a01dda3c23
Overhaul the mangling scheme to avoid ambiguities if the package path contains a dot. Instead of using dot both to separate components and to mangle characters, use dot only to separate components and use underscore to mangle characters. For golang/go#41862 Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/271726
553 lines
17 KiB
Go
553 lines
17 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gccgo, use go:linkname to export compiler-called functions.
|
|
//
|
|
//go:linkname requireitab
|
|
//go:linkname assertitab
|
|
//go:linkname panicdottype
|
|
//go:linkname ifaceE2E2
|
|
//go:linkname ifaceI2E2
|
|
//go:linkname ifaceE2I2
|
|
//go:linkname ifaceI2I2
|
|
//go:linkname ifaceE2T2P
|
|
//go:linkname ifaceI2T2P
|
|
//go:linkname ifaceE2T2
|
|
//go:linkname ifaceI2T2
|
|
//go:linkname ifaceT2Ip
|
|
// Temporary for C code to call:
|
|
//go:linkname getitab
|
|
|
|
// The gccgo itab structure is different than the gc one.
|
|
//
|
|
// Both gccgo and gc represent empty interfaces the same way:
|
|
// a two field struct, where the first field points to a type descriptor
|
|
// (a *_type) and the second field is the data pointer.
|
|
//
|
|
// Non-empty interfaces are also two-field structs, and the second
|
|
// field is the data pointer. However, for gccgo, the first field, the
|
|
// itab field, is different. The itab field points to the interface
|
|
// method table, which is the implemention of a specific interface
|
|
// type for a specific dynamic non-interface type. An interface
|
|
// method table is a list of pointer values. The first pointer is the
|
|
// type descriptor (a *_type) for the dynamic type. The subsequent
|
|
// pointers are pointers to function code, which implement the methods
|
|
// required by the interface. The pointers are sorted by name.
|
|
//
|
|
// The method pointers in the itab are C function pointers, not Go
|
|
// function pointers; they may be called directly, and they have no
|
|
// closures. The receiver is always passed as a pointer, and it is
|
|
// always the same pointer stored in the interface value. A value
|
|
// method starts by copying the receiver value out of the pointer into
|
|
// a local variable.
|
|
//
|
|
// A method call on an interface value is by definition calling a
|
|
// method at a known index m in the list of methods. Given a non-empty
|
|
// interface value i, the call i.m(args) looks like
|
|
// i.itab[m+1](i.iface, args)
|
|
|
|
// Both an empty interface and a non-empty interface have a data
|
|
// pointer field. The meaning of this field is determined by the
|
|
// kindDirectIface bit in the `kind` field of the type descriptor of
|
|
// the value stored in the interface. If kindDirectIface is set, then
|
|
// the data pointer field in the interface value is exactly the value
|
|
// stored in the interface. Otherwise, the data pointer field is a
|
|
// pointer to memory that holds the value. It follows from this that
|
|
// kindDirectIface can only be set for a type whose representation is
|
|
// simply a pointer. In the current gccgo implementation, this is set
|
|
// for types that are pointer-shaped, including unsafe.Pointer, channels,
|
|
// maps, functions, single-field structs and single-element arrays whose
|
|
// single field is simply a pointer-shaped type.
|
|
|
|
// For a nil interface value both fields in the interface struct are nil.
|
|
|
|
// itabs are statically allocated or persistently allocated. They are
|
|
// never freed. For itabs allocated at run time, they are cached in
|
|
// itabTable, so we reuse the same itab for the same (interface, concrete)
|
|
// type pair. The gc runtime prepopulates the cache with statically
|
|
// allocated itabs. Currently we don't do that as we don't have a way to
|
|
// find all the statically allocated itabs.
|
|
|
|
const itabInitSize = 512
|
|
|
|
var (
|
|
itabLock mutex // lock for accessing itab table
|
|
itabTable = &itabTableInit // pointer to current table
|
|
itabTableInit = itabTableType{size: itabInitSize} // starter table
|
|
)
|
|
|
|
// Cache entry type of itab table.
|
|
// For gccgo, this is not the data type we used in the interface header.
|
|
type itab struct {
|
|
inter *interfacetype
|
|
methods [2]unsafe.Pointer // method table. variable sized. first entry is the type descriptor.
|
|
}
|
|
|
|
func (m *itab) _type() *_type {
|
|
return (*_type)(m.methods[0])
|
|
}
|
|
|
|
// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
|
|
type itabTableType struct {
|
|
size uintptr // length of entries array. Always a power of 2.
|
|
count uintptr // current number of filled entries.
|
|
entries [itabInitSize]*itab // really [size] large
|
|
}
|
|
|
|
func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
|
|
// compiler has provided some good hash codes for us.
|
|
return uintptr(inter.typ.hash ^ typ.hash)
|
|
}
|
|
|
|
// find finds the given interface/type pair in t.
|
|
// Returns nil if the given interface/type pair isn't present.
|
|
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
|
|
// Implemented using quadratic probing.
|
|
// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
|
|
// We're guaranteed to hit all table entries using this probe sequence.
|
|
mask := t.size - 1
|
|
h := itabHashFunc(inter, typ) & mask
|
|
for i := uintptr(1); ; i++ {
|
|
p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize))
|
|
// Use atomic read here so if we see m != nil, we also see
|
|
// the initializations of the fields of m.
|
|
// m := *p
|
|
m := (*itab)(atomic.Loadp(unsafe.Pointer(p)))
|
|
if m == nil {
|
|
return nil
|
|
}
|
|
if m.inter == inter && m._type() == typ {
|
|
return m
|
|
}
|
|
h += i
|
|
h &= mask
|
|
}
|
|
}
|
|
|
|
// itabAdd adds the given itab to the itab hash table.
|
|
// itabLock must be held.
|
|
func itabAdd(m *itab) {
|
|
// Bugs can lead to calling this while mallocing is set,
|
|
// typically because this is called while panicing.
|
|
// Crash reliably, rather than only when we need to grow
|
|
// the hash table.
|
|
if getg().m.mallocing != 0 {
|
|
throw("malloc deadlock")
|
|
}
|
|
|
|
t := itabTable
|
|
if t.count >= 3*(t.size/4) { // 75% load factor
|
|
// Grow hash table.
|
|
// t2 = new(itabTableType) + some additional entries
|
|
// We lie and tell malloc we want pointer-free memory because
|
|
// all the pointed-to values are not in the heap.
|
|
t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true))
|
|
t2.size = t.size * 2
|
|
|
|
// Copy over entries.
|
|
// Note: while copying, other threads may look for an itab and
|
|
// fail to find it. That's ok, they will then try to get the itab lock
|
|
// and as a consequence wait until this copying is complete.
|
|
iterate_itabs(t2.add)
|
|
if t2.count != t.count {
|
|
throw("mismatched count during itab table copy")
|
|
}
|
|
// Publish new hash table. Use an atomic write: see comment in getitab.
|
|
atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
|
|
// Adopt the new table as our own.
|
|
t = itabTable
|
|
// Note: the old table can be GC'ed here.
|
|
}
|
|
t.add(m)
|
|
}
|
|
|
|
// add adds the given itab to itab table t.
|
|
// itabLock must be held.
|
|
func (t *itabTableType) add(m *itab) {
|
|
// See comment in find about the probe sequence.
|
|
// Insert new itab in the first empty spot in the probe sequence.
|
|
mask := t.size - 1
|
|
h := itabHashFunc(m.inter, m._type()) & mask
|
|
for i := uintptr(1); ; i++ {
|
|
p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize))
|
|
m2 := *p
|
|
if m2 == m {
|
|
// A given itab may be used in more than one module
|
|
// and thanks to the way global symbol resolution works, the
|
|
// pointed-to itab may already have been inserted into the
|
|
// global 'hash'.
|
|
return
|
|
}
|
|
if m2 == nil {
|
|
// Use atomic write here so if a reader sees m, it also
|
|
// sees the correctly initialized fields of m.
|
|
// NoWB is ok because m is not in heap memory.
|
|
// *p = m
|
|
atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
|
|
t.count++
|
|
return
|
|
}
|
|
h += i
|
|
h &= mask
|
|
}
|
|
}
|
|
|
|
// init fills in the m.methods array with all the code pointers for
|
|
// the m.inter/m._type pair. If the type does not implement the interface,
|
|
// it sets m.methods[1] to nil and returns the name of an interface function that is missing.
|
|
// It is ok to call this multiple times on the same m, even concurrently.
|
|
func (m *itab) init() string {
|
|
inter := m.inter
|
|
typ := m._type()
|
|
ni := len(inter.methods) + 1
|
|
methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.methods[0]))[:ni:ni]
|
|
var m1 unsafe.Pointer
|
|
|
|
ri := 0
|
|
for li := range inter.methods {
|
|
lhsMethod := &inter.methods[li]
|
|
var rhsMethod *method
|
|
|
|
for {
|
|
if ri >= len(typ.methods) {
|
|
m.methods[1] = nil
|
|
return *lhsMethod.name
|
|
}
|
|
|
|
rhsMethod = &typ.methods[ri]
|
|
if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) &&
|
|
(lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) {
|
|
break
|
|
}
|
|
|
|
ri++
|
|
}
|
|
|
|
if !eqtype(lhsMethod.typ, rhsMethod.mtyp) {
|
|
m.methods[1] = nil
|
|
return *lhsMethod.name
|
|
}
|
|
|
|
if li == 0 {
|
|
m1 = rhsMethod.tfn // we'll set m.methods[1] at the end
|
|
} else {
|
|
methods[li+1] = rhsMethod.tfn
|
|
}
|
|
ri++
|
|
}
|
|
m.methods[1] = m1
|
|
return ""
|
|
}
|
|
|
|
func iterate_itabs(fn func(*itab)) {
|
|
// Note: only runs during stop the world or with itabLock held,
|
|
// so no other locks/atomics needed.
|
|
t := itabTable
|
|
for i := uintptr(0); i < t.size; i++ {
|
|
m := *(**itab)(add(unsafe.Pointer(&t.entries), i*sys.PtrSize))
|
|
if m != nil {
|
|
fn(m)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the interface method table for a value of type rhs converted
|
|
// to an interface of type lhs.
|
|
func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer {
|
|
if rhs == nil {
|
|
return nil
|
|
}
|
|
|
|
if lhs.kind&kindMask != kindInterface {
|
|
throw("getitab called for non-interface type")
|
|
}
|
|
|
|
lhsi := (*interfacetype)(unsafe.Pointer(lhs))
|
|
|
|
if len(lhsi.methods) == 0 {
|
|
throw("getitab called for empty interface type")
|
|
}
|
|
|
|
if rhs.uncommontype == nil || len(rhs.methods) == 0 {
|
|
if canfail {
|
|
return nil
|
|
}
|
|
panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name})
|
|
}
|
|
|
|
var m *itab
|
|
|
|
// First, look in the existing table to see if we can find the itab we need.
|
|
// This is by far the most common case, so do it without locks.
|
|
// Use atomic to ensure we see any previous writes done by the thread
|
|
// that updates the itabTable field (with atomic.Storep in itabAdd).
|
|
t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
|
|
if m = t.find(lhsi, rhs); m != nil {
|
|
goto finish
|
|
}
|
|
|
|
// Not found. Grab the lock and try again.
|
|
lockInit(&itabLock, lockRankItab)
|
|
lock(&itabLock)
|
|
if m = itabTable.find(lhsi, rhs); m != nil {
|
|
unlock(&itabLock)
|
|
goto finish
|
|
}
|
|
|
|
// Entry doesn't exist yet. Make a new entry & add it.
|
|
m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(lhsi.methods)-1)*sys.PtrSize, 0, &memstats.other_sys))
|
|
m.inter = lhsi
|
|
m.methods[0] = unsafe.Pointer(rhs)
|
|
m.init()
|
|
itabAdd(m)
|
|
unlock(&itabLock)
|
|
finish:
|
|
if m.methods[1] != nil {
|
|
return unsafe.Pointer(&m.methods[0])
|
|
}
|
|
if canfail {
|
|
return nil
|
|
}
|
|
// this can only happen if the conversion
|
|
// was already done once using the , ok form
|
|
// and we have a cached negative result.
|
|
// The cached result doesn't record which
|
|
// interface function was missing, so initialize
|
|
// the itab again to get the missing function name.
|
|
panic(&TypeAssertionError{nil, rhs, lhs, m.init()})
|
|
}
|
|
|
|
// Return the interface method table for a value of type rhs converted
|
|
// to an interface of type lhs. Panics if the conversion is impossible.
|
|
func requireitab(lhs, rhs *_type) unsafe.Pointer {
|
|
return getitab(lhs, rhs, false)
|
|
}
|
|
|
|
// Return the interface method table for a value of type rhs converted
|
|
// to an interface of type lhs. Panics if the conversion is
|
|
// impossible or if the rhs type is nil.
|
|
func assertitab(lhs, rhs *_type) unsafe.Pointer {
|
|
if rhs == nil {
|
|
panic(&TypeAssertionError{nil, nil, lhs, ""})
|
|
}
|
|
|
|
if lhs.kind&kindMask != kindInterface {
|
|
throw("assertitab called for non-interface type")
|
|
}
|
|
|
|
lhsi := (*interfacetype)(unsafe.Pointer(lhs))
|
|
|
|
if len(lhsi.methods) == 0 {
|
|
return unsafe.Pointer(rhs)
|
|
}
|
|
|
|
return getitab(lhs, rhs, false)
|
|
}
|
|
|
|
// panicdottype is called when doing an i.(T) conversion and the conversion fails.
|
|
func panicdottype(lhs, rhs, inter *_type) {
|
|
panic(&TypeAssertionError{inter, rhs, lhs, ""})
|
|
}
|
|
|
|
// Convert an empty interface to an empty interface, for a comma-ok
|
|
// type assertion.
|
|
func ifaceE2E2(e eface) (eface, bool) {
|
|
return e, e._type != nil
|
|
}
|
|
|
|
// Convert a non-empty interface to an empty interface, for a comma-ok
|
|
// type assertion.
|
|
func ifaceI2E2(i iface) (eface, bool) {
|
|
if i.tab == nil {
|
|
return eface{nil, nil}, false
|
|
} else {
|
|
return eface{*(**_type)(i.tab), i.data}, true
|
|
}
|
|
}
|
|
|
|
// Convert an empty interface to a non-empty interface, for a comma-ok
|
|
// type assertion.
|
|
func ifaceE2I2(inter *_type, e eface) (iface, bool) {
|
|
if e._type == nil {
|
|
return iface{nil, nil}, false
|
|
} else {
|
|
itab := getitab(inter, e._type, true)
|
|
if itab == nil {
|
|
return iface{nil, nil}, false
|
|
} else {
|
|
return iface{itab, e.data}, true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert a non-empty interface to a non-empty interface, for a
|
|
// comma-ok type assertion.
|
|
func ifaceI2I2(inter *_type, i iface) (iface, bool) {
|
|
if i.tab == nil {
|
|
return iface{nil, nil}, false
|
|
} else {
|
|
itab := getitab(inter, *(**_type)(i.tab), true)
|
|
if itab == nil {
|
|
return iface{nil, nil}, false
|
|
} else {
|
|
return iface{itab, i.data}, true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert an empty interface to a pointer non-interface type.
|
|
func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) {
|
|
if !eqtype(t, e._type) {
|
|
return nil, false
|
|
} else {
|
|
return e.data, true
|
|
}
|
|
}
|
|
|
|
// Convert a non-empty interface to a pointer non-interface type.
|
|
func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) {
|
|
if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
|
|
return nil, false
|
|
} else {
|
|
return i.data, true
|
|
}
|
|
}
|
|
|
|
// Convert an empty interface to a non-pointer non-interface type.
|
|
func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool {
|
|
if !eqtype(t, e._type) {
|
|
typedmemclr(t, ret)
|
|
return false
|
|
} else {
|
|
if isDirectIface(t) {
|
|
*(*unsafe.Pointer)(ret) = e.data
|
|
} else {
|
|
typedmemmove(t, ret, e.data)
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
// Convert a non-empty interface to a non-pointer non-interface type.
|
|
func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool {
|
|
if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
|
|
typedmemclr(t, ret)
|
|
return false
|
|
} else {
|
|
if isDirectIface(t) {
|
|
*(*unsafe.Pointer)(ret) = i.data
|
|
} else {
|
|
typedmemmove(t, ret, i.data)
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
// Return whether we can convert a type to an interface type.
|
|
func ifaceT2Ip(to, from *_type) bool {
|
|
if from == nil {
|
|
return false
|
|
}
|
|
|
|
if to.kind&kindMask != kindInterface {
|
|
throw("ifaceT2Ip called with non-interface type")
|
|
}
|
|
toi := (*interfacetype)(unsafe.Pointer(to))
|
|
|
|
if from.uncommontype == nil || len(from.methods) == 0 {
|
|
return len(toi.methods) == 0
|
|
}
|
|
|
|
ri := 0
|
|
for li := range toi.methods {
|
|
toMethod := &toi.methods[li]
|
|
var fromMethod *method
|
|
for {
|
|
if ri >= len(from.methods) {
|
|
return false
|
|
}
|
|
|
|
fromMethod = &from.methods[ri]
|
|
if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) &&
|
|
(toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) {
|
|
break
|
|
}
|
|
|
|
ri++
|
|
}
|
|
|
|
if !eqtype(fromMethod.mtyp, toMethod.typ) {
|
|
return false
|
|
}
|
|
|
|
ri++
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
//go:linkname reflect_ifaceE2I reflect.ifaceE2I
|
|
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
|
|
t := e._type
|
|
if t == nil {
|
|
panic(TypeAssertionError{nil, nil, &inter.typ, ""})
|
|
}
|
|
dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t)
|
|
dst.data = e.data
|
|
}
|
|
|
|
//go:linkname reflectlite_ifaceE2I internal_1reflectlite.ifaceE2I
|
|
func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
|
|
t := e._type
|
|
if t == nil {
|
|
panic(TypeAssertionError{nil, nil, &inter.typ, ""})
|
|
}
|
|
dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t)
|
|
dst.data = e.data
|
|
}
|
|
|
|
// staticuint64s is used to avoid allocating in convTx for small integer values.
|
|
var staticuint64s = [...]uint64{
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
|
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
|
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
|
|
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
|
|
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
|
|
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
|
|
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
|
|
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
|
|
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
|
|
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
|
|
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
|
|
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
|
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
|
|
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
|
|
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
|
|
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
|
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
|
|
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
|
|
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
|
|
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
|
|
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
|
|
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
|
|
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
|
|
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
|
|
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
|
|
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
|
|
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
|
|
}
|