binutils-gdb/gdb/z8k-tdep.c

379 lines
8.1 KiB
C

/* Target-machine dependent code for Zilog Z8000, for GDB.
Copyright (C) 1992 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
Contributed by Steve Chamberlain
sac@cygnus.com
*/
#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
/* Return the saved PC from this frame.
If the frame has a memory copy of SRP_REGNUM, use that. If not,
just use the register SRP_REGNUM itself. */
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
{
return ( read_memory_pointer(frame->frame+(BIG ? 4 : 2)));
}
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
/* work out how much local space is on the stack and
return the pc pointing to the first push */
static
CORE_ADDR
skip_adjust(pc, size)
CORE_ADDR pc;
int *size;
{
*size = 0;
if (IS_PUSH_FP(read_memory_short(pc))
&& IS_MOV_SP_FP(read_memory_short(pc+2)))
{
/* This is a function with an explict frame pointer */
pc += 4;
*size += 2; /* remember the frame pointer */
}
/* remember any stack adjustment */
if (IS_SUB_SP(read_memory_short(pc)))
{
*size += read_memory_short(pc+2);
pc += 4;
}
return pc;
}
int
examine_frame(pc, regs, sp)
CORE_ADDR pc;
struct frame_saved_regs *regs;
CORE_ADDR sp;
{
int w = read_memory_short(pc);
int offset = 0;
int regno;
for (regno = 0; regno < NUM_REGS; regno++)
regs->regs[regno] = 0;
while (IS_PUSHW(w) || IS_PUSHL(w))
{
/* work out which register is being pushed to where */
if (IS_PUSHL(w))
{
regs->regs[w & 0xf] = offset;
regs->regs[(w & 0xf) + 1] = offset +2;
offset += 4;
}
else {
regs->regs[w & 0xf] = offset;
offset += 2;
}
pc += 2;
w = read_memory_short(pc);
}
if (IS_MOVE_FP(w))
{
/* We know the fp */
}
else if (IS_SUB_SP(w))
{
/* Subtracting a value from the sp, so were in a function
which needs stack space for locals, but has no fp. We fake up
the values as if we had an fp */
regs->regs[FP_REGNUM] = sp;
}
else
{
/* This one didn't have an fp, we'll fake it up */
regs->regs[SP_REGNUM] = sp;
}
/* stack pointer contains address of next frame */
/* regs->regs[fp_regnum()] = fp;*/
regs->regs[SP_REGNUM] = sp;
return pc;
}
CORE_ADDR z8k_skip_prologue(start_pc)
CORE_ADDR start_pc;
{
struct frame_saved_regs dummy;
return examine_frame(start_pc, &dummy, 0);
}
CORE_ADDR addr_bits_remove(x)
CORE_ADDR x;
{
return x & PTR_MASK;
}
read_memory_pointer(x)
CORE_ADDR x;
{
return read_memory_integer(ADDR_BITS_REMOVE(x), BIG ? 4 : 2);
}
FRAME_ADDR
frame_chain (thisframe)
FRAME thisframe;
{
if (thisframe->prev == 0)
{
/* This is the top of the stack, let's get the sp for real */
}
if (!inside_entry_file ((thisframe)->pc))
{
return read_memory_pointer ((thisframe)->frame);
}
return 0;
}
init_frame_pc() { abort(); }
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
void get_frame_saved_regs(frame_info, frame_saved_regs)
struct frame_info *frame_info;
struct frame_saved_regs *frame_saved_regs;
{
CORE_ADDR pc;
int w;
bzero(frame_saved_regs, sizeof(*frame_saved_regs));
pc = get_pc_function_start(frame_info->pc);
/* wander down the instruction stream */
examine_frame(pc, frame_saved_regs, frame_info->frame);
}
extract_return_value(valtype, regbuf, valbuf)
struct type *valtype;
char regbuf[REGISTER_BYTES];
char *valbuf;
{
bcopy(regbuf + REGISTER_BYTE(2), valbuf, TYPE_LENGTH(valtype));
}
void z8k_push_dummy_frame() { abort(); }
int print_insn(memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
char temp[20];
read_memory (memaddr, temp, 20);
if (BIG) {
return print_insn_z8001(memaddr, temp, stream);
}
else {
return print_insn_z8002(memaddr, temp, stream);
}
}
void
store_return_value()
{
abort();
}
void
store_struct_return() { abort(); }
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction.*/
CORE_ADDR
NEXT_PROLOGUE_INSN(addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
{
if (addr < lim+8)
{
read_memory (addr, pword1, sizeof(*pword1));
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
return addr + 2;
}
return 0;
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame.
We cache the result of doing this in the frame_cache_obstack, since
it is fairly expensive. */
void
frame_find_saved_regs (fip, fsrp)
struct frame_info *fip;
struct frame_saved_regs *fsrp;
{
int locals;
CORE_ADDR pc;
CORE_ADDR adr;
int i;
memset (fsrp, 0, sizeof *fsrp);
pc = skip_adjust(get_pc_function_start (fip->pc), &locals);
{
adr = fip->frame - locals;
for (i = 0; i < 8; i++)
{
int word = read_memory_short(pc);
pc += 2 ;
if (IS_PUSHL(word)) {
fsrp->regs[word & 0xf] = adr;
fsrp->regs[(word & 0xf) + 1] = adr - 2;
adr -= 4;
}
else if (IS_PUSHW(word)) {
fsrp->regs[word & 0xf] = adr;
adr -= 2;
}
else
break;
}
}
fsrp->regs[PC_REGNUM] = fip->frame + 4;
fsrp->regs[FP_REGNUM] = fip->frame;
}
void
addr_bits_set() { abort(); }
int
saved_pc_after_call()
{
return addr_bits_remove(read_memory_integer(read_register(SP_REGNUM), PTR_SIZE));
}
void
print_register_hook(regno)
int regno;
{
if ((regno & 1)==0 && regno < 16)
{
unsigned short l[2];
read_relative_register_raw_bytes(regno, (char *)(l+0));
read_relative_register_raw_bytes(regno+1, (char *)(l+1));
printf("\t");
printf("%04x%04x", l[0],l[1]);
}
if ((regno & 3)== 0 && regno < 16)
{
unsigned short l[4];
read_relative_register_raw_bytes(regno, l+0);
read_relative_register_raw_bytes(regno+1, l+1);
read_relative_register_raw_bytes(regno+2, l+2);
read_relative_register_raw_bytes(regno+3, l+3);
printf("\t");
printf("%04x%04x%04x%04x", l[0],l[1],l[2],l[3]);
}
if (regno == 15)
{
unsigned short rval;
int i;
read_relative_register_raw_bytes(regno, (char *)(&rval));
printf("\n");
for (i = 0; i < 10; i+=2) {
printf("(sp+%d=%04x)",i, read_memory_short(rval+i));
}
}
}
void
register_convert_to_virtual(regnum, from, to)
unsigned char *from;
unsigned char *to;
{
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
}
void
register_convert_to_raw(regnum, to, from)
char *to;
char *from;
{
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
}
void z8k_pop_frame() { }