gcc/libitm/config/x86/cacheline.h

245 lines
7.2 KiB
C
Raw Normal View History

/* Copyright (C) 2009, 2011 Free Software Foundation, Inc.
Contributed by Richard Henderson <rth@redhat.com>.
This file is part of the GNU Transactional Memory Library (libitm).
Libitm is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef LIBITM_CACHELINE_H
#define LIBITM_CACHELINE_H 1
// Minimum cacheline size is 32, due to both complex long double and __m256.
// There's no requirement that 64-bit use a 64-byte cacheline size, but do
// so for now to make sure everything is parameterized properly.
#ifdef __x86_64__
# define CACHELINE_SIZE 64
#else
# define CACHELINE_SIZE 32
#endif
namespace GTM HIDDEN {
// A gtm_cacheline_mask stores a modified bit for every modified byte
// in the cacheline with which it is associated.
typedef sized_integral<CACHELINE_SIZE / 8>::type gtm_cacheline_mask;
extern uint32_t const gtm_bit_to_byte_mask[16];
union gtm_cacheline
{
// Byte access to the cacheline.
unsigned char b[CACHELINE_SIZE] __attribute__((aligned(CACHELINE_SIZE)));
// Larger sized access to the cacheline.
uint16_t u16[CACHELINE_SIZE / sizeof(uint16_t)];
uint32_t u32[CACHELINE_SIZE / sizeof(uint32_t)];
uint64_t u64[CACHELINE_SIZE / sizeof(uint64_t)];
gtm_word w[CACHELINE_SIZE / sizeof(gtm_word)];
#ifdef __MMX__
__m64 m64[CACHELINE_SIZE / sizeof(__m64)];
#endif
#ifdef __SSE__
__m128 m128[CACHELINE_SIZE / sizeof(__m128)];
#endif
#ifdef __SSE2__
__m128i m128i[CACHELINE_SIZE / sizeof(__m128i)];
#endif
#ifdef __AVX__
__m256 m256[CACHELINE_SIZE / sizeof(__m256)];
__m256i m256i[CACHELINE_SIZE / sizeof(__m256i)];
#endif
// Store S into D, but only the bytes specified by M.
static void store_mask (uint32_t *d, uint32_t s, uint8_t m);
static void store_mask (uint64_t *d, uint64_t s, uint8_t m);
#ifdef __SSE2__
static void store_mask (__m128i *d, __m128i s, uint16_t m);
#endif
// Copy S to D, but only the bytes specified by M.
static void copy_mask (gtm_cacheline * __restrict d,
const gtm_cacheline * __restrict s,
gtm_cacheline_mask m);
// A write barrier to emit after (a series of) copy_mask.
// When we're emitting non-temporal stores, the normal strong
// ordering of the machine doesn't apply.
static void copy_mask_wb ();
#if defined(__SSE__) || defined(__AVX__)
// Copy S to D; only bother defining if we can do this more efficiently
// than the compiler-generated default implementation.
gtm_cacheline& operator= (const gtm_cacheline &s);
#endif // SSE, AVX
};
inline void
gtm_cacheline::copy_mask_wb ()
{
#ifdef __SSE2__
_mm_sfence ();
#endif
}
#if defined(__SSE__) || defined(__AVX__)
inline gtm_cacheline& ALWAYS_INLINE
gtm_cacheline::operator= (const gtm_cacheline & __restrict s)
{
#ifdef __AVX__
# define CP m256
# define TYPE __m256
#else
# define CP m128
# define TYPE __m128
#endif
TYPE w, x, y, z;
// ??? Wouldn't it be nice to have a pragma to tell the compiler
// to completely unroll a given loop?
switch (CACHELINE_SIZE / sizeof(TYPE))
{
case 1:
this->CP[0] = s.CP[0];
break;
case 2:
x = s.CP[0];
y = s.CP[1];
this->CP[0] = x;
this->CP[1] = y;
break;
case 4:
w = s.CP[0];
x = s.CP[1];
y = s.CP[2];
z = s.CP[3];
this->CP[0] = w;
this->CP[1] = x;
this->CP[2] = y;
this->CP[3] = z;
break;
default:
__builtin_trap ();
}
return *this;
}
#endif
// Support masked integer stores more efficiently with an unlocked cmpxchg
// insn. My reasoning is that while we write to locations that we do not wish
// to modify, we do it in an uninterruptable insn, and so we either truely
// write back the original data or the insn fails -- unlike with a
// load/and/or/write sequence which can be interrupted either by a kernel
// task switch or an unlucky cacheline steal by another processor. Avoiding
// the LOCK prefix improves performance by a factor of 10, and we don't need
// the memory barrier semantics implied by that prefix.
inline void ALWAYS_INLINE
gtm_cacheline::store_mask (uint32_t *d, uint32_t s, uint8_t m)
{
gtm_cacheline_mask tm = (1 << sizeof (s)) - 1;
if (__builtin_expect (m & tm, tm))
{
if (__builtin_expect ((m & tm) == tm, 1))
*d = s;
else
{
gtm_cacheline_mask bm = gtm_bit_to_byte_mask[m & 15];
gtm_word n, o = *d;
__asm("\n0:\t"
"mov %[o], %[n]\n\t"
"and %[m], %[n]\n\t"
"or %[s], %[n]\n\t"
"cmpxchg %[n], %[d]\n\t"
".byte 0x2e\n\t" // predict not-taken, aka jnz,pn
"jnz 0b"
: [d] "+m"(*d), [n] "=&r" (n), [o] "+a"(o)
: [s] "r" (s & bm), [m] "r" (~bm));
}
}
}
inline void ALWAYS_INLINE
gtm_cacheline::store_mask (uint64_t *d, uint64_t s, uint8_t m)
{
gtm_cacheline_mask tm = (1 << sizeof (s)) - 1;
if (__builtin_expect (m & tm, tm))
{
if (__builtin_expect ((m & tm) == tm, 1))
*d = s;
else
{
#ifdef __x86_64__
uint32_t bl = gtm_bit_to_byte_mask[m & 15];
uint32_t bh = gtm_bit_to_byte_mask[(m >> 4) & 15];
gtm_cacheline_mask bm = bl | ((gtm_cacheline_mask)bh << 31 << 1);
uint64_t n, o = *d;
__asm("\n0:\t"
"mov %[o], %[n]\n\t"
"and %[m], %[n]\n\t"
"or %[s], %[n]\n\t"
"cmpxchg %[n], %[d]\n\t"
".byte 0x2e\n\t" // predict not-taken, aka jnz,pn
"jnz 0b"
: [d] "+m"(*d), [n] "=&r" (n), [o] "+a"(o)
: [s] "r" (s & bm), [m] "r" (~bm));
#else
/* ??? While it's possible to perform this operation with
cmpxchg8b, the sequence requires all 7 general registers
and thus cannot be performed with -fPIC. Don't even try. */
uint32_t *d32 = reinterpret_cast<uint32_t *>(d);
store_mask (d32, s, m);
store_mask (d32 + 1, s >> 32, m >> 4);
#endif
}
}
}
#ifdef __SSE2__
inline void ALWAYS_INLINE
gtm_cacheline::store_mask (__m128i *d, __m128i s, uint16_t m)
{
if (__builtin_expect (m == 0, 0))
return;
if (__builtin_expect (m == 0xffff, 1))
*d = s;
else
{
__m128i bm0, bm1, bm2, bm3;
bm0 = _mm_set_epi32 (0, 0, 0, gtm_bit_to_byte_mask[m & 15]); m >>= 4;
bm1 = _mm_set_epi32 (0, 0, 0, gtm_bit_to_byte_mask[m & 15]); m >>= 4;
bm2 = _mm_set_epi32 (0, 0, 0, gtm_bit_to_byte_mask[m & 15]); m >>= 4;
bm3 = _mm_set_epi32 (0, 0, 0, gtm_bit_to_byte_mask[m & 15]); m >>= 4;
bm0 = _mm_unpacklo_epi32 (bm0, bm1);
bm2 = _mm_unpacklo_epi32 (bm2, bm3);
bm0 = _mm_unpacklo_epi64 (bm0, bm2);
_mm_maskmoveu_si128 (s, bm0, (char *)d);
}
}
#endif // SSE2
} // namespace GTM
#endif // LIBITM_CACHELINE_H