gcc/libgo/runtime/mheap.c

958 lines
25 KiB
C
Raw Permalink Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.h for overview.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
static bool MHeap_Grow(MHeap*, uintptr);
static void MHeap_FreeLocked(MHeap*, MSpan*);
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
static void
RecordSpan(void *vh, byte *p)
{
MHeap *h;
MSpan *s;
MSpan **all;
uint32 cap;
h = vh;
s = (MSpan*)p;
if(h->nspan >= h->nspancap) {
cap = 64*1024/sizeof(all[0]);
if(cap < h->nspancap*3/2)
cap = h->nspancap*3/2;
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats()->other_sys);
if(all == nil)
runtime_throw("runtime: cannot allocate memory");
if(h->allspans) {
runtime_memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
// Don't free the old array if it's referenced by sweep.
// See the comment in mgc0.c.
if(h->allspans != runtime_mheap.sweepspans)
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats()->other_sys);
}
h->allspans = all;
h->nspancap = cap;
}
h->allspans[h->nspan++] = s;
}
// Initialize the heap; fetch memory using alloc.
void
runtime_MHeap_Init(MHeap *h)
{
MStats *pmstats;
uint32 i;
pmstats = mstats();
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &pmstats->mspan_sys);
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &pmstats->mcache_sys);
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &pmstats->other_sys);
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &pmstats->other_sys);
// h->mapcache needs no init
for(i=0; i<nelem(h->free); i++) {
runtime_MSpanList_Init(&h->free[i]);
runtime_MSpanList_Init(&h->busy[i]);
}
runtime_MSpanList_Init(&h->freelarge);
runtime_MSpanList_Init(&h->busylarge);
for(i=0; i<nelem(h->central); i++)
runtime_MCentral_Init(&h->central[i], i);
}
void
runtime_MHeap_MapSpans(MHeap *h)
{
uintptr pagesize;
uintptr n;
// Map spans array, PageSize at a time.
n = (uintptr)h->arena_used;
n -= (uintptr)h->arena_start;
n = n / PageSize * sizeof(h->spans[0]);
n = ROUND(n, PageSize);
pagesize = getpagesize();
n = ROUND(n, pagesize);
if(h->spans_mapped >= n)
return;
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats()->other_sys);
h->spans_mapped = n;
}
// Sweeps spans in list until reclaims at least npages into heap.
// Returns the actual number of pages reclaimed.
static uintptr
MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages)
{
MSpan *s;
uintptr n;
uint32 sg;
n = 0;
sg = runtime_mheap.sweepgen;
retry:
for(s = list->next; s != list; s = s->next) {
if(s->sweepgen == sg-2 && runtime_cas(&s->sweepgen, sg-2, sg-1)) {
runtime_MSpanList_Remove(s);
// swept spans are at the end of the list
runtime_MSpanList_InsertBack(list, s);
runtime_unlock(h);
n += runtime_MSpan_Sweep(s);
runtime_lock(h);
if(n >= npages)
return n;
// the span could have been moved elsewhere
goto retry;
}
if(s->sweepgen == sg-1) {
// the span is being sweept by background sweeper, skip
continue;
}
// already swept empty span,
// all subsequent ones must also be either swept or in process of sweeping
break;
}
return n;
}
// Sweeps and reclaims at least npage pages into heap.
// Called before allocating npage pages.
static void
MHeap_Reclaim(MHeap *h, uintptr npage)
{
uintptr reclaimed, n;
// First try to sweep busy spans with large objects of size >= npage,
// this has good chances of reclaiming the necessary space.
for(n=npage; n < nelem(h->busy); n++) {
if(MHeap_ReclaimList(h, &h->busy[n], npage))
return; // Bingo!
}
// Then -- even larger objects.
if(MHeap_ReclaimList(h, &h->busylarge, npage))
return; // Bingo!
// Now try smaller objects.
// One such object is not enough, so we need to reclaim several of them.
reclaimed = 0;
for(n=0; n < npage && n < nelem(h->busy); n++) {
reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed);
if(reclaimed >= npage)
return;
}
// Now sweep everything that is not yet swept.
runtime_unlock(h);
for(;;) {
n = runtime_sweepone();
if(n == (uintptr)-1) // all spans are swept
break;
reclaimed += n;
if(reclaimed >= npage)
break;
}
runtime_lock(h);
}
// Allocate a new span of npage pages from the heap
// and record its size class in the HeapMap and HeapMapCache.
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
{
MStats *pmstats;
MSpan *s;
runtime_lock(h);
pmstats = mstats();
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
runtime_m()->mcache->local_cachealloc = 0;
s = MHeap_AllocLocked(h, npage, sizeclass);
if(s != nil) {
pmstats->heap_inuse += npage<<PageShift;
if(large) {
pmstats->heap_objects++;
pmstats->heap_alloc += npage<<PageShift;
// Swept spans are at the end of lists.
if(s->npages < nelem(h->free))
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
else
runtime_MSpanList_InsertBack(&h->busylarge, s);
}
}
runtime_unlock(h);
if(s != nil) {
if(needzero && s->needzero)
runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
s->needzero = 0;
}
return s;
}
static MSpan*
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
{
uintptr n;
MSpan *s, *t;
PageID p;
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if(!h->sweepdone)
MHeap_Reclaim(h, npage);
// Try in fixed-size lists up to max.
for(n=npage; n < nelem(h->free); n++) {
if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
s = h->free[n].next;
goto HaveSpan;
}
}
// Best fit in list of large spans.
if((s = MHeap_AllocLarge(h, npage)) == nil) {
if(!MHeap_Grow(h, npage))
return nil;
if((s = MHeap_AllocLarge(h, npage)) == nil)
return nil;
}
HaveSpan:
// Mark span in use.
if(s->state != MSpanFree)
runtime_throw("MHeap_AllocLocked - MSpan not free");
if(s->npages < npage)
runtime_throw("MHeap_AllocLocked - bad npages");
runtime_MSpanList_Remove(s);
runtime_atomicstore(&s->sweepgen, h->sweepgen);
s->state = MSpanInUse;
mstats()->heap_idle -= s->npages<<PageShift;
mstats()->heap_released -= s->npreleased<<PageShift;
if(s->npreleased > 0)
runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
s->npreleased = 0;
if(s->npages > npage) {
// Trim extra and put it back in the heap.
t = runtime_FixAlloc_Alloc(&h->spanalloc);
runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
s->npages = npage;
p = t->start;
p -= ((uintptr)h->arena_start>>PageShift);
if(p > 0)
h->spans[p-1] = s;
h->spans[p] = t;
h->spans[p+t->npages-1] = t;
t->needzero = s->needzero;
runtime_atomicstore(&t->sweepgen, h->sweepgen);
t->state = MSpanInUse;
MHeap_FreeLocked(h, t);
t->unusedsince = s->unusedsince; // preserve age
}
s->unusedsince = 0;
// Record span info, because gc needs to be
// able to map interior pointer to containing span.
s->sizeclass = sizeclass;
s->elemsize = (sizeclass==0 ? s->npages<<PageShift : (uintptr)runtime_class_to_size[sizeclass]);
s->types.compression = MTypes_Empty;
p = s->start;
p -= ((uintptr)h->arena_start>>PageShift);
for(n=0; n<npage; n++)
h->spans[p+n] = s;
return s;
}
// Allocate a span of exactly npage pages from the list of large spans.
static MSpan*
MHeap_AllocLarge(MHeap *h, uintptr npage)
{
return BestFit(&h->freelarge, npage, nil);
}
// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
static MSpan*
BestFit(MSpan *list, uintptr npage, MSpan *best)
{
MSpan *s;
for(s=list->next; s != list; s=s->next) {
if(s->npages < npage)
continue;
if(best == nil
|| s->npages < best->npages
|| (s->npages == best->npages && s->start < best->start))
best = s;
}
return best;
}
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
static bool
MHeap_Grow(MHeap *h, uintptr npage)
{
uintptr ask;
void *v;
MSpan *s;
PageID p;
// Ask for a big chunk, to reduce the number of mappings
// the operating system needs to track; also amortizes
// the overhead of an operating system mapping.
// Allocate a multiple of 64kB (16 pages).
npage = (npage+15)&~15;
ask = npage<<PageShift;
if(ask < HeapAllocChunk)
ask = HeapAllocChunk;
v = runtime_MHeap_SysAlloc(h, ask);
if(v == nil) {
if(ask > (npage<<PageShift)) {
ask = npage<<PageShift;
v = runtime_MHeap_SysAlloc(h, ask);
}
if(v == nil) {
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats()->heap_sys);
return false;
}
}
// Create a fake "in use" span and free it, so that the
// right coalescing happens.
s = runtime_FixAlloc_Alloc(&h->spanalloc);
runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
p = s->start;
p -= ((uintptr)h->arena_start>>PageShift);
h->spans[p] = s;
h->spans[p + s->npages - 1] = s;
runtime_atomicstore(&s->sweepgen, h->sweepgen);
s->state = MSpanInUse;
MHeap_FreeLocked(h, s);
return true;
}
// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
MSpan*
runtime_MHeap_Lookup(MHeap *h, void *v)
{
uintptr p;
p = (uintptr)v;
p -= (uintptr)h->arena_start;
return h->spans[p >> PageShift];
}
// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans. Free spans may have
// other garbage in their middles, so we have to
// check for that.
MSpan*
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
{
MSpan *s;
PageID p, q;
if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
return nil;
p = (uintptr)v>>PageShift;
q = p;
q -= (uintptr)h->arena_start >> PageShift;
s = h->spans[q];
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
if(s == nil || p < s->start || (uintptr)v >= s->limit || s->state != MSpanInUse)
return nil;
return s;
}
// Free the span back into the heap.
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
MStats *pmstats;
runtime_lock(h);
pmstats = mstats();
pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc;
runtime_m()->mcache->local_cachealloc = 0;
pmstats->heap_inuse -= s->npages<<PageShift;
if(acct) {
pmstats->heap_alloc -= s->npages<<PageShift;
pmstats->heap_objects--;
}
MHeap_FreeLocked(h, s);
runtime_unlock(h);
}
static void
MHeap_FreeLocked(MHeap *h, MSpan *s)
{
MSpan *t;
PageID p;
s->types.compression = MTypes_Empty;
if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) {
runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n",
s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
runtime_throw("MHeap_FreeLocked - invalid free");
}
mstats()->heap_idle += s->npages<<PageShift;
s->state = MSpanFree;
runtime_MSpanList_Remove(s);
// Stamp newly unused spans. The scavenger will use that
// info to potentially give back some pages to the OS.
s->unusedsince = runtime_nanotime();
s->npreleased = 0;
// Coalesce with earlier, later spans.
p = s->start;
p -= (uintptr)h->arena_start >> PageShift;
if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) {
s->start = t->start;
s->npages += t->npages;
s->npreleased = t->npreleased; // absorb released pages
s->needzero |= t->needzero;
p -= t->npages;
h->spans[p] = s;
runtime_MSpanList_Remove(t);
t->state = MSpanDead;
runtime_FixAlloc_Free(&h->spanalloc, t);
}
if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) {
s->npages += t->npages;
s->npreleased += t->npreleased;
s->needzero |= t->needzero;
h->spans[p + s->npages - 1] = s;
runtime_MSpanList_Remove(t);
t->state = MSpanDead;
runtime_FixAlloc_Free(&h->spanalloc, t);
}
// Insert s into appropriate list.
if(s->npages < nelem(h->free))
runtime_MSpanList_Insert(&h->free[s->npages], s);
else
runtime_MSpanList_Insert(&h->freelarge, s);
}
static void
forcegchelper(void *vnote)
{
Note *note = (Note*)vnote;
runtime_gc(1);
runtime_notewakeup(note);
}
static uintptr
scavengelist(MSpan *list, uint64 now, uint64 limit)
{
uintptr released, sumreleased, start, end, pagesize;
MSpan *s;
if(runtime_MSpanList_IsEmpty(list))
return 0;
sumreleased = 0;
for(s=list->next; s != list; s=s->next) {
if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
released = (s->npages - s->npreleased) << PageShift;
mstats()->heap_released += released;
sumreleased += released;
s->npreleased = s->npages;
start = s->start << PageShift;
end = start + (s->npages << PageShift);
// Round start up and end down to ensure we
// are acting on entire pages.
pagesize = getpagesize();
start = ROUND(start, pagesize);
end &= ~(pagesize - 1);
if(end > start)
runtime_SysUnused((void*)start, end - start);
}
}
return sumreleased;
}
static void
scavenge(int32 k, uint64 now, uint64 limit)
{
uint32 i;
uintptr sumreleased;
MHeap *h;
h = &runtime_mheap;
sumreleased = 0;
for(i=0; i < nelem(h->free); i++)
sumreleased += scavengelist(&h->free[i], now, limit);
sumreleased += scavengelist(&h->freelarge, now, limit);
if(runtime_debug.gctrace > 0) {
if(sumreleased > 0)
runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
k, mstats()->heap_inuse>>20, mstats()->heap_idle>>20, mstats()->heap_sys>>20,
mstats()->heap_released>>20, (mstats()->heap_sys - mstats()->heap_released)>>20);
}
}
// Release (part of) unused memory to OS.
// Goroutine created at startup.
// Loop forever.
void
runtime_MHeap_Scavenger(void* dummy)
{
G *g;
MHeap *h;
uint64 tick, now, forcegc, limit;
int64 unixnow;
uint32 k;
Note note, *notep;
USED(dummy);
g = runtime_g();
g->issystem = true;
g->isbackground = true;
// If we go two minutes without a garbage collection, force one to run.
forcegc = 2*60*1e9;
// If a span goes unused for 5 minutes after a garbage collection,
// we hand it back to the operating system.
limit = 5*60*1e9;
// Make wake-up period small enough for the sampling to be correct.
if(forcegc < limit)
tick = forcegc/2;
else
tick = limit/2;
h = &runtime_mheap;
for(k=0;; k++) {
runtime_noteclear(&note);
runtime_notetsleepg(&note, tick);
runtime_lock(h);
unixnow = runtime_unixnanotime();
if(unixnow - mstats()->last_gc > forcegc) {
runtime_unlock(h);
// The scavenger can not block other goroutines,
// otherwise deadlock detector can fire spuriously.
// GC blocks other goroutines via the runtime_worldsema.
runtime_noteclear(&note);
notep = &note;
__go_go(forcegchelper, (void*)notep);
runtime_notetsleepg(&note, -1);
if(runtime_debug.gctrace > 0)
runtime_printf("scvg%d: GC forced\n", k);
runtime_lock(h);
}
now = runtime_nanotime();
scavenge(k, now, limit);
runtime_unlock(h);
}
}
void runtime_debug_freeOSMemory(void) __asm__("runtime_debug.freeOSMemory");
void
runtime_debug_freeOSMemory(void)
{
runtime_gc(2); // force GC and do eager sweep
runtime_lock(&runtime_mheap);
scavenge(-1, ~(uintptr)0, 0);
runtime_unlock(&runtime_mheap);
}
// Initialize a new span with the given start and npages.
void
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
{
span->next = nil;
span->prev = nil;
span->start = start;
span->npages = npages;
span->freelist = nil;
span->ref = 0;
span->sizeclass = 0;
span->incache = false;
span->elemsize = 0;
span->state = MSpanDead;
span->unusedsince = 0;
span->npreleased = 0;
span->types.compression = MTypes_Empty;
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
span->speciallock.key = 0;
span->specials = nil;
span->needzero = 0;
span->freebuf = nil;
}
// Initialize an empty doubly-linked list.
void
runtime_MSpanList_Init(MSpan *list)
{
list->state = MSpanListHead;
list->next = list;
list->prev = list;
}
void
runtime_MSpanList_Remove(MSpan *span)
{
if(span->prev == nil && span->next == nil)
return;
span->prev->next = span->next;
span->next->prev = span->prev;
span->prev = nil;
span->next = nil;
}
bool
runtime_MSpanList_IsEmpty(MSpan *list)
{
return list->next == list;
}
void
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
{
if(span->next != nil || span->prev != nil) {
runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
runtime_throw("MSpanList_Insert");
}
span->next = list->next;
span->prev = list;
span->next->prev = span;
span->prev->next = span;
}
void
runtime_MSpanList_InsertBack(MSpan *list, MSpan *span)
{
if(span->next != nil || span->prev != nil) {
runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
runtime_throw("MSpanList_Insert");
}
span->next = list;
span->prev = list->prev;
span->next->prev = span;
span->prev->next = span;
}
// Adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
// already exists.)
static bool
addspecial(void *p, Special *s)
{
MSpan *span;
Special **t, *x;
uintptr offset;
byte kind;
span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
if(span == nil)
runtime_throw("addspecial on invalid pointer");
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
runtime_m()->locks++;
runtime_MSpan_EnsureSwept(span);
offset = (uintptr)p - (span->start << PageShift);
kind = s->kind;
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_lock(&span->speciallock);
// Find splice point, check for existing record.
t = &span->specials;
while((x = *t) != nil) {
if(offset == x->offset && kind == x->kind) {
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_unlock(&span->speciallock);
runtime_m()->locks--;
return false; // already exists
}
if(offset < x->offset || (offset == x->offset && kind < x->kind))
break;
t = &x->next;
}
// Splice in record, fill in offset.
s->offset = offset;
s->next = x;
*t = s;
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_unlock(&span->speciallock);
runtime_m()->locks--;
return true;
}
// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
static Special*
removespecial(void *p, byte kind)
{
MSpan *span;
Special *s, **t;
uintptr offset;
span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
if(span == nil)
runtime_throw("removespecial on invalid pointer");
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
runtime_m()->locks++;
runtime_MSpan_EnsureSwept(span);
offset = (uintptr)p - (span->start << PageShift);
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_lock(&span->speciallock);
t = &span->specials;
while((s = *t) != nil) {
// This function is used for finalizers only, so we don't check for
// "interior" specials (p must be exactly equal to s->offset).
if(offset == s->offset && kind == s->kind) {
*t = s->next;
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_unlock(&span->speciallock);
runtime_m()->locks--;
return s;
}
t = &s->next;
}
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_unlock(&span->speciallock);
runtime_m()->locks--;
return nil;
}
// Adds a finalizer to the object p. Returns true if it succeeded.
bool
runtime_addfinalizer(void *p, FuncVal *f, const FuncType *ft, const PtrType *ot)
{
SpecialFinalizer *s;
runtime_lock(&runtime_mheap.speciallock);
s = runtime_FixAlloc_Alloc(&runtime_mheap.specialfinalizeralloc);
runtime_unlock(&runtime_mheap.speciallock);
s->kind = KindSpecialFinalizer;
s->fn = f;
s->ft = ft;
s->ot = ot;
if(addspecial(p, s))
return true;
// There was an old finalizer
runtime_lock(&runtime_mheap.speciallock);
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
runtime_unlock(&runtime_mheap.speciallock);
return false;
}
// Removes the finalizer (if any) from the object p.
void
runtime_removefinalizer(void *p)
{
SpecialFinalizer *s;
s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer);
if(s == nil)
return; // there wasn't a finalizer to remove
runtime_lock(&runtime_mheap.speciallock);
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
runtime_unlock(&runtime_mheap.speciallock);
}
// Set the heap profile bucket associated with addr to b.
void
runtime_setprofilebucket(void *p, Bucket *b)
{
SpecialProfile *s;
runtime_lock(&runtime_mheap.speciallock);
s = runtime_FixAlloc_Alloc(&runtime_mheap.specialprofilealloc);
runtime_unlock(&runtime_mheap.speciallock);
s->kind = KindSpecialProfile;
s->b = b;
if(!addspecial(p, s))
runtime_throw("setprofilebucket: profile already set");
}
// Do whatever cleanup needs to be done to deallocate s. It has
// already been unlinked from the MSpan specials list.
// Returns true if we should keep working on deallocating p.
bool
runtime_freespecial(Special *s, void *p, uintptr size, bool freed)
{
SpecialFinalizer *sf;
SpecialProfile *sp;
switch(s->kind) {
case KindSpecialFinalizer:
sf = (SpecialFinalizer*)s;
runtime_queuefinalizer(p, sf->fn, sf->ft, sf->ot);
runtime_lock(&runtime_mheap.speciallock);
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, sf);
runtime_unlock(&runtime_mheap.speciallock);
return false; // don't free p until finalizer is done
case KindSpecialProfile:
sp = (SpecialProfile*)s;
runtime_MProf_Free(sp->b, size, freed);
runtime_lock(&runtime_mheap.speciallock);
runtime_FixAlloc_Free(&runtime_mheap.specialprofilealloc, sp);
runtime_unlock(&runtime_mheap.speciallock);
return true;
default:
runtime_throw("bad special kind");
return true;
}
}
// Free all special records for p.
void
runtime_freeallspecials(MSpan *span, void *p, uintptr size)
{
Special *s, **t, *list;
uintptr offset;
if(span->sweepgen != runtime_mheap.sweepgen)
runtime_throw("runtime: freeallspecials: unswept span");
// first, collect all specials into the list; then, free them
// this is required to not cause deadlock between span->specialLock and proflock
list = nil;
offset = (uintptr)p - (span->start << PageShift);
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_lock(&span->speciallock);
t = &span->specials;
while((s = *t) != nil) {
if(offset + size <= s->offset)
break;
if(offset <= s->offset) {
*t = s->next;
s->next = list;
list = s;
} else
t = &s->next;
}
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
runtime_unlock(&span->speciallock);
while(list != nil) {
s = list;
list = s->next;
if(!runtime_freespecial(s, p, size, true))
runtime_throw("can't explicitly free an object with a finalizer");
}
}
// Split an allocated span into two equal parts.
void
runtime_MHeap_SplitSpan(MHeap *h, MSpan *s)
{
MSpan *t;
MCentral *c;
uintptr i;
uintptr npages;
PageID p;
if(s->state != MSpanInUse)
runtime_throw("MHeap_SplitSpan on a free span");
if(s->sizeclass != 0 && s->ref != 1)
runtime_throw("MHeap_SplitSpan doesn't have an allocated object");
npages = s->npages;
// remove the span from whatever list it is in now
if(s->sizeclass > 0) {
compiler, runtime: replace hashmap code with Go 1.7 hashmap This change removes the gccgo-specific hashmap code and replaces it with the hashmap code from the Go 1.7 runtime. The Go 1.7 hashmap code is more efficient, does a better job on details like when to update a key, and provides some support against denial-of-service attacks. The compiler is changed to call the new hashmap functions instead of the old ones. The compiler now tracks which types are reflexive and which require updating when used as a map key, and records the information in map type descriptors. Map_index_expression is simplified. The special case for a map index on the right hand side of a tuple expression has been unnecessary for some time, and is removed. The support for specially marking a map index as an lvalue is removed, in favor of lowering an assignment to a map index into a function call. The long-obsolete support for a map index of a pointer to a map is removed. The __go_new_map_big function (known to the compiler as Runtime::MAKEMAPBIG) is no longer needed, as the new runtime.makemap function takes an int64 hint argument. The old map descriptor type and supporting expression is removed. The compiler was still supporting the long-obsolete syntax `m[k] = 0, false` to delete a value from a map. That is now removed, requiring a change to one of the gccgo-specific tests. The builtin len function applied to a map or channel p is now compiled as `p == nil ? 0 : *(*int)(p)`. The __go_chan_len function (known to the compiler as Runtime::CHAN_LEN) is removed. Support for a shared zero value for maps to large value types is introduced, along the lines of the gc compiler. The zero value is handled as a common variable. The hash function is changed to take a seed argument, changing the runtime hash functions and the compiler-generated hash functions. Unlike the gc compiler, both the hash and equal functions continue to take the type length. Types that can not be compared now store nil for the hash and equal functions, rather than pointing to functions that throw. Interface hash and comparison functions now check explicitly for nil. This matches the gc compiler and permits a simple implementation for ismapkey. The compiler is changed to permit marking struct and array types as incomparable, meaning that they have no hash or equal function. We use this for thunk types, removing the existing special code to avoid generating hash/equal functions for them. The C runtime code adds memclr, memequal, and memmove functions. The hashmap code uses go:linkname comments to make the functions visible, as otherwise the compiler would discard them. The hashmap code comments out the unused reference to the address of the first parameter in the race code, as otherwise the compiler thinks that the parameter escapes and copies it onto the heap. This is probably not needed when we enable escape analysis. Several runtime map tests that ere previously skipped for gccgo are now run. The Go runtime picks up type kind information and stubs. The type kind information causes the generated runtime header file to define some constants, including `empty`, and the C code is adjusted accordingly. A Go-callable version of runtime.throw, that takes a Go string, is added to be called from the hashmap code. Reviewed-on: https://go-review.googlesource.com/29447 * go.go-torture/execute/map-1.go: Replace old map deletion syntax with call to builtin delete function. From-SVN: r240334
2016-09-21 22:58:51 +02:00
// must be in h->central[x].mempty
c = &h->central[s->sizeclass];
runtime_lock(c);
runtime_MSpanList_Remove(s);
runtime_unlock(c);
runtime_lock(h);
} else {
// must be in h->busy/busylarge
runtime_lock(h);
runtime_MSpanList_Remove(s);
}
// heap is locked now
if(npages == 1) {
// convert span of 1 PageSize object to a span of 2 PageSize/2 objects.
s->ref = 2;
s->sizeclass = runtime_SizeToClass(PageSize/2);
s->elemsize = PageSize/2;
} else {
// convert span of n>1 pages into two spans of n/2 pages each.
if((s->npages & 1) != 0)
runtime_throw("MHeap_SplitSpan on an odd size span");
// compute position in h->spans
p = s->start;
p -= (uintptr)h->arena_start >> PageShift;
// Allocate a new span for the first half.
t = runtime_FixAlloc_Alloc(&h->spanalloc);
runtime_MSpan_Init(t, s->start, npages/2);
runtime: use -fgo-c-header to build C header file Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
2016-08-30 23:07:47 +02:00
t->limit = (uintptr)((t->start + npages/2) << PageShift);
t->state = MSpanInUse;
t->elemsize = npages << (PageShift - 1);
t->sweepgen = s->sweepgen;
if(t->elemsize <= MaxSmallSize) {
t->sizeclass = runtime_SizeToClass(t->elemsize);
t->ref = 1;
}
// the old span holds the second half.
s->start += npages/2;
s->npages = npages/2;
s->elemsize = npages << (PageShift - 1);
if(s->elemsize <= MaxSmallSize) {
s->sizeclass = runtime_SizeToClass(s->elemsize);
s->ref = 1;
}
// update span lookup table
for(i = p; i < p + npages/2; i++)
h->spans[i] = t;
}
// place the span into a new list
if(s->sizeclass > 0) {
runtime_unlock(h);
c = &h->central[s->sizeclass];
runtime_lock(c);
// swept spans are at the end of the list
compiler, runtime: replace hashmap code with Go 1.7 hashmap This change removes the gccgo-specific hashmap code and replaces it with the hashmap code from the Go 1.7 runtime. The Go 1.7 hashmap code is more efficient, does a better job on details like when to update a key, and provides some support against denial-of-service attacks. The compiler is changed to call the new hashmap functions instead of the old ones. The compiler now tracks which types are reflexive and which require updating when used as a map key, and records the information in map type descriptors. Map_index_expression is simplified. The special case for a map index on the right hand side of a tuple expression has been unnecessary for some time, and is removed. The support for specially marking a map index as an lvalue is removed, in favor of lowering an assignment to a map index into a function call. The long-obsolete support for a map index of a pointer to a map is removed. The __go_new_map_big function (known to the compiler as Runtime::MAKEMAPBIG) is no longer needed, as the new runtime.makemap function takes an int64 hint argument. The old map descriptor type and supporting expression is removed. The compiler was still supporting the long-obsolete syntax `m[k] = 0, false` to delete a value from a map. That is now removed, requiring a change to one of the gccgo-specific tests. The builtin len function applied to a map or channel p is now compiled as `p == nil ? 0 : *(*int)(p)`. The __go_chan_len function (known to the compiler as Runtime::CHAN_LEN) is removed. Support for a shared zero value for maps to large value types is introduced, along the lines of the gc compiler. The zero value is handled as a common variable. The hash function is changed to take a seed argument, changing the runtime hash functions and the compiler-generated hash functions. Unlike the gc compiler, both the hash and equal functions continue to take the type length. Types that can not be compared now store nil for the hash and equal functions, rather than pointing to functions that throw. Interface hash and comparison functions now check explicitly for nil. This matches the gc compiler and permits a simple implementation for ismapkey. The compiler is changed to permit marking struct and array types as incomparable, meaning that they have no hash or equal function. We use this for thunk types, removing the existing special code to avoid generating hash/equal functions for them. The C runtime code adds memclr, memequal, and memmove functions. The hashmap code uses go:linkname comments to make the functions visible, as otherwise the compiler would discard them. The hashmap code comments out the unused reference to the address of the first parameter in the race code, as otherwise the compiler thinks that the parameter escapes and copies it onto the heap. This is probably not needed when we enable escape analysis. Several runtime map tests that ere previously skipped for gccgo are now run. The Go runtime picks up type kind information and stubs. The type kind information causes the generated runtime header file to define some constants, including `empty`, and the C code is adjusted accordingly. A Go-callable version of runtime.throw, that takes a Go string, is added to be called from the hashmap code. Reviewed-on: https://go-review.googlesource.com/29447 * go.go-torture/execute/map-1.go: Replace old map deletion syntax with call to builtin delete function. From-SVN: r240334
2016-09-21 22:58:51 +02:00
runtime_MSpanList_InsertBack(&c->mempty, s);
runtime_unlock(c);
} else {
// Swept spans are at the end of lists.
if(s->npages < nelem(h->free))
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
else
runtime_MSpanList_InsertBack(&h->busylarge, s);
runtime_unlock(h);
}
}