3478bba466
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org PR libfortran/32972 * Makefile.am: Add new variable, i_unpack_c, containing unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c, unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c, unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c and unpack_c16.c Add i_unpack_c to gfor_built_src. Add rule to generate i_unpack_c from m4/unpack.m4. * Makefile.in: Regenerated. * libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2, unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8, unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10, unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8, unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16, unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16. * intrinsics/pack_generic.c (unpack1): Add calls to specific unpack1 functions. (unpack0): Add calls to specific unpack0 functions. * m4/unpack.m4: New file. * generated/unpack_i1.c: New file. * generated/unpack_i2.c: New file. * generated/unpack_i4.c: New file. * generated/unpack_i8.c: New file. * generated/unpack_i16.c: New file. * generated/unpack_r4.c: New file. * generated/unpack_r8.c: New file. * generated/unpack_r10.c: New file. * generated/unpack_r16.c: New file. * generated/unpack_c4.c: New file. * generated/unpack_c8.c: New file. * generated/unpack_c10.c: New file. * generated/unpack_c16.c: New file. 2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org PR libfortran/32972 * gfortran.dg/intrinsic_unpack_1.f90: New test case. * gfortran.dg/intrinsic_unpack_2.f90: New test case. * gfortran.dg/intrinsic_unpack_3.f90: New test case. From-SVN: r133469
446 lines
12 KiB
C
446 lines
12 KiB
C
/* Generic implementation of the UNPACK intrinsic
|
|
Copyright 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
static void
|
|
unpack_internal (gfc_array_char *ret, const gfc_array_char *vector,
|
|
const gfc_array_l1 *mask, const gfc_array_char *field,
|
|
index_type size, index_type fsize)
|
|
{
|
|
/* r.* indicates the return array. */
|
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
|
index_type rstride0;
|
|
index_type rs;
|
|
char *rptr;
|
|
/* v.* indicates the vector array. */
|
|
index_type vstride0;
|
|
char *vptr;
|
|
/* f.* indicates the field array. */
|
|
index_type fstride[GFC_MAX_DIMENSIONS];
|
|
index_type fstride0;
|
|
const char *fptr;
|
|
/* m.* indicates the mask array. */
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride0;
|
|
const GFC_LOGICAL_1 *mptr;
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
int empty;
|
|
int mask_kind;
|
|
|
|
empty = 0;
|
|
|
|
mptr = mask->data;
|
|
|
|
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
|
and using shifting to address size and endian issues. */
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
{
|
|
/* Don't convert a NULL pointer as we use test for NULL below. */
|
|
if (mptr)
|
|
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
|
}
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
if (ret->data == NULL)
|
|
{
|
|
/* The front end has signalled that we need to populate the
|
|
return array descriptor. */
|
|
dim = GFC_DESCRIPTOR_RANK (mask);
|
|
rs = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
ret->dim[n].stride = rs;
|
|
ret->dim[n].lbound = 0;
|
|
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
|
extent[n] = ret->dim[n].ubound + 1;
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = ret->dim[n].stride * size;
|
|
fstride[n] = field->dim[n].stride * fsize;
|
|
mstride[n] = mask->dim[n].stride * mask_kind;
|
|
rs *= extent[n];
|
|
}
|
|
ret->offset = 0;
|
|
ret->data = internal_malloc_size (rs * size);
|
|
}
|
|
else
|
|
{
|
|
dim = GFC_DESCRIPTOR_RANK (ret);
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = ret->dim[n].stride * size;
|
|
fstride[n] = field->dim[n].stride * fsize;
|
|
mstride[n] = mask->dim[n].stride * mask_kind;
|
|
}
|
|
if (rstride[0] == 0)
|
|
rstride[0] = size;
|
|
}
|
|
|
|
if (empty)
|
|
return;
|
|
|
|
if (fstride[0] == 0)
|
|
fstride[0] = fsize;
|
|
if (mstride[0] == 0)
|
|
mstride[0] = 1;
|
|
|
|
vstride0 = vector->dim[0].stride * size;
|
|
if (vstride0 == 0)
|
|
vstride0 = size;
|
|
rstride0 = rstride[0];
|
|
fstride0 = fstride[0];
|
|
mstride0 = mstride[0];
|
|
rptr = ret->data;
|
|
fptr = field->data;
|
|
vptr = vector->data;
|
|
|
|
while (rptr)
|
|
{
|
|
if (*mptr)
|
|
{
|
|
/* From vector. */
|
|
memcpy (rptr, vptr, size);
|
|
vptr += vstride0;
|
|
}
|
|
else
|
|
{
|
|
/* From field. */
|
|
memcpy (rptr, fptr, size);
|
|
}
|
|
/* Advance to the next element. */
|
|
rptr += rstride0;
|
|
fptr += fstride0;
|
|
mptr += mstride0;
|
|
count[0]++;
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
rptr -= rstride[n] * extent[n];
|
|
fptr -= fstride[n] * extent[n];
|
|
mptr -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= dim)
|
|
{
|
|
/* Break out of the loop. */
|
|
rptr = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
rptr += rstride[n];
|
|
fptr += fstride[n];
|
|
mptr += mstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
|
|
const gfc_array_l1 *, const gfc_array_char *);
|
|
export_proto(unpack1);
|
|
|
|
void
|
|
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
|
|
const gfc_array_l1 *mask, const gfc_array_char *field)
|
|
{
|
|
int type;
|
|
index_type size;
|
|
|
|
type = GFC_DESCRIPTOR_TYPE (vector);
|
|
size = GFC_DESCRIPTOR_SIZE (vector);
|
|
|
|
switch(type)
|
|
{
|
|
case GFC_DTYPE_INTEGER:
|
|
case GFC_DTYPE_LOGICAL:
|
|
switch(size)
|
|
{
|
|
case sizeof (GFC_INTEGER_1):
|
|
unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
|
|
mask, (gfc_array_i1 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_2):
|
|
unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
|
|
mask, (gfc_array_i2 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_4):
|
|
unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
|
|
mask, (gfc_array_i4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_8):
|
|
unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
|
|
mask, (gfc_array_i8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
case sizeof (GFC_INTEGER_16):
|
|
unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
|
|
mask, (gfc_array_i16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
case GFC_DTYPE_REAL:
|
|
switch (size)
|
|
{
|
|
case sizeof (GFC_REAL_4):
|
|
unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
|
|
mask, (gfc_array_r4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_REAL_8):
|
|
unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
|
|
mask, (gfc_array_r8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_REAL_10
|
|
case sizeof (GFC_REAL_10):
|
|
unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
|
|
mask, (gfc_array_r10 *) field);
|
|
return;
|
|
#endif
|
|
|
|
#ifdef HAVE_GFC_REAL_16
|
|
case sizeof (GFC_REAL_16):
|
|
unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
|
|
mask, (gfc_array_r16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
case GFC_DTYPE_COMPLEX:
|
|
switch (size)
|
|
{
|
|
case sizeof (GFC_COMPLEX_4):
|
|
unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
|
|
mask, (gfc_array_c4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_COMPLEX_8):
|
|
unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
|
|
mask, (gfc_array_c8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_COMPLEX_10
|
|
case sizeof (GFC_COMPLEX_10):
|
|
unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
|
|
mask, (gfc_array_c10 *) field);
|
|
return;
|
|
#endif
|
|
|
|
#ifdef HAVE_GFC_COMPLEX_16
|
|
case sizeof (GFC_COMPLEX_16):
|
|
unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
|
|
mask, (gfc_array_c16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
}
|
|
unpack_internal (ret, vector, mask, field, size,
|
|
GFC_DESCRIPTOR_SIZE (field));
|
|
}
|
|
|
|
extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4,
|
|
const gfc_array_char *, const gfc_array_l1 *,
|
|
const gfc_array_char *, GFC_INTEGER_4,
|
|
GFC_INTEGER_4);
|
|
export_proto(unpack1_char);
|
|
|
|
void
|
|
unpack1_char (gfc_array_char *ret,
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
|
const gfc_array_char *vector, const gfc_array_l1 *mask,
|
|
const gfc_array_char *field, GFC_INTEGER_4 vector_length,
|
|
GFC_INTEGER_4 field_length)
|
|
{
|
|
unpack_internal (ret, vector, mask, field, vector_length, field_length);
|
|
}
|
|
|
|
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
|
|
const gfc_array_l1 *, char *);
|
|
export_proto(unpack0);
|
|
|
|
void
|
|
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
|
|
const gfc_array_l1 *mask, char *field)
|
|
{
|
|
gfc_array_char tmp;
|
|
|
|
int type;
|
|
index_type size;
|
|
|
|
type = GFC_DESCRIPTOR_TYPE (vector);
|
|
size = GFC_DESCRIPTOR_SIZE (vector);
|
|
|
|
switch(type)
|
|
{
|
|
case GFC_DTYPE_INTEGER:
|
|
case GFC_DTYPE_LOGICAL:
|
|
switch(size)
|
|
{
|
|
case sizeof (GFC_INTEGER_1):
|
|
unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
|
|
mask, (GFC_INTEGER_1 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_2):
|
|
unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
|
|
mask, (GFC_INTEGER_2 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_4):
|
|
unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
|
|
mask, (GFC_INTEGER_4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_INTEGER_8):
|
|
unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
|
|
mask, (GFC_INTEGER_8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
case sizeof (GFC_INTEGER_16):
|
|
unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
|
|
mask, (GFC_INTEGER_16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
case GFC_DTYPE_REAL:
|
|
switch(size)
|
|
{
|
|
case sizeof (GFC_REAL_4):
|
|
unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
|
|
mask, (GFC_REAL_4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_REAL_8):
|
|
unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
|
|
mask, (GFC_REAL_8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_REAL_10
|
|
case sizeof (GFC_REAL_10):
|
|
unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
|
|
mask, (GFC_REAL_10 *) field);
|
|
return;
|
|
#endif
|
|
|
|
#ifdef HAVE_GFC_REAL_16
|
|
case sizeof (GFC_REAL_16):
|
|
unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
|
|
mask, (GFC_REAL_16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
case GFC_DTYPE_COMPLEX:
|
|
switch(size)
|
|
{
|
|
case sizeof (GFC_COMPLEX_4):
|
|
unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
|
|
mask, (GFC_COMPLEX_4 *) field);
|
|
return;
|
|
|
|
case sizeof (GFC_COMPLEX_8):
|
|
unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
|
|
mask, (GFC_COMPLEX_8 *) field);
|
|
return;
|
|
|
|
#ifdef HAVE_GFC_COMPLEX_10
|
|
case sizeof (GFC_COMPLEX_10):
|
|
unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
|
|
mask, (GFC_COMPLEX_10 *) field);
|
|
return;
|
|
#endif
|
|
|
|
#ifdef HAVE_GFC_COMPLEX_16
|
|
case sizeof (GFC_COMPLEX_16):
|
|
unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
|
|
mask, (GFC_COMPLEX_16 *) field);
|
|
return;
|
|
#endif
|
|
}
|
|
}
|
|
memset (&tmp, 0, sizeof (tmp));
|
|
tmp.dtype = 0;
|
|
tmp.data = field;
|
|
unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector), 0);
|
|
}
|
|
|
|
extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4,
|
|
const gfc_array_char *, const gfc_array_l1 *,
|
|
char *, GFC_INTEGER_4, GFC_INTEGER_4);
|
|
export_proto(unpack0_char);
|
|
|
|
void
|
|
unpack0_char (gfc_array_char *ret,
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
|
const gfc_array_char *vector, const gfc_array_l1 *mask,
|
|
char *field, GFC_INTEGER_4 vector_length,
|
|
GFC_INTEGER_4 field_length __attribute__((unused)))
|
|
{
|
|
gfc_array_char tmp;
|
|
|
|
memset (&tmp, 0, sizeof (tmp));
|
|
tmp.dtype = 0;
|
|
tmp.data = field;
|
|
unpack_internal (ret, vector, mask, &tmp, vector_length, 0);
|
|
}
|