2015-10-31 00:59:47 +00:00
|
|
|
// Copyright 2015 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
// This file implements multi-precision decimal numbers.
|
|
|
|
// The implementation is for float to decimal conversion only;
|
|
|
|
// not general purpose use.
|
|
|
|
// The only operations are precise conversion from binary to
|
|
|
|
// decimal and rounding.
|
|
|
|
//
|
|
|
|
// The key observation and some code (shr) is borrowed from
|
|
|
|
// strconv/decimal.go: conversion of binary fractional values can be done
|
|
|
|
// precisely in multi-precision decimal because 2 divides 10 (required for
|
|
|
|
// >> of mantissa); but conversion of decimal floating-point values cannot
|
|
|
|
// be done precisely in binary representation.
|
|
|
|
//
|
|
|
|
// In contrast to strconv/decimal.go, only right shift is implemented in
|
|
|
|
// decimal format - left shift can be done precisely in binary format.
|
|
|
|
|
|
|
|
package big
|
|
|
|
|
|
|
|
// A decimal represents an unsigned floating-point number in decimal representation.
|
2018-01-09 01:23:08 +00:00
|
|
|
// The value of a non-zero decimal d is d.mant * 10**d.exp with 0.1 <= d.mant < 1,
|
2015-10-31 00:59:47 +00:00
|
|
|
// with the most-significant mantissa digit at index 0. For the zero decimal, the
|
|
|
|
// mantissa length and exponent are 0.
|
|
|
|
// The zero value for decimal represents a ready-to-use 0.0.
|
|
|
|
type decimal struct {
|
|
|
|
mant []byte // mantissa ASCII digits, big-endian
|
|
|
|
exp int // exponent
|
|
|
|
}
|
|
|
|
|
2016-02-03 21:58:02 +00:00
|
|
|
// at returns the i'th mantissa digit, starting with the most significant digit at 0.
|
|
|
|
func (d *decimal) at(i int) byte {
|
|
|
|
if 0 <= i && i < len(d.mant) {
|
|
|
|
return d.mant[i]
|
|
|
|
}
|
|
|
|
return '0'
|
|
|
|
}
|
|
|
|
|
2015-10-31 00:59:47 +00:00
|
|
|
// Maximum shift amount that can be done in one pass without overflow.
|
|
|
|
// A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
|
|
|
|
const maxShift = _W - 4
|
|
|
|
|
|
|
|
// TODO(gri) Since we know the desired decimal precision when converting
|
|
|
|
// a floating-point number, we may be able to limit the number of decimal
|
|
|
|
// digits that need to be computed by init by providing an additional
|
|
|
|
// precision argument and keeping track of when a number was truncated early
|
|
|
|
// (equivalent of "sticky bit" in binary rounding).
|
|
|
|
|
|
|
|
// TODO(gri) Along the same lines, enforce some limit to shift magnitudes
|
|
|
|
// to avoid "infinitely" long running conversions (until we run out of space).
|
|
|
|
|
|
|
|
// Init initializes x to the decimal representation of m << shift (for
|
|
|
|
// shift >= 0), or m >> -shift (for shift < 0).
|
|
|
|
func (x *decimal) init(m nat, shift int) {
|
|
|
|
// special case 0
|
|
|
|
if len(m) == 0 {
|
|
|
|
x.mant = x.mant[:0]
|
|
|
|
x.exp = 0
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Optimization: If we need to shift right, first remove any trailing
|
|
|
|
// zero bits from m to reduce shift amount that needs to be done in
|
|
|
|
// decimal format (since that is likely slower).
|
|
|
|
if shift < 0 {
|
|
|
|
ntz := m.trailingZeroBits()
|
|
|
|
s := uint(-shift)
|
|
|
|
if s >= ntz {
|
|
|
|
s = ntz // shift at most ntz bits
|
|
|
|
}
|
|
|
|
m = nat(nil).shr(m, s)
|
|
|
|
shift += int(s)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do any shift left in binary representation.
|
|
|
|
if shift > 0 {
|
|
|
|
m = nat(nil).shl(m, uint(shift))
|
|
|
|
shift = 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert mantissa into decimal representation.
|
2016-02-03 21:58:02 +00:00
|
|
|
s := m.utoa(10)
|
2015-10-31 00:59:47 +00:00
|
|
|
n := len(s)
|
|
|
|
x.exp = n
|
|
|
|
// Trim trailing zeros; instead the exponent is tracking
|
|
|
|
// the decimal point independent of the number of digits.
|
|
|
|
for n > 0 && s[n-1] == '0' {
|
|
|
|
n--
|
|
|
|
}
|
|
|
|
x.mant = append(x.mant[:0], s[:n]...)
|
|
|
|
|
|
|
|
// Do any (remaining) shift right in decimal representation.
|
|
|
|
if shift < 0 {
|
|
|
|
for shift < -maxShift {
|
|
|
|
shr(x, maxShift)
|
|
|
|
shift += maxShift
|
|
|
|
}
|
|
|
|
shr(x, uint(-shift))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// shr implements x >> s, for s <= maxShift.
|
|
|
|
func shr(x *decimal, s uint) {
|
|
|
|
// Division by 1<<s using shift-and-subtract algorithm.
|
|
|
|
|
|
|
|
// pick up enough leading digits to cover first shift
|
|
|
|
r := 0 // read index
|
|
|
|
var n Word
|
|
|
|
for n>>s == 0 && r < len(x.mant) {
|
|
|
|
ch := Word(x.mant[r])
|
|
|
|
r++
|
|
|
|
n = n*10 + ch - '0'
|
|
|
|
}
|
|
|
|
if n == 0 {
|
|
|
|
// x == 0; shouldn't get here, but handle anyway
|
|
|
|
x.mant = x.mant[:0]
|
|
|
|
return
|
|
|
|
}
|
|
|
|
for n>>s == 0 {
|
|
|
|
r++
|
|
|
|
n *= 10
|
|
|
|
}
|
|
|
|
x.exp += 1 - r
|
|
|
|
|
|
|
|
// read a digit, write a digit
|
|
|
|
w := 0 // write index
|
2017-01-14 00:05:42 +00:00
|
|
|
mask := Word(1)<<s - 1
|
2015-10-31 00:59:47 +00:00
|
|
|
for r < len(x.mant) {
|
|
|
|
ch := Word(x.mant[r])
|
|
|
|
r++
|
|
|
|
d := n >> s
|
2017-01-14 00:05:42 +00:00
|
|
|
n &= mask // n -= d << s
|
2015-10-31 00:59:47 +00:00
|
|
|
x.mant[w] = byte(d + '0')
|
|
|
|
w++
|
|
|
|
n = n*10 + ch - '0'
|
|
|
|
}
|
|
|
|
|
|
|
|
// write extra digits that still fit
|
|
|
|
for n > 0 && w < len(x.mant) {
|
|
|
|
d := n >> s
|
2017-01-14 00:05:42 +00:00
|
|
|
n &= mask
|
2015-10-31 00:59:47 +00:00
|
|
|
x.mant[w] = byte(d + '0')
|
|
|
|
w++
|
|
|
|
n = n * 10
|
|
|
|
}
|
|
|
|
x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10)
|
|
|
|
|
|
|
|
// append additional digits that didn't fit
|
|
|
|
for n > 0 {
|
|
|
|
d := n >> s
|
2017-01-14 00:05:42 +00:00
|
|
|
n &= mask
|
2015-10-31 00:59:47 +00:00
|
|
|
x.mant = append(x.mant, byte(d+'0'))
|
|
|
|
n = n * 10
|
|
|
|
}
|
|
|
|
|
|
|
|
trim(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (x *decimal) String() string {
|
|
|
|
if len(x.mant) == 0 {
|
|
|
|
return "0"
|
|
|
|
}
|
|
|
|
|
|
|
|
var buf []byte
|
|
|
|
switch {
|
|
|
|
case x.exp <= 0:
|
|
|
|
// 0.00ddd
|
|
|
|
buf = append(buf, "0."...)
|
|
|
|
buf = appendZeros(buf, -x.exp)
|
|
|
|
buf = append(buf, x.mant...)
|
|
|
|
|
|
|
|
case /* 0 < */ x.exp < len(x.mant):
|
|
|
|
// dd.ddd
|
|
|
|
buf = append(buf, x.mant[:x.exp]...)
|
|
|
|
buf = append(buf, '.')
|
|
|
|
buf = append(buf, x.mant[x.exp:]...)
|
|
|
|
|
|
|
|
default: // len(x.mant) <= x.exp
|
|
|
|
// ddd00
|
|
|
|
buf = append(buf, x.mant...)
|
|
|
|
buf = appendZeros(buf, x.exp-len(x.mant))
|
|
|
|
}
|
|
|
|
|
|
|
|
return string(buf)
|
|
|
|
}
|
|
|
|
|
|
|
|
// appendZeros appends n 0 digits to buf and returns buf.
|
|
|
|
func appendZeros(buf []byte, n int) []byte {
|
|
|
|
for ; n > 0; n-- {
|
|
|
|
buf = append(buf, '0')
|
|
|
|
}
|
|
|
|
return buf
|
|
|
|
}
|
|
|
|
|
|
|
|
// shouldRoundUp reports if x should be rounded up
|
|
|
|
// if shortened to n digits. n must be a valid index
|
|
|
|
// for x.mant.
|
|
|
|
func shouldRoundUp(x *decimal, n int) bool {
|
|
|
|
if x.mant[n] == '5' && n+1 == len(x.mant) {
|
|
|
|
// exactly halfway - round to even
|
|
|
|
return n > 0 && (x.mant[n-1]-'0')&1 != 0
|
|
|
|
}
|
|
|
|
// not halfway - digit tells all (x.mant has no trailing zeros)
|
|
|
|
return x.mant[n] >= '5'
|
|
|
|
}
|
|
|
|
|
|
|
|
// round sets x to (at most) n mantissa digits by rounding it
|
|
|
|
// to the nearest even value with n (or fever) mantissa digits.
|
|
|
|
// If n < 0, x remains unchanged.
|
|
|
|
func (x *decimal) round(n int) {
|
|
|
|
if n < 0 || n >= len(x.mant) {
|
|
|
|
return // nothing to do
|
|
|
|
}
|
|
|
|
|
|
|
|
if shouldRoundUp(x, n) {
|
|
|
|
x.roundUp(n)
|
|
|
|
} else {
|
|
|
|
x.roundDown(n)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (x *decimal) roundUp(n int) {
|
|
|
|
if n < 0 || n >= len(x.mant) {
|
|
|
|
return // nothing to do
|
|
|
|
}
|
|
|
|
// 0 <= n < len(x.mant)
|
|
|
|
|
|
|
|
// find first digit < '9'
|
|
|
|
for n > 0 && x.mant[n-1] >= '9' {
|
|
|
|
n--
|
|
|
|
}
|
|
|
|
|
|
|
|
if n == 0 {
|
|
|
|
// all digits are '9's => round up to '1' and update exponent
|
|
|
|
x.mant[0] = '1' // ok since len(x.mant) > n
|
|
|
|
x.mant = x.mant[:1]
|
|
|
|
x.exp++
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// n > 0 && x.mant[n-1] < '9'
|
|
|
|
x.mant[n-1]++
|
|
|
|
x.mant = x.mant[:n]
|
|
|
|
// x already trimmed
|
|
|
|
}
|
|
|
|
|
|
|
|
func (x *decimal) roundDown(n int) {
|
|
|
|
if n < 0 || n >= len(x.mant) {
|
|
|
|
return // nothing to do
|
|
|
|
}
|
|
|
|
x.mant = x.mant[:n]
|
|
|
|
trim(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
// trim cuts off any trailing zeros from x's mantissa;
|
|
|
|
// they are meaningless for the value of x.
|
|
|
|
func trim(x *decimal) {
|
|
|
|
i := len(x.mant)
|
|
|
|
for i > 0 && x.mant[i-1] == '0' {
|
|
|
|
i--
|
|
|
|
}
|
|
|
|
x.mant = x.mant[:i]
|
|
|
|
if i == 0 {
|
|
|
|
x.exp = 0
|
|
|
|
}
|
|
|
|
}
|