2016-08-24 Thomas Preud'homme <thomas.preudhomme@arm.com>
* config/arm/t-aprofile (MULTILIB_MATCHES): Add mapping for
-mcpu=cortex-a7, -mfpu=neon-fp16, -mfpu=fpv5-d16 and -mfpu=fp-armv8.
Fix typo in -mfpu=vfpv3-d16-fp16 mapping.
(MULTILIB_REUSE): Remove reuse rules for option set including
-mfpu=fp-armv8 and -mfpu=vfpv4
From-SVN: r239733
[gcc]
2016-08-23 Michael Meissner <meissner@linux.vnet.ibm.com>
* config/rs6000/rs6000.c (rs6000_expand_vector_init): Set
initialization of all 0's to the 0 constant, instead of directly
generating XOR. Add support for V4SImode vector initialization on
64-bit systems with direct move, and rework the ISA 3.0 V4SImode
initialization. Change variables used in V4SFmode vector
intialization. For V4SFmode vector splat on ISA 3.0, make sure
any memory addresses are in index form. Add support for using
VSPLTH/VSPLTB to initialize vector short and vector char vectors
with all of the same element.
(regno_or_subregno): New helper function to return a register
number for either REG or SUBREG.
(rs6000_adjust_vec_address): Do not generate ADDI <reg>,R0,<num>.
Use regno_or_subregno where possible.
(rs6000_split_v4si_init_di_reg): New helper function to build up a
DImode value from two SImode values in order to generate V4SImode
vector initialization on 64-bit systems with direct move.
(rs6000_split_v4si_init): Split up the insns for a V4SImode vector
initialization.
(rtx_is_swappable_p): V4SImode vector initialization insn is not
swappable.
* config/rs6000/rs6000-protos.h (rs6000_split_v4si_init): Add
declaration.
* config/rs6000/vsx.md (VSX_SPLAT_I): New mode iterators and
attributes to initialize V8HImode and V16QImode vectors with the
same element.
(VSX_SPLAT_COUNT): Likewise.
(VSX_SPLAT_SUFFIX): Likewise.
(UNSPEC_VSX_VEC_INIT): New unspec.
(vsx_concat_v2sf): Eliminate using 'preferred' register classes.
Allow SFmode values to come from Altivec registers.
(vsx_init_v4si): New insn/split for V4SImode vector initialization
on 64-bit systems with direct move.
(vsx_splat_<mode>, VSX_W iterator): Rework V4SImode and V4SFmode
vector initializations, to allow V4SImode vector initializations
on 64-bit systems with direct move.
(vsx_splat_v4si): Likewise.
(vsx_splat_v4si_di): Likewise.
(vsx_splat_v4sf): Likewise.
(vsx_splat_v4sf_internal): Likewise.
(vsx_xxspltw_<mode>, VSX_W iterator): Eliminate using 'preferred'
register classes.
(vsx_xxspltw_<mode>_direct, VSX_W iterator): Likewise.
(vsx_vsplt<VSX_SPLAT_SUFFIX>_di): New insns to support
initializing V8HImode and V16QImode vectors with the same
element.
* config/rs6000/rs6000.h (TARGET_DIRECT_MOVE_64BIT): Disallow
optimization if -maltivec=be.
[gcc/testsuite]
2016-08-23 Michael Meissner <meissner@linux.vnet.ibm.com>
* gcc.target/powerpc/vec-init-1.c: Add tests where the vector is
being created from pointers to memory locations.
* gcc.target/powerpc/vec-init-2.c: Likewise.
From-SVN: r239712
Switch to a new method for determining the order in which import init
functions are invoked: build an init fcn dependence DAG and walk the DAG
to rewrite/adjust priorities to account for discrepancies introduced by
"go test".
This patch includes a change to the export data format generated
by gccgo. Older versions of gccgo will not be able to read object files
produced by a newer gccgo, but the new gcc will still be able to read
old object files.
Fixesgolang/go#15738.
Reviewed-on: https://go-review.googlesource.com/25301
From-SVN: r239708
2016-08-23 Richard Biener <rguenther@suse.de>
PR tree-optimization/77286
* tree-vect-loop.c (vect_analyze_loop_form_1): Do not modify
the CFG here.
(vect_transform_loop): Split exit edges of loop and scalar
loop if required and at the appropriate time.
From-SVN: r239700
* get_dynamic_stack_size is passed a SIZE of a data block (which is
allocated elsewhere), the SIZE_ALIGN of the SIZE (i.e. the alignment
of the underlying memory units (e.g. 32 bytes split into 4 times 8
bytes = 64 bit alignment) and the REQUIRED_ALIGN of the data portion
of the allocated memory.
* Assuming the function is called with SIZE = 2, SIZE_ALIGN = 8 and
REQUIRED_ALIGN = 64 it first adds 7 bytes to SIZE -> 9. This is
what is needed to have two bytes 8-byte-aligned at some memory
location without any known alignment.
* Finally round_push is called to round up SIZE to a multiple of the
stack slot size.
The key to understanding this is that the function assumes that
STACK_DYNMAIC_OFFSET is completely unknown at the time its called
and therefore it does not make assumptions about the alignment of
STACKPOINTER + STACK_DYNMAIC_OFFSET. The latest patch simply
hard-codes that SP + SDO is supposed to be aligned to at least
stack slot size (and does that in a very complicated way). Since
there is no guarantee that this is the case on all targets, the
patch is broken. It may miscalculate a SIZE that is too small in
some cases.
However, on many targets there is some guarantee about the
alignment of SP + SDO even if the actual value of SDO is unknown.
On s390x it's always 8-byte-aligned (stack slot size). So the
right fix should be to add knowledge about the target's guaranteed
alignment of SP + SDO to the function. I'm right now testing a
much simpler patch that uses
REGNO_POINTER_ALIGN(VIRTUAL_STACK_DYNAMIC_REGNUM) as the
alignment.
gcc/ChangeLog:
2016-08-23 Dominik Vogt <vogt@linux.vnet.ibm.com>
* explow.c (get_dynamic_stack_size): Take known alignment of stack
pointer + STACK_DYNAMIC_OFFSET into account when calculating the
size needed. Correct a typo in a comment.
From-SVN: r239688
gcc/testsuite/ChangeLog:
2016-08-23 Dominik Vogt <vogt@linux.vnet.ibm.com>
* gcc.target/s390/insv-1.c: Fix test when running with -m31.
From-SVN: r239687
THe attached patch improves checking of teh results of the subtests
"a" and "f". As they share the same "vone" instruction, the duplicate
scan-assembler-times was bogus. Moved "f" to a separate function to
fix this. Also double check that no extra "vgmf" instructions are
used.
gcc/testsuite/ChangeLog:
2016-08-23 Dominik Vogt <vogt@linux.vnet.ibm.com>
* gcc.target/s390/zvector/vec-genmask-1.c: Improve result
verification.
From-SVN: r239686
Split ~b & a to (b & a) ^ a. This is benefitial on z Systems since we
otherwise need a big -1 constant to be loaded for the ~b.
gcc/ChangeLog:
2016-08-23 Dominik Vogt <vogt@linux.vnet.ibm.com>
* config/s390/s390.md ("*andc_split"): New splitter for and with
complement.
gcc/testsuite/ChangeLog:
2016-08-23 Dominik Vogt <vogt@linux.vnet.ibm.com>
* gcc.target/s390/md/andc-splitter-1.c: New test case.
* gcc.target/s390/md/andc-splitter-2.c: Likewise.
From-SVN: r239685
2016-08-23 Richard Biener <rguenther@suse.de>
PR tree-optimization/27336
* tree-vrp.c (infer_value_range): Handle stmts that can throw
by looking for a non-EH edge.
(process_assert_insertions_for): Likewise.
* c-c++-common/pr27336.c: New testcase.
From-SVN: r239684
When lowering method expressions of the form "P.M" where
P is a pointer type (e.g. "type P *T") make sure we examine
the method set of P and not T during method lookup.
Fixesgolang/go#15722.
Reviewed-on: https://go-review.googlesource.com/24843
From-SVN: r239675
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
Bud Davis <jmdavis@link.com>
PR fortran/60774
* parse.c (next_free,next_fixed): Issue error for statement label
without a statement.
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/60774
* gfortran.dg/empty_label.f: Adjust test for new error message.
* gfortran.dg/empty_label.f90: Ditto.
* gfortran.dg/empty_label_typedecl.f90: Ditto.
* gfortran.dg/label_3.f90: Deleted (redundant with empty_label.f90).
* gfortran.dg/warnings_are_errors_1.f90: Remove invalid statement label.
Co-Authored-By: Bud Davis <jmdavis@link.com>
From-SVN: r239668
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/61318
* interface.c (compare_parameter): Use better locus for error message.
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/61318
* gfortran.dg/pr61318.f90: New test.
From-SVN: r239667
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/77260
* gcc/fortran/trans-decl.c (generate_local_decl): Suppress warning
for unused variable if symbol is entry point.
2016-08-22 Steven G. Kargl <kargl@gcc.gnu.org>
PR fortran/77260
* gfortran.dg/pr77260_1.f90: New test.
* gfortran.dg/pr77260_2.f90: Ditto.
From-SVN: r239666
The __builtin_isinf_sign folding uses a type-specific signbit built-in
function, meaning it only works for the types float, double and long
double, not for types such as _FloatN, _FloatNx, __float128. Since
the signbit built-in function is now type-generic, that can be used
unconditionally, much as the code uses the type-generic isinf built-in
function unconditionally, and this patch makes it do so, thereby
enabling __builtin_isinf_sign (which glibc uses to expand the isinf
macro since that macro in glibc traditionally provided the stronger
guarantees about the return value given by __builtin_isinf_sign) to
work for all floating-point types.
The test gcc.dg/torture/builtin-isinf_sign-1.c needs updating because
it tests that comparisons of calls to __builtin_isinf_sign to
conditional expressions involving __builtin_isinf and
__builtin_signbit* get optimized away, and with a change of what
particular built-in function for signbit is used, GCC doesn't notice
the expressions with type-generic and non-type-generic built-in
functions are equivalent at -O0 or -O1 (it does optimize away the
original test at -O2).
Bootstrapped with no regressions on x86_64-pc-linux-gnu.
PR middle-end/77269
gcc:
* builtins.c (fold_builtin_classify): Use builtin_decl_explicit
(BUILT_IN_SIGNBIT) to expand __builtin_isinf_sign.
gcc/testsuite:
* gcc.dg/torture/builtin-isinf_sign-1.c: Use __builtin_signbit not
__builtin_signbitf and __builtin_signbitl in expected generic
expansion.
* gcc.dg/torture/float128-tg-2.c, gcc.dg/torture/float128x-tg-2.c,
gcc.dg/torture/float16-tg-2.c, gcc.dg/torture/float32-tg-2.c,
gcc.dg/torture/float32x-tg-2.c, gcc.dg/torture/float64-tg-2.c,
gcc.dg/torture/float64x-tg-2.c, gcc.dg/torture/floatn-tg-2.h: New
tests.
From-SVN: r239665
gcc/ChangeLog:
* print-tree.c (print_node) [VECTOR_CST]: Coalesce the output of
identical consecutive elements.
[SSA_NAME]: Print the name's def stmt on its own line. When printing
the node's def stmt, avoid printing an unwanted trailing newline by
replacing the call to print_gimple_stmt() with its inlined body and
adjusting it to not set pp_needs_newline and to call pp_flush()
instead of pp_newline_and_flush().
From-SVN: r239661
This patch adds a minimal set of built-in functions for the new
_FloatN and _FloatNx types.
The functions added are __builtin_fabs*, __builtin_copysign*,
__builtin_huge_val*, __builtin_inf*, __builtin_nan* and
__builtin_nans* (where * = fN or fNx). That is, 42 new entries are
added to the enum of built-in functions and the associated array of
decls, where not all of them are actually supported on any one target.
These functions are believed to be sufficient for libgcc (complex
multiplication and division use __builtin_huge_val*,
__builtin_copysign* and __builtin_fabs*) and for glibc (which also
depends on complex multiplication from libgcc, as well as using such
functions itself). The basic target-independent support for folding /
expanding calls to these built-in functions is wired up, so those for
constants can be used in static initializers, and the fabs and
copysign built-ins can always be expanded to bit-manipulation inline
(for any format setting signbit_ro and signbit_rw, which covers all
formats supported for _FloatN and _FloatNx), although insn patterns
for fabs (abs<mode>2) and copysign (copysign<mode>3) will be used when
available and may result in more optimal code.
The complex multiplication and division functions in libgcc rely on
predefined macros (defined with -fbuilding-libgcc) to say what the
built-in function suffixes to use with a particular mode are. This
patch updates that code accordingly, where previously it involved a
hack supposing that machine-specific suffixes for constants were also
suffixes for built-in functions.
As with the main _FloatN / _FloatNx patch, this patch does not update
code dealing only with optimizations that currently has cases only
covering float, double and long double, though some such cases are
straightforward and may be covered in a followup patch.
The functions are defined with DEF_GCC_BUILTIN, so calls to the TS
18661-3 functions such as fabsf128 and copysignf128, without the
__builtin_, will not be optimized. As noted in the original _FloatN /
_FloatNx patch submission, in principle the bulk of the libm functions
that have built-in versions should have those versions extended to
cover the new types, but that would require more consideration of the
effects of increasing the size of the enum and initializing many more
functions at startup.
I don't know whether target-specific built-in functions can readily be
made into aliases for target-independent functions, but if they can,
it would make sense to do so for the x86, ia64 and rs6000 *q functions
corresponding to these, so that they can benefit from the
architecture-independent folding logic and from any optimizations
enabled for these functions in future, and so that less
target-specific code is needed to support them.
Bootstrapped with no regressions on x86_64-pc-linux-gnu.
gcc:
* tree.h (CASE_FLT_FN_FLOATN_NX, float16_type_node)
(float32_type_node, float64_type_node, float32x_type_node)
(float128x_type_node): New macros.
* builtin-types.def (BT_FLOAT16, BT_FLOAT32, BT_FLOAT64)
(BT_FLOAT128, BT_FLOAT32X, BT_FLOAT64X, BT_FLOAT128X)
(BT_FN_FLOAT16, BT_FN_FLOAT32, BT_FN_FLOAT64, BT_FN_FLOAT128)
(BT_FN_FLOAT32X, BT_FN_FLOAT64X, BT_FN_FLOAT128X)
(BT_FN_FLOAT16_FLOAT16, BT_FN_FLOAT32_FLOAT32)
(BT_FN_FLOAT64_FLOAT64, BT_FN_FLOAT128_FLOAT128)
(BT_FN_FLOAT32X_FLOAT32X, BT_FN_FLOAT64X_FLOAT64X)
(BT_FN_FLOAT128X_FLOAT128X, BT_FN_FLOAT16_CONST_STRING)
(BT_FN_FLOAT32_CONST_STRING, BT_FN_FLOAT64_CONST_STRING)
(BT_FN_FLOAT128_CONST_STRING, BT_FN_FLOAT32X_CONST_STRING)
(BT_FN_FLOAT64X_CONST_STRING, BT_FN_FLOAT128X_CONST_STRING)
(BT_FN_FLOAT16_FLOAT16_FLOAT16, BT_FN_FLOAT32_FLOAT32_FLOAT32)
(BT_FN_FLOAT64_FLOAT64_FLOAT64, BT_FN_FLOAT128_FLOAT128_FLOAT128)
(BT_FN_FLOAT32X_FLOAT32X_FLOAT32X)
(BT_FN_FLOAT64X_FLOAT64X_FLOAT64X)
(BT_FN_FLOAT128X_FLOAT128X_FLOAT128X): New type definitions.
* builtins.def (DEF_GCC_FLOATN_NX_BUILTINS): New macro.
(copysign, fabs, huge_val, inf, nan, nans): Use it.
* builtins.c (expand_builtin): Use CASE_FLT_FN_FLOATN_NX for fabs
and copysign.
(fold_builtin_0): Use CASE_FLT_FN_FLOATN_NX for inf and huge_val.
(fold_builtin_1): Use CASE_FLT_FN_FLOATN_NX for fabs.
* doc/extend.texi (Other Builtins): Document these built-in
functions.
* fold-const-call.c (fold_const_call): Use CASE_FLT_FN_FLOATN_NX
for nan and nans.
gcc/c-family:
* c-family/c-cppbuiltin.c (c_cpp_builtins): Check _FloatN and
_FloatNx types for suffixes for built-in functions.
gcc/testsuite:
* gcc.dg/torture/float128-builtin.c,
gcc.dg/torture/float128-ieee-nan.c,
gcc.dg/torture/float128x-builtin.c,
gcc.dg/torture/float128x-nan.c, gcc.dg/torture/float16-builtin.c,
gcc.dg/torture/float16-nan.c, gcc.dg/torture/float32-builtin.c,
gcc.dg/torture/float32-nan.c, gcc.dg/torture/float32x-builtin.c,
gcc.dg/torture/float32x-nan.c, gcc.dg/torture/float64-builtin.c,
gcc.dg/torture/float64-nan.c, gcc.dg/torture/float64x-builtin.c,
gcc.dg/torture/float64x-nan.c, gcc.dg/torture/floatn-builtin.h,
gcc.dg/torture/floatn-nan.h: New tests.
From-SVN: r239658
gcc/testsuite:
* gcc.dg/torture/fp-int-convert-float128x-timode.c,
gcc.dg/torture/fp-int-convert-float32x-timode.c,
gcc.dg/torture/fp-int-convert-float64x-timode.c: Correct type
names in calls to TEST_I_F.
From-SVN: r239655
gcc/ChangeLog:
2016-08-20 Kugan Vivekanandarajah <kuganv@linaro.org>
* tree-vrp.c (vrp_visit_assignment_or_call): Changed to Return VR.
(vrp_visit_cond_stmt): Just sets TAKEN_EDGE_P.
(vrp_visit_switch_stmt): Likewise.
(extract_range_from_stmt): Factored out from vrp_visit_stmt.
(extract_range_from_phi_node): Factored out from vrp_visit_phi_stmt.
(vrp_visit_stmt): Use extract_range_from_stmt.
(vrp_visit_phi_node): Use extract_range_from_phi_node.
From-SVN: r239639
gcc/testsuite/ChangeLog:
2016-08-20 Kugan Vivekanandarajah <kuganv@linaro.org>
PR tree-optimization/61839
* gcc.dg/tree-ssa/pr61839_1.c: New test.
* gcc.dg/tree-ssa/pr61839_2.c: New test.
* gcc.dg/tree-ssa/pr61839_3.c: New test.
* gcc.dg/tree-ssa/pr61839_4.c: New test.
gcc/ChangeLog:
2016-08-20 Kugan Vivekanandarajah <kuganv@linaro.org>
PR tree-optimization/61839
* tree-vrp.c (two_valued_val_range_p): New.
(simplify_stmt_using_ranges): Convert CST BINOP VAR where VAR is
two-valued to VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2).
Also Convert VAR BINOP CST where VAR is two-valued to
VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST).
From-SVN: r239637
This patch eliminates class fixit_remove, reimplementing
rich_location::add_fixit_remove in terms of replacement with the
empty string. Deleting the removal subclass simplifies
fixit-handling code, as we only have two concrete fixit_hint
subclasses to deal with, rather than three.
The patch also fixes some problems in diagnostic-show-locus.c for
situations where a replacement fix-it has a different range to the
range of the diagnostic, by unifying the drawing of the two kinds of
fixits. For example, this:
foo = bar.field;
^
m_field
becomes:
foo = bar.field;
^
-----
m_field
showing the range to be replaced.
gcc/ChangeLog:
* diagnostic-show-locus.c
(layout::annotation_line_showed_range_p): New method.
(layout::print_any_fixits): Remove case fixit_hint::REMOVE.
Reimplement case fixit_hint::REPLACE to cover removals, and
replacements where the range of the replacement isn't one
of the ranges in the rich_location.
(test_one_liner_fixit_replace): Likewise.
(selftest::test_one_liner_fixit_replace_non_equal_range): New
function.
(selftest::test_one_liner_fixit_replace_equal_secondary_range):
New function.
(selftest::test_diagnostic_show_locus_one_liner): Call the new
functions.
* diagnostic.c (print_parseable_fixits): Remove case
fixit_hint::REMOVE.
libcpp/ChangeLog:
* include/line-map.h (fixit_hint::kind): Delete REPLACE.
(class fixit_remove): Delete.
* line-map.c (rich_location::add_fixit_remove): Reimplement
by calling add_fixit_replace with an empty string.
(fixit_remove::fixit_remove): Delete.
(fixit_remove::affects_line_p): Delete.
From-SVN: r239632
PR target/77270
* config/i386/i386.c (ix86_option_override_internal): Remove
PTA_PRFCHW from entries that also have PTA_3DNOW flag.
Enable SSE prefetch also for TARGET_PREFETCHWT1.
Do not try to enable TARGET_PRFCHW ISA flag here.
* config/i386/i386.md (prefetch): Enable also for TARGET_3DNOW.
Rewrite expander function body.
(*prefetch_3dnow): Enable for TARGET_3DNOW and TARGET_PREFETCHWT1.
From-SVN: r239626
ISO/IEC TS 18661-3:2015 defines C bindings to IEEE interchange and
extended types, in the form of _FloatN and _FloatNx type names with
corresponding fN/FN and fNx/FNx constant suffixes and FLTN_* / FLTNX_*
<float.h> macros. This patch implements support for this feature in
GCC.
The _FloatN types, for N = 16, 32, 64 or >= 128 and a multiple of 32,
are types encoded according to the corresponding IEEE interchange
format (endianness unspecified; may use either the NaN conventions
recommended in IEEE 754-2008, or the MIPS NaN conventions, since the
choice of convention is only an IEEE recommendation, not a
requirement). The _FloatNx types, for N = 32, 64 and 128, are IEEE
"extended" types: types extending a narrower format with range and
precision at least as big as those specified in IEEE 754 for each
extended type (and with unspecified representation, but still
following IEEE semantics for their values and operations - and with
the set of values being determined by the precision and the maximum
exponent, which means that while Intel "extended" is suitable for
_Float64x, m68k "extended" is not). These types are always distinct
from and not compatible with each other and the standard floating
types float, double, long double; thus, double, _Float64 and _Float32x
may all have the same ABI, but they are three still distinct types.
The type names may be used with _Complex to construct corresponding
complex types (unlike __float128, which acts more like a typedef name
than a keyword - thus, this patch may be considered to fix PR
c/32187). The new suffixes can be combined with GNU "i" and "j"
suffixes for constants of complex types (e.g. 1.0if128, 2.0f64i).
The set of types supported is implementation-defined. In this GCC
patch, _Float32 is SFmode if that is suitable; _Float32x and _Float64
are DFmode if that is suitable; _Float128 is TFmode if that is
suitable; _Float64x is XFmode if that is suitable, and otherwise
TFmode if that is suitable. There is a target hook to override the
choices if necessary. "Suitable" means both conforming to the
requirements of that type, and supported as a scalar type including in
libgcc. The ABI is whatever the back end does for scalars of that
mode (but note that _Float32 is passed without promotion in variable
arguments, unlike float). All the existing issues with exceptions and
rounding modes for existing types apply equally to the new type names.
No GCC port supports a floating-point format suitable for _Float128x.
Although there is HFmode support for ARM and AArch64, use of that for
_Float16 is not enabled. Supporting _Float16 would require additional
work on the excess precision aspects of TS 18661-3: there are new
values of FLT_EVAL_METHOD, which are not currently supported in GCC,
and FLT_EVAL_METHOD == 0 now means that operations and constants on
types narrower than float are evaluated to the range and precision of
float. Implementing that, so that _Float16 gets evaluated with excess
range and precision, would involve changes to the excess precision
infrastructure so that the _Float16 case is enabled by default, unlike
the x87 case which is only enabled for -fexcess-precision=standard.
Other differences between _Float16 and __fp16 would also need to be
disentangled.
GCC has some prior support for nonstandard floating-point types in the
form of __float80 and __float128. Where these were previously types
distinct from long double, they are made by this patch into aliases
for _Float64x / _Float128 if those types have the required properties.
In principle the set of possible _FloatN types is infinite. This
patch hardcodes the four such types for N <= 128, but with as much
code as possible using loops over types to minimize the number of
places with such hardcoding. I don't think it's likely any further
such types will be of use in future (or indeed that formats suitable
for _Float128x will actually be implemented). There is a corner case
that all _FloatN, for N >= 128 and a multiple of 32, should be treated
as keywords even when the corresponding type is not supported; I
intend to deal with that in a followup patch.
Tests are added for various functionality of the new types, mostly
using type-generic headers. The tests use dg-add-options to pass any
extra options needed to enable the types; this is wired up to use the
same options as for __float128 on powerpc to enable _Float128 and
_Float64x, and effective-target keywords for runtime support do the
same hardware test as for __float128 to make sure the VSX instructions
generated by those options are supported. (Corresponding additions
would be needed for _Float16 on ARM as well if that were enabled with
-mfp16-format=ieee required to use it rather than unconditionally
available. Of course, -mfp16-format=alternative enables use of a
format which is not compatible with the requirements of the _Float16
type.)
C++ note: no support for the new types or constant suffixes is added
for C++. C++ decimal floating-point support was very different from
the C support, using class types, and the same may well apply to any
future C++ bindings for IEEE interchange and extended types. There is
a case, however, for supporting at least *f128 constants in C++, so
that code using __float128 can use the newer style for constants
throughout rather than needing to use the older *q constants in C++.
Also, if built-in functions are added that may provide a way in which
the types could leak into C++ code.
Fortran note: the float128_type_node used in the Fortran front end is
renamed to gfc_float128_type_node, since the semantics are different:
in particular, if long double has binary128 format, then the new
language-independent float128_type_node is a distinct type that also
has binary128 format, but the Fortran node is expected to be NULL in
that case. Likewise, Fortran's complex_float128_type_node is renamed
to gfc_complex_float128_type_node.
PowerPC note: the back end had an inconsistency that if TFmode was
binary128, *q constants were TFmode instead of KFmode but __float128
was KFmode. This patch follows the same logic as for *q constants, so
that _Float128 prefers TFmode (and __float128 becomes an alias for
_Float128).
ARM note: __fp16 is promoted to double (by convert_arguments) when
passed without a prototype / in variable arguments. But this is only
about the argument promotion; it is not handled as promoting in
c-common.c:self_promoting_args_p / c-typeck.c:c_type_promotes_to,
meaning that a K&R function definition for an argument of type __fp16
corresponds to a prototype with an argument of that type, not to one
with an argument of type double, whereas a float argument in a K&R
function definition corresponds to a double prototype argument - and
the same functions are also what's involved in making va_arg give a
warning and generate a call to abort when called with type float.
This is preserved by this patch, while arranging for _Float16 not to
be promoted when passed without a prototype / in variable arguments
(the promotion of float being considered a legacy feature, not applied
to any new types in C99 or later).
TS 18661-3 extends the set of decimal floating-point types similarly,
and adds new constant suffixes for the existing types, but this patch
does not do anything regarding that extension.
This patch does nothing regarding built-in functions, although
type-generic functions such as __builtin_isinf work for the new types
and associated tests are included. There are at least two levels of
built-in function support possible for these types. The minimal
level, implemented in
<https://gcc.gnu.org/ml/gcc-patches/2016-06/msg01702.html> (which
needs updating to use dg-add-options), adds built-in functions similar
to those x86 has for __float128: __builtin_inf* __builtin_huge_val*,
__builtin_nan*, __builtin_nans*, __builtin_fabs*, __builtin_copysign*.
That would be sufficient for glibc to use the *f128 names for built-in
functions by default with *q used only for backwards compatibility
when using older GCC versions. That would also allow c_cpp_builtins's
flag_building_libgcc code, defining __LIBGCC_%s_FUNC_EXT__, to use
such suffixes rather than the present code hardcoding logic about
target-specific constant suffixes and how those relate to function
suffixes.
Full built-in function support would cover the full range of built-in
functions for existing floating-point types, adding variants for all
the new types, except for a few obsolescent functions and
non-type-generic variants of type-generic functions. Some but not all
references to such functions in GCC use macros such as CASE_FLT_FN to
be type-generic; a fair amount of work would be needed to identify all
places to update. Adding all those functions would enable
optimizations (for constant arguments and otherwise) for TS 18661-3
functions, but it would also substantially expand the enum listing
built-in functions (and we've had problems with the size of that enum
in the past), and increase the amount of built-in function
initialization to do - I don't know what the startup cost involved in
built-in function initialization is, but it would be something to
consider when adding such a large set of functions.
There are also a range of optimizations, in match.pd and elsewhere,
that only operate on the three standard floating-point types. Ideally
those would be made generic to all floating-point types, but this
patch does nothing in that regard. Special care would be needed
regarding making sure library functions to which calls are generated
actually exist. For example, if sqrt is called on an argument of type
_Float32, and the result converted to _Float32, this is equivalent to
doing a square root operation directly on _Float32. But if the user's
libm does not have the sqrtf32 function, or the name is not reserved
because __STDC_WANT_IEC_60559_TYPES_EXT__ was not defined before
including <math.h>, you can only do that optimization if you convert
to a call to sqrtf instead.
DECIMAL_DIG now relates to all supported floating-point formats, not
just float, double and long double; I've raised the question with WG14
of how this relates to the formula for DECIMAL_DIG in C11 not
considering this. TS 18661-3 says it also covers non-arithmetic
formats only supported by library conversion functions; this patch
does not add any target hooks to allow for the case where there are
such formats wider than any supported for arithmetic types (where
e.g. libc supports conversions involving the binary128 representation,
but the _Float128 type is not supported).
GCC provides its own <tgmath.h> for some targets. No attempt is made
to adapt this to handle the new types.
Nothing is done regarding debug info for the new types (see the
"Debugger support for __float128 type?" thread on gcc@, Sep/Oct 2015).
No __SIZEOF_*__ macros are added for the new types.
Nothing is done with do_warn_double_promotion.
Nothing is done to include the new types in those determining
max_align_t, although properly it should be sufficiently aligned for
any of those types.
The logic for usual arithmetic conversions in c_common_type relies on
TYPE_PRECISION for floating-point types, which is less than ideal
(doesn't necessarily correspond to whether one type's values are
subset of another); looking in more detail at the formats might be
better. But since I included code in build_common_tree_nodes to work
around rs6000 KFmode having precision 113 not 128, I think it should
work. Ideally one might have errors in generic code for the case
where the two types do not have one type's values a subset of the
other (which is undefined behavior). But the only case where this can
actually occur is mixing IBM long double with binary128 on powerpc,
and rs6000_invalid_binary_op deals with that at present. TS 18661-3
does not fully specify the type resulting from the usual arithmetic
conversions in the case where two _FloatNx types have the same set of
values; I arranged the code to prefer the greater value of N in that
case.
The __FP_FAST_FMA* macros are not extended to cover the new types,
since there are no corresponding built-in functions (if built-in
fmafN, fmafNx are added, the macros should be extended, and the new
macros documented). Also, only a limited set of modes is handled in
mode_has_fma.
Diagnostics relating to the use of the new types with -pedantic do not
try to distinguish them from purely nonstandard types such as __int128
and constant suffixes such as *q.
If you use an unsupported _FloatN / _FloatNx type you get a warning
about the type defaulting to int after the warning about the type not
being supported. That's less than ideal, but it's also a pre-existing
condition if you use __int128 on a 32-bit system where it's
unsupported.
Bootstrapped with no regressions on x86_64-pc-linux-gnu. Other
back-end changes minimally tested by building cc1 for ia64-linux-gnu,
powerpc64le-linux-gnu, pdp11-none (the last failed for unrelated
reasons).
PR c/32187
gcc:
* tree-core.h (TI_COMPLEX_FLOAT16_TYPE)
(TI_COMPLEX_FLOATN_NX_TYPE_FIRST, TI_COMPLEX_FLOAT32_TYPE)
(TI_COMPLEX_FLOAT64_TYPE, TI_COMPLEX_FLOAT128_TYPE)
(TI_COMPLEX_FLOAT32X_TYPE, TI_COMPLEX_FLOAT64X_TYPE)
(TI_COMPLEX_FLOAT128X_TYPE, TI_FLOAT16_TYPE, TI_FLOATN_TYPE_FIRST)
(TI_FLOATN_NX_TYPE_FIRST, TI_FLOAT32_TYPE, TI_FLOAT64_TYPE)
(TI_FLOAT128_TYPE, TI_FLOATN_TYPE_LAST, TI_FLOAT32X_TYPE)
(TI_FLOATNX_TYPE_FIRST, TI_FLOAT64X_TYPE, TI_FLOAT128X_TYPE)
(TI_FLOATNX_TYPE_LAST, TI_FLOATN_NX_TYPE_LAST): New enum
tree_index values.
(NUM_FLOATN_TYPES, NUM_FLOATNX_TYPES, NUM_FLOATN_NX_TYPES): New
macros.
(struct floatn_type_info): New structure type.
(floatn_nx_types): New variable declaration.
* tree.h (FLOATN_TYPE_NODE, FLOATN_NX_TYPE_NODE)
(FLOATNX_TYPE_NODE, float128_type_node, float64x_type_node)
(COMPLEX_FLOATN_NX_TYPE_NODE): New macros.
* tree.c (floatn_nx_types): New variable.
(build_common_tree_nodes): Initialize _FloatN, _FloatNx and
corresponding complex types.
* target.def (floatn_mode): New hook.
* targhooks.c: Include "real.h".
(default_floatn_mode): New function.
* targhooks.h (default_floatn_mode): New prototype.
* doc/extend.texi (Floating Types): Document _FloatN and _FloatNx
types.
* doc/sourcebuild.texi (float@var{n}, float@var{n}x): Document new
effective-target and dg-add-options keywords.
(float@var{n}_runtime, float@var{n}x_runtime, floatn_nx_runtime):
Document new effective-target keywords.
* doc/tm.texi.in (TARGET_FLOATN_MODE): New @hook.
* doc/tm.texi: Regenerate.
* ginclude/float.h (LDBL_DECIMAL_DIG): Define to
__LDBL_DECIMAL_DIG__, not __DECIMAL_DIG__.
[__STDC_WANT_IEC_60559_TYPES_EXT__]: Define macros from TS
18661-3.
* real.h (struct real_format): Add field ieee_bits.
* real.c (ieee_single_format, mips_single_format)
(motorola_single_format, spu_single_format, ieee_double_format)
(mips_double_format, motorola_double_format)
(ieee_extended_motorola_format, ieee_extended_intel_96_format)
(ieee_extended_intel_128_format)
(ieee_extended_intel_96_round_53_format, ibm_extended_format)
(mips_extended_format, ieee_quad_format, mips_quad_format)
(vax_f_format, vax_d_format, vax_g_format, decimal_single_format)
(decimal_double_format, decimal_quad_format, ieee_half_format)
(arm_half_format, real_internal_format: Initialize ieee_bits
field.
* config/i386/i386.c (ix86_init_builtin_types): Do not initialize
float128_type_node. Set float80_type_node to float64x_type_node
if appropriate and long_double_type_node not appropriate.
* config/ia64/ia64.c (ia64_init_builtins): Likewise.
* config/pdp11/pdp11.c (pdp11_f_format, pdp11_d_format):
Initialize ieee_bits field.
* config/rs6000/rs6000.c (TARGET_FLOATN_MODE): New macro.
(rs6000_init_builtins): Set ieee128_float_type_node to
float128_type_node.
(rs6000_floatn_mode): New function.
gcc/c:
* c-tree.h (cts_floatn_nx): New enum c_typespec_keyword value.
(struct c_declspecs): Add field floatn_nx_idx.
* c-decl.c (declspecs_add_type, finish_declspecs): Handle _FloatN
and _FloatNx type specifiers.
* c-parser.c (c_keyword_starts_typename, c_token_starts_declspecs)
(c_parser_declspecs, c_parser_attribute_any_word)
(c_parser_objc_selector): Use CASE_RID_FLOATN_NX.
* c-typeck.c (c_common_type): Handle _FloatN and _FloatNx types.
(convert_arguments): Avoid promoting _FloatN and _FloatNx types
narrower than double.
gcc/c-family:
* c-common.h (RID_FLOAT16, RID_FLOATN_NX_FIRST, RID_FLOAT32)
(RID_FLOAT64, RID_FLOAT128, RID_FLOAT32X, RID_FLOAT64X)
(RID_FLOAT128X): New enum rid values.
(CASE_RID_FLOATN_NX): New macro.
* c-common.c (c_common_reswords): Add _FloatN and _FloatNx
keywords.
(c_common_type_for_mode): Check for _FloatN and _FloatNx and
corresponding complex types.
(c_common_nodes_and_builtins): For non-C++, register _FloatN and
_FloatNx and corresponding complex types.
(keyword_begins_type_specifier): Use CASE_RID_FLOATN_NX.
* c-cppbuiltin.c (builtin_define_float_constants): Check _FloatN
and _FloatNx types for the widest type for determining
DECIMAL_DIG. Define __LDBL_DECIMAL_DIG__ as well as
__DECIMAL_DIG__ for long double. Handle FMA_SUFFIX being NULL.
(c_cpp_builtins): Call builtin_define_float_constants for _FloatN
and _FloatNx types.
* c-lex.c (interpret_float): Handle _FloatN and _FloatNx
constants.
* c-pretty-print.c (pp_c_floating_constant): Handle _FloatN and
_FloatNx types.
gcc/fortran:
* trans-types.h (float128_type_node): Rename to
gfc_float128_type_node.
(complex_float128_type_node): Rename to
gfc_complex_float128_type_node.
* iso-c-binding.def, trans-intrinsic.c, trans-types.c: All users
changed.
gcc/testsuite:
* lib/target-supports.exp (check_effective_target_float16)
(check_effective_target_float32, check_effective_target_float64)
(check_effective_target_float128, check_effective_target_float32x)
(check_effective_target_float64x)
(check_effective_target_float128x)
(check_effective_target_float16_runtime)
(check_effective_target_float32_runtime)
(check_effective_target_float64_runtime)
(check_effective_target_float128_runtime)
(check_effective_target_float32x_runtime)
(check_effective_target_float64x_runtime)
(check_effective_target_float128x_runtime)
(check_effective_target_floatn_nx_runtime)
(add_options_for_float16, add_options_for_float32)
(add_options_for_float64, add_options_for_float128)
(add_options_for_float32x, add_options_for_float64x)
(add_options_for_float128x): New procedures.
* gcc.dg/dfp/floatn.c, gcc.dg/float128-typeof.c,
gcc.dg/float128x-typeof.c, gcc.dg/float16-typeof.c,
gcc.dg/float32-typeof.c, gcc.dg/float32x-typeof.c,
gcc.dg/float64-typeof.c, gcc.dg/float64x-typeof.c,
gcc.dg/floatn-arithconv.c, gcc.dg/floatn-errs.c,
gcc.dg/floatn-typeof.h, gcc.dg/torture/float128-basic.c,
gcc.dg/torture/float128-complex.c,
gcc.dg/torture/float128-floath.c, gcc.dg/torture/float128-tg.c,
gcc.dg/torture/float128x-basic.c,
gcc.dg/torture/float128x-complex.c,
gcc.dg/torture/float128x-floath.c, gcc.dg/torture/float128x-tg.c,
gcc.dg/torture/float16-basic.c, gcc.dg/torture/float16-complex.c,
gcc.dg/torture/float16-floath.c, gcc.dg/torture/float16-tg.c,
gcc.dg/torture/float32-basic.c, gcc.dg/torture/float32-complex.c,
gcc.dg/torture/float32-floath.c, gcc.dg/torture/float32-tg.c,
gcc.dg/torture/float32x-basic.c,
gcc.dg/torture/float32x-complex.c,
gcc.dg/torture/float32x-floath.c, gcc.dg/torture/float32x-tg.c,
gcc.dg/torture/float64-basic.c, gcc.dg/torture/float64-complex.c,
gcc.dg/torture/float64-floath.c, gcc.dg/torture/float64-tg.c,
gcc.dg/torture/float64x-basic.c,
gcc.dg/torture/float64x-complex.c,
gcc.dg/torture/float64x-floath.c, gcc.dg/torture/float64x-tg.c,
gcc.dg/torture/floatn-basic.h, gcc.dg/torture/floatn-complex.h,
gcc.dg/torture/floatn-convert.c, gcc.dg/torture/floatn-floath.h,
gcc.dg/torture/floatn-tg.h,
gcc.dg/torture/fp-int-convert-float128-ieee-timode.c,
gcc.dg/torture/fp-int-convert-float128-ieee.c,
gcc.dg/torture/fp-int-convert-float128x-timode.c,
gcc.dg/torture/fp-int-convert-float128x.c,
gcc.dg/torture/fp-int-convert-float16-timode.c,
gcc.dg/torture/fp-int-convert-float16.c,
gcc.dg/torture/fp-int-convert-float32-timode.c,
gcc.dg/torture/fp-int-convert-float32.c,
gcc.dg/torture/fp-int-convert-float32x-timode.c,
gcc.dg/torture/fp-int-convert-float32x.c,
gcc.dg/torture/fp-int-convert-float64-timode.c,
gcc.dg/torture/fp-int-convert-float64.c,
gcc.dg/torture/fp-int-convert-float64x-timode.c,
gcc.dg/torture/fp-int-convert-float64x.c: New tests.
* gcc.dg/torture/fp-int-convert.h (TEST_I_F): Add argument for
maximum exponent of floating-point type. Use it in testing
whether 0x8...0 fits in the floating-point type. Always treat -1
(signed 0xf...f) as fitting in the floating-point type.
(M_OK1): New macro.
* gcc.dg/torture/fp-int-convert-double.c,
gcc.dg/torture/fp-int-convert-float.c,
gcc.dg/torture/fp-int-convert-float128-timode.c,
gcc.dg/torture/fp-int-convert-float128.c,
gcc.dg/torture/fp-int-convert-float80-timode.c,
gcc.dg/torture/fp-int-convert-float80.c,
gcc.dg/torture/fp-int-convert-long-double.c,
gcc.dg/torture/fp-int-convert-timode.c: Update calls to TEST_I_F.
libcpp:
* include/cpplib.h (CPP_N_FLOATN, CPP_N_FLOATNX)
(CPP_N_WIDTH_FLOATN_NX, CPP_FLOATN_SHIFT, CPP_FLOATN_MAX): New
macros.
* expr.c (interpret_float_suffix): Handle fN, fNx, FN and FNx
suffixes.
From-SVN: r239625
PR fortran/71014
* resolve.c (gfc_resolve): For ns->construct_entities don't save, clear
and restore omp state around the resolving.
* testsuite/libgomp.fortran/pr71014.f90: New test.
From-SVN: r239620
PR fortran/69281
* trans-openmp.c (gfc_trans_omp_parallel, gfc_trans_omp_task,
gfc_trans_omp_target): Wrap gfc_trans_omp_code result in an extra
BIND_EXPR with its own forced BLOCK.
* gfortran.dg/gomp/pr69281.f90: New test.
From-SVN: r239618