binutils-gdb/elfcpp/elfcpp.h
H.J. Lu febdfe65a8 Add chdr_size, Chdr, Chdr_write and Chdr_data
* elfcpp.h (Elf_sizes): Add chdr_size.
	(Chdr): New.
	(Chdr_write): Likewise.
	* elfcpp_internal.h (Chdr_data): Likewise.
2015-04-08 10:29:40 -07:00

2008 lines
50 KiB
C++

// elfcpp.h -- main header file for elfcpp -*- C++ -*-
// Copyright (C) 2006-2015 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of elfcpp.
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public License
// as published by the Free Software Foundation; either version 2, or
// (at your option) any later version.
// In addition to the permissions in the GNU Library General Public
// License, the Free Software Foundation gives you unlimited
// permission to link the compiled version of this file into
// combinations with other programs, and to distribute those
// combinations without any restriction coming from the use of this
// file. (The Library Public License restrictions do apply in other
// respects; for example, they cover modification of the file, and
// distribution when not linked into a combined executable.)
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
// You should have received a copy of the GNU Library General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
// 02110-1301, USA.
// This is the external interface for elfcpp.
#ifndef ELFCPP_H
#define ELFCPP_H
#include "elfcpp_swap.h"
#include <stdint.h>
namespace elfcpp
{
// Basic ELF types.
// These types are always the same size.
typedef uint16_t Elf_Half;
typedef uint32_t Elf_Word;
typedef int32_t Elf_Sword;
typedef uint64_t Elf_Xword;
typedef int64_t Elf_Sxword;
// These types vary in size depending on the ELF file class. The
// template parameter should be 32 or 64.
template<int size>
struct Elf_types;
template<>
struct Elf_types<32>
{
typedef uint32_t Elf_Addr;
typedef uint32_t Elf_Off;
typedef uint32_t Elf_WXword;
typedef int32_t Elf_Swxword;
};
template<>
struct Elf_types<64>
{
typedef uint64_t Elf_Addr;
typedef uint64_t Elf_Off;
typedef uint64_t Elf_WXword;
typedef int64_t Elf_Swxword;
};
// Offsets within the Ehdr e_ident field.
const int EI_MAG0 = 0;
const int EI_MAG1 = 1;
const int EI_MAG2 = 2;
const int EI_MAG3 = 3;
const int EI_CLASS = 4;
const int EI_DATA = 5;
const int EI_VERSION = 6;
const int EI_OSABI = 7;
const int EI_ABIVERSION = 8;
const int EI_PAD = 9;
const int EI_NIDENT = 16;
// The valid values found in Ehdr e_ident[EI_MAG0 through EI_MAG3].
const int ELFMAG0 = 0x7f;
const int ELFMAG1 = 'E';
const int ELFMAG2 = 'L';
const int ELFMAG3 = 'F';
// The valid values found in Ehdr e_ident[EI_CLASS].
enum
{
ELFCLASSNONE = 0,
ELFCLASS32 = 1,
ELFCLASS64 = 2
};
// The valid values found in Ehdr e_ident[EI_DATA].
enum
{
ELFDATANONE = 0,
ELFDATA2LSB = 1,
ELFDATA2MSB = 2
};
// The valid values found in Ehdr e_ident[EI_VERSION] and e_version.
enum
{
EV_NONE = 0,
EV_CURRENT = 1
};
// The valid values found in Ehdr e_ident[EI_OSABI].
enum ELFOSABI
{
ELFOSABI_NONE = 0,
ELFOSABI_HPUX = 1,
ELFOSABI_NETBSD = 2,
ELFOSABI_GNU = 3,
// ELFOSABI_LINUX is an alias for ELFOSABI_GNU.
ELFOSABI_LINUX = 3,
ELFOSABI_SOLARIS = 6,
ELFOSABI_AIX = 7,
ELFOSABI_IRIX = 8,
ELFOSABI_FREEBSD = 9,
ELFOSABI_TRU64 = 10,
ELFOSABI_MODESTO = 11,
ELFOSABI_OPENBSD = 12,
ELFOSABI_OPENVMS = 13,
ELFOSABI_NSK = 14,
ELFOSABI_AROS = 15,
// A GNU extension for the ARM.
ELFOSABI_ARM = 97,
// A GNU extension for the MSP.
ELFOSABI_STANDALONE = 255
};
// The valid values found in the Ehdr e_type field.
enum ET
{
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOOS = 0xfe00,
ET_HIOS = 0xfeff,
ET_LOPROC = 0xff00,
ET_HIPROC = 0xffff
};
// The valid values found in the Ehdr e_machine field.
enum EM
{
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
// 6 used to be EM_486
EM_860 = 7,
EM_MIPS = 8,
EM_S370 = 9,
EM_MIPS_RS3_LE = 10,
// 11 was the old Sparc V9 ABI.
// 12 through 14 are reserved.
EM_PARISC = 15,
// 16 is reserved.
// Some old PowerPC object files use 17.
EM_VPP500 = 17,
EM_SPARC32PLUS = 18,
EM_960 = 19,
EM_PPC = 20,
EM_PPC64 = 21,
EM_S390 = 22,
// 23 through 35 are served.
EM_V800 = 36,
EM_FR20 = 37,
EM_RH32 = 38,
EM_RCE = 39,
EM_ARM = 40,
EM_ALPHA = 41,
EM_SH = 42,
EM_SPARCV9 = 43,
EM_TRICORE = 44,
EM_ARC = 45,
EM_H8_300 = 46,
EM_H8_300H = 47,
EM_H8S = 48,
EM_H8_500 = 49,
EM_IA_64 = 50,
EM_MIPS_X = 51,
EM_COLDFIRE = 52,
EM_68HC12 = 53,
EM_MMA = 54,
EM_PCP = 55,
EM_NCPU = 56,
EM_NDR1 = 57,
EM_STARCORE = 58,
EM_ME16 = 59,
EM_ST100 = 60,
EM_TINYJ = 61,
EM_X86_64 = 62,
EM_PDSP = 63,
EM_PDP10 = 64,
EM_PDP11 = 65,
EM_FX66 = 66,
EM_ST9PLUS = 67,
EM_ST7 = 68,
EM_68HC16 = 69,
EM_68HC11 = 70,
EM_68HC08 = 71,
EM_68HC05 = 72,
EM_SVX = 73,
EM_ST19 = 74,
EM_VAX = 75,
EM_CRIS = 76,
EM_JAVELIN = 77,
EM_FIREPATH = 78,
EM_ZSP = 79,
EM_MMIX = 80,
EM_HUANY = 81,
EM_PRISM = 82,
EM_AVR = 83,
EM_FR30 = 84,
EM_D10V = 85,
EM_D30V = 86,
EM_V850 = 87,
EM_M32R = 88,
EM_MN10300 = 89,
EM_MN10200 = 90,
EM_PJ = 91,
EM_OR1K = 92,
EM_ARC_A5 = 93,
EM_XTENSA = 94,
EM_VIDEOCORE = 95,
EM_TMM_GPP = 96,
EM_NS32K = 97,
EM_TPC = 98,
// Some old picoJava object files use 99 (EM_PJ is correct).
EM_SNP1K = 99,
EM_ST200 = 100,
EM_IP2K = 101,
EM_MAX = 102,
EM_CR = 103,
EM_F2MC16 = 104,
EM_MSP430 = 105,
EM_BLACKFIN = 106,
EM_SE_C33 = 107,
EM_SEP = 108,
EM_ARCA = 109,
EM_UNICORE = 110,
EM_ALTERA_NIOS2 = 113,
EM_CRX = 114,
EM_AARCH64 = 183,
EM_TILEGX = 191,
// The Morph MT.
EM_MT = 0x2530,
// DLX.
EM_DLX = 0x5aa5,
// FRV.
EM_FRV = 0x5441,
// Infineon Technologies 16-bit microcontroller with C166-V2 core.
EM_X16X = 0x4688,
// Xstorym16
EM_XSTORMY16 = 0xad45,
// Renesas M32C
EM_M32C = 0xfeb0,
// Vitesse IQ2000
EM_IQ2000 = 0xfeba,
// NIOS
EM_NIOS32 = 0xfebb
// Old AVR objects used 0x1057 (EM_AVR is correct).
// Old MSP430 objects used 0x1059 (EM_MSP430 is correct).
// Old FR30 objects used 0x3330 (EM_FR30 is correct).
// Old OpenRISC objects used 0x3426 and 0x8472 (EM_OR1K is correct).
// Old D10V objects used 0x7650 (EM_D10V is correct).
// Old D30V objects used 0x7676 (EM_D30V is correct).
// Old IP2X objects used 0x8217 (EM_IP2K is correct).
// Old PowerPC objects used 0x9025 (EM_PPC is correct).
// Old Alpha objects used 0x9026 (EM_ALPHA is correct).
// Old M32R objects used 0x9041 (EM_M32R is correct).
// Old V850 objects used 0x9080 (EM_V850 is correct).
// Old S/390 objects used 0xa390 (EM_S390 is correct).
// Old Xtensa objects used 0xabc7 (EM_XTENSA is correct).
// Old MN10300 objects used 0xbeef (EM_MN10300 is correct).
// Old MN10200 objects used 0xdead (EM_MN10200 is correct).
};
// A special value found in the Ehdr e_phnum field.
enum
{
// Number of program segments stored in sh_info field of first
// section headre.
PN_XNUM = 0xffff
};
// Special section indices.
enum
{
SHN_UNDEF = 0,
SHN_LORESERVE = 0xff00,
SHN_LOPROC = 0xff00,
SHN_HIPROC = 0xff1f,
SHN_LOOS = 0xff20,
SHN_HIOS = 0xff3f,
SHN_ABS = 0xfff1,
SHN_COMMON = 0xfff2,
SHN_XINDEX = 0xffff,
SHN_HIRESERVE = 0xffff,
// Provide for initial and final section ordering in conjunction
// with the SHF_LINK_ORDER and SHF_ORDERED section flags.
SHN_BEFORE = 0xff00,
SHN_AFTER = 0xff01,
// x86_64 specific large common symbol.
SHN_X86_64_LCOMMON = 0xff02
};
// The valid values found in the Shdr sh_type field.
enum SHT
{
SHT_NULL = 0,
SHT_PROGBITS = 1,
SHT_SYMTAB = 2,
SHT_STRTAB = 3,
SHT_RELA = 4,
SHT_HASH = 5,
SHT_DYNAMIC = 6,
SHT_NOTE = 7,
SHT_NOBITS = 8,
SHT_REL = 9,
SHT_SHLIB = 10,
SHT_DYNSYM = 11,
SHT_INIT_ARRAY = 14,
SHT_FINI_ARRAY = 15,
SHT_PREINIT_ARRAY = 16,
SHT_GROUP = 17,
SHT_SYMTAB_SHNDX = 18,
SHT_LOOS = 0x60000000,
SHT_HIOS = 0x6fffffff,
SHT_LOPROC = 0x70000000,
SHT_HIPROC = 0x7fffffff,
SHT_LOUSER = 0x80000000,
SHT_HIUSER = 0xffffffff,
// The remaining values are not in the standard.
// Incremental build data.
SHT_GNU_INCREMENTAL_INPUTS = 0x6fff4700,
SHT_GNU_INCREMENTAL_SYMTAB = 0x6fff4701,
SHT_GNU_INCREMENTAL_RELOCS = 0x6fff4702,
SHT_GNU_INCREMENTAL_GOT_PLT = 0x6fff4703,
// Object attributes.
SHT_GNU_ATTRIBUTES = 0x6ffffff5,
// GNU style dynamic hash table.
SHT_GNU_HASH = 0x6ffffff6,
// List of prelink dependencies.
SHT_GNU_LIBLIST = 0x6ffffff7,
// Versions defined by file.
SHT_SUNW_verdef = 0x6ffffffd,
SHT_GNU_verdef = 0x6ffffffd,
// Versions needed by file.
SHT_SUNW_verneed = 0x6ffffffe,
SHT_GNU_verneed = 0x6ffffffe,
// Symbol versions,
SHT_SUNW_versym = 0x6fffffff,
SHT_GNU_versym = 0x6fffffff,
SHT_SPARC_GOTDATA = 0x70000000,
// ARM-specific section types.
// Exception Index table.
SHT_ARM_EXIDX = 0x70000001,
// BPABI DLL dynamic linking pre-emption map.
SHT_ARM_PREEMPTMAP = 0x70000002,
// Object file compatibility attributes.
SHT_ARM_ATTRIBUTES = 0x70000003,
// Support for debugging overlaid programs.
SHT_ARM_DEBUGOVERLAY = 0x70000004,
SHT_ARM_OVERLAYSECTION = 0x70000005,
// x86_64 unwind information.
SHT_X86_64_UNWIND = 0x70000001,
// MIPS-specific section types.
// Section contains register usage information.
SHT_MIPS_REGINFO = 0x70000006,
// Section contains miscellaneous options.
SHT_MIPS_OPTIONS = 0x7000000d,
// AARCH64-specific section type.
SHT_AARCH64_ATTRIBUTES = 0x70000003,
// Link editor is to sort the entries in this section based on the
// address specified in the associated symbol table entry.
SHT_ORDERED = 0x7fffffff
};
// The valid bit flags found in the Shdr sh_flags field.
enum SHF
{
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MERGE = 0x10,
SHF_STRINGS = 0x20,
SHF_INFO_LINK = 0x40,
SHF_LINK_ORDER = 0x80,
SHF_OS_NONCONFORMING = 0x100,
SHF_GROUP = 0x200,
SHF_TLS = 0x400,
SHF_COMPRESSED = 0x800,
SHF_MASKOS = 0x0ff00000,
SHF_MASKPROC = 0xf0000000,
// Indicates this section requires ordering in relation to
// other sections of the same type. Ordered sections are
// combined within the section pointed to by the sh_link entry.
// The sh_info values SHN_BEFORE and SHN_AFTER imply that the
// sorted section is to precede or follow, respectively, all
// other sections in the set being ordered.
SHF_ORDERED = 0x40000000,
// This section is excluded from input to the link-edit of an
// executable or shared object. This flag is ignored if SHF_ALLOC
// is also set, or if relocations exist against the section.
SHF_EXCLUDE = 0x80000000,
// Section with data that is GP relative addressable.
SHF_MIPS_GPREL = 0x10000000,
// x86_64 specific large section.
SHF_X86_64_LARGE = 0x10000000
};
// Values which appear in the first Elf_WXword of the section data
// of a SHF_COMPRESSED section.
enum
{
ELFCOMPRESS_ZLIB = 1,
ELFCOMPRESS_LOOS = 0x60000000,
ELFCOMPRESS_HIOS = 0x6fffffff,
ELFCOMPRESS_LOPROC = 0x70000000,
ELFCOMPRESS_HIPROC = 0x7fffffff,
};
// Bit flags which appear in the first 32-bit word of the section data
// of a SHT_GROUP section.
enum
{
GRP_COMDAT = 0x1,
GRP_MASKOS = 0x0ff00000,
GRP_MASKPROC = 0xf0000000
};
// The valid values found in the Phdr p_type field.
enum PT
{
PT_NULL = 0,
PT_LOAD = 1,
PT_DYNAMIC = 2,
PT_INTERP = 3,
PT_NOTE = 4,
PT_SHLIB = 5,
PT_PHDR = 6,
PT_TLS = 7,
PT_LOOS = 0x60000000,
PT_HIOS = 0x6fffffff,
PT_LOPROC = 0x70000000,
PT_HIPROC = 0x7fffffff,
// The remaining values are not in the standard.
// Frame unwind information.
PT_GNU_EH_FRAME = 0x6474e550,
PT_SUNW_EH_FRAME = 0x6474e550,
// Stack flags.
PT_GNU_STACK = 0x6474e551,
// Read only after relocation.
PT_GNU_RELRO = 0x6474e552,
// Platform architecture compatibility information
PT_ARM_ARCHEXT = 0x70000000,
// Exception unwind tables
PT_ARM_EXIDX = 0x70000001,
// Register usage information. Identifies one .reginfo section.
PT_MIPS_REGINFO =0x70000000,
// Runtime procedure table.
PT_MIPS_RTPROC = 0x70000001,
// .MIPS.options section.
PT_MIPS_OPTIONS = 0x70000002,
// .MIPS.abiflags section.
PT_MIPS_ABIFLAGS = 0x70000003,
// Platform architecture compatibility information
PT_AARCH64_ARCHEXT = 0x70000000,
// Exception unwind tables
PT_AARCH64_UNWIND = 0x70000001
};
// The valid bit flags found in the Phdr p_flags field.
enum PF
{
PF_X = 0x1,
PF_W = 0x2,
PF_R = 0x4,
PF_MASKOS = 0x0ff00000,
PF_MASKPROC = 0xf0000000
};
// Symbol binding from Sym st_info field.
enum STB
{
STB_LOCAL = 0,
STB_GLOBAL = 1,
STB_WEAK = 2,
STB_LOOS = 10,
STB_GNU_UNIQUE = 10,
STB_HIOS = 12,
STB_LOPROC = 13,
STB_HIPROC = 15
};
// Symbol types from Sym st_info field.
enum STT
{
STT_NOTYPE = 0,
STT_OBJECT = 1,
STT_FUNC = 2,
STT_SECTION = 3,
STT_FILE = 4,
STT_COMMON = 5,
STT_TLS = 6,
// GNU extension: symbol value points to a function which is called
// at runtime to determine the final value of the symbol.
STT_GNU_IFUNC = 10,
STT_LOOS = 10,
STT_HIOS = 12,
STT_LOPROC = 13,
STT_HIPROC = 15,
// The section type that must be used for register symbols on
// Sparc. These symbols initialize a global register.
STT_SPARC_REGISTER = 13,
// ARM: a THUMB function. This is not defined in ARM ELF Specification but
// used by the GNU tool-chain.
STT_ARM_TFUNC = 13
};
inline STB
elf_st_bind(unsigned char info)
{
return static_cast<STB>(info >> 4);
}
inline STT
elf_st_type(unsigned char info)
{
return static_cast<STT>(info & 0xf);
}
inline unsigned char
elf_st_info(STB bind, STT type)
{
return ((static_cast<unsigned char>(bind) << 4)
+ (static_cast<unsigned char>(type) & 0xf));
}
// Symbol visibility from Sym st_other field.
enum STV
{
STV_DEFAULT = 0,
STV_INTERNAL = 1,
STV_HIDDEN = 2,
STV_PROTECTED = 3
};
inline STV
elf_st_visibility(unsigned char other)
{
return static_cast<STV>(other & 0x3);
}
inline unsigned char
elf_st_nonvis(unsigned char other)
{
return static_cast<STV>(other >> 2);
}
inline unsigned char
elf_st_other(STV vis, unsigned char nonvis)
{
return ((nonvis << 2)
+ (static_cast<unsigned char>(vis) & 3));
}
// Reloc information from Rel/Rela r_info field.
template<int size>
unsigned int
elf_r_sym(typename Elf_types<size>::Elf_WXword);
template<>
inline unsigned int
elf_r_sym<32>(Elf_Word v)
{
return v >> 8;
}
template<>
inline unsigned int
elf_r_sym<64>(Elf_Xword v)
{
return v >> 32;
}
template<int size>
unsigned int
elf_r_type(typename Elf_types<size>::Elf_WXword);
template<>
inline unsigned int
elf_r_type<32>(Elf_Word v)
{
return v & 0xff;
}
template<>
inline unsigned int
elf_r_type<64>(Elf_Xword v)
{
return v & 0xffffffff;
}
template<int size>
typename Elf_types<size>::Elf_WXword
elf_r_info(unsigned int s, unsigned int t);
template<>
inline Elf_Word
elf_r_info<32>(unsigned int s, unsigned int t)
{
return (s << 8) + (t & 0xff);
}
template<>
inline Elf_Xword
elf_r_info<64>(unsigned int s, unsigned int t)
{
return (static_cast<Elf_Xword>(s) << 32) + (t & 0xffffffff);
}
// Dynamic tags found in the PT_DYNAMIC segment.
enum DT
{
DT_NULL = 0,
DT_NEEDED = 1,
DT_PLTRELSZ = 2,
DT_PLTGOT = 3,
DT_HASH = 4,
DT_STRTAB = 5,
DT_SYMTAB = 6,
DT_RELA = 7,
DT_RELASZ = 8,
DT_RELAENT = 9,
DT_STRSZ = 10,
DT_SYMENT = 11,
DT_INIT = 12,
DT_FINI = 13,
DT_SONAME = 14,
DT_RPATH = 15,
DT_SYMBOLIC = 16,
DT_REL = 17,
DT_RELSZ = 18,
DT_RELENT = 19,
DT_PLTREL = 20,
DT_DEBUG = 21,
DT_TEXTREL = 22,
DT_JMPREL = 23,
DT_BIND_NOW = 24,
DT_INIT_ARRAY = 25,
DT_FINI_ARRAY = 26,
DT_INIT_ARRAYSZ = 27,
DT_FINI_ARRAYSZ = 28,
DT_RUNPATH = 29,
DT_FLAGS = 30,
// This is used to mark a range of dynamic tags. It is not really
// a tag value.
DT_ENCODING = 32,
DT_PREINIT_ARRAY = 32,
DT_PREINIT_ARRAYSZ = 33,
DT_LOOS = 0x6000000d,
DT_HIOS = 0x6ffff000,
DT_LOPROC = 0x70000000,
DT_HIPROC = 0x7fffffff,
// The remaining values are extensions used by GNU or Solaris.
DT_VALRNGLO = 0x6ffffd00,
DT_GNU_PRELINKED = 0x6ffffdf5,
DT_GNU_CONFLICTSZ = 0x6ffffdf6,
DT_GNU_LIBLISTSZ = 0x6ffffdf7,
DT_CHECKSUM = 0x6ffffdf8,
DT_PLTPADSZ = 0x6ffffdf9,
DT_MOVEENT = 0x6ffffdfa,
DT_MOVESZ = 0x6ffffdfb,
DT_FEATURE = 0x6ffffdfc,
DT_POSFLAG_1 = 0x6ffffdfd,
DT_SYMINSZ = 0x6ffffdfe,
DT_SYMINENT = 0x6ffffdff,
DT_VALRNGHI = 0x6ffffdff,
DT_ADDRRNGLO = 0x6ffffe00,
DT_GNU_HASH = 0x6ffffef5,
DT_TLSDESC_PLT = 0x6ffffef6,
DT_TLSDESC_GOT = 0x6ffffef7,
DT_GNU_CONFLICT = 0x6ffffef8,
DT_GNU_LIBLIST = 0x6ffffef9,
DT_CONFIG = 0x6ffffefa,
DT_DEPAUDIT = 0x6ffffefb,
DT_AUDIT = 0x6ffffefc,
DT_PLTPAD = 0x6ffffefd,
DT_MOVETAB = 0x6ffffefe,
DT_SYMINFO = 0x6ffffeff,
DT_ADDRRNGHI = 0x6ffffeff,
DT_RELACOUNT = 0x6ffffff9,
DT_RELCOUNT = 0x6ffffffa,
DT_FLAGS_1 = 0x6ffffffb,
DT_VERDEF = 0x6ffffffc,
DT_VERDEFNUM = 0x6ffffffd,
DT_VERNEED = 0x6ffffffe,
DT_VERNEEDNUM = 0x6fffffff,
DT_VERSYM = 0x6ffffff0,
// Specify the value of _GLOBAL_OFFSET_TABLE_.
DT_PPC_GOT = 0x70000000,
// Specify the start of the .glink section.
DT_PPC64_GLINK = 0x70000000,
// Specify the start and size of the .opd section.
DT_PPC64_OPD = 0x70000001,
DT_PPC64_OPDSZ = 0x70000002,
// The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB
// symbol table. One dynamic entry exists for every STT_SPARC_REGISTER
// symbol in the symbol table.
DT_SPARC_REGISTER = 0x70000001,
// MIPS specific dynamic array tags.
// 32 bit version number for runtime linker interface.
DT_MIPS_RLD_VERSION = 0x70000001,
// Time stamp.
DT_MIPS_TIME_STAMP = 0x70000002,
// Checksum of external strings and common sizes.
DT_MIPS_ICHECKSUM = 0x70000003,
// Index of version string in string table.
DT_MIPS_IVERSION = 0x70000004,
// 32 bits of flags.
DT_MIPS_FLAGS = 0x70000005,
// Base address of the segment.
DT_MIPS_BASE_ADDRESS = 0x70000006,
// ???
DT_MIPS_MSYM = 0x70000007,
// Address of .conflict section.
DT_MIPS_CONFLICT = 0x70000008,
// Address of .liblist section.
DT_MIPS_LIBLIST = 0x70000009,
// Number of local global offset table entries.
DT_MIPS_LOCAL_GOTNO = 0x7000000a,
// Number of entries in the .conflict section.
DT_MIPS_CONFLICTNO = 0x7000000b,
// Number of entries in the .liblist section.
DT_MIPS_LIBLISTNO = 0x70000010,
// Number of entries in the .dynsym section.
DT_MIPS_SYMTABNO = 0x70000011,
// Index of first external dynamic symbol not referenced locally.
DT_MIPS_UNREFEXTNO = 0x70000012,
// Index of first dynamic symbol in global offset table.
DT_MIPS_GOTSYM = 0x70000013,
// Number of page table entries in global offset table.
DT_MIPS_HIPAGENO = 0x70000014,
// Address of run time loader map, used for debugging.
DT_MIPS_RLD_MAP = 0x70000016,
// Delta C++ class definition.
DT_MIPS_DELTA_CLASS = 0x70000017,
// Number of entries in DT_MIPS_DELTA_CLASS.
DT_MIPS_DELTA_CLASS_NO = 0x70000018,
// Delta C++ class instances.
DT_MIPS_DELTA_INSTANCE = 0x70000019,
// Number of entries in DT_MIPS_DELTA_INSTANCE.
DT_MIPS_DELTA_INSTANCE_NO = 0x7000001a,
// Delta relocations.
DT_MIPS_DELTA_RELOC = 0x7000001b,
// Number of entries in DT_MIPS_DELTA_RELOC.
DT_MIPS_DELTA_RELOC_NO = 0x7000001c,
// Delta symbols that Delta relocations refer to.
DT_MIPS_DELTA_SYM = 0x7000001d,
// Number of entries in DT_MIPS_DELTA_SYM.
DT_MIPS_DELTA_SYM_NO = 0x7000001e,
// Delta symbols that hold class declarations.
DT_MIPS_DELTA_CLASSSYM = 0x70000020,
// Number of entries in DT_MIPS_DELTA_CLASSSYM.
DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021,
// Flags indicating information about C++ flavor.
DT_MIPS_CXX_FLAGS = 0x70000022,
// Pixie information (???).
DT_MIPS_PIXIE_INIT = 0x70000023,
// Address of .MIPS.symlib
DT_MIPS_SYMBOL_LIB = 0x70000024,
// The GOT index of the first PTE for a segment
DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025,
// The GOT index of the first PTE for a local symbol
DT_MIPS_LOCAL_GOTIDX = 0x70000026,
// The GOT index of the first PTE for a hidden symbol
DT_MIPS_HIDDEN_GOTIDX = 0x70000027,
// The GOT index of the first PTE for a protected symbol
DT_MIPS_PROTECTED_GOTIDX = 0x70000028,
// Address of `.MIPS.options'.
DT_MIPS_OPTIONS = 0x70000029,
// Address of `.interface'.
DT_MIPS_INTERFACE = 0x7000002a,
// ???
DT_MIPS_DYNSTR_ALIGN = 0x7000002b,
// Size of the .interface section.
DT_MIPS_INTERFACE_SIZE = 0x7000002c,
// Size of rld_text_resolve function stored in the GOT.
DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002d,
// Default suffix of DSO to be added by rld on dlopen() calls.
DT_MIPS_PERF_SUFFIX = 0x7000002e,
// Size of compact relocation section (O32).
DT_MIPS_COMPACT_SIZE = 0x7000002f,
// GP value for auxiliary GOTs.
DT_MIPS_GP_VALUE = 0x70000030,
// Address of auxiliary .dynamic.
DT_MIPS_AUX_DYNAMIC = 0x70000031,
// Address of the base of the PLTGOT.
DT_MIPS_PLTGOT = 0x70000032,
// Points to the base of a writable PLT.
DT_MIPS_RWPLT = 0x70000034,
DT_AUXILIARY = 0x7ffffffd,
DT_USED = 0x7ffffffe,
DT_FILTER = 0x7fffffff
};
// Flags found in the DT_FLAGS dynamic element.
enum DF
{
DF_ORIGIN = 0x1,
DF_SYMBOLIC = 0x2,
DF_TEXTREL = 0x4,
DF_BIND_NOW = 0x8,
DF_STATIC_TLS = 0x10
};
// Flags found in the DT_FLAGS_1 dynamic element.
enum DF_1
{
DF_1_NOW = 0x1,
DF_1_GLOBAL = 0x2,
DF_1_GROUP = 0x4,
DF_1_NODELETE = 0x8,
DF_1_LOADFLTR = 0x10,
DF_1_INITFIRST = 0x20,
DF_1_NOOPEN = 0x40,
DF_1_ORIGIN = 0x80,
DF_1_DIRECT = 0x100,
DF_1_TRANS = 0x200,
DF_1_INTERPOSE = 0x400,
DF_1_NODEFLIB = 0x800,
DF_1_NODUMP = 0x1000,
DF_1_CONLFAT = 0x2000
};
// Version numbers which appear in the vd_version field of a Verdef
// structure.
const int VER_DEF_NONE = 0;
const int VER_DEF_CURRENT = 1;
// Version numbers which appear in the vn_version field of a Verneed
// structure.
const int VER_NEED_NONE = 0;
const int VER_NEED_CURRENT = 1;
// Bit flags which appear in vd_flags of Verdef and vna_flags of
// Vernaux.
const int VER_FLG_BASE = 0x1;
const int VER_FLG_WEAK = 0x2;
const int VER_FLG_INFO = 0x4;
// Special constants found in the SHT_GNU_versym entries.
const int VER_NDX_LOCAL = 0;
const int VER_NDX_GLOBAL = 1;
// A SHT_GNU_versym section holds 16-bit words. This bit is set if
// the symbol is hidden and can only be seen when referenced using an
// explicit version number. This is a GNU extension.
const int VERSYM_HIDDEN = 0x8000;
// This is the mask for the rest of the data in a word read from a
// SHT_GNU_versym section.
const int VERSYM_VERSION = 0x7fff;
// Note descriptor type codes for notes in a non-core file with an
// empty name.
enum
{
// A version string.
NT_VERSION = 1,
// An architecture string.
NT_ARCH = 2
};
// Note descriptor type codes for notes in a non-core file with the
// name "GNU".
enum
{
// The minimum ABI level. This is used by the dynamic linker to
// describe the minimal kernel version on which a shared library may
// be used. Th value should be four words. Word 0 is an OS
// descriptor (see below). Word 1 is the major version of the ABI.
// Word 2 is the minor version. Word 3 is the subminor version.
NT_GNU_ABI_TAG = 1,
// Hardware capabilities information. Word 0 is the number of
// entries. Word 1 is a bitmask of enabled entries. The rest of
// the descriptor is a series of entries, where each entry is a
// single byte followed by a nul terminated string. The byte gives
// the bit number to test if enabled in the bitmask.
NT_GNU_HWCAP = 2,
// The build ID as set by the linker's --build-id option. The
// format of the descriptor depends on the build ID style.
NT_GNU_BUILD_ID = 3,
// The version of gold used to link. Th descriptor is just a
// string.
NT_GNU_GOLD_VERSION = 4
};
// The OS values which may appear in word 0 of a NT_GNU_ABI_TAG note.
enum
{
ELF_NOTE_OS_LINUX = 0,
ELF_NOTE_OS_GNU = 1,
ELF_NOTE_OS_SOLARIS2 = 2,
ELF_NOTE_OS_FREEBSD = 3,
ELF_NOTE_OS_NETBSD = 4,
ELF_NOTE_OS_SYLLABLE = 5
};
} // End namespace elfcpp.
// Include internal details after defining the types.
#include "elfcpp_internal.h"
namespace elfcpp
{
// The offset of the ELF file header in the ELF file.
const int file_header_offset = 0;
// ELF structure sizes.
template<int size>
struct Elf_sizes
{
// Size of ELF file header.
static const int ehdr_size = sizeof(internal::Ehdr_data<size>);
// Size of ELF segment header.
static const int phdr_size = sizeof(internal::Phdr_data<size>);
// Size of ELF section header.
static const int shdr_size = sizeof(internal::Shdr_data<size>);
// Size of ELF compression header.
static const int chdr_size = sizeof(internal::Chdr_data<size>);
// Size of ELF symbol table entry.
static const int sym_size = sizeof(internal::Sym_data<size>);
// Sizes of ELF reloc entries.
static const int rel_size = sizeof(internal::Rel_data<size>);
static const int rela_size = sizeof(internal::Rela_data<size>);
// Size of ELF dynamic entry.
static const int dyn_size = sizeof(internal::Dyn_data<size>);
// Size of ELF version structures.
static const int verdef_size = sizeof(internal::Verdef_data);
static const int verdaux_size = sizeof(internal::Verdaux_data);
static const int verneed_size = sizeof(internal::Verneed_data);
static const int vernaux_size = sizeof(internal::Vernaux_data);
};
// Accessor class for the ELF file header.
template<int size, bool big_endian>
class Ehdr
{
public:
Ehdr(const unsigned char* p)
: p_(reinterpret_cast<const internal::Ehdr_data<size>*>(p))
{ }
template<typename File>
Ehdr(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Ehdr_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
const unsigned char*
get_e_ident() const
{ return this->p_->e_ident; }
Elf_Half
get_e_type() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_type); }
Elf_Half
get_e_machine() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_machine); }
Elf_Word
get_e_version() const
{ return Convert<32, big_endian>::convert_host(this->p_->e_version); }
typename Elf_types<size>::Elf_Addr
get_e_entry() const
{ return Convert<size, big_endian>::convert_host(this->p_->e_entry); }
typename Elf_types<size>::Elf_Off
get_e_phoff() const
{ return Convert<size, big_endian>::convert_host(this->p_->e_phoff); }
typename Elf_types<size>::Elf_Off
get_e_shoff() const
{ return Convert<size, big_endian>::convert_host(this->p_->e_shoff); }
Elf_Word
get_e_flags() const
{ return Convert<32, big_endian>::convert_host(this->p_->e_flags); }
Elf_Half
get_e_ehsize() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_ehsize); }
Elf_Half
get_e_phentsize() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_phentsize); }
Elf_Half
get_e_phnum() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_phnum); }
Elf_Half
get_e_shentsize() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_shentsize); }
Elf_Half
get_e_shnum() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_shnum); }
Elf_Half
get_e_shstrndx() const
{ return Convert<16, big_endian>::convert_host(this->p_->e_shstrndx); }
private:
const internal::Ehdr_data<size>* p_;
};
// Write class for the ELF file header.
template<int size, bool big_endian>
class Ehdr_write
{
public:
Ehdr_write(unsigned char* p)
: p_(reinterpret_cast<internal::Ehdr_data<size>*>(p))
{ }
void
put_e_ident(const unsigned char v[EI_NIDENT]) const
{ memcpy(this->p_->e_ident, v, EI_NIDENT); }
void
put_e_type(Elf_Half v)
{ this->p_->e_type = Convert<16, big_endian>::convert_host(v); }
void
put_e_machine(Elf_Half v)
{ this->p_->e_machine = Convert<16, big_endian>::convert_host(v); }
void
put_e_version(Elf_Word v)
{ this->p_->e_version = Convert<32, big_endian>::convert_host(v); }
void
put_e_entry(typename Elf_types<size>::Elf_Addr v)
{ this->p_->e_entry = Convert<size, big_endian>::convert_host(v); }
void
put_e_phoff(typename Elf_types<size>::Elf_Off v)
{ this->p_->e_phoff = Convert<size, big_endian>::convert_host(v); }
void
put_e_shoff(typename Elf_types<size>::Elf_Off v)
{ this->p_->e_shoff = Convert<size, big_endian>::convert_host(v); }
void
put_e_flags(Elf_Word v)
{ this->p_->e_flags = Convert<32, big_endian>::convert_host(v); }
void
put_e_ehsize(Elf_Half v)
{ this->p_->e_ehsize = Convert<16, big_endian>::convert_host(v); }
void
put_e_phentsize(Elf_Half v)
{ this->p_->e_phentsize = Convert<16, big_endian>::convert_host(v); }
void
put_e_phnum(Elf_Half v)
{ this->p_->e_phnum = Convert<16, big_endian>::convert_host(v); }
void
put_e_shentsize(Elf_Half v)
{ this->p_->e_shentsize = Convert<16, big_endian>::convert_host(v); }
void
put_e_shnum(Elf_Half v)
{ this->p_->e_shnum = Convert<16, big_endian>::convert_host(v); }
void
put_e_shstrndx(Elf_Half v)
{ this->p_->e_shstrndx = Convert<16, big_endian>::convert_host(v); }
private:
internal::Ehdr_data<size>* p_;
};
// Accessor class for an ELF section header.
template<int size, bool big_endian>
class Shdr
{
public:
Shdr(const unsigned char* p)
: p_(reinterpret_cast<const internal::Shdr_data<size>*>(p))
{ }
template<typename File>
Shdr(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Shdr_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Word
get_sh_name() const
{ return Convert<32, big_endian>::convert_host(this->p_->sh_name); }
Elf_Word
get_sh_type() const
{ return Convert<32, big_endian>::convert_host(this->p_->sh_type); }
typename Elf_types<size>::Elf_WXword
get_sh_flags() const
{ return Convert<size, big_endian>::convert_host(this->p_->sh_flags); }
typename Elf_types<size>::Elf_Addr
get_sh_addr() const
{ return Convert<size, big_endian>::convert_host(this->p_->sh_addr); }
typename Elf_types<size>::Elf_Off
get_sh_offset() const
{ return Convert<size, big_endian>::convert_host(this->p_->sh_offset); }
typename Elf_types<size>::Elf_WXword
get_sh_size() const
{ return Convert<size, big_endian>::convert_host(this->p_->sh_size); }
Elf_Word
get_sh_link() const
{ return Convert<32, big_endian>::convert_host(this->p_->sh_link); }
Elf_Word
get_sh_info() const
{ return Convert<32, big_endian>::convert_host(this->p_->sh_info); }
typename Elf_types<size>::Elf_WXword
get_sh_addralign() const
{ return
Convert<size, big_endian>::convert_host(this->p_->sh_addralign); }
typename Elf_types<size>::Elf_WXword
get_sh_entsize() const
{ return Convert<size, big_endian>::convert_host(this->p_->sh_entsize); }
private:
const internal::Shdr_data<size>* p_;
};
// Write class for an ELF section header.
template<int size, bool big_endian>
class Shdr_write
{
public:
Shdr_write(unsigned char* p)
: p_(reinterpret_cast<internal::Shdr_data<size>*>(p))
{ }
void
put_sh_name(Elf_Word v)
{ this->p_->sh_name = Convert<32, big_endian>::convert_host(v); }
void
put_sh_type(Elf_Word v)
{ this->p_->sh_type = Convert<32, big_endian>::convert_host(v); }
void
put_sh_flags(typename Elf_types<size>::Elf_WXword v)
{ this->p_->sh_flags = Convert<size, big_endian>::convert_host(v); }
void
put_sh_addr(typename Elf_types<size>::Elf_Addr v)
{ this->p_->sh_addr = Convert<size, big_endian>::convert_host(v); }
void
put_sh_offset(typename Elf_types<size>::Elf_Off v)
{ this->p_->sh_offset = Convert<size, big_endian>::convert_host(v); }
void
put_sh_size(typename Elf_types<size>::Elf_WXword v)
{ this->p_->sh_size = Convert<size, big_endian>::convert_host(v); }
void
put_sh_link(Elf_Word v)
{ this->p_->sh_link = Convert<32, big_endian>::convert_host(v); }
void
put_sh_info(Elf_Word v)
{ this->p_->sh_info = Convert<32, big_endian>::convert_host(v); }
void
put_sh_addralign(typename Elf_types<size>::Elf_WXword v)
{ this->p_->sh_addralign = Convert<size, big_endian>::convert_host(v); }
void
put_sh_entsize(typename Elf_types<size>::Elf_WXword v)
{ this->p_->sh_entsize = Convert<size, big_endian>::convert_host(v); }
private:
internal::Shdr_data<size>* p_;
};
// Accessor class for an ELF compression header.
template<int size, bool big_endian>
class Chdr
{
public:
Chdr(const unsigned char* p)
: p_(reinterpret_cast<const internal::Chdr_data<size>*>(p))
{ }
template<typename File>
Chdr(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Chdr_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
typename Elf_types<size>::Elf_WXword
get_ch_type() const
{ return Convert<size, big_endian>::convert_host(this->p_->ch_type); }
typename Elf_types<size>::Elf_WXword
get_ch_size() const
{ return Convert<size, big_endian>::convert_host(this->p_->ch_size); }
typename Elf_types<size>::Elf_WXword
get_ch_addralign() const
{ return
Convert<size, big_endian>::convert_host(this->p_->ch_addralign); }
private:
const internal::Chdr_data<size>* p_;
};
// Write class for an ELF compression header.
template<int size, bool big_endian>
class Chdr_write
{
public:
Chdr_write(unsigned char* p)
: p_(reinterpret_cast<internal::Chdr_data<size>*>(p))
{ }
void
put_ch_type(typename Elf_types<size>::Elf_WXword v)
{ this->p_->ch_type = Convert<size, big_endian>::convert_host(v); }
void
put_ch_size(typename Elf_types<size>::Elf_WXword v)
{ this->p_->ch_size = Convert<size, big_endian>::convert_host(v); }
void
put_ch_addralign(typename Elf_types<size>::Elf_WXword v)
{ this->p_->ch_addralign = Convert<size, big_endian>::convert_host(v); }
private:
internal::Chdr_data<size>* p_;
};
// Accessor class for an ELF segment header.
template<int size, bool big_endian>
class Phdr
{
public:
Phdr(const unsigned char* p)
: p_(reinterpret_cast<const internal::Phdr_data<size>*>(p))
{ }
template<typename File>
Phdr(File* file, typename File::Location loc)
: p_(reinterpret_cast<internal::Phdr_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Word
get_p_type() const
{ return Convert<32, big_endian>::convert_host(this->p_->p_type); }
typename Elf_types<size>::Elf_Off
get_p_offset() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_offset); }
typename Elf_types<size>::Elf_Addr
get_p_vaddr() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_vaddr); }
typename Elf_types<size>::Elf_Addr
get_p_paddr() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_paddr); }
typename Elf_types<size>::Elf_WXword
get_p_filesz() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_filesz); }
typename Elf_types<size>::Elf_WXword
get_p_memsz() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_memsz); }
Elf_Word
get_p_flags() const
{ return Convert<32, big_endian>::convert_host(this->p_->p_flags); }
typename Elf_types<size>::Elf_WXword
get_p_align() const
{ return Convert<size, big_endian>::convert_host(this->p_->p_align); }
private:
const internal::Phdr_data<size>* p_;
};
// Write class for an ELF segment header.
template<int size, bool big_endian>
class Phdr_write
{
public:
Phdr_write(unsigned char* p)
: p_(reinterpret_cast<internal::Phdr_data<size>*>(p))
{ }
void
put_p_type(Elf_Word v)
{ this->p_->p_type = Convert<32, big_endian>::convert_host(v); }
void
put_p_offset(typename Elf_types<size>::Elf_Off v)
{ this->p_->p_offset = Convert<size, big_endian>::convert_host(v); }
void
put_p_vaddr(typename Elf_types<size>::Elf_Addr v)
{ this->p_->p_vaddr = Convert<size, big_endian>::convert_host(v); }
void
put_p_paddr(typename Elf_types<size>::Elf_Addr v)
{ this->p_->p_paddr = Convert<size, big_endian>::convert_host(v); }
void
put_p_filesz(typename Elf_types<size>::Elf_WXword v)
{ this->p_->p_filesz = Convert<size, big_endian>::convert_host(v); }
void
put_p_memsz(typename Elf_types<size>::Elf_WXword v)
{ this->p_->p_memsz = Convert<size, big_endian>::convert_host(v); }
void
put_p_flags(Elf_Word v)
{ this->p_->p_flags = Convert<32, big_endian>::convert_host(v); }
void
put_p_align(typename Elf_types<size>::Elf_WXword v)
{ this->p_->p_align = Convert<size, big_endian>::convert_host(v); }
private:
internal::Phdr_data<size>* p_;
};
// Accessor class for an ELF symbol table entry.
template<int size, bool big_endian>
class Sym
{
public:
Sym(const unsigned char* p)
: p_(reinterpret_cast<const internal::Sym_data<size>*>(p))
{ }
template<typename File>
Sym(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Sym_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Word
get_st_name() const
{ return Convert<32, big_endian>::convert_host(this->p_->st_name); }
typename Elf_types<size>::Elf_Addr
get_st_value() const
{ return Convert<size, big_endian>::convert_host(this->p_->st_value); }
typename Elf_types<size>::Elf_WXword
get_st_size() const
{ return Convert<size, big_endian>::convert_host(this->p_->st_size); }
unsigned char
get_st_info() const
{ return this->p_->st_info; }
STB
get_st_bind() const
{ return elf_st_bind(this->get_st_info()); }
STT
get_st_type() const
{ return elf_st_type(this->get_st_info()); }
unsigned char
get_st_other() const
{ return this->p_->st_other; }
STV
get_st_visibility() const
{ return elf_st_visibility(this->get_st_other()); }
unsigned char
get_st_nonvis() const
{ return elf_st_nonvis(this->get_st_other()); }
Elf_Half
get_st_shndx() const
{ return Convert<16, big_endian>::convert_host(this->p_->st_shndx); }
private:
const internal::Sym_data<size>* p_;
};
// Writer class for an ELF symbol table entry.
template<int size, bool big_endian>
class Sym_write
{
public:
Sym_write(unsigned char* p)
: p_(reinterpret_cast<internal::Sym_data<size>*>(p))
{ }
void
put_st_name(Elf_Word v)
{ this->p_->st_name = Convert<32, big_endian>::convert_host(v); }
void
put_st_value(typename Elf_types<size>::Elf_Addr v)
{ this->p_->st_value = Convert<size, big_endian>::convert_host(v); }
void
put_st_size(typename Elf_types<size>::Elf_WXword v)
{ this->p_->st_size = Convert<size, big_endian>::convert_host(v); }
void
put_st_info(unsigned char v)
{ this->p_->st_info = v; }
void
put_st_info(STB bind, STT type)
{ this->p_->st_info = elf_st_info(bind, type); }
void
put_st_other(unsigned char v)
{ this->p_->st_other = v; }
void
put_st_other(STV vis, unsigned char nonvis)
{ this->p_->st_other = elf_st_other(vis, nonvis); }
void
put_st_shndx(Elf_Half v)
{ this->p_->st_shndx = Convert<16, big_endian>::convert_host(v); }
Sym<size, big_endian>
sym()
{ return Sym<size, big_endian>(reinterpret_cast<unsigned char*>(this->p_)); }
private:
internal::Sym_data<size>* p_;
};
// Accessor classes for an ELF REL relocation entry.
template<int size, bool big_endian>
class Rel
{
public:
Rel(const unsigned char* p)
: p_(reinterpret_cast<const internal::Rel_data<size>*>(p))
{ }
template<typename File>
Rel(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Rel_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
typename Elf_types<size>::Elf_Addr
get_r_offset() const
{ return Convert<size, big_endian>::convert_host(this->p_->r_offset); }
typename Elf_types<size>::Elf_WXword
get_r_info() const
{ return Convert<size, big_endian>::convert_host(this->p_->r_info); }
private:
const internal::Rel_data<size>* p_;
};
// Writer class for an ELF Rel relocation.
template<int size, bool big_endian>
class Rel_write
{
public:
Rel_write(unsigned char* p)
: p_(reinterpret_cast<internal::Rel_data<size>*>(p))
{ }
void
put_r_offset(typename Elf_types<size>::Elf_Addr v)
{ this->p_->r_offset = Convert<size, big_endian>::convert_host(v); }
void
put_r_info(typename Elf_types<size>::Elf_WXword v)
{ this->p_->r_info = Convert<size, big_endian>::convert_host(v); }
private:
internal::Rel_data<size>* p_;
};
// Accessor class for an ELF Rela relocation.
template<int size, bool big_endian>
class Rela
{
public:
Rela(const unsigned char* p)
: p_(reinterpret_cast<const internal::Rela_data<size>*>(p))
{ }
template<typename File>
Rela(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Rela_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
typename Elf_types<size>::Elf_Addr
get_r_offset() const
{ return Convert<size, big_endian>::convert_host(this->p_->r_offset); }
typename Elf_types<size>::Elf_WXword
get_r_info() const
{ return Convert<size, big_endian>::convert_host(this->p_->r_info); }
typename Elf_types<size>::Elf_Swxword
get_r_addend() const
{ return Convert<size, big_endian>::convert_host(this->p_->r_addend); }
private:
const internal::Rela_data<size>* p_;
};
// Writer class for an ELF Rela relocation.
template<int size, bool big_endian>
class Rela_write
{
public:
Rela_write(unsigned char* p)
: p_(reinterpret_cast<internal::Rela_data<size>*>(p))
{ }
void
put_r_offset(typename Elf_types<size>::Elf_Addr v)
{ this->p_->r_offset = Convert<size, big_endian>::convert_host(v); }
void
put_r_info(typename Elf_types<size>::Elf_WXword v)
{ this->p_->r_info = Convert<size, big_endian>::convert_host(v); }
void
put_r_addend(typename Elf_types<size>::Elf_Swxword v)
{ this->p_->r_addend = Convert<size, big_endian>::convert_host(v); }
private:
internal::Rela_data<size>* p_;
};
// Accessor classes for entries in the ELF SHT_DYNAMIC section aka
// PT_DYNAMIC segment.
template<int size, bool big_endian>
class Dyn
{
public:
Dyn(const unsigned char* p)
: p_(reinterpret_cast<const internal::Dyn_data<size>*>(p))
{ }
template<typename File>
Dyn(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Dyn_data<size>*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
typename Elf_types<size>::Elf_Swxword
get_d_tag() const
{ return Convert<size, big_endian>::convert_host(this->p_->d_tag); }
typename Elf_types<size>::Elf_WXword
get_d_val() const
{ return Convert<size, big_endian>::convert_host(this->p_->d_val); }
typename Elf_types<size>::Elf_Addr
get_d_ptr() const
{ return Convert<size, big_endian>::convert_host(this->p_->d_val); }
private:
const internal::Dyn_data<size>* p_;
};
// Write class for an entry in the SHT_DYNAMIC section.
template<int size, bool big_endian>
class Dyn_write
{
public:
Dyn_write(unsigned char* p)
: p_(reinterpret_cast<internal::Dyn_data<size>*>(p))
{ }
void
put_d_tag(typename Elf_types<size>::Elf_Swxword v)
{ this->p_->d_tag = Convert<size, big_endian>::convert_host(v); }
void
put_d_val(typename Elf_types<size>::Elf_WXword v)
{ this->p_->d_val = Convert<size, big_endian>::convert_host(v); }
void
put_d_ptr(typename Elf_types<size>::Elf_Addr v)
{ this->p_->d_val = Convert<size, big_endian>::convert_host(v); }
private:
internal::Dyn_data<size>* p_;
};
// Accessor classes for entries in the ELF SHT_GNU_verdef section.
template<int size, bool big_endian>
class Verdef
{
public:
Verdef(const unsigned char* p)
: p_(reinterpret_cast<const internal::Verdef_data*>(p))
{ }
template<typename File>
Verdef(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Verdef_data*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Half
get_vd_version() const
{ return Convert<16, big_endian>::convert_host(this->p_->vd_version); }
Elf_Half
get_vd_flags() const
{ return Convert<16, big_endian>::convert_host(this->p_->vd_flags); }
Elf_Half
get_vd_ndx() const
{ return Convert<16, big_endian>::convert_host(this->p_->vd_ndx); }
Elf_Half
get_vd_cnt() const
{ return Convert<16, big_endian>::convert_host(this->p_->vd_cnt); }
Elf_Word
get_vd_hash() const
{ return Convert<32, big_endian>::convert_host(this->p_->vd_hash); }
Elf_Word
get_vd_aux() const
{ return Convert<32, big_endian>::convert_host(this->p_->vd_aux); }
Elf_Word
get_vd_next() const
{ return Convert<32, big_endian>::convert_host(this->p_->vd_next); }
private:
const internal::Verdef_data* p_;
};
template<int size, bool big_endian>
class Verdef_write
{
public:
Verdef_write(unsigned char* p)
: p_(reinterpret_cast<internal::Verdef_data*>(p))
{ }
void
set_vd_version(Elf_Half v)
{ this->p_->vd_version = Convert<16, big_endian>::convert_host(v); }
void
set_vd_flags(Elf_Half v)
{ this->p_->vd_flags = Convert<16, big_endian>::convert_host(v); }
void
set_vd_ndx(Elf_Half v)
{ this->p_->vd_ndx = Convert<16, big_endian>::convert_host(v); }
void
set_vd_cnt(Elf_Half v)
{ this->p_->vd_cnt = Convert<16, big_endian>::convert_host(v); }
void
set_vd_hash(Elf_Word v)
{ this->p_->vd_hash = Convert<32, big_endian>::convert_host(v); }
void
set_vd_aux(Elf_Word v)
{ this->p_->vd_aux = Convert<32, big_endian>::convert_host(v); }
void
set_vd_next(Elf_Word v)
{ this->p_->vd_next = Convert<32, big_endian>::convert_host(v); }
private:
internal::Verdef_data* p_;
};
// Accessor classes for auxiliary entries in the ELF SHT_GNU_verdef
// section.
template<int size, bool big_endian>
class Verdaux
{
public:
Verdaux(const unsigned char* p)
: p_(reinterpret_cast<const internal::Verdaux_data*>(p))
{ }
template<typename File>
Verdaux(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Verdaux_data*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Word
get_vda_name() const
{ return Convert<32, big_endian>::convert_host(this->p_->vda_name); }
Elf_Word
get_vda_next() const
{ return Convert<32, big_endian>::convert_host(this->p_->vda_next); }
private:
const internal::Verdaux_data* p_;
};
template<int size, bool big_endian>
class Verdaux_write
{
public:
Verdaux_write(unsigned char* p)
: p_(reinterpret_cast<internal::Verdaux_data*>(p))
{ }
void
set_vda_name(Elf_Word v)
{ this->p_->vda_name = Convert<32, big_endian>::convert_host(v); }
void
set_vda_next(Elf_Word v)
{ this->p_->vda_next = Convert<32, big_endian>::convert_host(v); }
private:
internal::Verdaux_data* p_;
};
// Accessor classes for entries in the ELF SHT_GNU_verneed section.
template<int size, bool big_endian>
class Verneed
{
public:
Verneed(const unsigned char* p)
: p_(reinterpret_cast<const internal::Verneed_data*>(p))
{ }
template<typename File>
Verneed(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Verneed_data*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Half
get_vn_version() const
{ return Convert<16, big_endian>::convert_host(this->p_->vn_version); }
Elf_Half
get_vn_cnt() const
{ return Convert<16, big_endian>::convert_host(this->p_->vn_cnt); }
Elf_Word
get_vn_file() const
{ return Convert<32, big_endian>::convert_host(this->p_->vn_file); }
Elf_Word
get_vn_aux() const
{ return Convert<32, big_endian>::convert_host(this->p_->vn_aux); }
Elf_Word
get_vn_next() const
{ return Convert<32, big_endian>::convert_host(this->p_->vn_next); }
private:
const internal::Verneed_data* p_;
};
template<int size, bool big_endian>
class Verneed_write
{
public:
Verneed_write(unsigned char* p)
: p_(reinterpret_cast<internal::Verneed_data*>(p))
{ }
void
set_vn_version(Elf_Half v)
{ this->p_->vn_version = Convert<16, big_endian>::convert_host(v); }
void
set_vn_cnt(Elf_Half v)
{ this->p_->vn_cnt = Convert<16, big_endian>::convert_host(v); }
void
set_vn_file(Elf_Word v)
{ this->p_->vn_file = Convert<32, big_endian>::convert_host(v); }
void
set_vn_aux(Elf_Word v)
{ this->p_->vn_aux = Convert<32, big_endian>::convert_host(v); }
void
set_vn_next(Elf_Word v)
{ this->p_->vn_next = Convert<32, big_endian>::convert_host(v); }
private:
internal::Verneed_data* p_;
};
// Accessor classes for auxiliary entries in the ELF SHT_GNU_verneed
// section.
template<int size, bool big_endian>
class Vernaux
{
public:
Vernaux(const unsigned char* p)
: p_(reinterpret_cast<const internal::Vernaux_data*>(p))
{ }
template<typename File>
Vernaux(File* file, typename File::Location loc)
: p_(reinterpret_cast<const internal::Vernaux_data*>(
file->view(loc.file_offset, loc.data_size).data()))
{ }
Elf_Word
get_vna_hash() const
{ return Convert<32, big_endian>::convert_host(this->p_->vna_hash); }
Elf_Half
get_vna_flags() const
{ return Convert<16, big_endian>::convert_host(this->p_->vna_flags); }
Elf_Half
get_vna_other() const
{ return Convert<16, big_endian>::convert_host(this->p_->vna_other); }
Elf_Word
get_vna_name() const
{ return Convert<32, big_endian>::convert_host(this->p_->vna_name); }
Elf_Word
get_vna_next() const
{ return Convert<32, big_endian>::convert_host(this->p_->vna_next); }
private:
const internal::Vernaux_data* p_;
};
template<int size, bool big_endian>
class Vernaux_write
{
public:
Vernaux_write(unsigned char* p)
: p_(reinterpret_cast<internal::Vernaux_data*>(p))
{ }
void
set_vna_hash(Elf_Word v)
{ this->p_->vna_hash = Convert<32, big_endian>::convert_host(v); }
void
set_vna_flags(Elf_Half v)
{ this->p_->vna_flags = Convert<16, big_endian>::convert_host(v); }
void
set_vna_other(Elf_Half v)
{ this->p_->vna_other = Convert<16, big_endian>::convert_host(v); }
void
set_vna_name(Elf_Word v)
{ this->p_->vna_name = Convert<32, big_endian>::convert_host(v); }
void
set_vna_next(Elf_Word v)
{ this->p_->vna_next = Convert<32, big_endian>::convert_host(v); }
private:
internal::Vernaux_data* p_;
};
} // End namespace elfcpp.
#endif // !defined(ELFPCP_H)