0 /* FIXME: doesn't compile */
printf ("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",
fpu_rounding_mode_name (rm), pr_addr (op), fpu_format_name (from),
fpu_format_name (to), pr_addr (IPC));
#endif
#endif /* DEBUG */
switch (rm)
{
case FP_RM_NEAREST:
/* Round result to nearest representable value. When two
representable values are equally near, round to the value
that has a least significant bit of zero (i.e. is even). */
round = sim_fpu_round_near;
break;
case FP_RM_TOZERO:
/* Round result to the value closest to, and not greater in
magnitude than, the result. */
round = sim_fpu_round_zero;
break;
case FP_RM_TOPINF:
/* Round result to the value closest to, and not less than,
the result. */
round = sim_fpu_round_up;
break;
case FP_RM_TOMINF:
/* Round result to the value closest to, and not greater than,
the result. */
round = sim_fpu_round_down;
break;
default:
round = 0;
fprintf (stderr, "Bad switch\n");
abort ();
}
/* Convert the input to sim_fpu internal format */
switch (from)
{
case fmt_double:
sim_fpu_64to (&wop, op);
break;
case fmt_single:
sim_fpu_32to (&wop, op);
break;
case fmt_word:
sim_fpu_i32to (&wop, op, round);
break;
case fmt_long:
sim_fpu_i64to (&wop, op, round);
break;
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
/* Convert sim_fpu format into the output */
/* The value WOP is converted to the destination format, rounding
using mode RM. When the destination is a fixed-point format, then
a source value of Infinity, NaN or one which would round to an
integer outside the fixed point range then an IEEE Invalid
Operation condition is raised. */
switch (to)
{
case fmt_single:
sim_fpu_round_32 (&wop, round, 0);
sim_fpu_to32 (&result32, &wop);
result64 = result32;
break;
case fmt_double:
sim_fpu_round_64 (&wop, round, 0);
sim_fpu_to64 (&result64, &wop);
break;
case fmt_word:
sim_fpu_to32i (&result32, &wop, round);
result64 = result32;
break;
case fmt_long:
sim_fpu_to64i (&result64, &wop, round);
break;
default:
result64 = 0;
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf ("DBG: Convert: returning 0x%s (to format = %s)\n",
pr_addr (result64), fpu_format_name (to));
#endif /* DEBUG */
return (result64);
}
static const char *
fpu_format_name (FP_formats fmt)
{
switch (fmt)
{
case fmt_single:
return "single";
case fmt_double:
return "double";
case fmt_word:
return "word";
case fmt_long:
return "long";
case fmt_unknown:
return "<unknown>";
case fmt_uninterpreted:
return "<uninterpreted>";
case fmt_uninterpreted_32:
return "<uninterpreted_32>";
case fmt_uninterpreted_64:
return "<uninterpreted_64>";
default:
return "<format error>";
}
}
#ifdef DEBUG
static const char *
fpu_rounding_mode_name (int rm)
{
switch (rm)
{
case FP_RM_NEAREST:
return "Round";
case FP_RM_TOZERO:
return "Trunc";
case FP_RM_TOPINF:
return "Ceil";
case FP_RM_TOMINF:
return "Floor";
default:
return "<rounding mode error>";
}
}
#endif /* DEBUG */