gcc/libgo/runtime/go-signal.c

497 lines
9.8 KiB
C
Raw Normal View History

/* go-signal.c -- signal handling for Go.
Copyright 2009 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file. */
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include "runtime.h"
#include "go-assert.h"
#include "go-panic.h"
#ifndef SA_RESTART
#define SA_RESTART 0
#endif
#ifdef USING_SPLIT_STACK
extern void __splitstack_getcontext(void *context[10]);
extern void __splitstack_setcontext(void *context[10]);
#endif
#define C SigCatch
#define I SigIgnore
#define R SigRestart
#define Q SigQueue
#define P SigPanic
/* Signal actions. This collects the sigtab tables for several
different targets from the master library. SIGKILL, SIGCONT, and
SIGSTOP are not listed, as we don't want to set signal handlers for
them. */
SigTab runtime_sigtab[] = {
#ifdef SIGHUP
{ SIGHUP, Q + R },
#endif
#ifdef SIGINT
{ SIGINT, Q + R },
#endif
#ifdef SIGQUIT
{ SIGQUIT, C },
#endif
#ifdef SIGILL
{ SIGILL, C },
#endif
#ifdef SIGTRAP
{ SIGTRAP, C },
#endif
#ifdef SIGABRT
{ SIGABRT, C },
#endif
#ifdef SIGBUS
{ SIGBUS, C + P },
#endif
#ifdef SIGFPE
{ SIGFPE, C + P },
#endif
#ifdef SIGUSR1
{ SIGUSR1, Q + I + R },
#endif
#ifdef SIGSEGV
{ SIGSEGV, C + P },
#endif
#ifdef SIGUSR2
{ SIGUSR2, Q + I + R },
#endif
#ifdef SIGPIPE
{ SIGPIPE, I },
#endif
#ifdef SIGALRM
{ SIGALRM, Q + I + R },
#endif
#ifdef SIGTERM
{ SIGTERM, Q + R },
#endif
#ifdef SIGSTKFLT
{ SIGSTKFLT, C },
#endif
#ifdef SIGCHLD
{ SIGCHLD, Q + I + R },
#endif
#ifdef SIGTSTP
{ SIGTSTP, Q + I + R },
#endif
#ifdef SIGTTIN
{ SIGTTIN, Q + I + R },
#endif
#ifdef SIGTTOU
{ SIGTTOU, Q + I + R },
#endif
#ifdef SIGURG
{ SIGURG, Q + I + R },
#endif
#ifdef SIGXCPU
{ SIGXCPU, Q + I + R },
#endif
#ifdef SIGXFSZ
{ SIGXFSZ, Q + I + R },
#endif
#ifdef SIGVTALRM
{ SIGVTALRM, Q + I + R },
#endif
#ifdef SIGPROF
{ SIGPROF, Q + I + R },
#endif
#ifdef SIGWINCH
{ SIGWINCH, Q + I + R },
#endif
#ifdef SIGIO
{ SIGIO, Q + I + R },
#endif
#ifdef SIGPWR
{ SIGPWR, Q + I + R },
#endif
#ifdef SIGSYS
{ SIGSYS, C },
#endif
#ifdef SIGEMT
{ SIGEMT, C },
#endif
#ifdef SIGINFO
{ SIGINFO, Q + I + R },
#endif
#ifdef SIGTHR
{ SIGTHR, Q + I + R },
#endif
{ -1, 0 }
};
#undef C
#undef I
#undef R
#undef Q
#undef P
/* Handle a signal, for cases where we don't panic. We can split the
stack here. */
static void
sig_handler (int sig)
{
int i;
#ifdef SIGPROF
if (sig == SIGPROF)
{
/* FIXME. */
runtime_sigprof (0, 0, nil, nil);
return;
}
#endif
for (i = 0; runtime_sigtab[i].sig != -1; ++i)
{
struct sigaction sa;
if (runtime_sigtab[i].sig != sig)
continue;
if ((runtime_sigtab[i].flags & SigQueue) != 0)
{
if (__go_sigsend (sig)
|| (runtime_sigtab[sig].flags & SigIgnore) != 0)
return;
runtime_exit (2); // SIGINT, SIGTERM, etc
}
if (runtime_panicking)
runtime_exit (2);
runtime_panicking = 1;
/* We should do a stack backtrace here. Until we can do that,
we reraise the signal in order to get a slightly better
report from the shell. */
memset (&sa, 0, sizeof sa);
sa.sa_handler = SIG_DFL;
i = sigemptyset (&sa.sa_mask);
__go_assert (i == 0);
if (sigaction (sig, &sa, NULL) != 0)
abort ();
raise (sig);
runtime_exit (2);
}
__builtin_unreachable ();
}
/* The start of handling a signal which panics. */
static void
sig_panic_leadin (int sig)
{
int i;
sigset_t clear;
if (runtime_m ()->mallocing)
{
runtime_printf ("caught signal while mallocing: %d\n", sig);
runtime_throw ("caught signal while mallocing");
}
/* The signal handler blocked signals; unblock them. */
i = sigfillset (&clear);
__go_assert (i == 0);
i = sigprocmask (SIG_UNBLOCK, &clear, NULL);
__go_assert (i == 0);
}
#ifdef SA_SIGINFO
/* Signal dispatch for signals which panic, on systems which support
SA_SIGINFO. This is called on the thread stack, and as such it is
permitted to split the stack. */
static void
sig_panic_info_handler (int sig, siginfo_t *info,
void *context __attribute__ ((unused)))
{
if (runtime_g () == NULL)
{
sig_handler (sig);
return;
}
sig_panic_leadin (sig);
switch (sig)
{
#ifdef SIGBUS
case SIGBUS:
if (info->si_code == BUS_ADRERR && (uintptr_t) info->si_addr < 0x1000)
runtime_panicstring ("invalid memory address or "
"nil pointer dereference");
runtime_printf ("unexpected fault address %p\n", info->si_addr);
runtime_throw ("fault");
#endif
#ifdef SIGSEGV
case SIGSEGV:
if ((info->si_code == 0
|| info->si_code == SEGV_MAPERR
|| info->si_code == SEGV_ACCERR)
&& (uintptr_t) info->si_addr < 0x1000)
runtime_panicstring ("invalid memory address or "
"nil pointer dereference");
runtime_printf ("unexpected fault address %p\n", info->si_addr);
runtime_throw ("fault");
#endif
#ifdef SIGFPE
case SIGFPE:
switch (info->si_code)
{
case FPE_INTDIV:
runtime_panicstring ("integer divide by zero");
case FPE_INTOVF:
runtime_panicstring ("integer overflow");
}
runtime_panicstring ("floating point error");
#endif
}
/* All signals with SigPanic should be in cases above, and this
handler should only be invoked for those signals. */
__builtin_unreachable ();
}
#else /* !defined (SA_SIGINFO) */
static void
sig_panic_handler (int sig)
{
if (runtime_g () == NULL)
{
sig_handler (sig);
return;
}
sig_panic_leadin (sig);
switch (sig)
{
#ifdef SIGBUS
case SIGBUS:
runtime_panicstring ("invalid memory address or "
"nil pointer dereference");
#endif
#ifdef SIGSEGV
case SIGSEGV:
runtime_panicstring ("invalid memory address or "
"nil pointer dereference");
#endif
#ifdef SIGFPE
case SIGFPE:
runtime_panicstring ("integer divide by zero or floating point error");
#endif
}
/* All signals with SigPanic should be in cases above, and this
handler should only be invoked for those signals. */
__builtin_unreachable ();
}
#endif /* !defined (SA_SIGINFO) */
/* Ignore a signal. This is called on the alternate signal stack so
it may not split the stack. */
static void sig_ignore (int) __attribute__ ((no_split_stack));
static void
sig_ignore (int sig __attribute__ ((unused)))
{
}
/* A signal handler used for signals which are not going to panic.
This is called on the alternate signal stack so it may not split
the stack. */
static void
sig_tramp (int) __attribute__ ((no_split_stack));
static void
sig_tramp (int sig)
{
G *gp;
M *mp;
/* We are now running on the stack registered via sigaltstack.
(Actually there is a small span of time between runtime_siginit
and sigaltstack when the program starts.) */
gp = runtime_g ();
mp = runtime_m ();
if (gp != NULL)
{
#ifdef USING_SPLIT_STACK
__splitstack_getcontext (&gp->stack_context[0]);
#endif
}
if (gp != NULL && mp->gsignal != NULL)
{
/* We are running on the signal stack. Set the split stack
context so that the stack guards are checked correctly. */
#ifdef USING_SPLIT_STACK
__splitstack_setcontext (&mp->gsignal->stack_context[0]);
#endif
}
sig_handler (sig);
/* We are going to return back to the signal trampoline and then to
whatever we were doing before we got the signal. Restore the
split stack context so that stack guards are checked
correctly. */
if (gp != NULL)
{
#ifdef USING_SPLIT_STACK
__splitstack_setcontext (&gp->stack_context[0]);
#endif
}
}
/* Initialize signal handling for Go. This is called when the program
starts. */
void
runtime_initsig (int32 queue)
{
struct sigaction sa;
int i;
siginit ();
memset (&sa, 0, sizeof sa);
i = sigfillset (&sa.sa_mask);
__go_assert (i == 0);
for (i = 0; runtime_sigtab[i].sig != -1; ++i)
{
if (runtime_sigtab[i].flags == 0)
continue;
if ((runtime_sigtab[i].flags & SigQueue) != queue)
continue;
if ((runtime_sigtab[i].flags & (SigCatch | SigQueue)) != 0)
{
if ((runtime_sigtab[i].flags & SigPanic) == 0)
{
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = sig_tramp;
}
else
{
#ifdef SA_SIGINFO
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = sig_panic_info_handler;
#else
sa.sa_flags = 0;
sa.sa_handler = sig_panic_handler;
#endif
}
}
else
{
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = sig_ignore;
}
if ((runtime_sigtab[i].flags & SigRestart) != 0)
sa.sa_flags |= SA_RESTART;
if (sigaction (runtime_sigtab[i].sig, &sa, NULL) != 0)
__go_assert (0);
}
}
void
runtime_resetcpuprofiler(int32 hz)
{
#ifdef SIGPROF
struct itimerval it;
struct sigaction sa;
int i;
memset (&it, 0, sizeof it);
memset (&sa, 0, sizeof sa);
i = sigfillset (&sa.sa_mask);
__go_assert (i == 0);
if (hz == 0)
{
i = setitimer (ITIMER_PROF, &it, NULL);
__go_assert (i == 0);
sa.sa_handler = SIG_IGN;
i = sigaction (SIGPROF, &sa, NULL);
__go_assert (i == 0);
}
else
{
sa.sa_handler = sig_handler;
sa.sa_flags = SA_RESTART;
i = sigaction (SIGPROF, &sa, NULL);
__go_assert (i == 0);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / hz;
it.it_value = it.it_interval;
i = setitimer (ITIMER_PROF, &it, NULL);
__go_assert (i == 0);
}
#endif
runtime_m()->profilehz = hz;
}
/* Used by the os package to raise SIGPIPE. */
void os_sigpipe (void) __asm__ ("libgo_os.os.sigpipe");
void
os_sigpipe (void)
{
struct sigaction sa;
int i;
memset (&sa, 0, sizeof sa);
sa.sa_handler = SIG_DFL;
i = sigemptyset (&sa.sa_mask);
__go_assert (i == 0);
if (sigaction (SIGPIPE, &sa, NULL) != 0)
abort ();
raise (SIGPIPE);
}