gcc/gcc/haifa-sched.c

5122 lines
147 KiB
C
Raw Normal View History

/* Instruction scheduling pass.
2000-02-26 14:55:09 +01:00
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
2000-04-20 12:55:19 +02:00
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GNU CC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to the Free
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Instruction scheduling pass.
This pass implements list scheduling within basic blocks. It is
run twice: (1) after flow analysis, but before register allocation,
and (2) after register allocation.
The first run performs interblock scheduling, moving insns between
different blocks in the same "region", and the second runs only
basic block scheduling.
Interblock motions performed are useful motions and speculative
motions, including speculative loads. Motions requiring code
duplication are not supported. The identification of motion type
and the check for validity of speculative motions requires
construction and analysis of the function's control flow graph.
The scheduler works as follows:
We compute insn priorities based on data dependencies. Flow
analysis only creates a fraction of the data-dependencies we must
observe: namely, only those dependencies which the combiner can be
expected to use. For this pass, we must therefore create the
remaining dependencies we need to observe: register dependencies,
memory dependencies, dependencies to keep function calls in order,
and the dependence between a conditional branch and the setting of
condition codes are all dealt with here.
The scheduler first traverses the data flow graph, starting with
the last instruction, and proceeding to the first, assigning values
to insn_priority as it goes. This sorts the instructions
topologically by data dependence.
Once priorities have been established, we order the insns using
list scheduling. This works as follows: starting with a list of
all the ready insns, and sorted according to priority number, we
schedule the insn from the end of the list by placing its
predecessors in the list according to their priority order. We
consider this insn scheduled by setting the pointer to the "end" of
the list to point to the previous insn. When an insn has no
predecessors, we either queue it until sufficient time has elapsed
or add it to the ready list. As the instructions are scheduled or
when stalls are introduced, the queue advances and dumps insns into
the ready list. When all insns down to the lowest priority have
been scheduled, the critical path of the basic block has been made
as short as possible. The remaining insns are then scheduled in
remaining slots.
Function unit conflicts are resolved during forward list scheduling
by tracking the time when each insn is committed to the schedule
and from that, the time the function units it uses must be free.
As insns on the ready list are considered for scheduling, those
that would result in a blockage of the already committed insns are
queued until no blockage will result.
The following list shows the order in which we want to break ties
among insns in the ready list:
1. choose insn with the longest path to end of bb, ties
broken by
2. choose insn with least contribution to register pressure,
ties broken by
3. prefer in-block upon interblock motion, ties broken by
4. prefer useful upon speculative motion, ties broken by
5. choose insn with largest control flow probability, ties
broken by
6. choose insn with the least dependences upon the previously
scheduled insn, or finally
7 choose the insn which has the most insns dependent on it.
8. choose insn with lowest UID.
Memory references complicate matters. Only if we can be certain
that memory references are not part of the data dependency graph
(via true, anti, or output dependence), can we move operations past
memory references. To first approximation, reads can be done
independently, while writes introduce dependencies. Better
approximations will yield fewer dependencies.
Before reload, an extended analysis of interblock data dependences
is required for interblock scheduling. This is performed in
compute_block_backward_dependences ().
Dependencies set up by memory references are treated in exactly the
same way as other dependencies, by using LOG_LINKS backward
dependences. LOG_LINKS are translated into INSN_DEPEND forward
dependences for the purpose of forward list scheduling.
Having optimized the critical path, we may have also unduly
extended the lifetimes of some registers. If an operation requires
that constants be loaded into registers, it is certainly desirable
to load those constants as early as necessary, but no earlier.
I.e., it will not do to load up a bunch of registers at the
beginning of a basic block only to use them at the end, if they
could be loaded later, since this may result in excessive register
utilization.
Note that since branches are never in basic blocks, but only end
basic blocks, this pass will not move branches. But that is ok,
since we can use GNU's delayed branch scheduling pass to take care
of this case.
Also note that no further optimizations based on algebraic
identities are performed, so this pass would be a good one to
perform instruction splitting, such as breaking up a multiply
instruction into shifts and adds where that is profitable.
Given the memory aliasing analysis that this pass should perform,
it should be possible to remove redundant stores to memory, and to
load values from registers instead of hitting memory.
Before reload, speculative insns are moved only if a 'proof' exists
that no exception will be caused by this, and if no live registers
exist that inhibit the motion (live registers constraints are not
represented by data dependence edges).
This pass must update information that subsequent passes expect to
be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
BLOCK_END.
The information in the line number notes is carefully retained by
this pass. Notes that refer to the starting and ending of
exception regions are also carefully retained by this pass. All
other NOTE insns are grouped in their same relative order at the
beginning of basic blocks and regions that have been scheduled.
The main entry point for this pass is schedule_insns(), called for
each function. The work of the scheduler is organized in three
levels: (1) function level: insns are subject to splitting,
control-flow-graph is constructed, regions are computed (after
reload, each region is of one block), (2) region level: control
flow graph attributes required for interblock scheduling are
computed (dominators, reachability, etc.), data dependences and
priorities are computed, and (3) block level: insns in the block
are actually scheduled. */
#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
Warning Fixes: * Makefile.in (print-rtl.o): Depend on bitmap.h. (dbxout.o): Depend on toplev.h. ($(SCHED_PREFIX)sched.o): Likewise. ($(out_object_file)): Likewise for system.h and toplev.h. (cppmain.o): Depend on gansidecl.h. (cpplib.o): Likewise. (cpperror.o): Likewise. (cppexp.o): Likewise. (cpphash.o): Likewise. (cppalloc.o): Likewise. (fix-header.o): Depend on cpplib.h and cpphash.h. (scan-decls.o): Depend on gansidecl.h. * basic-block.h (free_regset_vector): Add prototype. * cccp.c (check_precompiled): Mark parameter `fname' with ATTRIBUTE_UNUSED. (do_assert): Likewise for `op' and `keyword'. (do_unassert): Likewise. (do_line): Likewise for `keyword'. (do_error): Likewise for `op' and `keyword'. (do_warning): Likewise. (do_ident): Likewise for `keyword'. (do_pragma): Likewise for `limit', `op' and `keyword'. (do_sccs): Likewise. (do_if): Likewise for `keyword'. (do_elif): Likewise. (do_else): Likewise. (do_endif): Likewise. * collect2.c (getenv): Remove redundant prototype. (collect_exit, collect_execute, dump_file): Likewise. (dump_list): Wrap prototype and definition in COLLECT_EXPORT_LIST. (dump_prefix_list): Hide prototype and definition. * sparc.c: Include toplev.h. (intreg_operand): Mark parameter `mode' with ATTRIBUTE_UNUSED. (symbolic_memory_operand): Likewise. (sp64_medium_pic_operand): Likewise. (data_segment_operand): Likewise. (text_segment_operand): Likewise. (splittable_symbolic_memory_operand): Likewise. (splittable_immediate_memory_operand): Likewise. (eq_or_neq): Likewise. (normal_comp_operator): Likewise. (noov_compare_op): Likewise. (v9_regcmp_op): Likewise. (v8plus_regcmp_op): Likewise. (extend_op): Likewise. (cc_arithop): Likewise. (cc_arithopn): Likewise. (small_int): Likewise. (uns_small_int): Likewise. (clobbered_register): Likewise. (legitimize_pic_address): Likewise. (delay_operand): Likewise. (sparc_builtin_saveregs): Remove unused variable `stdarg'. * sparc.h (order_regs_for_local_alloc, eligible_for_return_delay, sparc_issue_rate, v8plus_regcmp_p): Add prototypes. * sparc.md (cmpdi_v8plus): Add abort for default case in switch. * cppalloc.c: Include gansidecl.h. * cpperror.c: Include stdarg.h/varargs.h and gansidecl.h. (cpp_file_line_for_message): Mark parameter `pfile' with ATTRIBUTE_UNUSED. (v_cpp_message): New function. (cpp_message): Use it. Also convert to variable arguments. (cpp_fatal): Likewise. (cpp_pfatal_with_name): Constify parameter `name'. * cppexp.c: Move gansidecl.h before cpplib.h. * cpphash.c: Likewise. * cpphash.h (hashf, delete_macro): Add prototypes. * cpplib.c: Include stdarg.h/varargs.h and move gansidecl.h before cpplib.h. Don't include errno.h. (update_path): Add arguments to prototype. (cpp_fatal, cpp_file_line_for_message, cpp_message, delete_macro, cpp_print_containing_files): Remove redundant prototypes. (cpp_hash_cleanup, add_import, append_include_chain, make_assertion, path_include, initialize_builtins, initialize_char_syntax, finclude, validate_else, comp_def_part, lookup_import, redundant_include_p, is_system_include, read_name_map, read_filename_string, open_include_file, check_macro_name, compare_defs, compare_token_lists, eval_if_expression, change_newlines): Add prototype arguments. (hashf): Remove redundant prototype. (read_token_list, free_token_list, safe_read, xcalloc, savestring, conditional_skip, skip_if_group): Add prototype arguments. (fdopen): Remove redundant prototype. (do_define, do_line, do_include, do_undef, do_error, do_pragma, do_ident, do_if, do_xifdef, do_else, do_elif, do_endif, do_sccs, do_once, do_assert, do_unassert, do_warning): Add prototype arguments. (struct directive): Add prototype arguments to function pointer member `func'. (handle_directive): Add missing arguments to call to `do_line'. (do_include): Mark parameters `unused1' and `unused2' with ATTRIBUTE_UNUSED. (do_line): Likewise for `keyword' and new parameters `unused1' and `unused2'. (do_error): Likewise for `keyword'. (do_warning): Likewise. Also add missing argument `pfile' in call to cpp_pedwarn. (do_once): Mark parameter `keyword', `unused1' and `unused2' with ATTRIBUTE_UNUSED. (do_ident): Likewise for `keyword', `buf' and `limit'. (do_pragma): Likewise. Also add missing arguments in call to do_once. (do_sccs): Mark parameter `keyword', `buf' and `limit' with ATTRIBUTE_UNUSED. (do_if): Likewise for `keyword'. (do_elif): Likewise. (eval_if_expression): Likewise for `buf' and `length'. (do_xifdef): Likewise for `unused1' and `unused2'. (do_else): Likewise for `keyword', `buf' and `limit'. (do_endif): Likewise. (parse_name): Add missing argument `pfile' in call to cpp_pedwarn. (cpp_handle_options): Remove superfluous NULL argument in call to cpp_fatal. (cpp_handle_options): Likewise. (do_assert): Mark parameter `keyword', `buf' and `limit' with ATTRIBUTE_UNUSED. (do_unassert): Likewise. (cpp_print_file_and_line): Add missing argument `pfile' in call to cpp_file_line_for_message. (v_cpp_error): New function. (cpp_error): Use it. Also accept variable arguments. (v_cpp_warning): New function. (cpp_warning): Use it. Also accept variable arguments. (cpp_pedwarn): Accept variable arguments. (v_cpp_error_with_line): New function (cpp_error_with_line): Use it. Accept variable arguments. (v_cpp_warning_with_line): New function. (cpp_warning_with_line): Use it. Accept variable arguments. Hide definition. (cpp_pedwarn_with_line): Accept variable arguments. (cpp_pedwarn_with_file_and_line): Likewise. (cpp_error_from_errno): Constify parameter `name'. Add missing argument `pfile' in call to cpp_file_line_for_message. (cpp_perror_with_name): Constify parameter `name'. * cpplib.h: Define PARAMS() in terms of PROTO(). (fatal): Remove redundant prototype. (cpp_error, cpp_warning, cpp_pedwarn, cpp_error_with_line, cpp_pedwarn_with_line, cpp_pedwarn_with_file_and_line, cpp_error_from_errno, cpp_perror_with_name, cpp_pfatal_with_name, cpp_fatal, cpp_message, cpp_pfatal_with_name, cpp_file_line_for_message, cpp_print_containing_files): Add arguments to prototypes. (scan_decls, cpp_finish): Add prototypes. * cppmain.c: Include gansidecl.h. (main): Remove unused variable `i'. * dbxout.c: Include toplev.h. * demangle.h (do_tlink, collect_execute, collect_exit, collect_wait, dump_file, file_exists): Add prototype. * dwarf2out.c (dwarf_type_encoding_name, decl_start_label): Hide prototype and definition. (gen_unspecified_parameters_die): Don't assign results of call to function new_die() to unused variable `parm_die'. (dwarf2out_line): Mark parameter `filename' with ATTRIBUTE_UNUSED. (dwarf2out_define): Likewise for `lineno' and `buffer'. * dwarfout.c (output_unsigned_leb128, output_signed_leb128): Hide prototype and definition. (output_die): Add prototype arguments to function pointer arg. (output_unspecified_parameters_die): Mark parameter `arg' with ATTRIBUTE_UNUSED. * except.c (output_exception_table_entry): Remove unused variable `eh_entry'. * except.h (expand_fixup_region_start, expand_fixup_region_end): Add prototypes. * expr.c (do_jump_by_parts_equality_rtx): Remove prototype. * expr.h (do_jump_by_parts_equality_rtx): Add prototype. * fix-header.c: Include stdarg.h/varargs.h, move gansidecl.h before cpplib.h, include cpphash.h, remove redundant prototype of cpp_fatal, don't define `const', add a prototype for `fatal'. (cpp_file_line_for_message): Add missing arguments `pfile'. (v_cpp_message): New function. (cpp_message): Use it. (v_fatal): New function. (fatal, cpp_fatal): Use it. (cpp_pfatal_with_name): Constify parameter `name'. * flow.c (free_regset_vector): Remove redundant prototype. * function.c (round_down): Wrap prototype and definition with macro ARGS_GROW_DOWNWARD. (record_insns): Wrap prototype and definition with defined (HAVE_prologue) || defined (HAVE_epilogue). * gansidecl.h (ATTRIBUTE_PRINTF_4, ATTRIBUTE_PRINTF_5): New macros. * gen-protos.c: Include gansidecl.h. (hashf): Don't make it static, constify parameter `name'. * genattrtab.c (check_attr_test): Change XEXP() to XSTR() to match specifier %s in calls to function `fatal'. * haifa-sched.c: Include toplev.h. (find_rgns): Remove unused variable `j'. * integrate.c (note_modified_parmregs): Mark parameter `x' with ATTRIBUTE_UNUSED. (mark_stores): Likewise. * jump.c (mark_modified_reg): Likewise. * output.h (insn_current_reference_address): Add prototype. (eh_frame_section): Likewise. * print-rtl.c: Include bitmap.h. * reload1.c (reload): Wrap variables `note' and `next' in macro PRESERVE_DEATH_INFO_REGNO_P. (forget_old_reloads_1): Mark parameter `ignored' with ATTRIBUTE_UNUSED. (choose_reload_regs): Remove unused variable `in'. (reload_cse_invalidate_mem): Mark parameter `ignore' with ATTRIBUTE_UNUSED. (reload_cse_check_clobber): Likewise. * rtl.h (expand_null_return, reg_classes_intersect_p): Add prototype. (mark_elimination): Fix typo in prototype. * scan-decls.c: Include gansidecl.h. * tree.h (using_eh_for_cleanups, supports_one_only): Add prototype. From-SVN: r19867
1998-05-19 10:42:48 +02:00
#include "toplev.h"
Warning fixes: * Makefile.in (flow.o): Depend on recog.h. * cpplib.h (directive_table): Add missing initializiers. (finclude): Change type of variable `bsize' to size_t. * cse.c (rtx_cost): Mark parameter `outer_code' with ATTRIBUTE_UNUSED. * dwarfout.h (dwarfout_label): Wrap prototype in macro RTX_CODE. * fix-header.c (lookup_std_proto): Cast the result of `strlen' to `int' when comparing against one. (cpp_file_line_for_message): Mark parameter `pfile' with ATTRIBUTE_UNUSED. (cpp_fatal): Mark parameter `pfile' with ATTRIBUTE_UNUSED. * flow.c: Include recog.h. (sbitmap_copy): Cast arguments 1 & 2 of `bcopy' to (PTR). * function.c (thread_prologue_and_epilogue_insns): Mark parameter `f' with ATTRIBUTE_UNUSED. (reposition_prologue_and_epilogue_notes): Likewise. * genopinit.c (gen_insn): Cast argument of ctype functions to `unsigned char'. * haifa-sched.c: Include recog.h. (blockage_range): Cast result of UNIT_BLOCKED macro to (int) when comparing against one. * libgcc2.a (__throw): Revert ATTRIBUTE_UNUSED change for now. * mips-tfile.c (parse_end): Cast the argument of ctype function to `unsigned char'. (parse_ent): Likewise. (parse_input): Likewise. * optabs.c (init_libfuncs): Likewise. * protoize.c (find_rightmost_formals_list): Likewise. * recog.h (const_double_operand): Fix typo in prototype. * tlink.c (scan_linker_output): Cast the argument of ctype function to `unsigned char'. * toplev.c (check_lang_option): Cast the result of `strlen' to `int' when comparing against one. From-SVN: r23155
1998-10-17 22:26:29 +02:00
#include "recog.h"
#include "sched-int.h"
#ifdef INSN_SCHEDULING
/* issue_rate is the number of insns that can be scheduled in the same
machine cycle. It can be defined in the config/mach/mach.h file,
otherwise we set it to 1. */
static int issue_rate;
#ifndef ISSUE_RATE
#define ISSUE_RATE 1
#endif
/* sched-verbose controls the amount of debugging output the
scheduler prints. It is controlled by -fsched-verbose=N:
N>0 and no -DSR : the output is directed to stderr.
N>=10 will direct the printouts to stderr (regardless of -dSR).
N=1: same as -dSR.
N=2: bb's probabilities, detailed ready list info, unit/insn info.
N=3: rtl at abort point, control-flow, regions info.
N=5: dependences info. */
#define MAX_RGN_BLOCKS 10
#define MAX_RGN_INSNS 100
static int sched_verbose_param = 0;
static int sched_verbose = 0;
/* nr_inter/spec counts interblock/speculative motion for the function. */
static int nr_inter, nr_spec;
/* Debugging file. All printouts are sent to dump, which is always set,
either to stderr, or to the dump listing file (-dRS). */
FILE *sched_dump = 0;
2000-12-02 11:47:42 +01:00
/* Highest uid before scheduling. */
static int old_max_uid;
/* fix_sched_param() is called from toplev.c upon detection
of the -fsched-verbose=N option. */
void
fix_sched_param (param, val)
const char *param, *val;
{
if (!strcmp (param, "verbose"))
sched_verbose_param = atoi (val);
else
warning ("fix_sched_param: unknown param: %s", param);
}
struct haifa_insn_data *h_i_d;
#define INSN_PRIORITY(INSN) (h_i_d[INSN_UID (INSN)].priority)
#define INSN_COST(INSN) (h_i_d[INSN_UID (INSN)].cost)
#define INSN_UNIT(INSN) (h_i_d[INSN_UID (INSN)].units)
#define INSN_REG_WEIGHT(INSN) (h_i_d[INSN_UID (INSN)].reg_weight)
#define INSN_BLOCKAGE(INSN) (h_i_d[INSN_UID (INSN)].blockage)
#define UNIT_BITS 5
#define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
#define ENCODE_BLOCKAGE(U, R) \
(((U) << BLOCKAGE_BITS \
| MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
| MAX_BLOCKAGE_COST (R))
#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
#define BLOCKAGE_RANGE(B) \
(((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
| ((B) & BLOCKAGE_MASK))
/* Encodings of the `<name>_unit_blockage_range' function. */
#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
#define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
#define DONE_PRIORITY -1
#define MAX_PRIORITY 0x7fffffff
#define TAIL_PRIORITY 0x7ffffffe
#define LAUNCH_PRIORITY 0x7f000001
#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
#define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
#define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
#define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
#define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
#define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
/* Vector indexed by basic block number giving the starting line-number
for each basic block. */
static rtx *line_note_head;
/* List of important notes we must keep around. This is a pointer to the
last element in the list. */
static rtx note_list;
/* Queues, etc. */
/* An instruction is ready to be scheduled when all insns preceding it
have already been scheduled. It is important to ensure that all
insns which use its result will not be executed until its result
has been computed. An insn is maintained in one of four structures:
(P) the "Pending" set of insns which cannot be scheduled until
their dependencies have been satisfied.
(Q) the "Queued" set of insns that can be scheduled when sufficient
time has passed.
(R) the "Ready" list of unscheduled, uncommitted insns.
(S) the "Scheduled" list of insns.
Initially, all insns are either "Pending" or "Ready" depending on
whether their dependencies are satisfied.
Insns move from the "Ready" list to the "Scheduled" list as they
are committed to the schedule. As this occurs, the insns in the
"Pending" list have their dependencies satisfied and move to either
the "Ready" list or the "Queued" set depending on whether
sufficient time has passed to make them ready. As time passes,
insns move from the "Queued" set to the "Ready" list. Insns may
move from the "Ready" list to the "Queued" set if they are blocked
due to a function unit conflict.
The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
insns, i.e., those that are ready, queued, and pending.
The "Queued" set (Q) is implemented by the variable `insn_queue'.
The "Ready" list (R) is implemented by the variables `ready' and
`n_ready'.
The "Scheduled" list (S) is the new insn chain built by this pass.
The transition (R->S) is implemented in the scheduling loop in
`schedule_block' when the best insn to schedule is chosen.
The transition (R->Q) is implemented in `queue_insn' when an
1998-05-06 23:09:07 +02:00
insn is found to have a function unit conflict with the already
committed insns.
The transitions (P->R and P->Q) are implemented in `schedule_insn' as
insns move from the ready list to the scheduled list.
The transition (Q->R) is implemented in 'queue_to_insn' as time
passes or stalls are introduced. */
/* Implement a circular buffer to delay instructions until sufficient
time has passed. INSN_QUEUE_SIZE is a power of two larger than
MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
longest time an isnsn may be queued. */
static rtx insn_queue[INSN_QUEUE_SIZE];
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
/* Describe the ready list of the scheduler.
VEC holds space enough for all insns in the current region. VECLEN
says how many exactly.
FIRST is the index of the element with the highest priority; i.e. the
last one in the ready list, since elements are ordered by ascending
priority.
N_READY determines how many insns are on the ready list. */
struct ready_list
{
rtx *vec;
int veclen;
int first;
int n_ready;
};
/* Forward declarations. */
static unsigned int blockage_range PARAMS ((int, rtx));
static void clear_units PARAMS ((void));
static void schedule_unit PARAMS ((int, rtx, int));
static int actual_hazard PARAMS ((int, rtx, int, int));
static int potential_hazard PARAMS ((int, rtx, int));
static int insn_cost PARAMS ((rtx, rtx, rtx));
static int priority PARAMS ((rtx));
static void free_pending_lists PARAMS ((void));
static int rank_for_schedule PARAMS ((const PTR, const PTR));
static void swap_sort PARAMS ((rtx *, int));
static void queue_insn PARAMS ((rtx, int));
static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
static void find_insn_reg_weight PARAMS ((int));
static void schedule_block PARAMS ((int, int));
static int insn_issue_delay PARAMS ((rtx));
static void adjust_priority PARAMS ((rtx));
/* Control flow graph edges are kept in circular lists. */
typedef struct
{
int from_block;
int to_block;
int next_in;
int next_out;
}
haifa_edge;
static haifa_edge *edge_table;
#define NEXT_IN(edge) (edge_table[edge].next_in)
#define NEXT_OUT(edge) (edge_table[edge].next_out)
#define FROM_BLOCK(edge) (edge_table[edge].from_block)
#define TO_BLOCK(edge) (edge_table[edge].to_block)
/* Number of edges in the control flow graph. (In fact, larger than
that by 1, since edge 0 is unused.) */
static int nr_edges;
/* Circular list of incoming/outgoing edges of a block. */
static int *in_edges;
static int *out_edges;
#define IN_EDGES(block) (in_edges[block])
#define OUT_EDGES(block) (out_edges[block])
static int is_cfg_nonregular PARAMS ((void));
static int build_control_flow PARAMS ((struct edge_list *));
static void new_edge PARAMS ((int, int));
/* A region is the main entity for interblock scheduling: insns
are allowed to move between blocks in the same region, along
control flow graph edges, in the 'up' direction. */
typedef struct
{
int rgn_nr_blocks; /* Number of blocks in region. */
int rgn_blocks; /* cblocks in the region (actually index in rgn_bb_table). */
}
region;
/* Number of regions in the procedure. */
static int nr_regions;
/* Table of region descriptions. */
static region *rgn_table;
/* Array of lists of regions' blocks. */
static int *rgn_bb_table;
/* Topological order of blocks in the region (if b2 is reachable from
b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
always referred to by either block or b, while its topological
order name (in the region) is refered to by bb. */
static int *block_to_bb;
/* The number of the region containing a block. */
static int *containing_rgn;
#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
#define BLOCK_TO_BB(block) (block_to_bb[block])
#define CONTAINING_RGN(block) (containing_rgn[block])
void debug_regions PARAMS ((void));
static void find_single_block_region PARAMS ((void));
static void find_rgns PARAMS ((struct edge_list *, sbitmap *));
static int too_large PARAMS ((int, int *, int *));
extern void debug_live PARAMS ((int, int));
/* Blocks of the current region being scheduled. */
static int current_nr_blocks;
static int current_blocks;
/* The mapping from bb to block. */
#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
/* Bit vectors and bitset operations are needed for computations on
the control flow graph. */
typedef unsigned HOST_WIDE_INT *bitset;
typedef struct
{
int *first_member; /* Pointer to the list start in bitlst_table. */
int nr_members; /* The number of members of the bit list. */
}
bitlst;
static int bitlst_table_last;
static int bitlst_table_size;
static int *bitlst_table;
static char bitset_member PARAMS ((bitset, int, int));
static void extract_bitlst PARAMS ((bitset, int, int, bitlst *));
/* Target info declarations.
The block currently being scheduled is referred to as the "target" block,
while other blocks in the region from which insns can be moved to the
target are called "source" blocks. The candidate structure holds info
about such sources: are they valid? Speculative? Etc. */
typedef bitlst bblst;
typedef struct
{
char is_valid;
char is_speculative;
int src_prob;
bblst split_bbs;
bblst update_bbs;
}
candidate;
static candidate *candidate_table;
/* A speculative motion requires checking live information on the path
from 'source' to 'target'. The split blocks are those to be checked.
After a speculative motion, live information should be modified in
the 'update' blocks.
Lists of split and update blocks for each candidate of the current
target are in array bblst_table. */
static int *bblst_table, bblst_size, bblst_last;
#define IS_VALID(src) ( candidate_table[src].is_valid )
#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
#define SRC_PROB(src) ( candidate_table[src].src_prob )
/* The bb being currently scheduled. */
static int target_bb;
/* List of edges. */
typedef bitlst edgelst;
/* Target info functions. */
static void split_edges PARAMS ((int, int, edgelst *));
static void compute_trg_info PARAMS ((int));
void debug_candidate PARAMS ((int));
void debug_candidates PARAMS ((int));
/* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
typedef bitset bbset;
/* Number of words of the bbset. */
static int bbset_size;
/* Dominators array: dom[i] contains the bbset of dominators of
bb i in the region. */
static bbset *dom;
/* bb 0 is the only region entry. */
#define IS_RGN_ENTRY(bb) (!bb)
/* Is bb_src dominated by bb_trg. */
#define IS_DOMINATED(bb_src, bb_trg) \
( bitset_member (dom[bb_src], bb_trg, bbset_size) )
/* Probability: Prob[i] is a float in [0, 1] which is the probability
of bb i relative to the region entry. */
static float *prob;
/* The probability of bb_src, relative to bb_trg. Note, that while the
'prob[bb]' is a float in [0, 1], this macro returns an integer
in [0, 100]. */
#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
prob[bb_trg])))
/* Bit-set of edges, where bit i stands for edge i. */
typedef bitset edgeset;
/* Number of edges in the region. */
static int rgn_nr_edges;
/* Array of size rgn_nr_edges. */
static int *rgn_edges;
/* Number of words in an edgeset. */
static int edgeset_size;
/* Number of bits in an edgeset. */
static int edgeset_bitsize;
/* Mapping from each edge in the graph to its number in the rgn. */
static int *edge_to_bit;
#define EDGE_TO_BIT(edge) (edge_to_bit[edge])
/* The split edges of a source bb is different for each target
bb. In order to compute this efficiently, the 'potential-split edges'
are computed for each bb prior to scheduling a region. This is actually
the split edges of each bb relative to the region entry.
pot_split[bb] is the set of potential split edges of bb. */
static edgeset *pot_split;
/* For every bb, a set of its ancestor edges. */
static edgeset *ancestor_edges;
static void compute_dom_prob_ps PARAMS ((int));
#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
/* Parameters affecting the decision of rank_for_schedule(). */
#define MIN_DIFF_PRIORITY 2
#define MIN_PROBABILITY 40
#define MIN_PROB_DIFF 10
/* Speculative scheduling functions. */
static int check_live_1 PARAMS ((int, rtx));
static void update_live_1 PARAMS ((int, rtx));
static int check_live PARAMS ((rtx, int));
static void update_live PARAMS ((rtx, int));
static void set_spec_fed PARAMS ((rtx));
static int is_pfree PARAMS ((rtx, int, int));
static int find_conditional_protection PARAMS ((rtx, int));
static int is_conditionally_protected PARAMS ((rtx, int, int));
static int may_trap_exp PARAMS ((rtx, int));
static int haifa_classify_insn PARAMS ((rtx));
static int is_prisky PARAMS ((rtx, int, int));
static int is_exception_free PARAMS ((rtx, int, int));
static void add_branch_dependences PARAMS ((rtx, rtx));
static void compute_block_backward_dependences PARAMS ((int));
void debug_dependencies PARAMS ((void));
/* Notes handling mechanism:
=========================
Generally, NOTES are saved before scheduling and restored after scheduling.
The scheduler distinguishes between three types of notes:
(1) LINE_NUMBER notes, generated and used for debugging. Here,
before scheduling a region, a pointer to the LINE_NUMBER note is
added to the insn following it (in save_line_notes()), and the note
is removed (in rm_line_notes() and unlink_line_notes()). After
scheduling the region, this pointer is used for regeneration of
the LINE_NUMBER note (in restore_line_notes()).
(2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
Before scheduling a region, a pointer to the note is added to the insn
that follows or precedes it. (This happens as part of the data dependence
computation). After scheduling an insn, the pointer contained in it is
used for regenerating the corresponding note (in reemit_notes).
(3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
these notes are put in a list (in rm_other_notes() and
unlink_other_notes ()). After scheduling the block, these notes are
inserted at the beginning of the block (in schedule_block()). */
static rtx unlink_other_notes PARAMS ((rtx, rtx));
static rtx unlink_line_notes PARAMS ((rtx, rtx));
static void rm_line_notes PARAMS ((int));
static void save_line_notes PARAMS ((int));
static void restore_line_notes PARAMS ((int));
static void rm_redundant_line_notes PARAMS ((void));
static void rm_other_notes PARAMS ((rtx, rtx));
static rtx reemit_notes PARAMS ((rtx, rtx));
static int no_real_insns_p PARAMS ((rtx, rtx));
static void get_block_head_tail PARAMS ((int, rtx *, rtx *));
static void get_bb_head_tail PARAMS ((int, rtx *, rtx *));
static void ready_add PARAMS ((struct ready_list *, rtx));
static rtx *ready_lastpos PARAMS ((struct ready_list *));
static void ready_sort PARAMS ((struct ready_list *));
static rtx ready_remove_first PARAMS ((struct ready_list *));
static void queue_to_ready PARAMS ((struct ready_list *));
static void debug_ready_list PARAMS ((struct ready_list *));
void debug_reg_vector PARAMS ((regset));
static rtx move_insn1 PARAMS ((rtx, rtx));
static rtx move_insn PARAMS ((rtx, rtx));
static int set_priorities PARAMS ((int));
2000-12-02 11:47:42 +01:00
static void init_regions PARAMS ((void));
static void sched_init PARAMS ((FILE *));
static void schedule_region PARAMS ((int));
static void propagate_deps PARAMS ((int, struct deps *, int));
#endif /* INSN_SCHEDULING */
/* Point to state used for the current scheduling pass. */
struct sched_info *current_sched_info;
#ifndef INSN_SCHEDULING
void
schedule_insns (dump_file)
FILE *dump_file ATTRIBUTE_UNUSED;
{
}
#else
/* Computation of memory dependencies. */
/* Data structures for the computation of data dependences in a regions. We
keep one mem_deps structure for every basic block. Before analyzing the
data dependences for a bb, its variables are initialized as a function of
the variables of its predecessors. When the analysis for a bb completes,
we save the contents to the corresponding bb_mem_deps[bb] variable. */
static struct deps *bb_deps;
/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
so that insns independent of the last scheduled insn will be preferred
over dependent instructions. */
static rtx last_scheduled_insn;
/* Functions for construction of the control flow graph. */
/* Return 1 if control flow graph should not be constructed, 0 otherwise.
We decide not to build the control flow graph if there is possibly more
than one entry to the function, if computed branches exist, of if we
have nonlocal gotos. */
static int
is_cfg_nonregular ()
{
int b;
rtx insn;
RTX_CODE code;
/* If we have a label that could be the target of a nonlocal goto, then
the cfg is not well structured. */
if (nonlocal_goto_handler_labels)
return 1;
/* If we have any forced labels, then the cfg is not well structured. */
if (forced_labels)
return 1;
/* If this function has a computed jump, then we consider the cfg
not well structured. */
if (current_function_has_computed_jump)
return 1;
/* If we have exception handlers, then we consider the cfg not well
structured. ?!? We should be able to handle this now that flow.c
computes an accurate cfg for EH. */
if (exception_handler_labels)
return 1;
/* If we have non-jumping insns which refer to labels, then we consider
the cfg not well structured. */
/* Check for labels referred to other thn by jumps. */
for (b = 0; b < n_basic_blocks; b++)
for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
{
code = GET_CODE (insn);
if (GET_RTX_CLASS (code) == 'i')
{
rtx note;
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_LABEL)
return 1;
}
if (insn == BLOCK_END (b))
break;
}
/* All the tests passed. Consider the cfg well structured. */
return 0;
}
/* Build the control flow graph and set nr_edges.
Instead of trying to build a cfg ourselves, we rely on flow to
do it for us. Stamp out useless code (and bug) duplication.
Return nonzero if an irregularity in the cfg is found which would
prevent cross block scheduling. */
static int
build_control_flow (edge_list)
struct edge_list *edge_list;
{
int i, unreachable, num_edges;
/* This already accounts for entry/exit edges. */
num_edges = NUM_EDGES (edge_list);
/* Unreachable loops with more than one basic block are detected
during the DFS traversal in find_rgns.
Unreachable loops with a single block are detected here. This
test is redundant with the one in find_rgns, but it's much
cheaper to go ahead and catch the trivial case here. */
unreachable = 0;
for (i = 0; i < n_basic_blocks; i++)
{
basic_block b = BASIC_BLOCK (i);
if (b->pred == NULL
|| (b->pred->src == b
&& b->pred->pred_next == NULL))
unreachable = 1;
}
/* ??? We can kill these soon. */
in_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
out_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
edge_table = (haifa_edge *) xcalloc (num_edges, sizeof (haifa_edge));
nr_edges = 0;
for (i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (edge_list, i);
if (e->dest != EXIT_BLOCK_PTR
&& e->src != ENTRY_BLOCK_PTR)
new_edge (e->src->index, e->dest->index);
}
/* Increment by 1, since edge 0 is unused. */
nr_edges++;
return unreachable;
}
/* Record an edge in the control flow graph from SOURCE to TARGET.
In theory, this is redundant with the s_succs computed above, but
we have not converted all of haifa to use information from the
integer lists. */
static void
new_edge (source, target)
int source, target;
{
int e, next_edge;
int curr_edge, fst_edge;
/* Check for duplicates. */
fst_edge = curr_edge = OUT_EDGES (source);
while (curr_edge)
{
if (FROM_BLOCK (curr_edge) == source
&& TO_BLOCK (curr_edge) == target)
{
return;
}
curr_edge = NEXT_OUT (curr_edge);
if (fst_edge == curr_edge)
break;
}
e = ++nr_edges;
FROM_BLOCK (e) = source;
TO_BLOCK (e) = target;
if (OUT_EDGES (source))
{
next_edge = NEXT_OUT (OUT_EDGES (source));
NEXT_OUT (OUT_EDGES (source)) = e;
NEXT_OUT (e) = next_edge;
}
else
{
OUT_EDGES (source) = e;
NEXT_OUT (e) = e;
}
if (IN_EDGES (target))
{
next_edge = NEXT_IN (IN_EDGES (target));
NEXT_IN (IN_EDGES (target)) = e;
NEXT_IN (e) = next_edge;
}
else
{
IN_EDGES (target) = e;
NEXT_IN (e) = e;
}
}
/* BITSET macros for operations on the control flow graph. */
/* Compute bitwise union of two bitsets. */
#define BITSET_UNION(set1, set2, len) \
do { register bitset tp = set1, sp = set2; \
register int i; \
for (i = 0; i < len; i++) \
*(tp++) |= *(sp++); } while (0)
/* Compute bitwise intersection of two bitsets. */
#define BITSET_INTER(set1, set2, len) \
do { register bitset tp = set1, sp = set2; \
register int i; \
for (i = 0; i < len; i++) \
*(tp++) &= *(sp++); } while (0)
/* Compute bitwise difference of two bitsets. */
#define BITSET_DIFFER(set1, set2, len) \
do { register bitset tp = set1, sp = set2; \
register int i; \
for (i = 0; i < len; i++) \
*(tp++) &= ~*(sp++); } while (0)
/* Inverts every bit of bitset 'set'. */
#define BITSET_INVERT(set, len) \
do { register bitset tmpset = set; \
register int i; \
for (i = 0; i < len; i++, tmpset++) \
*tmpset = ~*tmpset; } while (0)
/* Turn on the index'th bit in bitset set. */
#define BITSET_ADD(set, index, len) \
{ \
if (index >= HOST_BITS_PER_WIDE_INT * len) \
abort (); \
else \
set[index/HOST_BITS_PER_WIDE_INT] |= \
1 << (index % HOST_BITS_PER_WIDE_INT); \
}
/* Turn off the index'th bit in set. */
#define BITSET_REMOVE(set, index, len) \
{ \
if (index >= HOST_BITS_PER_WIDE_INT * len) \
abort (); \
else \
set[index/HOST_BITS_PER_WIDE_INT] &= \
~(1 << (index%HOST_BITS_PER_WIDE_INT)); \
}
/* Check if the index'th bit in bitset set is on. */
static char
bitset_member (set, index, len)
bitset set;
int index, len;
{
if (index >= HOST_BITS_PER_WIDE_INT * len)
abort ();
return (set[index / HOST_BITS_PER_WIDE_INT] &
1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
}
/* Translate a bit-set SET to a list BL of the bit-set members. */
static void
extract_bitlst (set, len, bitlen, bl)
bitset set;
int len;
int bitlen;
bitlst *bl;
{
int i, j, offset;
unsigned HOST_WIDE_INT word;
/* bblst table space is reused in each call to extract_bitlst. */
bitlst_table_last = 0;
bl->first_member = &bitlst_table[bitlst_table_last];
bl->nr_members = 0;
/* Iterate over each word in the bitset. */
for (i = 0; i < len; i++)
{
word = set[i];
offset = i * HOST_BITS_PER_WIDE_INT;
/* Iterate over each bit in the word, but do not
go beyond the end of the defined bits. */
for (j = 0; offset < bitlen && word; j++)
{
if (word & 1)
{
bitlst_table[bitlst_table_last++] = offset;
(bl->nr_members)++;
}
word >>= 1;
++offset;
}
}
}
/* Functions for the construction of regions. */
/* Print the regions, for debugging purposes. Callable from debugger. */
void
debug_regions ()
{
int rgn, bb;
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
for (rgn = 0; rgn < nr_regions; rgn++)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
rgn_table[rgn].rgn_nr_blocks);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";;\tbb/block: ");
for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
{
current_blocks = RGN_BLOCKS (rgn);
if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
abort ();
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
}
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n\n");
}
}
/* Build a single block region for each basic block in the function.
This allows for using the same code for interblock and basic block
scheduling. */
static void
find_single_block_region ()
{
int i;
for (i = 0; i < n_basic_blocks; i++)
{
rgn_bb_table[i] = i;
RGN_NR_BLOCKS (i) = 1;
RGN_BLOCKS (i) = i;
CONTAINING_RGN (i) = i;
BLOCK_TO_BB (i) = 0;
}
nr_regions = n_basic_blocks;
}
/* Update number of blocks and the estimate for number of insns
in the region. Return 1 if the region is "too large" for interblock
scheduling (compile time considerations), otherwise return 0. */
static int
too_large (block, num_bbs, num_insns)
int block, *num_bbs, *num_insns;
{
(*num_bbs)++;
(*num_insns) += (INSN_LUID (BLOCK_END (block)) -
INSN_LUID (BLOCK_HEAD (block)));
if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
return 1;
else
return 0;
}
/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
is still an inner loop. Put in max_hdr[blk] the header of the most inner
loop containing blk. */
#define UPDATE_LOOP_RELATIONS(blk, hdr) \
{ \
if (max_hdr[blk] == -1) \
max_hdr[blk] = hdr; \
else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
RESET_BIT (inner, hdr); \
else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
{ \
RESET_BIT (inner,max_hdr[blk]); \
max_hdr[blk] = hdr; \
} \
}
/* Find regions for interblock scheduling.
A region for scheduling can be:
* A loop-free procedure, or
* A reducible inner loop, or
* A basic block not contained in any other region.
?!? In theory we could build other regions based on extended basic
blocks or reverse extended basic blocks. Is it worth the trouble?
Loop blocks that form a region are put into the region's block list
in topological order.
This procedure stores its results into the following global (ick) variables
* rgn_nr
* rgn_table
* rgn_bb_table
* block_to_bb
* containing region
We use dominator relationships to avoid making regions out of non-reducible
loops.
This procedure needs to be converted to work on pred/succ lists instead
of edge tables. That would simplify it somewhat. */
static void
find_rgns (edge_list, dom)
struct edge_list *edge_list;
sbitmap *dom;
{
int *max_hdr, *dfs_nr, *stack, *degree;
char no_loops = 1;
Warning Fixes: * Makefile.in (print-rtl.o): Depend on bitmap.h. (dbxout.o): Depend on toplev.h. ($(SCHED_PREFIX)sched.o): Likewise. ($(out_object_file)): Likewise for system.h and toplev.h. (cppmain.o): Depend on gansidecl.h. (cpplib.o): Likewise. (cpperror.o): Likewise. (cppexp.o): Likewise. (cpphash.o): Likewise. (cppalloc.o): Likewise. (fix-header.o): Depend on cpplib.h and cpphash.h. (scan-decls.o): Depend on gansidecl.h. * basic-block.h (free_regset_vector): Add prototype. * cccp.c (check_precompiled): Mark parameter `fname' with ATTRIBUTE_UNUSED. (do_assert): Likewise for `op' and `keyword'. (do_unassert): Likewise. (do_line): Likewise for `keyword'. (do_error): Likewise for `op' and `keyword'. (do_warning): Likewise. (do_ident): Likewise for `keyword'. (do_pragma): Likewise for `limit', `op' and `keyword'. (do_sccs): Likewise. (do_if): Likewise for `keyword'. (do_elif): Likewise. (do_else): Likewise. (do_endif): Likewise. * collect2.c (getenv): Remove redundant prototype. (collect_exit, collect_execute, dump_file): Likewise. (dump_list): Wrap prototype and definition in COLLECT_EXPORT_LIST. (dump_prefix_list): Hide prototype and definition. * sparc.c: Include toplev.h. (intreg_operand): Mark parameter `mode' with ATTRIBUTE_UNUSED. (symbolic_memory_operand): Likewise. (sp64_medium_pic_operand): Likewise. (data_segment_operand): Likewise. (text_segment_operand): Likewise. (splittable_symbolic_memory_operand): Likewise. (splittable_immediate_memory_operand): Likewise. (eq_or_neq): Likewise. (normal_comp_operator): Likewise. (noov_compare_op): Likewise. (v9_regcmp_op): Likewise. (v8plus_regcmp_op): Likewise. (extend_op): Likewise. (cc_arithop): Likewise. (cc_arithopn): Likewise. (small_int): Likewise. (uns_small_int): Likewise. (clobbered_register): Likewise. (legitimize_pic_address): Likewise. (delay_operand): Likewise. (sparc_builtin_saveregs): Remove unused variable `stdarg'. * sparc.h (order_regs_for_local_alloc, eligible_for_return_delay, sparc_issue_rate, v8plus_regcmp_p): Add prototypes. * sparc.md (cmpdi_v8plus): Add abort for default case in switch. * cppalloc.c: Include gansidecl.h. * cpperror.c: Include stdarg.h/varargs.h and gansidecl.h. (cpp_file_line_for_message): Mark parameter `pfile' with ATTRIBUTE_UNUSED. (v_cpp_message): New function. (cpp_message): Use it. Also convert to variable arguments. (cpp_fatal): Likewise. (cpp_pfatal_with_name): Constify parameter `name'. * cppexp.c: Move gansidecl.h before cpplib.h. * cpphash.c: Likewise. * cpphash.h (hashf, delete_macro): Add prototypes. * cpplib.c: Include stdarg.h/varargs.h and move gansidecl.h before cpplib.h. Don't include errno.h. (update_path): Add arguments to prototype. (cpp_fatal, cpp_file_line_for_message, cpp_message, delete_macro, cpp_print_containing_files): Remove redundant prototypes. (cpp_hash_cleanup, add_import, append_include_chain, make_assertion, path_include, initialize_builtins, initialize_char_syntax, finclude, validate_else, comp_def_part, lookup_import, redundant_include_p, is_system_include, read_name_map, read_filename_string, open_include_file, check_macro_name, compare_defs, compare_token_lists, eval_if_expression, change_newlines): Add prototype arguments. (hashf): Remove redundant prototype. (read_token_list, free_token_list, safe_read, xcalloc, savestring, conditional_skip, skip_if_group): Add prototype arguments. (fdopen): Remove redundant prototype. (do_define, do_line, do_include, do_undef, do_error, do_pragma, do_ident, do_if, do_xifdef, do_else, do_elif, do_endif, do_sccs, do_once, do_assert, do_unassert, do_warning): Add prototype arguments. (struct directive): Add prototype arguments to function pointer member `func'. (handle_directive): Add missing arguments to call to `do_line'. (do_include): Mark parameters `unused1' and `unused2' with ATTRIBUTE_UNUSED. (do_line): Likewise for `keyword' and new parameters `unused1' and `unused2'. (do_error): Likewise for `keyword'. (do_warning): Likewise. Also add missing argument `pfile' in call to cpp_pedwarn. (do_once): Mark parameter `keyword', `unused1' and `unused2' with ATTRIBUTE_UNUSED. (do_ident): Likewise for `keyword', `buf' and `limit'. (do_pragma): Likewise. Also add missing arguments in call to do_once. (do_sccs): Mark parameter `keyword', `buf' and `limit' with ATTRIBUTE_UNUSED. (do_if): Likewise for `keyword'. (do_elif): Likewise. (eval_if_expression): Likewise for `buf' and `length'. (do_xifdef): Likewise for `unused1' and `unused2'. (do_else): Likewise for `keyword', `buf' and `limit'. (do_endif): Likewise. (parse_name): Add missing argument `pfile' in call to cpp_pedwarn. (cpp_handle_options): Remove superfluous NULL argument in call to cpp_fatal. (cpp_handle_options): Likewise. (do_assert): Mark parameter `keyword', `buf' and `limit' with ATTRIBUTE_UNUSED. (do_unassert): Likewise. (cpp_print_file_and_line): Add missing argument `pfile' in call to cpp_file_line_for_message. (v_cpp_error): New function. (cpp_error): Use it. Also accept variable arguments. (v_cpp_warning): New function. (cpp_warning): Use it. Also accept variable arguments. (cpp_pedwarn): Accept variable arguments. (v_cpp_error_with_line): New function (cpp_error_with_line): Use it. Accept variable arguments. (v_cpp_warning_with_line): New function. (cpp_warning_with_line): Use it. Accept variable arguments. Hide definition. (cpp_pedwarn_with_line): Accept variable arguments. (cpp_pedwarn_with_file_and_line): Likewise. (cpp_error_from_errno): Constify parameter `name'. Add missing argument `pfile' in call to cpp_file_line_for_message. (cpp_perror_with_name): Constify parameter `name'. * cpplib.h: Define PARAMS() in terms of PROTO(). (fatal): Remove redundant prototype. (cpp_error, cpp_warning, cpp_pedwarn, cpp_error_with_line, cpp_pedwarn_with_line, cpp_pedwarn_with_file_and_line, cpp_error_from_errno, cpp_perror_with_name, cpp_pfatal_with_name, cpp_fatal, cpp_message, cpp_pfatal_with_name, cpp_file_line_for_message, cpp_print_containing_files): Add arguments to prototypes. (scan_decls, cpp_finish): Add prototypes. * cppmain.c: Include gansidecl.h. (main): Remove unused variable `i'. * dbxout.c: Include toplev.h. * demangle.h (do_tlink, collect_execute, collect_exit, collect_wait, dump_file, file_exists): Add prototype. * dwarf2out.c (dwarf_type_encoding_name, decl_start_label): Hide prototype and definition. (gen_unspecified_parameters_die): Don't assign results of call to function new_die() to unused variable `parm_die'. (dwarf2out_line): Mark parameter `filename' with ATTRIBUTE_UNUSED. (dwarf2out_define): Likewise for `lineno' and `buffer'. * dwarfout.c (output_unsigned_leb128, output_signed_leb128): Hide prototype and definition. (output_die): Add prototype arguments to function pointer arg. (output_unspecified_parameters_die): Mark parameter `arg' with ATTRIBUTE_UNUSED. * except.c (output_exception_table_entry): Remove unused variable `eh_entry'. * except.h (expand_fixup_region_start, expand_fixup_region_end): Add prototypes. * expr.c (do_jump_by_parts_equality_rtx): Remove prototype. * expr.h (do_jump_by_parts_equality_rtx): Add prototype. * fix-header.c: Include stdarg.h/varargs.h, move gansidecl.h before cpplib.h, include cpphash.h, remove redundant prototype of cpp_fatal, don't define `const', add a prototype for `fatal'. (cpp_file_line_for_message): Add missing arguments `pfile'. (v_cpp_message): New function. (cpp_message): Use it. (v_fatal): New function. (fatal, cpp_fatal): Use it. (cpp_pfatal_with_name): Constify parameter `name'. * flow.c (free_regset_vector): Remove redundant prototype. * function.c (round_down): Wrap prototype and definition with macro ARGS_GROW_DOWNWARD. (record_insns): Wrap prototype and definition with defined (HAVE_prologue) || defined (HAVE_epilogue). * gansidecl.h (ATTRIBUTE_PRINTF_4, ATTRIBUTE_PRINTF_5): New macros. * gen-protos.c: Include gansidecl.h. (hashf): Don't make it static, constify parameter `name'. * genattrtab.c (check_attr_test): Change XEXP() to XSTR() to match specifier %s in calls to function `fatal'. * haifa-sched.c: Include toplev.h. (find_rgns): Remove unused variable `j'. * integrate.c (note_modified_parmregs): Mark parameter `x' with ATTRIBUTE_UNUSED. (mark_stores): Likewise. * jump.c (mark_modified_reg): Likewise. * output.h (insn_current_reference_address): Add prototype. (eh_frame_section): Likewise. * print-rtl.c: Include bitmap.h. * reload1.c (reload): Wrap variables `note' and `next' in macro PRESERVE_DEATH_INFO_REGNO_P. (forget_old_reloads_1): Mark parameter `ignored' with ATTRIBUTE_UNUSED. (choose_reload_regs): Remove unused variable `in'. (reload_cse_invalidate_mem): Mark parameter `ignore' with ATTRIBUTE_UNUSED. (reload_cse_check_clobber): Likewise. * rtl.h (expand_null_return, reg_classes_intersect_p): Add prototype. (mark_elimination): Fix typo in prototype. * scan-decls.c: Include gansidecl.h. * tree.h (using_eh_for_cleanups, supports_one_only): Add prototype. From-SVN: r19867
1998-05-19 10:42:48 +02:00
int node, child, loop_head, i, head, tail;
int count = 0, sp, idx = 0, current_edge = out_edges[0];
int num_bbs, num_insns, unreachable;
int too_large_failure;
/* Note if an edge has been passed. */
sbitmap passed;
/* Note if a block is a natural loop header. */
sbitmap header;
/* Note if a block is an natural inner loop header. */
sbitmap inner;
/* Note if a block is in the block queue. */
sbitmap in_queue;
/* Note if a block is in the block queue. */
sbitmap in_stack;
int num_edges = NUM_EDGES (edge_list);
/* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
and a mapping from block to its loop header (if the block is contained
in a loop, else -1).
Store results in HEADER, INNER, and MAX_HDR respectively, these will
be used as inputs to the second traversal.
STACK, SP and DFS_NR are only used during the first traversal. */
/* Allocate and initialize variables for the first traversal. */
max_hdr = (int *) xmalloc (n_basic_blocks * sizeof (int));
dfs_nr = (int *) xcalloc (n_basic_blocks, sizeof (int));
stack = (int *) xmalloc (nr_edges * sizeof (int));
inner = sbitmap_alloc (n_basic_blocks);
sbitmap_ones (inner);
header = sbitmap_alloc (n_basic_blocks);
sbitmap_zero (header);
passed = sbitmap_alloc (nr_edges);
sbitmap_zero (passed);
in_queue = sbitmap_alloc (n_basic_blocks);
sbitmap_zero (in_queue);
in_stack = sbitmap_alloc (n_basic_blocks);
sbitmap_zero (in_stack);
for (i = 0; i < n_basic_blocks; i++)
max_hdr[i] = -1;
/* DFS traversal to find inner loops in the cfg. */
sp = -1;
while (1)
{
if (current_edge == 0 || TEST_BIT (passed, current_edge))
{
/* We have reached a leaf node or a node that was already
processed. Pop edges off the stack until we find
an edge that has not yet been processed. */
while (sp >= 0
&& (current_edge == 0 || TEST_BIT (passed, current_edge)))
{
/* Pop entry off the stack. */
current_edge = stack[sp--];
node = FROM_BLOCK (current_edge);
child = TO_BLOCK (current_edge);
RESET_BIT (in_stack, child);
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
current_edge = NEXT_OUT (current_edge);
}
/* See if have finished the DFS tree traversal. */
if (sp < 0 && TEST_BIT (passed, current_edge))
break;
/* Nope, continue the traversal with the popped node. */
continue;
}
/* Process a node. */
node = FROM_BLOCK (current_edge);
child = TO_BLOCK (current_edge);
SET_BIT (in_stack, node);
dfs_nr[node] = ++count;
/* If the successor is in the stack, then we've found a loop.
Mark the loop, if it is not a natural loop, then it will
be rejected during the second traversal. */
if (TEST_BIT (in_stack, child))
{
no_loops = 0;
SET_BIT (header, child);
UPDATE_LOOP_RELATIONS (node, child);
SET_BIT (passed, current_edge);
current_edge = NEXT_OUT (current_edge);
continue;
}
/* If the child was already visited, then there is no need to visit
it again. Just update the loop relationships and restart
with a new edge. */
if (dfs_nr[child])
{
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
SET_BIT (passed, current_edge);
current_edge = NEXT_OUT (current_edge);
continue;
}
/* Push an entry on the stack and continue DFS traversal. */
stack[++sp] = current_edge;
SET_BIT (passed, current_edge);
current_edge = OUT_EDGES (child);
/* This is temporary until haifa is converted to use rth's new
cfg routines which have true entry/exit blocks and the
appropriate edges from/to those blocks.
Generally we update dfs_nr for a node when we process its
out edge. However, if the node has no out edge then we will
not set dfs_nr for that node. This can confuse the scheduler
into thinking that we have unreachable blocks, which in turn
disables cross block scheduling.
So, if we have a node with no out edges, go ahead and mark it
as reachable now. */
if (current_edge == 0)
dfs_nr[child] = ++count;
}
/* Another check for unreachable blocks. The earlier test in
is_cfg_nonregular only finds unreachable blocks that do not
form a loop.
The DFS traversal will mark every block that is reachable from
the entry node by placing a nonzero value in dfs_nr. Thus if
dfs_nr is zero for any block, then it must be unreachable. */
unreachable = 0;
for (i = 0; i < n_basic_blocks; i++)
if (dfs_nr[i] == 0)
{
unreachable = 1;
break;
}
/* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
to hold degree counts. */
degree = dfs_nr;
for (i = 0; i < n_basic_blocks; i++)
degree[i] = 0;
for (i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (edge_list, i);
if (e->dest != EXIT_BLOCK_PTR)
degree[e->dest->index]++;
}
/* Do not perform region scheduling if there are any unreachable
blocks. */
if (!unreachable)
{
int *queue;
if (no_loops)
SET_BIT (header, 0);
/* Second travsersal:find reducible inner loops and topologically sort
block of each region. */
queue = (int *) xmalloc (n_basic_blocks * sizeof (int));
/* Find blocks which are inner loop headers. We still have non-reducible
loops to consider at this point. */
for (i = 0; i < n_basic_blocks; i++)
{
if (TEST_BIT (header, i) && TEST_BIT (inner, i))
{
edge e;
int j;
/* Now check that the loop is reducible. We do this separate
from finding inner loops so that we do not find a reducible
loop which contains an inner non-reducible loop.
A simple way to find reducible/natural loops is to verify
that each block in the loop is dominated by the loop
header.
If there exists a block that is not dominated by the loop
header, then the block is reachable from outside the loop
and thus the loop is not a natural loop. */
for (j = 0; j < n_basic_blocks; j++)
{
/* First identify blocks in the loop, except for the loop
entry block. */
if (i == max_hdr[j] && i != j)
{
/* Now verify that the block is dominated by the loop
header. */
if (!TEST_BIT (dom[j], i))
break;
}
}
/* If we exited the loop early, then I is the header of
a non-reducible loop and we should quit processing it
now. */
if (j != n_basic_blocks)
continue;
/* I is a header of an inner loop, or block 0 in a subroutine
with no loops at all. */
head = tail = -1;
too_large_failure = 0;
loop_head = max_hdr[i];
/* Decrease degree of all I's successors for topological
1998-05-07 00:51:38 +02:00
ordering. */
for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
if (e->dest != EXIT_BLOCK_PTR)
--degree[e->dest->index];
/* Estimate # insns, and count # blocks in the region. */
num_bbs = 1;
num_insns = (INSN_LUID (BLOCK_END (i))
- INSN_LUID (BLOCK_HEAD (i)));
/* Find all loop latches (blocks with back edges to the loop
header) or all the leaf blocks in the cfg has no loops.
Place those blocks into the queue. */
if (no_loops)
{
for (j = 0; j < n_basic_blocks; j++)
/* Leaf nodes have only a single successor which must
be EXIT_BLOCK. */
if (BASIC_BLOCK (j)->succ
&& BASIC_BLOCK (j)->succ->dest == EXIT_BLOCK_PTR
&& BASIC_BLOCK (j)->succ->succ_next == NULL)
{
queue[++tail] = j;
SET_BIT (in_queue, j);
if (too_large (j, &num_bbs, &num_insns))
{
too_large_failure = 1;
break;
}
}
}
else
{
edge e;
for (e = BASIC_BLOCK (i)->pred; e; e = e->pred_next)
{
if (e->src == ENTRY_BLOCK_PTR)
continue;
node = e->src->index;
if (max_hdr[node] == loop_head && node != i)
{
/* This is a loop latch. */
queue[++tail] = node;
SET_BIT (in_queue, node);
if (too_large (node, &num_bbs, &num_insns))
{
too_large_failure = 1;
break;
}
}
}
}
/* Now add all the blocks in the loop to the queue.
We know the loop is a natural loop; however the algorithm
above will not always mark certain blocks as being in the
loop. Consider:
node children
a b,c
b c
c a,d
d b
The algorithm in the DFS traversal may not mark B & D as part
of the loop (ie they will not have max_hdr set to A).
We know they can not be loop latches (else they would have
had max_hdr set since they'd have a backedge to a dominator
block). So we don't need them on the initial queue.
We know they are part of the loop because they are dominated
by the loop header and can be reached by a backwards walk of
the edges starting with nodes on the initial queue.
It is safe and desirable to include those nodes in the
loop/scheduling region. To do so we would need to decrease
the degree of a node if it is the target of a backedge
within the loop itself as the node is placed in the queue.
We do not do this because I'm not sure that the actual
scheduling code will properly handle this case. ?!? */
while (head < tail && !too_large_failure)
{
edge e;
child = queue[++head];
for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next)
{
node = e->src->index;
/* See discussion above about nodes not marked as in
this loop during the initial DFS traversal. */
if (e->src == ENTRY_BLOCK_PTR
|| max_hdr[node] != loop_head)
{
tail = -1;
break;
}
else if (!TEST_BIT (in_queue, node) && node != i)
{
queue[++tail] = node;
SET_BIT (in_queue, node);
if (too_large (node, &num_bbs, &num_insns))
{
too_large_failure = 1;
break;
}
}
}
}
if (tail >= 0 && !too_large_failure)
{
/* Place the loop header into list of region blocks. */
degree[i] = -1;
rgn_bb_table[idx] = i;
RGN_NR_BLOCKS (nr_regions) = num_bbs;
RGN_BLOCKS (nr_regions) = idx++;
CONTAINING_RGN (i) = nr_regions;
BLOCK_TO_BB (i) = count = 0;
/* Remove blocks from queue[] when their in degree
becomes zero. Repeat until no blocks are left on the
list. This produces a topological list of blocks in
the region. */
while (tail >= 0)
{
if (head < 0)
head = tail;
child = queue[head];
if (degree[child] == 0)
{
edge e;
degree[child] = -1;
rgn_bb_table[idx++] = child;
BLOCK_TO_BB (child) = ++count;
CONTAINING_RGN (child) = nr_regions;
queue[head] = queue[tail--];
for (e = BASIC_BLOCK (child)->succ;
e;
e = e->succ_next)
if (e->dest != EXIT_BLOCK_PTR)
--degree[e->dest->index];
}
else
--head;
}
++nr_regions;
}
}
}
free (queue);
}
/* Any block that did not end up in a region is placed into a region
by itself. */
for (i = 0; i < n_basic_blocks; i++)
if (degree[i] >= 0)
{
rgn_bb_table[idx] = i;
RGN_NR_BLOCKS (nr_regions) = 1;
RGN_BLOCKS (nr_regions) = idx++;
CONTAINING_RGN (i) = nr_regions++;
BLOCK_TO_BB (i) = 0;
}
free (max_hdr);
free (dfs_nr);
free (stack);
free (passed);
free (header);
free (inner);
free (in_queue);
free (in_stack);
}
/* Functions for regions scheduling information. */
/* Compute dominators, probability, and potential-split-edges of bb.
Assume that these values were already computed for bb's predecessors. */
static void
compute_dom_prob_ps (bb)
int bb;
{
int nxt_in_edge, fst_in_edge, pred;
int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
prob[bb] = 0.0;
if (IS_RGN_ENTRY (bb))
{
BITSET_ADD (dom[bb], 0, bbset_size);
prob[bb] = 1.0;
return;
}
fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
/* Intialize dom[bb] to '111..1'. */
BITSET_INVERT (dom[bb], bbset_size);
do
{
pred = FROM_BLOCK (nxt_in_edge);
BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
edgeset_size);
BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
nr_out_edges = 1;
nr_rgn_out_edges = 0;
fst_out_edge = OUT_EDGES (pred);
nxt_out_edge = NEXT_OUT (fst_out_edge);
BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
edgeset_size);
BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
/* The successor doesn't belong in the region? */
if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
CONTAINING_RGN (BB_TO_BLOCK (bb)))
++nr_rgn_out_edges;
while (fst_out_edge != nxt_out_edge)
{
++nr_out_edges;
/* The successor doesn't belong in the region? */
if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
CONTAINING_RGN (BB_TO_BLOCK (bb)))
++nr_rgn_out_edges;
BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
nxt_out_edge = NEXT_OUT (nxt_out_edge);
}
/* Now nr_rgn_out_edges is the number of region-exit edges from
pred, and nr_out_edges will be the number of pred out edges
not leaving the region. */
nr_out_edges -= nr_rgn_out_edges;
if (nr_rgn_out_edges > 0)
prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
else
prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
nxt_in_edge = NEXT_IN (nxt_in_edge);
}
while (fst_in_edge != nxt_in_edge);
BITSET_ADD (dom[bb], bb, bbset_size);
BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
if (sched_verbose >= 2)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
(int) (100.0 * prob[bb]));
}
/* Functions for target info. */
/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
Note that bb_trg dominates bb_src. */
static void
split_edges (bb_src, bb_trg, bl)
int bb_src;
int bb_trg;
edgelst *bl;
{
int es = edgeset_size;
edgeset src = (edgeset) xcalloc (es, sizeof (HOST_WIDE_INT));
while (es--)
src[es] = (pot_split[bb_src])[es];
BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
extract_bitlst (src, edgeset_size, edgeset_bitsize, bl);
free (src);
}
/* Find the valid candidate-source-blocks for the target block TRG, compute
their probability, and check if they are speculative or not.
For speculative sources, compute their update-blocks and split-blocks. */
static void
compute_trg_info (trg)
int trg;
{
register candidate *sp;
edgelst el;
int check_block, update_idx;
int i, j, k, fst_edge, nxt_edge;
/* Define some of the fields for the target bb as well. */
sp = candidate_table + trg;
sp->is_valid = 1;
sp->is_speculative = 0;
sp->src_prob = 100;
for (i = trg + 1; i < current_nr_blocks; i++)
{
sp = candidate_table + i;
sp->is_valid = IS_DOMINATED (i, trg);
if (sp->is_valid)
{
sp->src_prob = GET_SRC_PROB (i, trg);
sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
}
if (sp->is_valid)
{
split_edges (i, trg, &el);
sp->is_speculative = (el.nr_members) ? 1 : 0;
if (sp->is_speculative && !flag_schedule_speculative)
sp->is_valid = 0;
}
if (sp->is_valid)
{
char *update_blocks;
/* Compute split blocks and store them in bblst_table.
The TO block of every split edge is a split block. */
sp->split_bbs.first_member = &bblst_table[bblst_last];
sp->split_bbs.nr_members = el.nr_members;
for (j = 0; j < el.nr_members; bblst_last++, j++)
bblst_table[bblst_last] =
TO_BLOCK (rgn_edges[el.first_member[j]]);
sp->update_bbs.first_member = &bblst_table[bblst_last];
/* Compute update blocks and store them in bblst_table.
For every split edge, look at the FROM block, and check
all out edges. For each out edge that is not a split edge,
add the TO block to the update block list. This list can end
up with a lot of duplicates. We need to weed them out to avoid
overrunning the end of the bblst_table. */
update_blocks = (char *) alloca (n_basic_blocks);
alias.c [...] (init_alias_analysis, [...]): Use memset () instead of bzero (). * alias.c (init_alias_analysis), calls.c (expand_call, emit_library_call_value_1), combine.c (init_reg_last_arrays), cse.c (new_basic_block), dbxout.c (dbxout_type), diagnostic.c (init_output_buffer, set_diagnostic_context), dwarf2out.c (equate_decl_number_to_die, build_abbrev_table), emit-rtl.c (init_emit_once), fold-const.c (mul_double, div_and_round_double), function.c (assign_parms), gcse.c (compute_can_copy, alloc_gcse_mem, alloc_reg_set_mem, record_one_set, compute_hash_table, compute_set_hash_table, compute_expr_hash_table), genattrtab.c (optimize_attrs), global.c (global_alloc, global_conflicts), haifa-sched.c (compute_trg_info, clear_units, schedule_block), integrate.c (initialize_for_inline, expand_inline_function), jump.c (thread_jumps), local-alloc.c (local_alloc), loop.c (combine_movables, count_loop_regs_set, load_mems_and_recount_loop_regs_set), print-tree.c (debug_tree), regclass.c (init_reg_sets, init_reg_sets_1, regclass, record_reg_classes, allocate_reg_info), reload.c (get_secondary_mem, remove_address_replacements, find_reloads), reload1.c (reload, set_initial_label_offsets, finish_spills, reload_as_needed, choose_reload_regs_init, reload_cse_simplify_operands), reorg.c (dbr_schedule), sbitmap.c (sbitmap_zero), simplify-rtx.c (simplify_plus_minus), ssa.c (rename_registers), stmt.c (expand_end_case), unroll.c (unroll_loop), varray.c (varray_grow), objc/objc-act.c: Use memset () instead of bzero (). ch: * actions.c (check_missing_cases), typeck.c (build_chill_slice, build_chill_cast): Use memset () instead of bzero (). cp: * class.c (duplicate_tag_error, build_vtbl_initializer), decl.c (push_binding_level), error.c (cp_tree_printer), pt.c (process_partial_specialization, tsubst_template_arg_vector), search.c (lookup_member): Use memset () instead of bzero (). java: * expr.c (note_instructions), jcf-io.c (find_class), jcf-parse.c (init_outgoing_cpool), lex.c (java_init_lex): Use memset () instead of bzero (). From-SVN: r37303
2000-11-07 23:50:06 +01:00
memset (update_blocks, 0, n_basic_blocks);
update_idx = 0;
for (j = 0; j < el.nr_members; j++)
{
check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
fst_edge = nxt_edge = OUT_EDGES (check_block);
do
{
if (! update_blocks[TO_BLOCK (nxt_edge)])
{
for (k = 0; k < el.nr_members; k++)
if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
break;
if (k >= el.nr_members)
{
bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
update_blocks[TO_BLOCK (nxt_edge)] = 1;
update_idx++;
}
}
nxt_edge = NEXT_OUT (nxt_edge);
}
while (fst_edge != nxt_edge);
}
sp->update_bbs.nr_members = update_idx;
/* Make sure we didn't overrun the end of bblst_table. */
if (bblst_last > bblst_size)
abort ();
}
else
{
sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
sp->is_speculative = 0;
sp->src_prob = 0;
}
}
}
/* Print candidates info, for debugging purposes. Callable from debugger. */
void
debug_candidate (i)
int i;
{
if (!candidate_table[i].is_valid)
return;
if (candidate_table[i].is_speculative)
{
int j;
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "split path: ");
for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
{
int b = candidate_table[i].split_bbs.first_member[j];
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " %d ", b);
}
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "update path: ");
for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
{
int b = candidate_table[i].update_bbs.first_member[j];
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " %d ", b);
}
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
}
else
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
}
}
/* Print candidates info, for debugging purposes. Callable from debugger. */
void
debug_candidates (trg)
int trg;
{
int i;
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
BB_TO_BLOCK (trg), trg);
for (i = trg + 1; i < current_nr_blocks; i++)
debug_candidate (i);
}
/* Functions for speculative scheduing. */
/* Return 0 if x is a set of a register alive in the beginning of one
of the split-blocks of src, otherwise return 1. */
static int
check_live_1 (src, x)
int src;
rtx x;
{
register int i;
register int regno;
register rtx reg = SET_DEST (x);
if (reg == 0)
return 1;
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART)
reg = XEXP (reg, 0);
if (GET_CODE (reg) == PARALLEL
&& GET_MODE (reg) == BLKmode)
{
register int i;
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
if (check_live_1 (src, XVECEXP (reg, 0, i)))
return 1;
return 0;
}
if (GET_CODE (reg) != REG)
return 1;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
{
/* Global registers are assumed live. */
return 0;
}
else
{
if (regno < FIRST_PSEUDO_REGISTER)
{
/* Check for hard registers. */
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
{
int b = candidate_table[src].split_bbs.first_member[i];
if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
regno + j))
{
return 0;
}
}
}
}
else
{
/* Check for psuedo registers. */
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
{
int b = candidate_table[src].split_bbs.first_member[i];
if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
{
return 0;
}
}
}
}
return 1;
}
/* If x is a set of a register R, mark that R is alive in the beginning
of every update-block of src. */
static void
update_live_1 (src, x)
int src;
rtx x;
{
register int i;
register int regno;
register rtx reg = SET_DEST (x);
if (reg == 0)
return;
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART)
reg = XEXP (reg, 0);
if (GET_CODE (reg) == PARALLEL
&& GET_MODE (reg) == BLKmode)
{
register int i;
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
update_live_1 (src, XVECEXP (reg, 0, i));
return;
}
if (GET_CODE (reg) != REG)
return;
/* Global registers are always live, so the code below does not apply
to them. */
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
{
if (regno < FIRST_PSEUDO_REGISTER)
{
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
{
int b = candidate_table[src].update_bbs.first_member[i];
SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
regno + j);
}
}
}
else
{
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
{
int b = candidate_table[src].update_bbs.first_member[i];
SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
}
}
}
}
/* Return 1 if insn can be speculatively moved from block src to trg,
otherwise return 0. Called before first insertion of insn to
ready-list or before the scheduling. */
static int
check_live (insn, src)
rtx insn;
int src;
{
/* Find the registers set by instruction. */
if (GET_CODE (PATTERN (insn)) == SET
|| GET_CODE (PATTERN (insn)) == CLOBBER)
return check_live_1 (src, PATTERN (insn));
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int j;
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
&& !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
return 0;
return 1;
}
return 1;
}
/* Update the live registers info after insn was moved speculatively from
block src to trg. */
static void
update_live (insn, src)
rtx insn;
int src;
{
/* Find the registers set by instruction. */
if (GET_CODE (PATTERN (insn)) == SET
|| GET_CODE (PATTERN (insn)) == CLOBBER)
update_live_1 (src, PATTERN (insn));
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int j;
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
}
}
/* Exception Free Loads:
We define five classes of speculative loads: IFREE, IRISKY,
PFREE, PRISKY, and MFREE.
IFREE loads are loads that are proved to be exception-free, just
by examining the load insn. Examples for such loads are loads
from TOC and loads of global data.
IRISKY loads are loads that are proved to be exception-risky,
just by examining the load insn. Examples for such loads are
volatile loads and loads from shared memory.
PFREE loads are loads for which we can prove, by examining other
insns, that they are exception-free. Currently, this class consists
of loads for which we are able to find a "similar load", either in
the target block, or, if only one split-block exists, in that split
block. Load2 is similar to load1 if both have same single base
register. We identify only part of the similar loads, by finding
an insn upon which both load1 and load2 have a DEF-USE dependence.
PRISKY loads are loads for which we can prove, by examining other
insns, that they are exception-risky. Currently we have two proofs for
such loads. The first proof detects loads that are probably guarded by a
test on the memory address. This proof is based on the
backward and forward data dependence information for the region.
Let load-insn be the examined load.
Load-insn is PRISKY iff ALL the following hold:
- insn1 is not in the same block as load-insn
- there is a DEF-USE dependence chain (insn1, ..., load-insn)
- test-insn is either a compare or a branch, not in the same block
as load-insn
- load-insn is reachable from test-insn
- there is a DEF-USE dependence chain (insn1, ..., test-insn)
This proof might fail when the compare and the load are fed
by an insn not in the region. To solve this, we will add to this
group all loads that have no input DEF-USE dependence.
The second proof detects loads that are directly or indirectly
fed by a speculative load. This proof is affected by the
scheduling process. We will use the flag fed_by_spec_load.
Initially, all insns have this flag reset. After a speculative
motion of an insn, if insn is either a load, or marked as
fed_by_spec_load, we will also mark as fed_by_spec_load every
insn1 for which a DEF-USE dependence (insn, insn1) exists. A
load which is fed_by_spec_load is also PRISKY.
MFREE (maybe-free) loads are all the remaining loads. They may be
exception-free, but we cannot prove it.
Now, all loads in IFREE and PFREE classes are considered
exception-free, while all loads in IRISKY and PRISKY classes are
considered exception-risky. As for loads in the MFREE class,
these are considered either exception-free or exception-risky,
depending on whether we are pessimistic or optimistic. We have
to take the pessimistic approach to assure the safety of
speculative scheduling, but we can take the optimistic approach
by invoking the -fsched_spec_load_dangerous option. */
enum INSN_TRAP_CLASS
{
TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
};
#define WORST_CLASS(class1, class2) \
((class1 > class2) ? class1 : class2)
/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
#define IS_REACHABLE(bb_from, bb_to) \
(bb_from == bb_to \
|| IS_RGN_ENTRY (bb_from) \
|| (bitset_member (ancestor_edges[bb_to], \
EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
edgeset_size)))
/* Non-zero iff the address is comprised from at most 1 register. */
#define CONST_BASED_ADDRESS_P(x) \
(GET_CODE (x) == REG \
|| ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
|| (GET_CODE (x) == LO_SUM)) \
&& (GET_CODE (XEXP (x, 0)) == CONST_INT \
|| GET_CODE (XEXP (x, 1)) == CONST_INT)))
/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
static void
set_spec_fed (load_insn)
rtx load_insn;
{
rtx link;
for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
if (GET_MODE (link) == VOIDmode)
FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
} /* set_spec_fed */
/* On the path from the insn to load_insn_bb, find a conditional
branch depending on insn, that guards the speculative load. */
static int
find_conditional_protection (insn, load_insn_bb)
rtx insn;
int load_insn_bb;
{
rtx link;
/* Iterate through DEF-USE forward dependences. */
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
{
rtx next = XEXP (link, 0);
if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
&& IS_REACHABLE (INSN_BB (next), load_insn_bb)
&& load_insn_bb != INSN_BB (next)
&& GET_MODE (link) == VOIDmode
&& (GET_CODE (next) == JUMP_INSN
|| find_conditional_protection (next, load_insn_bb)))
return 1;
}
return 0;
} /* find_conditional_protection */
/* Returns 1 if the same insn1 that participates in the computation
of load_insn's address is feeding a conditional branch that is
guarding on load_insn. This is true if we find a the two DEF-USE
chains:
insn1 -> ... -> conditional-branch
insn1 -> ... -> load_insn,
and if a flow path exist:
insn1 -> ... -> conditional-branch -> ... -> load_insn,
and if insn1 is on the path
region-entry -> ... -> bb_trg -> ... load_insn.
Locate insn1 by climbing on LOG_LINKS from load_insn.
Locate the branch by following INSN_DEPEND from insn1. */
static int
is_conditionally_protected (load_insn, bb_src, bb_trg)
rtx load_insn;
int bb_src, bb_trg;
{
rtx link;
for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
{
rtx insn1 = XEXP (link, 0);
/* Must be a DEF-USE dependence upon non-branch. */
if (GET_MODE (link) != VOIDmode
|| GET_CODE (insn1) == JUMP_INSN)
continue;
/* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
if (INSN_BB (insn1) == bb_src
|| (CONTAINING_RGN (BLOCK_NUM (insn1))
!= CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
|| (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
&& !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
continue;
/* Now search for the conditional-branch. */
if (find_conditional_protection (insn1, bb_src))
return 1;
/* Recursive step: search another insn1, "above" current insn1. */
return is_conditionally_protected (insn1, bb_src, bb_trg);
}
/* The chain does not exist. */
return 0;
} /* is_conditionally_protected */
/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
load_insn can move speculatively from bb_src to bb_trg. All the
following must hold:
(1) both loads have 1 base register (PFREE_CANDIDATEs).
(2) load_insn and load1 have a def-use dependence upon
the same insn 'insn1'.
(3) either load2 is in bb_trg, or:
- there's only one split-block, and
- load1 is on the escape path, and
From all these we can conclude that the two loads access memory
addresses that differ at most by a constant, and hence if moving
load_insn would cause an exception, it would have been caused by
load2 anyhow. */
static int
is_pfree (load_insn, bb_src, bb_trg)
rtx load_insn;
int bb_src, bb_trg;
{
rtx back_link;
register candidate *candp = candidate_table + bb_src;
if (candp->split_bbs.nr_members != 1)
/* Must have exactly one escape block. */
return 0;
for (back_link = LOG_LINKS (load_insn);
back_link; back_link = XEXP (back_link, 1))
{
rtx insn1 = XEXP (back_link, 0);
if (GET_MODE (back_link) == VOIDmode)
{
/* Found a DEF-USE dependence (insn1, load_insn). */
rtx fore_link;
for (fore_link = INSN_DEPEND (insn1);
fore_link; fore_link = XEXP (fore_link, 1))
{
rtx insn2 = XEXP (fore_link, 0);
if (GET_MODE (fore_link) == VOIDmode)
{
/* Found a DEF-USE dependence (insn1, insn2). */
if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
/* insn2 not guaranteed to be a 1 base reg load. */
continue;
if (INSN_BB (insn2) == bb_trg)
/* insn2 is the similar load, in the target block. */
return 1;
if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2))
/* insn2 is a similar load, in a split-block. */
return 1;
}
}
}
}
/* Couldn't find a similar load. */
return 0;
} /* is_pfree */
/* Returns a class that insn with GET_DEST(insn)=x may belong to,
as found by analyzing insn's expression. */
static int
may_trap_exp (x, is_store)
rtx x;
int is_store;
{
enum rtx_code code;
if (x == 0)
return TRAP_FREE;
code = GET_CODE (x);
if (is_store)
{
if (code == MEM)
return TRAP_RISKY;
else
return TRAP_FREE;
}
if (code == MEM)
{
/* The insn uses memory: a volatile load. */
if (MEM_VOLATILE_P (x))
return IRISKY;
/* An exception-free load. */
if (!may_trap_p (x))
return IFREE;
/* A load with 1 base register, to be further checked. */
if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
return PFREE_CANDIDATE;
/* No info on the load, to be further checked. */
return PRISKY_CANDIDATE;
}
else
{
rtl.h (rtx_format): Constify a char*. * rtl.h (rtx_format): Constify a char*. * rtl.c (rtx_format): Likewise. (copy_rtx, copy_most_rtx, read_rtx): Likewise. (init_rtl): Use accessor macro, not `rtx_format'. * alias.c (rtx_equal_for_memref_p, find_symbolic_term): Constify a char*. * caller-save.c (mark_referenced_regs): Likewise. * combine.c (subst, make_compound_operation, known_cond, gen_rtx_combine, update_table_tick, get_last_value_validate, use_crosses_set_p, mark_used_regs_combine, move_deaths): Likewise. * cse.c (rtx_cost, mention_regs, canon_hash, exp_equiv_p, refers_to_p, canon_reg, fold_rtx, cse_process_notes, count_reg_usage): Likewise. * emit-rtl.c (gen_rtx, copy_rtx_if_shared, reset_used_flags): Likewise. * final.c (leaf_renumber_regs_insn): Likewise. * flow.c (mark_used_regs, find_use_as_address, dump_flow_info, dump_edge_info, count_reg_references): Likewise. * function.c (fixup_var_refs_1, walk_fixup_memory_subreg, fixup_stack_1, purge_addressof_1, instantiate_virtual_regs_1): Likewise. * gcse.c (oprs_unchanged_p, hash_expr_1, expr_equiv_p, oprs_not_set_p, expr_killed_p, compute_transp, find_used_regs, add_label_notes): Likewise. * genattrtab.c (attr_rtx, attr_copy_rtx, encode_units_mask, clear_struct_flag, count_sub_rtxs, count_alternatives, compares_alternatives_p, contained_in_p, walk_attr_value, write_expr_attr_cache): Likewise. * genconfig.c (walk_insn_part): Likewise. * genemit.c (max_operand_1, gen_exp): Likewise. * genextract.c (walk_rtx): Likewise. * genflags.c (num_operands): Likewise. * genoutput.c (scan_operands): Likewise. * genpeep.c (match_rtx): Likewise. * genrecog.c (add_to_sequence): Likewise. * haifa-sched.c (may_trap_exp, sched_analyze_2, attach_deaths): Likewise. * integrate.c (save_constants, copy_for_inline, copy_rtx_and_substitute, subst_constants, restore_constants): Likewise. * jump.c (mark_jump_label, invert_exp, redirect_exp, rtx_renumbered_equal_p, rtx_equal_for_thread_p): Likewise. * local-alloc.c (contains_replace_regs, memref_referenced_p): Likewise. * loop.c (record_excess_regs, rtx_equal_for_loop_p, add_label_notes, replace_call_address, count_nonfixed_reads, invariant_p, find_single_use_in_loop, find_mem_givs, find_life_end, maybe_eliminate_biv_1, update_reg_last_use): Likewise. * print-rtl.c (reg_names, print_rtx): Likewise. * recog.c (validate_replace_rtx_1, find_single_use_1): Likewise. * reg-stack.c (stack_regs_mentioned_p, record_label_references, record_reg_life_pat, swap_rtx_condition, goto_block_pat, print_blocks): Likewise. * regclass.c (fix_register, record_address_regs, reg_scan_mark_refs): Likewise. * regmove.c (stable_but_for_p): Likewise. * reload.c (loc_mentioned_in_p, operands_match_p, find_reloads_toplevsubst_reg_equivs, find_reloads_address_1, copy_replacements, refers_to_regno_for_reload_p, refers_to_mem_for_reload_p, find_inc_amount, regno_clobbered_p, reload_when_needed_name, reg_class_names, debug_reload_to_stream): Likewise. * reload1.c (eliminate_regs, scan_paradoxical_subregs, delete_address_reloads_1, count_occurrences, reload_cse_mem_conflict_p, reload_combine_note_use, add_auto_inc_notes): Likewise. * resource.c (mark_referenced_resources, mark_set_resources): Likewise. * rtlanal.c (rtx_unstable_p, rtx_varies_p, rtx_addr_varies_p, reg_mentioned_p, regs_set_between_p, modified_between_p, modified_in_p, refers_to_regno_p, reg_overlap_mentioned_p, rtx_equal_p, volatile_insn_p, volatile_refs_p, side_effects_p, may_trap_p, inequality_comparisons_p, replace_rtx, replace_regs, jmp_uses_reg_or_mem, for_each_rtx, regno_use_in): Likewise. * sched.c (sched_analyze_2, attach_deaths): Likewise. * stupid.c (stupid_mark_refs): Likewise. * unroll.c (remap_split_bivs): Likewise. * varasm.c (mark_constants): Likewise. * a29k/a29k.c (uses_local_reg_p): Likewise. * alpha/alpha.c (summarize_insn): Likewise. * arm/arm.c (symbol_mentioned_p, label_mentioned_p, eliminate_lr2ip): Likewise. * arm/thumb.c (symbol_mentioned_p, label_mentioned_p): Likewise. * i386/i386.c (symbolic_reference_mentioned_p, copy_all_rtx, reg_mentioned_in_mem): Likewise. * ns32k/ns32k.c (global_symbolic_reference_mentioned_p, symbolic_reference_mentioned_p): Likewise. * romp/romp.c (unsigned_comparisons_p, hash_rtx): Likewise. * sh/sh.c (regs_used, mark_use): Likewise. * vax/vax.c (vax_rtx_cost): Likewise. From-SVN: r28784
1999-08-21 01:05:25 +02:00
const char *fmt;
int i, insn_class = TRAP_FREE;
/* Neither store nor load, check if it may cause a trap. */
if (may_trap_p (x))
return TRAP_RISKY;
/* Recursive step: walk the insn... */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
int tmp_class = may_trap_exp (XEXP (x, i), is_store);
insn_class = WORST_CLASS (insn_class, tmp_class);
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
{
int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
insn_class = WORST_CLASS (insn_class, tmp_class);
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
}
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
return insn_class;
}
}
/* Classifies insn for the purpose of verifying that it can be
moved speculatively, by examining it's patterns, returning:
TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
TRAP_FREE: non-load insn.
IFREE: load from a globaly safe location.
IRISKY: volatile load.
PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
being either PFREE or PRISKY. */
static int
haifa_classify_insn (insn)
rtx insn;
{
rtx pat = PATTERN (insn);
int tmp_class = TRAP_FREE;
int insn_class = TRAP_FREE;
enum rtx_code code;
if (GET_CODE (pat) == PARALLEL)
{
int i, len = XVECLEN (pat, 0);
for (i = len - 1; i >= 0; i--)
{
code = GET_CODE (XVECEXP (pat, 0, i));
switch (code)
{
case CLOBBER:
/* Test if it is a 'store'. */
tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
break;
case SET:
/* Test if it is a store. */
tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
if (tmp_class == TRAP_RISKY)
break;
/* Test if it is a load. */
tmp_class =
WORST_CLASS (tmp_class,
may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
break;
case COND_EXEC:
case TRAP_IF:
tmp_class = TRAP_RISKY;
break;
default:;
}
insn_class = WORST_CLASS (insn_class, tmp_class);
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
}
else
{
code = GET_CODE (pat);
switch (code)
{
case CLOBBER:
/* Test if it is a 'store'. */
tmp_class = may_trap_exp (XEXP (pat, 0), 1);
break;
case SET:
/* Test if it is a store. */
tmp_class = may_trap_exp (SET_DEST (pat), 1);
if (tmp_class == TRAP_RISKY)
break;
/* Test if it is a load. */
tmp_class =
WORST_CLASS (tmp_class,
may_trap_exp (SET_SRC (pat), 0));
break;
case COND_EXEC:
case TRAP_IF:
tmp_class = TRAP_RISKY;
break;
default:;
}
insn_class = tmp_class;
}
return insn_class;
}
/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
a load moved speculatively, or if load_insn is protected by
a compare on load_insn's address). */
static int
is_prisky (load_insn, bb_src, bb_trg)
rtx load_insn;
int bb_src, bb_trg;
{
if (FED_BY_SPEC_LOAD (load_insn))
return 1;
if (LOG_LINKS (load_insn) == NULL)
/* Dependence may 'hide' out of the region. */
return 1;
if (is_conditionally_protected (load_insn, bb_src, bb_trg))
return 1;
return 0;
}
/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
Return 1 if insn is exception-free (and the motion is valid)
and 0 otherwise. */
static int
is_exception_free (insn, bb_src, bb_trg)
rtx insn;
int bb_src, bb_trg;
{
int insn_class = haifa_classify_insn (insn);
/* Handle non-load insns. */
switch (insn_class)
{
case TRAP_FREE:
return 1;
case TRAP_RISKY:
return 0;
default:;
}
/* Handle loads. */
if (!flag_schedule_speculative_load)
return 0;
IS_LOAD_INSN (insn) = 1;
switch (insn_class)
{
case IFREE:
return (1);
case IRISKY:
return 0;
case PFREE_CANDIDATE:
if (is_pfree (insn, bb_src, bb_trg))
return 1;
/* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
case PRISKY_CANDIDATE:
if (!flag_schedule_speculative_load_dangerous
|| is_prisky (insn, bb_src, bb_trg))
return 0;
break;
default:;
}
return flag_schedule_speculative_load_dangerous;
}
/* Compute the function units used by INSN. This caches the value
returned by function_units_used. A function unit is encoded as the
unit number if the value is non-negative and the compliment of a
mask if the value is negative. A function unit index is the
non-negative encoding. */
HAIFA_INLINE int
insn_unit (insn)
rtx insn;
{
register int unit = INSN_UNIT (insn);
if (unit == 0)
{
recog_memoized (insn);
/* A USE insn, or something else we don't need to understand.
We can't pass these directly to function_units_used because it will
trigger a fatal error for unrecognizable insns. */
if (INSN_CODE (insn) < 0)
unit = -1;
else
{
unit = function_units_used (insn);
/* Increment non-negative values so we can cache zero. */
if (unit >= 0)
unit++;
}
/* We only cache 16 bits of the result, so if the value is out of
range, don't cache it. */
if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
|| unit >= 0
|| (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
INSN_UNIT (insn) = unit;
}
return (unit > 0 ? unit - 1 : unit);
}
/* Compute the blockage range for executing INSN on UNIT. This caches
the value returned by the blockage_range_function for the unit.
These values are encoded in an int where the upper half gives the
minimum value and the lower half gives the maximum value. */
HAIFA_INLINE static unsigned int
blockage_range (unit, insn)
int unit;
rtx insn;
{
unsigned int blockage = INSN_BLOCKAGE (insn);
unsigned int range;
Warning fixes: * Makefile.in (flow.o): Depend on recog.h. * cpplib.h (directive_table): Add missing initializiers. (finclude): Change type of variable `bsize' to size_t. * cse.c (rtx_cost): Mark parameter `outer_code' with ATTRIBUTE_UNUSED. * dwarfout.h (dwarfout_label): Wrap prototype in macro RTX_CODE. * fix-header.c (lookup_std_proto): Cast the result of `strlen' to `int' when comparing against one. (cpp_file_line_for_message): Mark parameter `pfile' with ATTRIBUTE_UNUSED. (cpp_fatal): Mark parameter `pfile' with ATTRIBUTE_UNUSED. * flow.c: Include recog.h. (sbitmap_copy): Cast arguments 1 & 2 of `bcopy' to (PTR). * function.c (thread_prologue_and_epilogue_insns): Mark parameter `f' with ATTRIBUTE_UNUSED. (reposition_prologue_and_epilogue_notes): Likewise. * genopinit.c (gen_insn): Cast argument of ctype functions to `unsigned char'. * haifa-sched.c: Include recog.h. (blockage_range): Cast result of UNIT_BLOCKED macro to (int) when comparing against one. * libgcc2.a (__throw): Revert ATTRIBUTE_UNUSED change for now. * mips-tfile.c (parse_end): Cast the argument of ctype function to `unsigned char'. (parse_ent): Likewise. (parse_input): Likewise. * optabs.c (init_libfuncs): Likewise. * protoize.c (find_rightmost_formals_list): Likewise. * recog.h (const_double_operand): Fix typo in prototype. * tlink.c (scan_linker_output): Cast the argument of ctype function to `unsigned char'. * toplev.c (check_lang_option): Cast the result of `strlen' to `int' when comparing against one. From-SVN: r23155
1998-10-17 22:26:29 +02:00
if ((int) UNIT_BLOCKED (blockage) != unit + 1)
{
range = function_units[unit].blockage_range_function (insn);
/* We only cache the blockage range for one unit and then only if
the values fit. */
if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
}
else
range = BLOCKAGE_RANGE (blockage);
return range;
}
/* A vector indexed by function unit instance giving the last insn to use
the unit. The value of the function unit instance index for unit U
instance I is (U + I * FUNCTION_UNITS_SIZE). */
static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
/* A vector indexed by function unit instance giving the minimum time when
the unit will unblock based on the maximum blockage cost. */
static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
/* A vector indexed by function unit number giving the number of insns
that remain to use the unit. */
static int unit_n_insns[FUNCTION_UNITS_SIZE];
/* Access the unit_last_insn array. Used by the visualization code. */
rtx
get_unit_last_insn (instance)
int instance;
{
return unit_last_insn[instance];
}
/* Reset the function unit state to the null state. */
static void
clear_units ()
{
alias.c [...] (init_alias_analysis, [...]): Use memset () instead of bzero (). * alias.c (init_alias_analysis), calls.c (expand_call, emit_library_call_value_1), combine.c (init_reg_last_arrays), cse.c (new_basic_block), dbxout.c (dbxout_type), diagnostic.c (init_output_buffer, set_diagnostic_context), dwarf2out.c (equate_decl_number_to_die, build_abbrev_table), emit-rtl.c (init_emit_once), fold-const.c (mul_double, div_and_round_double), function.c (assign_parms), gcse.c (compute_can_copy, alloc_gcse_mem, alloc_reg_set_mem, record_one_set, compute_hash_table, compute_set_hash_table, compute_expr_hash_table), genattrtab.c (optimize_attrs), global.c (global_alloc, global_conflicts), haifa-sched.c (compute_trg_info, clear_units, schedule_block), integrate.c (initialize_for_inline, expand_inline_function), jump.c (thread_jumps), local-alloc.c (local_alloc), loop.c (combine_movables, count_loop_regs_set, load_mems_and_recount_loop_regs_set), print-tree.c (debug_tree), regclass.c (init_reg_sets, init_reg_sets_1, regclass, record_reg_classes, allocate_reg_info), reload.c (get_secondary_mem, remove_address_replacements, find_reloads), reload1.c (reload, set_initial_label_offsets, finish_spills, reload_as_needed, choose_reload_regs_init, reload_cse_simplify_operands), reorg.c (dbr_schedule), sbitmap.c (sbitmap_zero), simplify-rtx.c (simplify_plus_minus), ssa.c (rename_registers), stmt.c (expand_end_case), unroll.c (unroll_loop), varray.c (varray_grow), objc/objc-act.c: Use memset () instead of bzero (). ch: * actions.c (check_missing_cases), typeck.c (build_chill_slice, build_chill_cast): Use memset () instead of bzero (). cp: * class.c (duplicate_tag_error, build_vtbl_initializer), decl.c (push_binding_level), error.c (cp_tree_printer), pt.c (process_partial_specialization, tsubst_template_arg_vector), search.c (lookup_member): Use memset () instead of bzero (). java: * expr.c (note_instructions), jcf-io.c (find_class), jcf-parse.c (init_outgoing_cpool), lex.c (java_init_lex): Use memset () instead of bzero (). From-SVN: r37303
2000-11-07 23:50:06 +01:00
memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
memset ((char *) unit_tick, 0, sizeof (unit_tick));
memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
}
/* Return the issue-delay of an insn. */
HAIFA_INLINE static int
insn_issue_delay (insn)
rtx insn;
{
int i, delay = 0;
int unit = insn_unit (insn);
/* Efficiency note: in fact, we are working 'hard' to compute a
value that was available in md file, and is not available in
function_units[] structure. It would be nice to have this
value there, too. */
if (unit >= 0)
{
if (function_units[unit].blockage_range_function &&
function_units[unit].blockage_function)
delay = function_units[unit].blockage_function (insn, insn);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0 && function_units[i].blockage_range_function
&& function_units[i].blockage_function)
delay = MAX (delay, function_units[i].blockage_function (insn, insn));
return delay;
}
/* Return the actual hazard cost of executing INSN on the unit UNIT,
instance INSTANCE at time CLOCK if the previous actual hazard cost
was COST. */
HAIFA_INLINE int
actual_hazard_this_instance (unit, instance, insn, clock, cost)
int unit, instance, clock, cost;
rtx insn;
{
int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
if (tick - clock > cost)
{
/* The scheduler is operating forward, so unit's last insn is the
executing insn and INSN is the candidate insn. We want a
more exact measure of the blockage if we execute INSN at CLOCK
given when we committed the execution of the unit's last insn.
The blockage value is given by either the unit's max blockage
constant, blockage range function, or blockage function. Use
the most exact form for the given unit. */
if (function_units[unit].blockage_range_function)
{
if (function_units[unit].blockage_function)
tick += (function_units[unit].blockage_function
(unit_last_insn[instance], insn)
- function_units[unit].max_blockage);
else
tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
- function_units[unit].max_blockage);
}
if (tick - clock > cost)
cost = tick - clock;
}
return cost;
}
/* Record INSN as having begun execution on the units encoded by UNIT at
time CLOCK. */
HAIFA_INLINE static void
schedule_unit (unit, insn, clock)
int unit, clock;
rtx insn;
{
int i;
if (unit >= 0)
{
int instance = unit;
#if MAX_MULTIPLICITY > 1
/* Find the first free instance of the function unit and use that
one. We assume that one is free. */
for (i = function_units[unit].multiplicity - 1; i > 0; i--)
{
if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
break;
instance += FUNCTION_UNITS_SIZE;
}
#endif
unit_last_insn[instance] = insn;
unit_tick[instance] = (clock + function_units[unit].max_blockage);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
schedule_unit (i, insn, clock);
}
/* Return the actual hazard cost of executing INSN on the units encoded by
UNIT at time CLOCK if the previous actual hazard cost was COST. */
HAIFA_INLINE static int
actual_hazard (unit, insn, clock, cost)
int unit, clock, cost;
rtx insn;
{
int i;
if (unit >= 0)
{
/* Find the instance of the function unit with the minimum hazard. */
int instance = unit;
int best_cost = actual_hazard_this_instance (unit, instance, insn,
clock, cost);
#if MAX_MULTIPLICITY > 1
int this_cost;
if (best_cost > cost)
{
for (i = function_units[unit].multiplicity - 1; i > 0; i--)
{
instance += FUNCTION_UNITS_SIZE;
this_cost = actual_hazard_this_instance (unit, instance, insn,
clock, cost);
if (this_cost < best_cost)
{
best_cost = this_cost;
if (this_cost <= cost)
break;
}
}
}
#endif
cost = MAX (cost, best_cost);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
cost = actual_hazard (i, insn, clock, cost);
return cost;
}
/* Return the potential hazard cost of executing an instruction on the
units encoded by UNIT if the previous potential hazard cost was COST.
An insn with a large blockage time is chosen in preference to one
with a smaller time; an insn that uses a unit that is more likely
to be used is chosen in preference to one with a unit that is less
used. We are trying to minimize a subsequent actual hazard. */
HAIFA_INLINE static int
potential_hazard (unit, insn, cost)
int unit, cost;
rtx insn;
{
int i, ncost;
unsigned int minb, maxb;
if (unit >= 0)
{
minb = maxb = function_units[unit].max_blockage;
if (maxb > 1)
{
if (function_units[unit].blockage_range_function)
{
maxb = minb = blockage_range (unit, insn);
maxb = MAX_BLOCKAGE_COST (maxb);
minb = MIN_BLOCKAGE_COST (minb);
}
if (maxb > 1)
{
/* Make the number of instructions left dominate. Make the
minimum delay dominate the maximum delay. If all these
are the same, use the unit number to add an arbitrary
ordering. Other terms can be added. */
ncost = minb * 0x40 + maxb;
ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
if (ncost > cost)
cost = ncost;
}
}
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
cost = potential_hazard (i, insn, cost);
return cost;
}
/* Compute cost of executing INSN given the dependence LINK on the insn USED.
This is the number of cycles between instruction issue and
instruction results. */
HAIFA_INLINE static int
insn_cost (insn, link, used)
rtx insn, link, used;
{
register int cost = INSN_COST (insn);
if (cost == 0)
{
recog_memoized (insn);
/* A USE insn, or something else we don't need to understand.
We can't pass these directly to result_ready_cost because it will
trigger a fatal error for unrecognizable insns. */
if (INSN_CODE (insn) < 0)
{
INSN_COST (insn) = 1;
return 1;
}
else
{
cost = result_ready_cost (insn);
if (cost < 1)
cost = 1;
INSN_COST (insn) = cost;
}
}
/* In this case estimate cost without caring how insn is used. */
if (link == 0 && used == 0)
return cost;
/* A USE insn should never require the value used to be computed. This
allows the computation of a function's result and parameter values to
overlap the return and call. */
recog_memoized (used);
if (INSN_CODE (used) < 0)
LINK_COST_FREE (link) = 1;
/* If some dependencies vary the cost, compute the adjustment. Most
commonly, the adjustment is complete: either the cost is ignored
(in the case of an output- or anti-dependence), or the cost is
unchanged. These values are cached in the link as LINK_COST_FREE
and LINK_COST_ZERO. */
if (LINK_COST_FREE (link))
cost = 0;
#ifdef ADJUST_COST
else if (!LINK_COST_ZERO (link))
{
int ncost = cost;
ADJUST_COST (used, link, insn, ncost);
if (ncost < 1)
{
LINK_COST_FREE (link) = 1;
ncost = 0;
}
if (cost == ncost)
LINK_COST_ZERO (link) = 1;
cost = ncost;
}
#endif
return cost;
}
/* Compute the priority number for INSN. */
static int
priority (insn)
rtx insn;
{
int this_priority;
rtx link;
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (! INSN_P (insn))
return 0;
if ((this_priority = INSN_PRIORITY (insn)) == 0)
{
if (INSN_DEPEND (insn) == 0)
this_priority = insn_cost (insn, 0, 0);
else
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
{
rtx next;
int next_priority;
if (RTX_INTEGRATED_P (link))
continue;
next = XEXP (link, 0);
/* Critical path is meaningful in block boundaries only. */
if (BLOCK_NUM (next) != BLOCK_NUM (insn))
continue;
next_priority = insn_cost (insn, link, next) + priority (next);
if (next_priority > this_priority)
this_priority = next_priority;
}
INSN_PRIORITY (insn) = this_priority;
}
return this_priority;
}
/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
them to the unused_*_list variables, so that they can be reused. */
static void
free_pending_lists ()
{
int bb;
for (bb = 0; bb < current_nr_blocks; bb++)
{
free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
}
}
/* Macros and functions for keeping the priority queue sorted, and
dealing with queueing and dequeueing of instructions. */
#define SCHED_SORT(READY, N_READY) \
do { if ((N_READY) == 2) \
swap_sort (READY, N_READY); \
else if ((N_READY) > 2) \
qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
while (0)
/* Returns a positive value if x is preferred; returns a negative value if
y is preferred. Should never return 0, since that will make the sort
unstable. */
static int
rank_for_schedule (x, y)
const PTR x;
const PTR y;
{
rtx tmp = *(const rtx *) y;
rtx tmp2 = *(const rtx *) x;
rtx link;
int tmp_class, tmp2_class, depend_count1, depend_count2;
int val, priority_val, weight_val, info_val;
/* Prefer insn with higher priority. */
priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
if (priority_val)
return priority_val;
/* Prefer an insn with smaller contribution to registers-pressure. */
if (!reload_completed &&
(weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
return (weight_val);
info_val = (*current_sched_info->rank) (tmp, tmp2);
if (info_val)
return info_val;
/* Compare insns based on their relation to the last-scheduled-insn. */
if (last_scheduled_insn)
{
/* Classify the instructions into three classes:
1) Data dependent on last schedule insn.
2) Anti/Output dependent on last scheduled insn.
3) Independent of last scheduled insn, or has latency of one.
Choose the insn from the highest numbered class if different. */
link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
tmp_class = 3;
else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
tmp_class = 1;
else
tmp_class = 2;
link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
tmp2_class = 3;
else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
tmp2_class = 1;
else
tmp2_class = 2;
if ((val = tmp2_class - tmp_class))
return val;
}
/* Prefer the insn which has more later insns that depend on it.
This gives the scheduler more freedom when scheduling later
instructions at the expense of added register pressure. */
depend_count1 = 0;
for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
depend_count1++;
depend_count2 = 0;
for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
depend_count2++;
val = depend_count2 - depend_count1;
if (val)
return val;
/* If insns are equally good, sort by INSN_LUID (original insn order),
so that we make the sort stable. This minimizes instruction movement,
thus minimizing sched's effect on debugging and cross-jumping. */
return INSN_LUID (tmp) - INSN_LUID (tmp2);
}
/* Resort the array A in which only element at index N may be out of order. */
HAIFA_INLINE static void
swap_sort (a, n)
rtx *a;
int n;
{
rtx insn = a[n - 1];
int i = n - 2;
while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
{
a[i + 1] = a[i];
i -= 1;
}
a[i + 1] = insn;
}
/* Add INSN to the insn queue so that it can be executed at least
N_CYCLES after the currently executing insn. Preserve insns
chain for debugging purposes. */
HAIFA_INLINE static void
queue_insn (insn, n_cycles)
rtx insn;
int n_cycles;
{
int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
insn_queue[next_q] = link;
q_size += 1;
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
}
}
/* Return a pointer to the bottom of the ready list, i.e. the insn
with the lowest priority. */
HAIFA_INLINE static rtx *
ready_lastpos (ready)
struct ready_list *ready;
{
if (ready->n_ready == 0)
abort ();
return ready->vec + ready->first - ready->n_ready + 1;
}
/* Add an element INSN to the ready list so that it ends up with the lowest
priority. */
HAIFA_INLINE static void
ready_add (ready, insn)
struct ready_list *ready;
rtx insn;
{
if (ready->first == ready->n_ready)
{
memmove (ready->vec + ready->veclen - ready->n_ready,
ready_lastpos (ready),
ready->n_ready * sizeof (rtx));
ready->first = ready->veclen - 1;
}
ready->vec[ready->first - ready->n_ready] = insn;
ready->n_ready++;
}
/* Remove the element with the highest priority from the ready list and
return it. */
HAIFA_INLINE static rtx
ready_remove_first (ready)
struct ready_list *ready;
{
rtx t;
if (ready->n_ready == 0)
abort ();
t = ready->vec[ready->first--];
ready->n_ready--;
/* If the queue becomes empty, reset it. */
if (ready->n_ready == 0)
ready->first = ready->veclen - 1;
return t;
}
/* Sort the ready list READY by ascending priority, using the SCHED_SORT
macro. */
HAIFA_INLINE static void
ready_sort (ready)
struct ready_list *ready;
{
rtx *first = ready_lastpos (ready);
SCHED_SORT (first, ready->n_ready);
}
/* PREV is an insn that is ready to execute. Adjust its priority if that
will help shorten or lengthen register lifetimes as appropriate. Also
provide a hook for the target to tweek itself. */
HAIFA_INLINE static void
adjust_priority (prev)
rtx prev ATTRIBUTE_UNUSED;
{
/* ??? There used to be code here to try and estimate how an insn
affected register lifetimes, but it did it by looking at REG_DEAD
notes, which we removed in schedule_region. Nor did it try to
take into account register pressure or anything useful like that.
Revisit when we have a machine model to work with and not before. */
#ifdef ADJUST_PRIORITY
ADJUST_PRIORITY (prev);
#endif
}
/* Clock at which the previous instruction was issued. */
static int last_clock_var;
/* INSN is the "currently executing insn". Launch each insn which was
waiting on INSN. READY is the ready list which contains the insns
that are ready to fire. CLOCK is the current cycle.
*/
static void
schedule_insn (insn, ready, clock)
rtx insn;
struct ready_list *ready;
int clock;
{
rtx link;
int unit;
unit = insn_unit (insn);
if (sched_verbose >= 2)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
INSN_UID (insn));
insn_print_units (insn);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
}
if (sched_verbose && unit == -1)
visualize_no_unit (insn);
if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
schedule_unit (unit, insn, clock);
if (INSN_DEPEND (insn) == 0)
return;
for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
{
rtx next = XEXP (link, 0);
int cost = insn_cost (insn, link, next);
INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
if ((INSN_DEP_COUNT (next) -= 1) == 0)
{
int effective_cost = INSN_TICK (next) - clock;
if (! (*current_sched_info->new_ready) (next))
continue;
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
(*current_sched_info->print_insn) (next, 0));
if (effective_cost < 1)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "into ready\n");
else
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
}
/* Adjust the priority of NEXT and either put it on the ready
list or queue it. */
adjust_priority (next);
if (effective_cost < 1)
ready_add (ready, next);
else
queue_insn (next, effective_cost);
}
}
/* Annotate the instruction with issue information -- TImode
indicates that the instruction is expected not to be able
to issue on the same cycle as the previous insn. A machine
may use this information to decide how the instruction should
be aligned. */
if (reload_completed && issue_rate > 1)
{
PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
last_clock_var = clock;
}
}
/* Functions for handling of notes. */
/* Delete notes beginning with INSN and put them in the chain
of notes ended by NOTE_LIST.
Returns the insn following the notes. */
static rtx
unlink_other_notes (insn, tail)
rtx insn, tail;
{
rtx prev = PREV_INSN (insn);
while (insn != tail && GET_CODE (insn) == NOTE)
{
rtx next = NEXT_INSN (insn);
/* Delete the note from its current position. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
/* See sched_analyze to see how these are handled. */
if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
Makefile.in (HOST_RTL): Add $(HOST_PREFIX)bitmap.o. * Makefile.in (HOST_RTL): Add $(HOST_PREFIX)bitmap.o. (rtl.o, emit-rtl.o): Add dependency on bitmap.h. ($(HOST_PREFIX_1)rtl.o): Likewise. ($(HOST_PREFIX_1)bitmap.o): New host object. * emit-rtl.c (toplevel): Include bitmap.h. (gen_rtx): Handle 't' and 'b' nodes. * print-rtl.c (print_rtx): Handle printing NOTE_INSN_LIVE notes. Print block number for block begin/end notes. Print 't' type nodes as a pointer. Know that the 3rd argument of live range start/stop notes is really a range_info rtx. If type is 'b', print out argument as a bitmap. * rtl.c: Include bitmap.c. (copy_rtx): Copy tree nodes as is. Copy bitmaps if type is 'b'. (note_insn_name): Add NOTE_INSN_RANGE_{START,END}, NOTE_INSN_LIVE. * rtl.def (RANGE_LIVE): New node to hold live information while we recalculate the basic blocks. (RANGE_REG, RANGE_INFO): New rtl types for live range splitting. (RANGE_VAR): New node, to hold information saved in symbol node for New communicating live range information to the debug output functions. * rtl.h (rtunion_def): Add rttree and rtbit fields. (XBITMAP, XTREE): New accessor macros. (NOTE_LIVE_INFO): Overload NOTE_SOURCE_FILE for NOTE_INSN_LIVE notes. (NOTE_RANGE_INFO): Similarly for NOTE_INSN_RANGE_{START,END} notes. (NOTE_BLOCK_LIVE_RANGE_BLOCK): Define. (NOTE_INSN_RANGE_START, NOTE_INSN_RANGE_END, NOTE_INSN_LIVE): New notes. (RANGE_LIVE_{BITMAP,ORIG_BLOCK}): New accessor macros. (RANGE_REG_{SYMBOL,BLOCK}_NODE, RANGE_VAR_*): New accessor macros. (RANGE_INFO_*): Likewise. * sched.c (sched_analyze): Keep live range start/stop notes. (unlink_other_notes): Likewise. * haifa-sched.c (sched_analyze): Keep live range start/stop notes. (unlink_other_notes): Likewise. * tree.h (BLOCK_LIVE_RANGE_{START,END,VAR_FLAG}): New accessor macros. (BLOCK_LIVE_RANGE_FLAG): Likewise. (DECL_LIVE_RANGE_RTL): Likewise. (struct tree_block): Add live_range_flag, live_range_var_flag, live_range_start and live_range_end. (struct tree_decl): Add live_range_rtl field. * gengenrtl.c (type_from_format): Handle 'b' and 't'. (accessor_from_format): Likewise. Co-Authored-By: Jeffrey A Law <law@cygnus.com> From-SVN: r19727
1998-05-13 23:13:47 +02:00
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
{
/* Insert the note at the end of the notes list. */
PREV_INSN (insn) = note_list;
if (note_list)
NEXT_INSN (note_list) = insn;
note_list = insn;
}
insn = next;
}
return insn;
}
/* Delete line notes beginning with INSN. Record line-number notes so
they can be reused. Returns the insn following the notes. */
static rtx
unlink_line_notes (insn, tail)
rtx insn, tail;
{
rtx prev = PREV_INSN (insn);
while (insn != tail && GET_CODE (insn) == NOTE)
{
rtx next = NEXT_INSN (insn);
if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
{
/* Delete the note from its current position. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
/* Record line-number notes so they can be reused. */
LINE_NOTE (insn) = insn;
}
else
prev = insn;
insn = next;
}
return insn;
}
/* Return the head and tail pointers of BB. */
HAIFA_INLINE static void
get_block_head_tail (b, headp, tailp)
int b;
rtx *headp;
rtx *tailp;
{
/* HEAD and TAIL delimit the basic block being scheduled. */
rtx head = BLOCK_HEAD (b);
rtx tail = BLOCK_END (b);
/* Don't include any notes or labels at the beginning of the
basic block, or notes at the ends of basic blocks. */
while (head != tail)
{
if (GET_CODE (head) == NOTE)
head = NEXT_INSN (head);
else if (GET_CODE (tail) == NOTE)
tail = PREV_INSN (tail);
else if (GET_CODE (head) == CODE_LABEL)
head = NEXT_INSN (head);
else
break;
}
*headp = head;
*tailp = tail;
}
HAIFA_INLINE static void
get_bb_head_tail (bb, headp, tailp)
int bb;
rtx *headp;
rtx *tailp;
{
get_block_head_tail (BB_TO_BLOCK (bb), headp, tailp);
}
/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
static int
no_real_insns_p (head, tail)
rtx head, tail;
{
while (head != NEXT_INSN (tail))
{
if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
return 0;
head = NEXT_INSN (head);
}
return 1;
}
/* Delete line notes from bb. Save them so they can be later restored
(in restore_line_notes ()). */
static void
rm_line_notes (bb)
int bb;
{
rtx next_tail;
rtx tail;
rtx head;
rtx insn;
get_bb_head_tail (bb, &head, &tail);
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (head == tail && (! INSN_P (head)))
return;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx prev;
/* Farm out notes, and maybe save them in NOTE_LIST.
This is needed to keep the debugger from
getting completely deranged. */
if (GET_CODE (insn) == NOTE)
{
prev = insn;
insn = unlink_line_notes (insn, next_tail);
if (prev == tail)
abort ();
if (prev == head)
abort ();
if (insn == next_tail)
abort ();
}
}
}
/* Save line number notes for each insn in bb. */
static void
save_line_notes (bb)
int bb;
{
rtx head, tail;
rtx next_tail;
/* We must use the true line number for the first insn in the block
that was computed and saved at the start of this pass. We can't
use the current line number, because scheduling of the previous
block may have changed the current line number. */
rtx line = line_note_head[BB_TO_BLOCK (bb)];
rtx insn;
get_bb_head_tail (bb, &head, &tail);
next_tail = NEXT_INSN (tail);
for (insn = BLOCK_HEAD (BB_TO_BLOCK (bb));
insn != next_tail;
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
else
LINE_NOTE (insn) = line;
}
/* After bb was scheduled, insert line notes into the insns list. */
static void
restore_line_notes (bb)
int bb;
{
rtx line, note, prev, new;
int added_notes = 0;
int b;
rtx head, next_tail, insn;
b = BB_TO_BLOCK (bb);
head = BLOCK_HEAD (b);
next_tail = NEXT_INSN (BLOCK_END (b));
/* Determine the current line-number. We want to know the current
line number of the first insn of the block here, in case it is
different from the true line number that was saved earlier. If
different, then we need a line number note before the first insn
of this block. If it happens to be the same, then we don't want to
emit another line number note here. */
for (line = head; line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
break;
/* Walk the insns keeping track of the current line-number and inserting
the line-number notes as needed. */
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
/* This used to emit line number notes before every non-deleted note.
However, this confuses a debugger, because line notes not separated
by real instructions all end up at the same address. I can find no
use for line number notes before other notes, so none are emitted. */
else if (GET_CODE (insn) != NOTE
&& (note = LINE_NOTE (insn)) != 0
&& note != line
&& (line == 0
|| NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
|| NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
{
line = note;
prev = PREV_INSN (insn);
if (LINE_NOTE (note))
{
/* Re-use the original line-number note. */
LINE_NOTE (note) = 0;
PREV_INSN (note) = prev;
NEXT_INSN (prev) = note;
PREV_INSN (insn) = note;
NEXT_INSN (note) = insn;
}
else
{
added_notes++;
new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
}
}
if (sched_verbose && added_notes)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
}
/* After scheduling the function, delete redundant line notes from the
insns list. */
static void
rm_redundant_line_notes ()
{
rtx line = 0;
rtx insn = get_insns ();
int active_insn = 0;
int notes = 0;
/* Walk the insns deleting redundant line-number notes. Many of these
are already present. The remainder tend to occur at basic
block boundaries. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
{
/* If there are no active insns following, INSN is redundant. */
if (active_insn == 0)
{
notes++;
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
}
/* If the line number is unchanged, LINE is redundant. */
else if (line
&& NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
&& NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
{
notes++;
NOTE_SOURCE_FILE (line) = 0;
NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
line = insn;
}
else
line = insn;
active_insn = 0;
}
else if (!((GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER))))
active_insn++;
if (sched_verbose && notes)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
}
/* Delete notes between head and tail and put them in the chain
of notes ended by NOTE_LIST. */
static void
rm_other_notes (head, tail)
rtx head;
rtx tail;
{
rtx next_tail;
rtx insn;
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (head == tail && (! INSN_P (head)))
return;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx prev;
/* Farm out notes, and maybe save them in NOTE_LIST.
This is needed to keep the debugger from
getting completely deranged. */
if (GET_CODE (insn) == NOTE)
{
prev = insn;
insn = unlink_other_notes (insn, next_tail);
if (prev == tail)
abort ();
if (prev == head)
abort ();
if (insn == next_tail)
abort ();
}
}
}
/* Functions for computation of registers live/usage info. */
/* Calculate INSN_REG_WEIGHT for all insns of a block. */
static void
find_insn_reg_weight (b)
int b;
{
rtx insn, next_tail, head, tail;
get_block_head_tail (b, &head, &tail);
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
int reg_weight = 0;
rtx x;
/* Handle register life information. */
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (! INSN_P (insn))
continue;
/* Increment weight for each register born here. */
x = PATTERN (insn);
if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
&& register_operand (SET_DEST (x), VOIDmode))
reg_weight++;
else if (GET_CODE (x) == PARALLEL)
{
int j;
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
{
x = XVECEXP (PATTERN (insn), 0, j);
if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
&& register_operand (SET_DEST (x), VOIDmode))
reg_weight++;
}
}
/* Decrement weight for each register that dies here. */
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
{
if (REG_NOTE_KIND (x) == REG_DEAD
|| REG_NOTE_KIND (x) == REG_UNUSED)
reg_weight--;
}
INSN_REG_WEIGHT (insn) = reg_weight;
}
}
/* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
static int clock_var;
/* Move insns that became ready to fire from queue to ready list. */
static void
queue_to_ready (ready)
struct ready_list *ready;
{
rtx insn;
rtx link;
q_ptr = NEXT_Q (q_ptr);
/* Add all pending insns that can be scheduled without stalls to the
ready list. */
for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
{
insn = XEXP (link, 0);
q_size -= 1;
if (sched_verbose >= 2)
fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
ready_add (ready, insn);
if (sched_verbose >= 2)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "moving to ready without stalls\n");
}
insn_queue[q_ptr] = 0;
/* If there are no ready insns, stall until one is ready and add all
of the pending insns at that point to the ready list. */
if (ready->n_ready == 0)
{
register int stalls;
for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
{
if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
{
for (; link; link = XEXP (link, 1))
{
insn = XEXP (link, 0);
q_size -= 1;
if (sched_verbose >= 2)
fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
ready_add (ready, insn);
if (sched_verbose >= 2)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
}
insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
if (ready->n_ready)
break;
}
}
if (sched_verbose && stalls)
visualize_stall_cycles (stalls);
q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
clock_var += stalls;
}
}
/* Print the ready list for debugging purposes. Callable from debugger. */
static void
debug_ready_list (ready)
struct ready_list *ready;
{
rtx *p;
int i;
if (ready->n_ready == 0)
return;
p = ready_lastpos (ready);
for (i = 0; i < ready->n_ready; i++)
fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
}
/* The number of insns from the current block scheduled so far. */
static int sched_target_n_insns;
/* The number of insns from the current block to be scheduled in total. */
static int target_n_insns;
/* The number of insns from the entire region scheduled so far. */
static int sched_n_insns;
/* Implementations of the sched_info functions for region scheduling. */
static void init_ready_list PARAMS ((struct ready_list *));
static int can_schedule_ready_p PARAMS ((rtx));
static int new_ready PARAMS ((rtx));
static int schedule_more_p PARAMS ((void));
static const char *rgn_print_insn PARAMS ((rtx, int));
static int rgn_rank PARAMS ((rtx, rtx));
/* Return nonzero if there are more insns that should be scheduled. */
static int
schedule_more_p ()
{
return sched_target_n_insns < target_n_insns;
}
/* Add all insns that are initially ready to the ready list READY. Called
once before scheduling a set of insns. */
static void
init_ready_list (ready)
struct ready_list *ready;
{
rtx prev_head = current_sched_info->prev_head;
rtx next_tail = current_sched_info->next_tail;
int bb_src;
rtx insn;
target_n_insns = 0;
sched_target_n_insns = 0;
sched_n_insns = 0;
/* Print debugging information. */
if (sched_verbose >= 5)
debug_dependencies ();
/* Prepare current target block info. */
if (current_nr_blocks > 1)
{
candidate_table = (candidate *) xmalloc (current_nr_blocks
* sizeof (candidate));
bblst_last = 0;
/* bblst_table holds split blocks and update blocks for each block after
the current one in the region. split blocks and update blocks are
the TO blocks of region edges, so there can be at most rgn_nr_edges
of them. */
bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
bblst_table = (int *) xmalloc (bblst_size * sizeof (int));
bitlst_table_last = 0;
bitlst_table_size = rgn_nr_edges;
bitlst_table = (int *) xmalloc (rgn_nr_edges * sizeof (int));
compute_trg_info (target_bb);
}
/* Initialize ready list with all 'ready' insns in target block.
Count number of insns in the target block being scheduled. */
for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
{
rtx next;
if (! INSN_P (insn))
continue;
next = NEXT_INSN (insn);
if (INSN_DEP_COUNT (insn) == 0
&& (SCHED_GROUP_P (next) == 0 || ! INSN_P (next)))
ready_add (ready, insn);
if (!(SCHED_GROUP_P (insn)))
target_n_insns++;
}
/* Add to ready list all 'ready' insns in valid source blocks.
For speculative insns, check-live, exception-free, and
issue-delay. */
for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
if (IS_VALID (bb_src))
{
rtx src_head;
rtx src_next_tail;
rtx tail, head;
get_bb_head_tail (bb_src, &head, &tail);
src_next_tail = NEXT_INSN (tail);
src_head = head;
for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
continue;
if (!CANT_MOVE (insn)
&& (!IS_SPECULATIVE_INSN (insn)
|| (insn_issue_delay (insn) <= 3
&& check_live (insn, bb_src)
&& is_exception_free (insn, bb_src, target_bb))))
{
rtx next;
/* Note that we havn't squirrled away the notes for
blocks other than the current. So if this is a
speculative insn, NEXT might otherwise be a note. */
next = next_nonnote_insn (insn);
if (INSN_DEP_COUNT (insn) == 0
&& (! next
|| SCHED_GROUP_P (next) == 0
|| ! INSN_P (next)))
ready_add (ready, insn);
}
}
}
}
/* Called after taking INSN from the ready list. Returns nonzero if this
insn can be scheduled, nonzero if we should silently discard it. */
static int
can_schedule_ready_p (insn)
rtx insn;
{
/* An interblock motion? */
if (INSN_BB (insn) != target_bb)
{
rtx temp;
basic_block b1;
if (IS_SPECULATIVE_INSN (insn))
{
if (!check_live (insn, INSN_BB (insn)))
return 0;
update_live (insn, INSN_BB (insn));
/* For speculative load, mark insns fed by it. */
if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
set_spec_fed (insn);
nr_spec++;
}
nr_inter++;
/* Find the beginning of the scheduling group. */
/* ??? Ought to update basic block here, but later bits of
schedule_block assumes the original insn block is
still intact. */
temp = insn;
while (SCHED_GROUP_P (temp))
temp = PREV_INSN (temp);
/* Update source block boundaries. */
b1 = BLOCK_FOR_INSN (temp);
if (temp == b1->head && insn == b1->end)
{
/* We moved all the insns in the basic block.
Emit a note after the last insn and update the
begin/end boundaries to point to the note. */
rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
b1->head = note;
b1->end = note;
}
else if (insn == b1->end)
{
/* We took insns from the end of the basic block,
so update the end of block boundary so that it
points to the first insn we did not move. */
b1->end = PREV_INSN (temp);
}
else if (temp == b1->head)
{
/* We took insns from the start of the basic block,
so update the start of block boundary so that
it points to the first insn we did not move. */
b1->head = NEXT_INSN (insn);
}
}
else
{
/* In block motion. */
sched_target_n_insns++;
}
sched_n_insns++;
return 1;
}
/* Called after INSN has all its dependencies resolved. Return nonzero
if it should be moved to the ready list or the queue, or zero if we
should silently discard it. */
static int
new_ready (next)
rtx next;
{
/* For speculative insns, before inserting to ready/queue,
check live, exception-free, and issue-delay. */
if (INSN_BB (next) != target_bb
&& (!IS_VALID (INSN_BB (next))
|| CANT_MOVE (next)
|| (IS_SPECULATIVE_INSN (next)
&& (insn_issue_delay (next) > 3
|| !check_live (next, INSN_BB (next))
|| !is_exception_free (next, INSN_BB (next), target_bb)))))
return 0;
return 1;
}
/* Return a string that contains the insn uid and optionally anything else
necessary to identify this insn in an output. It's valid to use a
static buffer for this. The ALIGNED parameter should cause the string
to be formatted so that multiple output lines will line up nicely. */
static const char *
rgn_print_insn (insn, aligned)
rtx insn;
int aligned;
{
static char tmp[80];
if (aligned)
sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
else
{
sprintf (tmp, "%d", INSN_UID (insn));
if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
sprintf (tmp, "/b%d ", INSN_BB (insn));
}
return tmp;
}
/* Compare priority of two insns. Return a positive number if the second
insn is to be preferred for scheduling, and a negative one if the first
is to be preferred. Zero if they are equally good. */
static int
rgn_rank (insn1, insn2)
rtx insn1, insn2;
{
/* Some comparison make sense in interblock scheduling only. */
if (INSN_BB (insn1) != INSN_BB (insn2))
{
int spec_val, prob_val;
/* Prefer an inblock motion on an interblock motion. */
if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
return 1;
if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
return -1;
/* Prefer a useful motion on a speculative one. */
spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
if (spec_val)
return spec_val;
/* Prefer a more probable (speculative) insn. */
prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
if (prob_val)
return prob_val;
}
return 0;
}
/* Used in schedule_insns to initialize current_sched_info for scheduling
regions (or single basic blocks). */
static struct sched_info region_sched_info =
{
init_ready_list,
can_schedule_ready_p,
schedule_more_p,
new_ready,
rgn_rank,
rgn_print_insn,
NULL, NULL,
NULL, NULL,
0
};
/* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
static rtx
move_insn1 (insn, last)
rtx insn, last;
{
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
NEXT_INSN (insn) = NEXT_INSN (last);
PREV_INSN (NEXT_INSN (last)) = insn;
NEXT_INSN (last) = insn;
PREV_INSN (insn) = last;
return insn;
}
/* Search INSN for REG_SAVE_NOTE note pairs for NOTE_INSN_SETJMP,
NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
NOTEs. The REG_SAVE_NOTE note following first one is contains the
saved value for NOTE_BLOCK_NUMBER which is useful for
NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
output by the instruction scheduler. Return the new value of LAST. */
static rtx
reemit_notes (insn, last)
rtx insn;
rtx last;
{
rtx note, retval;
retval = last;
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
{
enum insn_note note_type = INTVAL (XEXP (note, 0));
if (note_type == NOTE_INSN_SETJMP)
{
retval = emit_note_after (NOTE_INSN_SETJMP, insn);
CONST_CALL_P (retval) = CONST_CALL_P (note);
remove_note (insn, note);
note = XEXP (note, 1);
}
else if (note_type == NOTE_INSN_RANGE_BEG
|| note_type == NOTE_INSN_RANGE_END)
{
last = emit_note_before (note_type, last);
remove_note (insn, note);
note = XEXP (note, 1);
NOTE_RANGE_INFO (last) = XEXP (note, 0);
}
else
{
last = emit_note_before (note_type, last);
remove_note (insn, note);
note = XEXP (note, 1);
if (note_type == NOTE_INSN_EH_REGION_BEG
|| note_type == NOTE_INSN_EH_REGION_END)
NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
}
remove_note (insn, note);
}
}
return retval;
}
/* Move INSN, and all insns which should be issued before it,
due to SCHED_GROUP_P flag. Reemit notes if needed.
Return the last insn emitted by the scheduler, which is the
return value from the first call to reemit_notes. */
static rtx
move_insn (insn, last)
rtx insn, last;
{
rtx retval = NULL;
/* If INSN has SCHED_GROUP_P set, then issue it and any other
insns with SCHED_GROUP_P set first. */
while (SCHED_GROUP_P (insn))
{
rtx prev = PREV_INSN (insn);
/* Move a SCHED_GROUP_P insn. */
move_insn1 (insn, last);
/* If this is the first call to reemit_notes, then record
its return value. */
if (retval == NULL_RTX)
retval = reemit_notes (insn, insn);
else
reemit_notes (insn, insn);
insn = prev;
}
/* Now move the first non SCHED_GROUP_P insn. */
move_insn1 (insn, last);
/* If this is the first call to reemit_notes, then record
its return value. */
if (retval == NULL_RTX)
retval = reemit_notes (insn, insn);
else
reemit_notes (insn, insn);
return retval;
}
/* Use forward list scheduling to rearrange insns of block BB in region RGN,
possibly bringing insns from subsequent blocks in the same region. */
static void
schedule_block (bb, rgn_n_insns)
int bb;
int rgn_n_insns;
{
rtx last;
struct ready_list ready;
int can_issue_more;
/* Flow block of this bb. */
int b = BB_TO_BLOCK (bb);
/* Head/tail info for this block. */
rtx prev_head = current_sched_info->prev_head;
rtx next_tail = current_sched_info->next_tail;
rtx head = NEXT_INSN (prev_head);
rtx tail = PREV_INSN (next_tail);
/* We used to have code to avoid getting parameters moved from hard
argument registers into pseudos.
However, it was removed when it proved to be of marginal benefit
and caused problems because schedule_block and compute_forward_dependences
had different notions of what the "head" insn was. */
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (head == tail && (! INSN_P (head)))
abort ();
/* Debug info. */
if (sched_verbose)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; ======================================================\n");
fprintf (sched_dump,
";; -- basic block %d from %d to %d -- %s reload\n",
b, INSN_UID (BLOCK_HEAD (b)), INSN_UID (BLOCK_END (b)),
(reload_completed ? "after" : "before"));
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; ======================================================\n");
fprintf (sched_dump, "\n");
visualize_alloc ();
init_block_visualization ();
}
clear_units ();
/* Allocate the ready list. */
ready.veclen = rgn_n_insns + 1 + ISSUE_RATE;
ready.first = ready.veclen - 1;
ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
ready.n_ready = 0;
(*current_sched_info->init_ready_list) (&ready);
#ifdef MD_SCHED_INIT
2000-12-02 11:47:42 +01:00
MD_SCHED_INIT (sched_dump, sched_verbose);
#endif
/* No insns scheduled in this block yet. */
last_scheduled_insn = 0;
/* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
queue. */
q_ptr = 0;
q_size = 0;
last_clock_var = 0;
alias.c [...] (init_alias_analysis, [...]): Use memset () instead of bzero (). * alias.c (init_alias_analysis), calls.c (expand_call, emit_library_call_value_1), combine.c (init_reg_last_arrays), cse.c (new_basic_block), dbxout.c (dbxout_type), diagnostic.c (init_output_buffer, set_diagnostic_context), dwarf2out.c (equate_decl_number_to_die, build_abbrev_table), emit-rtl.c (init_emit_once), fold-const.c (mul_double, div_and_round_double), function.c (assign_parms), gcse.c (compute_can_copy, alloc_gcse_mem, alloc_reg_set_mem, record_one_set, compute_hash_table, compute_set_hash_table, compute_expr_hash_table), genattrtab.c (optimize_attrs), global.c (global_alloc, global_conflicts), haifa-sched.c (compute_trg_info, clear_units, schedule_block), integrate.c (initialize_for_inline, expand_inline_function), jump.c (thread_jumps), local-alloc.c (local_alloc), loop.c (combine_movables, count_loop_regs_set, load_mems_and_recount_loop_regs_set), print-tree.c (debug_tree), regclass.c (init_reg_sets, init_reg_sets_1, regclass, record_reg_classes, allocate_reg_info), reload.c (get_secondary_mem, remove_address_replacements, find_reloads), reload1.c (reload, set_initial_label_offsets, finish_spills, reload_as_needed, choose_reload_regs_init, reload_cse_simplify_operands), reorg.c (dbr_schedule), sbitmap.c (sbitmap_zero), simplify-rtx.c (simplify_plus_minus), ssa.c (rename_registers), stmt.c (expand_end_case), unroll.c (unroll_loop), varray.c (varray_grow), objc/objc-act.c: Use memset () instead of bzero (). ch: * actions.c (check_missing_cases), typeck.c (build_chill_slice, build_chill_cast): Use memset () instead of bzero (). cp: * class.c (duplicate_tag_error, build_vtbl_initializer), decl.c (push_binding_level), error.c (cp_tree_printer), pt.c (process_partial_specialization, tsubst_template_arg_vector), search.c (lookup_member): Use memset () instead of bzero (). java: * expr.c (note_instructions), jcf-io.c (find_class), jcf-parse.c (init_outgoing_cpool), lex.c (java_init_lex): Use memset () instead of bzero (). From-SVN: r37303
2000-11-07 23:50:06 +01:00
memset ((char *) insn_queue, 0, sizeof (insn_queue));
/* Start just before the beginning of time. */
clock_var = -1;
/* We start inserting insns after PREV_HEAD. */
last = prev_head;
/* Loop until all the insns in BB are scheduled. */
while ((*current_sched_info->schedule_more_p) ())
{
clock_var++;
/* Add to the ready list all pending insns that can be issued now.
If there are no ready insns, increment clock until one
is ready and add all pending insns at that point to the ready
list. */
queue_to_ready (&ready);
if (ready.n_ready == 0)
abort ();
if (sched_verbose >= 2)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
debug_ready_list (&ready);
}
/* Sort the ready list based on priority. */
ready_sort (&ready);
/* Allow the target to reorder the list, typically for
better instruction bundling. */
#ifdef MD_SCHED_REORDER
2000-12-02 11:47:42 +01:00
MD_SCHED_REORDER (sched_dump, sched_verbose, ready_lastpos (&ready),
ready.n_ready, clock_var, can_issue_more);
#else
can_issue_more = issue_rate;
#endif
if (sched_verbose)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
debug_ready_list (&ready);
}
/* Issue insns from ready list. */
while (ready.n_ready != 0 && can_issue_more)
{
/* Select and remove the insn from the ready list. */
rtx insn = ready_remove_first (&ready);
int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
if (cost >= 1)
{
queue_insn (insn, cost);
continue;
}
if (! (*current_sched_info->can_schedule_ready_p) (insn))
goto next;
last_scheduled_insn = insn;
last = move_insn (insn, last);
#ifdef MD_SCHED_VARIABLE_ISSUE
2000-12-02 11:47:42 +01:00
MD_SCHED_VARIABLE_ISSUE (sched_dump, sched_verbose, insn,
can_issue_more);
#else
can_issue_more--;
#endif
schedule_insn (insn, &ready, clock_var);
next:
/* Close this block after scheduling its jump. */
if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
break;
}
/* Debug info. */
if (sched_verbose)
visualize_scheduled_insns (clock_var);
}
/* Debug info. */
if (sched_verbose)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";;\tReady list (final): ");
debug_ready_list (&ready);
print_block_visualization ("");
}
/* Sanity check -- queue must be empty now. Meaningless if region has
multiple bbs. */
if (current_sched_info->queue_must_finish_empty && q_size != 0)
abort ();
/* Update head/tail boundaries. */
head = NEXT_INSN (prev_head);
tail = last;
/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
previously found among the insns. Insert them at the beginning
of the insns. */
if (note_list != 0)
{
rtx note_head = note_list;
while (PREV_INSN (note_head))
{
note_head = PREV_INSN (note_head);
}
PREV_INSN (note_head) = PREV_INSN (head);
NEXT_INSN (PREV_INSN (head)) = note_head;
PREV_INSN (head) = note_list;
NEXT_INSN (note_list) = head;
head = note_head;
}
/* Debugging. */
if (sched_verbose)
{
fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
clock_var, INSN_UID (head));
fprintf (sched_dump, ";; new tail = %d\n\n",
INSN_UID (tail));
visualize_free ();
}
current_sched_info->head = head;
current_sched_info->tail = tail;
free (ready.vec);
}
/* Print the bit-set of registers, S, callable from debugger. */
extern void
debug_reg_vector (s)
regset s;
{
int regno;
EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " %d", regno);
});
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
}
/* Add dependences so that branches are scheduled to run last in their
block. */
static void
add_branch_dependences (head, tail)
rtx head, tail;
{
rtx insn, last;
/* For all branches, calls, uses, clobbers, and cc0 setters, force them
to remain in order at the end of the block by adding dependencies and
giving the last a high priority. There may be notes present, and
prev_head may also be a note.
Branches must obviously remain at the end. Calls should remain at the
end since moving them results in worse register allocation. Uses remain
at the end to ensure proper register allocation. cc0 setters remaim
at the end because they can't be moved away from their cc0 user. */
insn = tail;
last = 0;
while (GET_CODE (insn) == CALL_INSN
|| GET_CODE (insn) == JUMP_INSN
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
#ifdef HAVE_cc0
|| sets_cc0_p (PATTERN (insn))
#endif
))
|| GET_CODE (insn) == NOTE)
{
if (GET_CODE (insn) != NOTE)
{
if (last != 0
&& !find_insn_list (insn, LOG_LINKS (last)))
{
add_dependence (last, insn, REG_DEP_ANTI);
INSN_REF_COUNT (insn)++;
}
CANT_MOVE (insn) = 1;
last = insn;
/* Skip over insns that are part of a group.
Make each insn explicitly depend on the previous insn.
This ensures that only the group header will ever enter
the ready queue (and, when scheduled, will automatically
schedule the SCHED_GROUP_P block). */
while (SCHED_GROUP_P (insn))
{
rtx temp = prev_nonnote_insn (insn);
add_dependence (insn, temp, REG_DEP_ANTI);
insn = temp;
}
}
/* Don't overrun the bounds of the basic block. */
if (insn == head)
break;
insn = PREV_INSN (insn);
}
/* Make sure these insns are scheduled last in their block. */
insn = last;
if (insn != 0)
while (insn != head)
{
insn = prev_nonnote_insn (insn);
if (INSN_REF_COUNT (insn) != 0)
continue;
add_dependence (last, insn, REG_DEP_ANTI);
INSN_REF_COUNT (insn) = 1;
/* Skip over insns that are part of a group. */
while (SCHED_GROUP_P (insn))
insn = prev_nonnote_insn (insn);
}
}
/* After computing the dependencies for block BB, propagate the dependencies
found in TMP_DEPS to the successors of the block. MAX_REG is the number
of registers. */
static void
propagate_deps (bb, tmp_deps, max_reg)
int bb;
struct deps *tmp_deps;
int max_reg;
{
int b = BB_TO_BLOCK (bb);
int e, first_edge;
int reg;
rtx link_insn, link_mem;
rtx u;
/* These lists should point to the right place, for correct
freeing later. */
bb_deps[bb].pending_read_insns = tmp_deps->pending_read_insns;
bb_deps[bb].pending_read_mems = tmp_deps->pending_read_mems;
bb_deps[bb].pending_write_insns = tmp_deps->pending_write_insns;
bb_deps[bb].pending_write_mems = tmp_deps->pending_write_mems;
/* bb's structures are inherited by its successors. */
first_edge = e = OUT_EDGES (b);
if (e <= 0)
return;
do
{
rtx x;
int b_succ = TO_BLOCK (e);
int bb_succ = BLOCK_TO_BB (b_succ);
struct deps *succ_deps = bb_deps + bb_succ;
/* Only bbs "below" bb, in the same region, are interesting. */
if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
|| bb_succ <= bb)
{
e = NEXT_OUT (e);
continue;
}
for (reg = 0; reg < max_reg; reg++)
{
/* reg-last-uses lists are inherited by bb_succ. */
for (u = tmp_deps->reg_last_uses[reg]; u; u = XEXP (u, 1))
{
if (find_insn_list (XEXP (u, 0),
succ_deps->reg_last_uses[reg]))
continue;
succ_deps->reg_last_uses[reg]
= alloc_INSN_LIST (XEXP (u, 0),
succ_deps->reg_last_uses[reg]);
}
/* reg-last-defs lists are inherited by bb_succ. */
for (u = tmp_deps->reg_last_sets[reg]; u; u = XEXP (u, 1))
{
if (find_insn_list (XEXP (u, 0),
succ_deps->reg_last_sets[reg]))
continue;
succ_deps->reg_last_sets[reg]
= alloc_INSN_LIST (XEXP (u, 0),
succ_deps->reg_last_sets[reg]);
}
for (u = tmp_deps->reg_last_clobbers[reg]; u; u = XEXP (u, 1))
{
if (find_insn_list (XEXP (u, 0),
succ_deps->reg_last_clobbers[reg]))
continue;
succ_deps->reg_last_clobbers[reg]
= alloc_INSN_LIST (XEXP (u, 0),
succ_deps->reg_last_clobbers[reg]);
}
}
/* Mem read/write lists are inherited by bb_succ. */
link_insn = tmp_deps->pending_read_insns;
link_mem = tmp_deps->pending_read_mems;
while (link_insn)
{
if (!(find_insn_mem_list (XEXP (link_insn, 0),
XEXP (link_mem, 0),
succ_deps->pending_read_insns,
succ_deps->pending_read_mems)))
add_insn_mem_dependence (succ_deps, &succ_deps->pending_read_insns,
&succ_deps->pending_read_mems,
XEXP (link_insn, 0), XEXP (link_mem, 0));
link_insn = XEXP (link_insn, 1);
link_mem = XEXP (link_mem, 1);
}
link_insn = tmp_deps->pending_write_insns;
link_mem = tmp_deps->pending_write_mems;
while (link_insn)
{
if (!(find_insn_mem_list (XEXP (link_insn, 0),
XEXP (link_mem, 0),
succ_deps->pending_write_insns,
succ_deps->pending_write_mems)))
add_insn_mem_dependence (succ_deps,
&succ_deps->pending_write_insns,
&succ_deps->pending_write_mems,
XEXP (link_insn, 0), XEXP (link_mem, 0));
link_insn = XEXP (link_insn, 1);
link_mem = XEXP (link_mem, 1);
}
/* last_function_call is inherited by bb_succ. */
for (u = tmp_deps->last_function_call; u; u = XEXP (u, 1))
{
if (find_insn_list (XEXP (u, 0),
succ_deps->last_function_call))
continue;
succ_deps->last_function_call
= alloc_INSN_LIST (XEXP (u, 0),
succ_deps->last_function_call);
}
/* last_pending_memory_flush is inherited by bb_succ. */
for (u = tmp_deps->last_pending_memory_flush; u; u = XEXP (u, 1))
{
if (find_insn_list (XEXP (u, 0),
succ_deps->last_pending_memory_flush))
continue;
succ_deps->last_pending_memory_flush
= alloc_INSN_LIST (XEXP (u, 0),
succ_deps->last_pending_memory_flush);
}
/* sched_before_next_call is inherited by bb_succ. */
x = LOG_LINKS (tmp_deps->sched_before_next_call);
for (; x; x = XEXP (x, 1))
add_dependence (succ_deps->sched_before_next_call,
XEXP (x, 0), REG_DEP_ANTI);
e = NEXT_OUT (e);
}
while (e != first_edge);
}
/* Compute backward dependences inside bb. In a multiple blocks region:
(1) a bb is analyzed after its predecessors, and (2) the lists in
effect at the end of bb (after analyzing for bb) are inherited by
bb's successrs.
Specifically for reg-reg data dependences, the block insns are
scanned by sched_analyze () top-to-bottom. Two lists are
maintained by sched_analyze (): reg_last_sets[] for register DEFs,
and reg_last_uses[] for register USEs.
When analysis is completed for bb, we update for its successors:
; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
; - USES[succ] = Union (USES [succ], DEFS [bb])
The mechanism for computing mem-mem data dependence is very
similar, and the result is interblock dependences in the region. */
static void
compute_block_backward_dependences (bb)
int bb;
{
rtx head, tail;
int max_reg = max_reg_num ();
struct deps tmp_deps;
tmp_deps = bb_deps[bb];
/* Do the analysis for this block. */
get_bb_head_tail (bb, &head, &tail);
sched_analyze (&tmp_deps, head, tail);
add_branch_dependences (head, tail);
if (current_nr_blocks > 1)
propagate_deps (bb, &tmp_deps, max_reg);
2000-12-02 11:47:42 +01:00
/* Free up the INSN_LISTs. */
free_deps (&tmp_deps);
/* Assert that we won't need bb_reg_last_* for this block anymore. */
free (bb_deps[bb].reg_last_uses);
free (bb_deps[bb].reg_last_sets);
free (bb_deps[bb].reg_last_clobbers);
bb_deps[bb].reg_last_uses = 0;
bb_deps[bb].reg_last_sets = 0;
bb_deps[bb].reg_last_clobbers = 0;
}
/* Print dependences for debugging, callable from debugger. */
void
debug_dependencies ()
{
int bb;
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
for (bb = 0; bb < current_nr_blocks; bb++)
{
if (1)
{
rtx head, tail;
rtx next_tail;
rtx insn;
get_bb_head_tail (bb, &head, &tail);
next_tail = NEXT_INSN (tail);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
BB_TO_BLOCK (bb), bb);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
"insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
"----", "----", "--", "---", "----", "----", "--------", "-----");
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx link;
int unit, range;
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (! INSN_P (insn))
{
int n;
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
if (GET_CODE (insn) == NOTE)
{
n = NOTE_LINE_NUMBER (insn);
if (n < 0)
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
else
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "line %d, file %s\n", n,
NOTE_SOURCE_FILE (insn));
}
else
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
continue;
}
unit = insn_unit (insn);
range = (unit < 0
|| function_units[unit].blockage_range_function == 0) ? 0 :
function_units[unit].blockage_range_function (insn);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump,
";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
(SCHED_GROUP_P (insn) ? "+" : " "),
INSN_UID (insn),
INSN_CODE (insn),
INSN_BB (insn),
INSN_DEP_COUNT (insn),
INSN_PRIORITY (insn),
insn_cost (insn, 0, 0),
(int) MIN_BLOCKAGE_COST (range),
(int) MAX_BLOCKAGE_COST (range));
insn_print_units (insn);
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\t: ");
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
fprintf (sched_dump, "\n");
}
}
}
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n");
}
/* Set_priorities: compute priority of each insn in the block. */
static int
set_priorities (bb)
int bb;
{
rtx insn;
int n_insn;
rtx tail;
rtx prev_head;
rtx head;
get_bb_head_tail (bb, &head, &tail);
prev_head = PREV_INSN (head);
alias.c (mark_constant_function): Use INSN_P. * alias.c (mark_constant_function): Use INSN_P. (init_alias_analysis): Likewise. * combine.c (combine_instructions): Use INSN_P. (can_combine_p): Likewise. (try_combine): Likewise. (distribute_notes): Likewise. (distribute_links): Likewise. * cse.c (cse_around_loop): Use INSN_P. (invalidate_skipped_block): Likewise. (cse_set_around_loop): Likewise. (cse_end_of_basic_block): Likewise. (delete_trivially_dead_insns): Likewise. * emit-rtl.c (unshare_all_rtl_again): Use INSN_P. (unshare_all_rtl_1): Likewise. (next_cc0_user): Likewise. (try_split make_insn_raw): Likewise. (remove_unnecessary_notes): Likewise. * final.c (shorten_branches): Use INSN_P. (leaf_renumber_regs): Likewise. (leaf_renumber_regs_insn): Likewise. * flow.c (find_label_refs): Use INSN_P. (verify_wide_reg): Likewise. (notice_stack_pointer_modification): Likewise. (count_or_remove_death_notes): Likewise. (verify_flow_info): Likewise. (clear_log_links): Likewise. * function.c (fixup_var_refs_insns): Use INSN_P. (compute_insns_for_mem): Likewise. * gcse.c (alloc_gcse_mem): Use INSN_P. (compute_sets): Likewise. (compute_hash_table): Likewise. (classic_gcse): Likewise. (cprop): Likewise. (insert_insn_end_bb): Likewise. (delete_null_pointer_checks_1): Likewise. * global.c (expand_preferences): Use INSN_P. (build_insn_chain): Likewise. * graph.c (node_data): Use INSN_P. * haifa-sched.c (priority): Use INSN_P. (rm_line_notes): Likewise. (rm_other_notes): Likewise. (find_insn_reg_weight): Likewise. (init_target_units): Likewise. (schedule_block): Likewise. (compute_block_forward_dependences): Likewise. (debug_dependencies): Likewise. (set_priorities): Likewise. * integrate.c (function_cannot_inline_p): Use INSN_P. (save_parm_insns): Likewise. (copy_insn_list): Likewise. * jump.c (mark_all_labels): Use INSN_P. (never_reached_warning): Likewise. * lcm.c (optimize_mode_switching): Use INSN_P. * local-alloc.c (validate_equiv_mem): Use INSN_P. (memref_used_between_p): Likewise. (update_equiv_regs): Likewise. (block_alloc): Likewise. (no_conflict_p): Likewise. * loop.c (scan_loop): Use INSN_P. (find_and_verify_loops): Likewise. (count_loop_regs_set): Likewise. (loop_reg_used_before_p): Likewise. (strength_reduce): Likewise. (recombine_givs): Likewise. (check_dbra_loop): Likewise. (load_mems): Likewise. (try_copy_prop): Likewise. * print-rtl.c (print_rtx): Use INSN_P. * recog.c (find_single_use): Use INSN_P. * reg-stack.c (stack_regs_mentioned): Use INSN_P. (next_flags_user): Likewise. (swap_rtx_condition): Likewise. * regmove.c (mark_flags_life_zones): Use INSN_P. (optimize_reg_copy_1): Likewise. (optimize_reg_copy_2): Likewise. (optimize_reg_copy_3): Likewise. (reg_is_remote_constant_p): Likewise. (fixup_match_2): Likewise. (regmove_optimize): Likewise. (fixup_match_1): Likewise. * regrename.c (build_def_use): Use INSN_P. (replace_reg_in_block): Likewise. (consider_use): Likewise. * reload.c (find_equiv_reg): Use INSN_P. * reload1.c (reload): Use INSN_P. (maybe_fix_stack_asms): Likewise. (calculate_needs_all_insns): Likewise. (reload_as_needed): Likewise. (emit_output_reload_insns): Likewise. (delete_address_reloads_1): Likewise. (reload_cse_regs_1): Likewise. (reload_combine): Likewise. (reload_cse_move2add): Likewise. * reorg.c (redundant_insn): Use INSN_P. (dbr_schedule): Likewise. * resource.c (find_dead_or_set_registers): Use INSN_P. (mark_target_live_regs): Likewise. * rtlanal.c (reg_used_between_p): Use INSN_P. (reg_referenced_between_p): Likewise. (reg_set_between_p): Likewise. (reg_set_p): Likewise. (single_set): Likewise. (multiple_sets): Likewise. (find_last_value): Likewise. (reg_set_last): Likewise. (find_reg_note): Likewise. (find_regno_note): Likewise. * sibcall.c (sequence_uses_addressof): Use INSN_P. * simplify-rtx.c (cselib_process_insn): Use INSN_P. * ssa.c (find_evaluations): Use INSN_P. (rename_block): Likewise. (rename_equivalent_regs): Likewise. * unroll.c (loop_find_equiv_value): Use INSN_P. (set_dominates_use): Likewise. * varasm.c (mark_constant_pool): Use INSN_P. (mark_constants): Likewise. * config/alpha/alpha.c (alpha_does_function_need_gp): Use INSN_P. (alphaev4_next_group): Likewise. (alphaev5_next_group): Likewise. * config/c4x/c4x.c (c4x_process_after_reload): Use INSN_P. (c4x_rptb_rpts_p): Likewise. * config/mips/mips.c (mips16_optimize_gp): Use INSN_P. * config/rs6000/rs6000.c (uses_TOC): Use INSN_P. (rs6000_adjust_priority): Likewise. * config/sh/sh.c (sh_loop_align): Use INSN_P. (machine_dependent_reorg): Likewise. (split_branches): Likewise. * config/tahoe/tahoe.c (tahoe_cmp_check): Use INSN_P. From-SVN: r35494
2000-08-04 22:28:08 +02:00
if (head == tail && (! INSN_P (head)))
return 0;
n_insn = 0;
for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == NOTE)
continue;
if (!(SCHED_GROUP_P (insn)))
n_insn++;
(void) priority (insn);
}
return n_insn;
}
/* Schedule a region. A region is either an inner loop, a loop-free
subroutine, or a single basic block. Each bb in the region is
scheduled after its flow predecessors. */
static void
schedule_region (rgn)
int rgn;
{
int bb;
int rgn_n_insns = 0;
int sched_rgn_n_insns = 0;
/* Set variables for the current region. */
current_nr_blocks = RGN_NR_BLOCKS (rgn);
current_blocks = RGN_BLOCKS (rgn);
init_deps_global ();
/* Initializations for region data dependence analyisis. */
bb_deps = (struct deps *) xmalloc (sizeof (struct deps) * current_nr_blocks);
for (bb = 0; bb < current_nr_blocks; bb++)
init_deps (bb_deps + bb);
/* Compute LOG_LINKS. */
for (bb = 0; bb < current_nr_blocks; bb++)
compute_block_backward_dependences (bb);
/* Compute INSN_DEPEND. */
for (bb = current_nr_blocks - 1; bb >= 0; bb--)
2000-12-02 11:47:42 +01:00
{
rtx head, tail;
get_bb_head_tail (bb, &head, &tail);
compute_forward_dependences (head, tail);
}
/* Set priorities. */
for (bb = 0; bb < current_nr_blocks; bb++)
rgn_n_insns += set_priorities (bb);
/* Compute interblock info: probabilities, split-edges, dominators, etc. */
if (current_nr_blocks > 1)
{
int i;
prob = (float *) xmalloc ((current_nr_blocks) * sizeof (float));
bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
dom = (bbset *) xmalloc (current_nr_blocks * sizeof (bbset));
for (i = 0; i < current_nr_blocks; i++)
dom[i] = (bbset) xcalloc (bbset_size, sizeof (HOST_WIDE_INT));
/* Edge to bit. */
rgn_nr_edges = 0;
edge_to_bit = (int *) xmalloc (nr_edges * sizeof (int));
for (i = 1; i < nr_edges; i++)
if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
EDGE_TO_BIT (i) = rgn_nr_edges++;
rgn_edges = (int *) xmalloc (rgn_nr_edges * sizeof (int));
rgn_nr_edges = 0;
for (i = 1; i < nr_edges; i++)
if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
rgn_edges[rgn_nr_edges++] = i;
/* Split edges. */
edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
edgeset_bitsize = rgn_nr_edges;
pot_split = (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset));
ancestor_edges
= (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset));
for (i = 0; i < current_nr_blocks; i++)
{
pot_split[i] =
(edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT));
ancestor_edges[i] =
(edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT));
}
/* Compute probabilities, dominators, split_edges. */
for (bb = 0; bb < current_nr_blocks; bb++)
compute_dom_prob_ps (bb);
}
/* Now we can schedule all blocks. */
for (bb = 0; bb < current_nr_blocks; bb++)
{
rtx head, tail;
int b = BB_TO_BLOCK (bb);
get_block_head_tail (b, &head, &tail);
if (no_real_insns_p (head, tail))
continue;
current_sched_info->prev_head = PREV_INSN (head);
current_sched_info->next_tail = NEXT_INSN (tail);
if (write_symbols != NO_DEBUG)
{
save_line_notes (bb);
rm_line_notes (bb);
}
/* rm_other_notes only removes notes which are _inside_ the
block---that is, it won't remove notes before the first real insn
or after the last real insn of the block. So if the first insn
has a REG_SAVE_NOTE which would otherwise be emitted before the
insn, it is redundant with the note before the start of the
block, and so we have to take it out.
FIXME: Probably the same thing should be done with REG_SAVE_NOTEs
referencing NOTE_INSN_SETJMP at the end of the block. */
if (INSN_P (head))
{
rtx note;
for (note = REG_NOTES (head); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
{
if (INTVAL (XEXP (note, 0)) != NOTE_INSN_SETJMP)
{
remove_note (head, note);
note = XEXP (note, 1);
remove_note (head, note);
}
else
note = XEXP (note, 1);
}
}
/* Remove remaining note insns from the block, save them in
note_list. These notes are restored at the end of
schedule_block (). */
note_list = 0;
rm_other_notes (head, tail);
target_bb = bb;
current_sched_info->queue_must_finish_empty
= current_nr_blocks > 1 && !flag_schedule_interblock;
schedule_block (bb, rgn_n_insns);
sched_rgn_n_insns += sched_n_insns;
/* Update target block boundaries. */
if (head == BLOCK_HEAD (b))
BLOCK_HEAD (b) = current_sched_info->head;
if (tail == BLOCK_END (b))
BLOCK_END (b) = current_sched_info->tail;
/* Clean up. */
if (current_nr_blocks > 1)
{
free (candidate_table);
free (bblst_table);
free (bitlst_table);
}
}
/* Sanity check: verify that all region insns were scheduled. */
if (sched_rgn_n_insns != rgn_n_insns)
abort ();
/* Restore line notes. */
if (write_symbols != NO_DEBUG)
{
for (bb = 0; bb < current_nr_blocks; bb++)
restore_line_notes (bb);
}
/* Done with this region. */
free_pending_lists ();
finish_deps_global ();
free (bb_deps);
if (current_nr_blocks > 1)
{
int i;
free (prob);
for (i = 0; i < current_nr_blocks; ++i)
{
free (dom[i]);
free (pot_split[i]);
free (ancestor_edges[i]);
}
free (dom);
free (edge_to_bit);
free (rgn_edges);
free (pot_split);
free (ancestor_edges);
}
}
2000-12-02 11:47:42 +01:00
/* Initialize some global state for the scheduler. DUMP_FILE is to be used
for debugging output. */
2000-12-02 11:47:42 +01:00
static void
sched_init (dump_file)
FILE *dump_file;
{
2000-12-02 11:47:42 +01:00
int luid, b;
rtx insn;
/* Disable speculative loads in their presence if cc0 defined. */
#ifdef HAVE_cc0
flag_schedule_speculative_load = 0;
#endif
/* Set dump and sched_verbose for the desired debugging output. If no
dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
For -fsched-verbose=N, N>=10, print everything to stderr. */
sched_verbose = sched_verbose_param;
if (sched_verbose_param == 0 && dump_file)
sched_verbose = 1;
2000-12-02 11:47:42 +01:00
sched_dump = ((sched_verbose_param >= 10 || !dump_file)
? stderr : dump_file);
/* Initialize issue_rate. */
issue_rate = ISSUE_RATE;
Makefile.in (flow.o): Depend on TREE_H. * Makefile.in (flow.o): Depend on TREE_H. * basic-block.h (REG_SET_EQUAL_P): New. (XOR_REG_SET): New. (n_edges): Declare. (free_regset_vector): Remove declaration. (flow_delete_insn_chain): Declare. (enum update_life_extent): New. (update_life_info, count_or_remove_death_notes): Declare. * combine.c (distribute_notes) [REG_DEAD]: Stop search at bb->head. Verify register live at bb->global_live_at_start before adding USE. * flow.c (HAVE_epilogue, HAVE_prologue): Provide default. (CLEAN_ALLOCA): New. (n_edges): New. (PROP_*): New flags. (find_basic_blocks_1): Use alloc_EXPR_LIST. (clear_edges): Zero n_edges. (make_edge): Increment n_edges. (split_edge): Don't allocate bb->local_set. Increment n_edges. (flow_delete_insn_chain): Export. (delete_block): Decrement n_edges. (merge_blocks_nomove): Likewise. (life_analysis): Give life_analysis_1 PROP flags. (verify_wide_reg_1, verify_wide_reg): New. (verify_local_live_at_start): New. (update_life_info): Rewrite to call into propogate_block. (mark_reg): New. (mark_regs_live_at_end): After reload, if epilogue as rtl, always mark stack pointer. Conditionally mark PIC register. After reload, mark call-saved registers, return regsiters. (life_analysis_1): Accept PROP flags not remove_dead_code. Call mark_regs_live_at_end before zeroing regs_ever_live. Use calculate_global_regs_live. Copy global_live_at_end before calling final propagate_block. Zero reg_next_use on exit. (calculate_global_regs_live): New. (allocate_bb_life_data): Don't allocate bb->local_set. (init_regset_vector, free_regset_vector): Remove. (propagate_block): Accept FLAGS not FINAL or REMOVE_DEAD_CODE. Test flags before every operation. Warn if prologue/epilogue insn would have been deleted. (mark_set_regs, mark_set_1): Accept and use FLAGS. Use alloc_EXPR_LIST. (mark_used_regs): Accept and use FLAGS, not FINAL. Remove special handling for RETURN. (try_pre_increment): Use alloc_EXPR_LIST. (dump_flow_info): Dump n_edges. (unlink_insn_chain, split_hard_reg_notes): Remove. (maybe_add_dead_note, maybe_add_dead_note_use): Remove. (find_insn_with_note, new_insn_dead_notes): Remove. (update_n_sets, sets_reg_or_subreg_1, sets_reg_or_subreg): Remove. (maybe_remove_dead_notes, prepend_reg_notes): Remove. (replace_insns): Remove. (count_or_remove_death_notes): New. (verify_flow_info): Abort on error after all checks. (remove_edge): Decrement n_edges. (remove_fake_edges): Tweek format. * haifa-sched.c (schedule_insns): Use split_all_insns. * output.h (update_life_info): Remove declaration. * recog.c (split_all_insns): From the corpse of split_block_insns, do the whole function block by block. Use update_life_info. (recog_last_allowed_insn): New. (recog_next_insn): Mind it. (peephole2_optimize): Set it. Walk backwards through blocks. Use update_life_info. * rtl.h (update_flow_info, replace_insns): Remove declarations. (split_all_insns): Declare. * toplev.c (rest_of_compilation): Thread prologue before flow2. Use split_all_insns. * i386.md (or -1 peep2s): Disable. From-SVN: r29877
1999-10-09 21:47:18 +02:00
split_all_insns (1);
/* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
pseudos which do not cross calls. */
2000-12-02 11:47:42 +01:00
old_max_uid = get_max_uid () + 1;
2000-12-02 11:47:42 +01:00
h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
h_i_d[0].luid = 0;
luid = 1;
for (b = 0; b < n_basic_blocks; b++)
for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
{
INSN_LUID (insn) = luid;
/* Increment the next luid, unless this is a note. We don't
really need separate IDs for notes and we don't want to
schedule differently depending on whether or not there are
line-number notes, i.e., depending on whether or not we're
generating debugging information. */
if (GET_CODE (insn) != NOTE)
++luid;
if (insn == BLOCK_END (b))
break;
}
2000-12-02 11:47:42 +01:00
init_dependency_caches (luid);
compute_bb_for_insn (old_max_uid);
init_alias_analysis ();
if (write_symbols != NO_DEBUG)
{
2000-12-02 11:47:42 +01:00
rtx line;
line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
/* Save-line-note-head:
Determine the line-number at the start of each basic block.
This must be computed and saved now, because after a basic block's
predecessor has been scheduled, it is impossible to accurately
determine the correct line number for the first insn of the block. */
for (b = 0; b < n_basic_blocks; b++)
for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
{
line_note_head[b] = line;
break;
}
}
2000-12-02 11:47:42 +01:00
/* Find units used in this fuction, for visualization. */
if (sched_verbose)
init_target_units ();
/* ??? Add a NOTE after the last insn of the last basic block. It is not
known why this is done. */
insn = BLOCK_END (n_basic_blocks - 1);
if (NEXT_INSN (insn) == 0
|| (GET_CODE (insn) != NOTE
&& GET_CODE (insn) != CODE_LABEL
/* Don't emit a NOTE if it would end up between an unconditional
jump and a BARRIER. */
&& !(GET_CODE (insn) == JUMP_INSN
&& GET_CODE (NEXT_INSN (insn)) == BARRIER)))
emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
/* Compute INSN_REG_WEIGHT for all blocks. We must do this before
removing death notes. */
for (b = n_basic_blocks - 1; b >= 0; b--)
find_insn_reg_weight (b);
}
/* Indexed by region, holds the number of death notes found in that region.
Used for consistency checks. */
static int *deaths_in_region;
/* Initialize data structures for region scheduling. */
static void
init_regions ()
{
sbitmap blocks;
int rgn;
nr_regions = 0;
rgn_table = (region *) xmalloc ((n_basic_blocks) * sizeof (region));
rgn_bb_table = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
block_to_bb = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
containing_rgn = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
blocks = sbitmap_alloc (n_basic_blocks);
/* Compute regions for scheduling. */
if (reload_completed
|| n_basic_blocks == 1
|| !flag_schedule_interblock)
{
find_single_block_region ();
}
else
{
/* Verify that a 'good' control flow graph can be built. */
if (is_cfg_nonregular ())
{
find_single_block_region ();
}
else
{
sbitmap *dom;
struct edge_list *edge_list;
dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
/* The scheduler runs after flow; therefore, we can't blindly call
back into find_basic_blocks since doing so could invalidate the
info in global_live_at_start.
Consider a block consisting entirely of dead stores; after life
analysis it would be a block of NOTE_INSN_DELETED notes. If
we call find_basic_blocks again, then the block would be removed
entirely and invalidate our the register live information.
We could (should?) recompute register live information. Doing
so may even be beneficial. */
edge_list = create_edge_list ();
/* Compute the dominators and post dominators. */
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
/* build_control_flow will return nonzero if it detects unreachable
blocks or any other irregularity with the cfg which prevents
cross block scheduling. */
if (build_control_flow (edge_list) != 0)
find_single_block_region ();
else
find_rgns (edge_list, dom);
if (sched_verbose >= 3)
debug_regions ();
/* We are done with flow's edge list. */
free_edge_list (edge_list);
/* For now. This will move as more and more of haifa is converted
to using the cfg code in flow.c. */
free (dom);
}
}
2000-04-10 13:40:06 +02:00
deaths_in_region = (int *) xmalloc (sizeof (int) * nr_regions);
2000-12-02 11:47:42 +01:00
/* Remove all death notes from the subroutine. */
for (rgn = 0; rgn < nr_regions; rgn++)
{
2000-12-02 11:47:42 +01:00
int b;
2000-12-02 11:47:42 +01:00
sbitmap_zero (blocks);
for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
2000-12-02 11:47:42 +01:00
deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
}
2000-12-02 11:47:42 +01:00
sbitmap_free (blocks);
}
2000-12-02 11:47:42 +01:00
/* The one entry point in this file. DUMP_FILE is the dump file for
this pass. */
2000-12-02 11:47:42 +01:00
void
schedule_insns (dump_file)
FILE *dump_file;
{
sbitmap large_region_blocks, blocks;
int rgn;
int any_large_regions;
2000-12-02 11:47:42 +01:00
/* Taking care of this degenerate case makes the rest of
this code simpler. */
if (n_basic_blocks == 0)
return;
2000-12-02 11:47:42 +01:00
nr_inter = 0;
nr_spec = 0;
2000-12-02 11:47:42 +01:00
sched_init (dump_file);
init_regions ();
current_sched_info = &region_sched_info;
/* Schedule every region in the subroutine. */
for (rgn = 0; rgn < nr_regions; rgn++)
schedule_region (rgn);
/* Update life analysis for the subroutine. Do single block regions
first so that we can verify that live_at_start didn't change. Then
do all other blocks. */
/* ??? There is an outside possibility that update_life_info, or more
to the point propagate_block, could get called with non-zero flags
more than once for one basic block. This would be kinda bad if it
were to happen, since REG_INFO would be accumulated twice for the
block, and we'd have twice the REG_DEAD notes.
I'm fairly certain that this _shouldn't_ happen, since I don't think
that live_at_start should change at region heads. Not sure what the
best way to test for this kind of thing... */
allocate_reg_life_data ();
2000-12-02 11:47:42 +01:00
compute_bb_for_insn (old_max_uid);
any_large_regions = 0;
2000-12-02 11:47:42 +01:00
large_region_blocks = sbitmap_alloc (n_basic_blocks);
sbitmap_ones (large_region_blocks);
2000-12-02 11:47:42 +01:00
blocks = sbitmap_alloc (n_basic_blocks);
for (rgn = 0; rgn < nr_regions; rgn++)
if (RGN_NR_BLOCKS (rgn) > 1)
any_large_regions = 1;
else
{
sbitmap_zero (blocks);
SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
/* Don't update reg info after reload, since that affects
regs_ever_live, which should not change after reload. */
update_life_info (blocks, UPDATE_LIFE_LOCAL,
(reload_completed ? PROP_DEATH_NOTES
: PROP_DEATH_NOTES | PROP_REG_INFO));
#ifndef HAVE_conditional_execution
/* ??? REG_DEAD notes only exist for unconditional deaths. We need
a count of the conditional plus unconditional deaths for this to
work out. */
/* In the single block case, the count of registers that died should
not have changed during the schedule. */
if (count_or_remove_death_notes (blocks, 0) != deaths_in_region[rgn])
abort ();
#endif
}
if (any_large_regions)
{
update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
PROP_DEATH_NOTES | PROP_REG_INFO);
}
/* Reposition the prologue and epilogue notes in case we moved the
prologue/epilogue insns. */
if (reload_completed)
reposition_prologue_and_epilogue_notes (get_insns ());
/* Delete redundant line notes. */
if (write_symbols != NO_DEBUG)
rm_redundant_line_notes ();
if (sched_verbose)
{
if (reload_completed == 0 && flag_schedule_interblock)
{
2000-12-02 11:47:42 +01:00
fprintf (sched_dump,
"\n;; Procedure interblock/speculative motions == %d/%d \n",
nr_inter, nr_spec);
}
else
{
if (nr_inter > 0)
abort ();
}
2000-12-02 11:47:42 +01:00
fprintf (sched_dump, "\n\n");
}
/* Clean up. */
end_alias_analysis ();
2000-12-02 11:47:42 +01:00
free_dependency_caches ();
free (rgn_table);
free (rgn_bb_table);
free (block_to_bb);
free (containing_rgn);
free (h_i_d);
if (write_symbols != NO_DEBUG)
free (line_note_head);
if (edge_table)
{
free (edge_table);
edge_table = NULL;
}
if (in_edges)
{
free (in_edges);
in_edges = NULL;
}
if (out_edges)
{
free (out_edges);
out_edges = NULL;
}
sbitmap_free (blocks);
sbitmap_free (large_region_blocks);
free (deaths_in_region);
}
#endif /* INSN_SCHEDULING */