fa385ff4d7
2018-06-05 Richard Biener <rguenther@suse.de> PR tree-optimization/86046 * tree-ssa.c (maybe_optimize_var): Clear DECL_GIMPLE_REG_P if required after clearing TREE_ADDRESSABLE. * gcc.dg/pr86046.c: New testcase. From-SVN: r261193
2079 lines
58 KiB
C
2079 lines
58 KiB
C
/* Miscellaneous SSA utility functions.
|
|
Copyright (C) 2001-2018 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-walk.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "cfgexpand.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-dfa.h"
|
|
#include "stringpool.h"
|
|
#include "attribs.h"
|
|
#include "asan.h"
|
|
|
|
/* Pointer map of variable mappings, keyed by edge. */
|
|
static hash_map<edge, auto_vec<edge_var_map> > *edge_var_maps;
|
|
|
|
|
|
/* Add a mapping with PHI RESULT and PHI DEF associated with edge E. */
|
|
|
|
void
|
|
redirect_edge_var_map_add (edge e, tree result, tree def, source_location locus)
|
|
{
|
|
edge_var_map new_node;
|
|
|
|
if (edge_var_maps == NULL)
|
|
edge_var_maps = new hash_map<edge, auto_vec<edge_var_map> >;
|
|
|
|
auto_vec<edge_var_map> &slot = edge_var_maps->get_or_insert (e);
|
|
new_node.def = def;
|
|
new_node.result = result;
|
|
new_node.locus = locus;
|
|
|
|
slot.safe_push (new_node);
|
|
}
|
|
|
|
|
|
/* Clear the var mappings in edge E. */
|
|
|
|
void
|
|
redirect_edge_var_map_clear (edge e)
|
|
{
|
|
if (!edge_var_maps)
|
|
return;
|
|
|
|
auto_vec<edge_var_map> *head = edge_var_maps->get (e);
|
|
|
|
if (head)
|
|
head->release ();
|
|
}
|
|
|
|
|
|
/* Duplicate the redirected var mappings in OLDE in NEWE.
|
|
|
|
This assumes a hash_map can have multiple edges mapping to the same
|
|
var_map (many to one mapping), since we don't remove the previous mappings.
|
|
*/
|
|
|
|
void
|
|
redirect_edge_var_map_dup (edge newe, edge olde)
|
|
{
|
|
if (!edge_var_maps)
|
|
return;
|
|
|
|
auto_vec<edge_var_map> *new_head = &edge_var_maps->get_or_insert (newe);
|
|
auto_vec<edge_var_map> *old_head = edge_var_maps->get (olde);
|
|
if (!old_head)
|
|
return;
|
|
|
|
new_head->safe_splice (*old_head);
|
|
}
|
|
|
|
|
|
/* Return the variable mappings for a given edge. If there is none, return
|
|
NULL. */
|
|
|
|
vec<edge_var_map> *
|
|
redirect_edge_var_map_vector (edge e)
|
|
{
|
|
/* Hey, what kind of idiot would... you'd be surprised. */
|
|
if (!edge_var_maps)
|
|
return NULL;
|
|
|
|
auto_vec<edge_var_map> *slot = edge_var_maps->get (e);
|
|
if (!slot)
|
|
return NULL;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/* Clear the edge variable mappings. */
|
|
|
|
void
|
|
redirect_edge_var_map_empty (void)
|
|
{
|
|
if (edge_var_maps)
|
|
edge_var_maps->empty ();
|
|
}
|
|
|
|
|
|
/* Remove the corresponding arguments from the PHI nodes in E's
|
|
destination block and redirect it to DEST. Return redirected edge.
|
|
The list of removed arguments is stored in a vector accessed
|
|
through edge_var_maps. */
|
|
|
|
edge
|
|
ssa_redirect_edge (edge e, basic_block dest)
|
|
{
|
|
gphi_iterator gsi;
|
|
gphi *phi;
|
|
|
|
redirect_edge_var_map_clear (e);
|
|
|
|
/* Remove the appropriate PHI arguments in E's destination block.
|
|
If we are redirecting a copied edge the destination has not
|
|
got PHI argument space reserved nor an interesting argument. */
|
|
if (! (e->dest->flags & BB_DUPLICATED))
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
tree def;
|
|
source_location locus ;
|
|
|
|
phi = gsi.phi ();
|
|
def = gimple_phi_arg_def (phi, e->dest_idx);
|
|
locus = gimple_phi_arg_location (phi, e->dest_idx);
|
|
|
|
if (def == NULL_TREE)
|
|
continue;
|
|
|
|
redirect_edge_var_map_add (e, gimple_phi_result (phi), def, locus);
|
|
}
|
|
|
|
e = redirect_edge_succ_nodup (e, dest);
|
|
|
|
return e;
|
|
}
|
|
|
|
|
|
/* Add PHI arguments queued in PENDING_STMT list on edge E to edge
|
|
E->dest. */
|
|
|
|
void
|
|
flush_pending_stmts (edge e)
|
|
{
|
|
gphi *phi;
|
|
edge_var_map *vm;
|
|
int i;
|
|
gphi_iterator gsi;
|
|
|
|
vec<edge_var_map> *v = redirect_edge_var_map_vector (e);
|
|
if (!v)
|
|
return;
|
|
|
|
for (gsi = gsi_start_phis (e->dest), i = 0;
|
|
!gsi_end_p (gsi) && v->iterate (i, &vm);
|
|
gsi_next (&gsi), i++)
|
|
{
|
|
tree def;
|
|
|
|
phi = gsi.phi ();
|
|
def = redirect_edge_var_map_def (vm);
|
|
add_phi_arg (phi, def, e, redirect_edge_var_map_location (vm));
|
|
}
|
|
|
|
redirect_edge_var_map_clear (e);
|
|
}
|
|
|
|
/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
|
|
GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
|
|
expression with a different value.
|
|
|
|
This will update any annotations (say debug bind stmts) referring
|
|
to the original LHS, so that they use the RHS instead. This is
|
|
done even if NLHS and LHS are the same, for it is understood that
|
|
the RHS will be modified afterwards, and NLHS will not be assigned
|
|
an equivalent value.
|
|
|
|
Adjusting any non-annotation uses of the LHS, if needed, is a
|
|
responsibility of the caller.
|
|
|
|
The effect of this call should be pretty much the same as that of
|
|
inserting a copy of STMT before STMT, and then removing the
|
|
original stmt, at which time gsi_remove() would have update
|
|
annotations, but using this function saves all the inserting,
|
|
copying and removing. */
|
|
|
|
void
|
|
gimple_replace_ssa_lhs (gimple *stmt, tree nlhs)
|
|
{
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS)
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
|
|
gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
|
|
|
|
insert_debug_temp_for_var_def (NULL, lhs);
|
|
}
|
|
|
|
gimple_set_lhs (stmt, nlhs);
|
|
}
|
|
|
|
|
|
/* Given a tree for an expression for which we might want to emit
|
|
locations or values in debug information (generally a variable, but
|
|
we might deal with other kinds of trees in the future), return the
|
|
tree that should be used as the variable of a DEBUG_BIND STMT or
|
|
VAR_LOCATION INSN or NOTE. Return NULL if VAR is not to be tracked. */
|
|
|
|
tree
|
|
target_for_debug_bind (tree var)
|
|
{
|
|
if (!MAY_HAVE_DEBUG_BIND_STMTS)
|
|
return NULL_TREE;
|
|
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
{
|
|
var = SSA_NAME_VAR (var);
|
|
if (var == NULL_TREE)
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if ((!VAR_P (var) || VAR_DECL_IS_VIRTUAL_OPERAND (var))
|
|
&& TREE_CODE (var) != PARM_DECL)
|
|
return NULL_TREE;
|
|
|
|
if (DECL_HAS_VALUE_EXPR_P (var))
|
|
return target_for_debug_bind (DECL_VALUE_EXPR (var));
|
|
|
|
if (DECL_IGNORED_P (var))
|
|
return NULL_TREE;
|
|
|
|
/* var-tracking only tracks registers. */
|
|
if (!is_gimple_reg_type (TREE_TYPE (var)))
|
|
return NULL_TREE;
|
|
|
|
return var;
|
|
}
|
|
|
|
/* Called via walk_tree, look for SSA_NAMEs that have already been
|
|
released. */
|
|
|
|
static tree
|
|
find_released_ssa_name (tree *tp, int *walk_subtrees, void *data_)
|
|
{
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
|
|
|
|
if (wi && wi->is_lhs)
|
|
return NULL_TREE;
|
|
|
|
if (TREE_CODE (*tp) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IN_FREE_LIST (*tp))
|
|
return *tp;
|
|
|
|
*walk_subtrees = 0;
|
|
}
|
|
else if (IS_TYPE_OR_DECL_P (*tp))
|
|
*walk_subtrees = 0;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Insert a DEBUG BIND stmt before the DEF of VAR if VAR is referenced
|
|
by other DEBUG stmts, and replace uses of the DEF with the
|
|
newly-created debug temp. */
|
|
|
|
void
|
|
insert_debug_temp_for_var_def (gimple_stmt_iterator *gsi, tree var)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple *stmt;
|
|
gimple *def_stmt = NULL;
|
|
int usecount = 0;
|
|
tree value = NULL;
|
|
|
|
if (!MAY_HAVE_DEBUG_BIND_STMTS)
|
|
return;
|
|
|
|
/* If this name has already been registered for replacement, do nothing
|
|
as anything that uses this name isn't in SSA form. */
|
|
if (name_registered_for_update_p (var))
|
|
return;
|
|
|
|
/* Check whether there are debug stmts that reference this variable and,
|
|
if there are, decide whether we should use a debug temp. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
|
|
{
|
|
stmt = USE_STMT (use_p);
|
|
|
|
if (!gimple_debug_bind_p (stmt))
|
|
continue;
|
|
|
|
if (usecount++)
|
|
break;
|
|
|
|
if (gimple_debug_bind_get_value (stmt) != var)
|
|
{
|
|
/* Count this as an additional use, so as to make sure we
|
|
use a temp unless VAR's definition has a SINGLE_RHS that
|
|
can be shared. */
|
|
usecount++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!usecount)
|
|
return;
|
|
|
|
if (gsi)
|
|
def_stmt = gsi_stmt (*gsi);
|
|
else
|
|
def_stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
/* If we didn't get an insertion point, and the stmt has already
|
|
been removed, we won't be able to insert the debug bind stmt, so
|
|
we'll have to drop debug information. */
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI)
|
|
{
|
|
value = degenerate_phi_result (as_a <gphi *> (def_stmt));
|
|
if (value && walk_tree (&value, find_released_ssa_name, NULL, NULL))
|
|
value = NULL;
|
|
/* error_mark_node is what fixup_noreturn_call changes PHI arguments
|
|
to. */
|
|
else if (value == error_mark_node)
|
|
value = NULL;
|
|
}
|
|
else if (is_gimple_assign (def_stmt))
|
|
{
|
|
bool no_value = false;
|
|
|
|
if (!dom_info_available_p (CDI_DOMINATORS))
|
|
{
|
|
struct walk_stmt_info wi;
|
|
|
|
memset (&wi, 0, sizeof (wi));
|
|
|
|
/* When removing blocks without following reverse dominance
|
|
order, we may sometimes encounter SSA_NAMEs that have
|
|
already been released, referenced in other SSA_DEFs that
|
|
we're about to release. Consider:
|
|
|
|
<bb X>:
|
|
v_1 = foo;
|
|
|
|
<bb Y>:
|
|
w_2 = v_1 + bar;
|
|
# DEBUG w => w_2
|
|
|
|
If we deleted BB X first, propagating the value of w_2
|
|
won't do us any good. It's too late to recover their
|
|
original definition of v_1: when it was deleted, it was
|
|
only referenced in other DEFs, it couldn't possibly know
|
|
it should have been retained, and propagating every
|
|
single DEF just in case it might have to be propagated
|
|
into a DEBUG STMT would probably be too wasteful.
|
|
|
|
When dominator information is not readily available, we
|
|
check for and accept some loss of debug information. But
|
|
if it is available, there's no excuse for us to remove
|
|
blocks in the wrong order, so we don't even check for
|
|
dead SSA NAMEs. SSA verification shall catch any
|
|
errors. */
|
|
if ((!gsi && !gimple_bb (def_stmt))
|
|
|| walk_gimple_op (def_stmt, find_released_ssa_name, &wi))
|
|
no_value = true;
|
|
}
|
|
|
|
if (!no_value)
|
|
value = gimple_assign_rhs_to_tree (def_stmt);
|
|
}
|
|
|
|
if (value)
|
|
{
|
|
/* If there's a single use of VAR, and VAR is the entire debug
|
|
expression (usecount would have been incremented again
|
|
otherwise), and the definition involves only constants and
|
|
SSA names, then we can propagate VALUE into this single use,
|
|
avoiding the temp.
|
|
|
|
We can also avoid using a temp if VALUE can be shared and
|
|
propagated into all uses, without generating expressions that
|
|
wouldn't be valid gimple RHSs.
|
|
|
|
Other cases that would require unsharing or non-gimple RHSs
|
|
are deferred to a debug temp, although we could avoid temps
|
|
at the expense of duplication of expressions. */
|
|
|
|
if (CONSTANT_CLASS_P (value)
|
|
|| gimple_code (def_stmt) == GIMPLE_PHI
|
|
|| (usecount == 1
|
|
&& (!gimple_assign_single_p (def_stmt)
|
|
|| is_gimple_min_invariant (value)))
|
|
|| is_gimple_reg (value))
|
|
;
|
|
else
|
|
{
|
|
gdebug *def_temp;
|
|
tree vexpr = make_node (DEBUG_EXPR_DECL);
|
|
|
|
def_temp = gimple_build_debug_bind (vexpr,
|
|
unshare_expr (value),
|
|
def_stmt);
|
|
|
|
DECL_ARTIFICIAL (vexpr) = 1;
|
|
TREE_TYPE (vexpr) = TREE_TYPE (value);
|
|
if (DECL_P (value))
|
|
SET_DECL_MODE (vexpr, DECL_MODE (value));
|
|
else
|
|
SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (value)));
|
|
|
|
if (gsi)
|
|
gsi_insert_before (gsi, def_temp, GSI_SAME_STMT);
|
|
else
|
|
{
|
|
gimple_stmt_iterator ngsi = gsi_for_stmt (def_stmt);
|
|
gsi_insert_before (&ngsi, def_temp, GSI_SAME_STMT);
|
|
}
|
|
|
|
value = vexpr;
|
|
}
|
|
}
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
|
|
{
|
|
if (!gimple_debug_bind_p (stmt))
|
|
continue;
|
|
|
|
if (value)
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
/* unshare_expr is not needed here. vexpr is either a
|
|
SINGLE_RHS, that can be safely shared, some other RHS
|
|
that was unshared when we found it had a single debug
|
|
use, or a DEBUG_EXPR_DECL, that can be safely
|
|
shared. */
|
|
SET_USE (use_p, unshare_expr (value));
|
|
/* If we didn't replace uses with a debug decl fold the
|
|
resulting expression. Otherwise we end up with invalid IL. */
|
|
if (TREE_CODE (value) != DEBUG_EXPR_DECL)
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
fold_stmt_inplace (&gsi);
|
|
}
|
|
}
|
|
else
|
|
gimple_debug_bind_reset_value (stmt);
|
|
|
|
update_stmt (stmt);
|
|
}
|
|
}
|
|
|
|
|
|
/* Insert a DEBUG BIND stmt before STMT for each DEF referenced by
|
|
other DEBUG stmts, and replace uses of the DEF with the
|
|
newly-created debug temp. */
|
|
|
|
void
|
|
insert_debug_temps_for_defs (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt;
|
|
ssa_op_iter op_iter;
|
|
def_operand_p def_p;
|
|
|
|
if (!MAY_HAVE_DEBUG_BIND_STMTS)
|
|
return;
|
|
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
tree var = DEF_FROM_PTR (def_p);
|
|
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
continue;
|
|
|
|
insert_debug_temp_for_var_def (gsi, var);
|
|
}
|
|
}
|
|
|
|
/* Reset all debug stmts that use SSA_NAME(s) defined in STMT. */
|
|
|
|
void
|
|
reset_debug_uses (gimple *stmt)
|
|
{
|
|
ssa_op_iter op_iter;
|
|
def_operand_p def_p;
|
|
imm_use_iterator imm_iter;
|
|
gimple *use_stmt;
|
|
|
|
if (!MAY_HAVE_DEBUG_BIND_STMTS)
|
|
return;
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
tree var = DEF_FROM_PTR (def_p);
|
|
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
continue;
|
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, var)
|
|
{
|
|
if (!gimple_debug_bind_p (use_stmt))
|
|
continue;
|
|
|
|
gimple_debug_bind_reset_value (use_stmt);
|
|
update_stmt (use_stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Delete SSA DEFs for SSA versions in the TOREMOVE bitmap, removing
|
|
dominated stmts before their dominators, so that release_ssa_defs
|
|
stands a chance of propagating DEFs into debug bind stmts. */
|
|
|
|
void
|
|
release_defs_bitset (bitmap toremove)
|
|
{
|
|
unsigned j;
|
|
bitmap_iterator bi;
|
|
|
|
/* Performing a topological sort is probably overkill, this will
|
|
most likely run in slightly superlinear time, rather than the
|
|
pathological quadratic worst case. */
|
|
while (!bitmap_empty_p (toremove))
|
|
{
|
|
unsigned to_remove_bit = -1U;
|
|
EXECUTE_IF_SET_IN_BITMAP (toremove, 0, j, bi)
|
|
{
|
|
if (to_remove_bit != -1U)
|
|
{
|
|
bitmap_clear_bit (toremove, to_remove_bit);
|
|
to_remove_bit = -1U;
|
|
}
|
|
|
|
bool remove_now = true;
|
|
tree var = ssa_name (j);
|
|
gimple *stmt;
|
|
imm_use_iterator uit;
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, uit, var)
|
|
{
|
|
ssa_op_iter dit;
|
|
def_operand_p def_p;
|
|
|
|
/* We can't propagate PHI nodes into debug stmts. */
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
|| is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
/* If we find another definition to remove that uses
|
|
the one we're looking at, defer the removal of this
|
|
one, so that it can be propagated into debug stmts
|
|
after the other is. */
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, dit, SSA_OP_DEF)
|
|
{
|
|
tree odef = DEF_FROM_PTR (def_p);
|
|
|
|
if (bitmap_bit_p (toremove, SSA_NAME_VERSION (odef)))
|
|
{
|
|
remove_now = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!remove_now)
|
|
BREAK_FROM_IMM_USE_STMT (uit);
|
|
}
|
|
|
|
if (remove_now)
|
|
{
|
|
gimple *def = SSA_NAME_DEF_STMT (var);
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (def);
|
|
|
|
if (gimple_code (def) == GIMPLE_PHI)
|
|
remove_phi_node (&gsi, true);
|
|
else
|
|
{
|
|
gsi_remove (&gsi, true);
|
|
release_defs (def);
|
|
}
|
|
|
|
to_remove_bit = j;
|
|
}
|
|
}
|
|
if (to_remove_bit != -1U)
|
|
bitmap_clear_bit (toremove, to_remove_bit);
|
|
}
|
|
|
|
}
|
|
|
|
/* Verify virtual SSA form. */
|
|
|
|
bool
|
|
verify_vssa (basic_block bb, tree current_vdef, sbitmap visited)
|
|
{
|
|
bool err = false;
|
|
|
|
if (bitmap_bit_p (visited, bb->index))
|
|
return false;
|
|
|
|
bitmap_set_bit (visited, bb->index);
|
|
|
|
/* Pick up the single virtual PHI def. */
|
|
gphi *phi = NULL;
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
tree res = gimple_phi_result (si.phi ());
|
|
if (virtual_operand_p (res))
|
|
{
|
|
if (phi)
|
|
{
|
|
error ("multiple virtual PHI nodes in BB %d", bb->index);
|
|
print_gimple_stmt (stderr, phi, 0);
|
|
print_gimple_stmt (stderr, si.phi (), 0);
|
|
err = true;
|
|
}
|
|
else
|
|
phi = si.phi ();
|
|
}
|
|
}
|
|
if (phi)
|
|
{
|
|
current_vdef = gimple_phi_result (phi);
|
|
if (TREE_CODE (current_vdef) != SSA_NAME)
|
|
{
|
|
error ("virtual definition is not an SSA name");
|
|
print_gimple_stmt (stderr, phi, 0);
|
|
err = true;
|
|
}
|
|
}
|
|
|
|
/* Verify stmts. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
tree vuse = gimple_vuse (stmt);
|
|
if (vuse)
|
|
{
|
|
if (vuse != current_vdef)
|
|
{
|
|
error ("stmt with wrong VUSE");
|
|
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
|
|
fprintf (stderr, "expected ");
|
|
print_generic_expr (stderr, current_vdef);
|
|
fprintf (stderr, "\n");
|
|
err = true;
|
|
}
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef)
|
|
{
|
|
current_vdef = vdef;
|
|
if (TREE_CODE (current_vdef) != SSA_NAME)
|
|
{
|
|
error ("virtual definition is not an SSA name");
|
|
print_gimple_stmt (stderr, phi, 0);
|
|
err = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Verify destination PHI uses and recurse. */
|
|
edge_iterator ei;
|
|
edge e;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
gphi *phi = get_virtual_phi (e->dest);
|
|
if (phi
|
|
&& PHI_ARG_DEF_FROM_EDGE (phi, e) != current_vdef)
|
|
{
|
|
error ("PHI node with wrong VUSE on edge from BB %d",
|
|
e->src->index);
|
|
print_gimple_stmt (stderr, phi, 0, TDF_VOPS);
|
|
fprintf (stderr, "expected ");
|
|
print_generic_expr (stderr, current_vdef);
|
|
fprintf (stderr, "\n");
|
|
err = true;
|
|
}
|
|
|
|
/* Recurse. */
|
|
err |= verify_vssa (e->dest, current_vdef, visited);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Return true if SSA_NAME is malformed and mark it visited.
|
|
|
|
IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
|
|
operand. */
|
|
|
|
static bool
|
|
verify_ssa_name (tree ssa_name, bool is_virtual)
|
|
{
|
|
if (TREE_CODE (ssa_name) != SSA_NAME)
|
|
{
|
|
error ("expected an SSA_NAME object");
|
|
return true;
|
|
}
|
|
|
|
if (SSA_NAME_IN_FREE_LIST (ssa_name))
|
|
{
|
|
error ("found an SSA_NAME that had been released into the free pool");
|
|
return true;
|
|
}
|
|
|
|
if (SSA_NAME_VAR (ssa_name) != NULL_TREE
|
|
&& TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
|
|
{
|
|
error ("type mismatch between an SSA_NAME and its symbol");
|
|
return true;
|
|
}
|
|
|
|
if (is_virtual && !virtual_operand_p (ssa_name))
|
|
{
|
|
error ("found a virtual definition for a GIMPLE register");
|
|
return true;
|
|
}
|
|
|
|
if (is_virtual && SSA_NAME_VAR (ssa_name) != gimple_vop (cfun))
|
|
{
|
|
error ("virtual SSA name for non-VOP decl");
|
|
return true;
|
|
}
|
|
|
|
if (!is_virtual && virtual_operand_p (ssa_name))
|
|
{
|
|
error ("found a real definition for a non-register");
|
|
return true;
|
|
}
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
|
|
&& !gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
|
|
{
|
|
error ("found a default name with a non-empty defining statement");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return true if the definition of SSA_NAME at block BB is malformed.
|
|
|
|
STMT is the statement where SSA_NAME is created.
|
|
|
|
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
|
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
|
it means that the block in that array slot contains the
|
|
definition of SSA_NAME.
|
|
|
|
IS_VIRTUAL is true if SSA_NAME is created by a VDEF. */
|
|
|
|
static bool
|
|
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
|
|
gimple *stmt, bool is_virtual)
|
|
{
|
|
if (verify_ssa_name (ssa_name, is_virtual))
|
|
goto err;
|
|
|
|
if (SSA_NAME_VAR (ssa_name)
|
|
&& TREE_CODE (SSA_NAME_VAR (ssa_name)) == RESULT_DECL
|
|
&& DECL_BY_REFERENCE (SSA_NAME_VAR (ssa_name)))
|
|
{
|
|
error ("RESULT_DECL should be read only when DECL_BY_REFERENCE is set");
|
|
goto err;
|
|
}
|
|
|
|
if (definition_block[SSA_NAME_VERSION (ssa_name)])
|
|
{
|
|
error ("SSA_NAME created in two different blocks %i and %i",
|
|
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
|
|
goto err;
|
|
}
|
|
|
|
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
|
|
|
|
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
|
|
{
|
|
error ("SSA_NAME_DEF_STMT is wrong");
|
|
fprintf (stderr, "Expected definition statement:\n");
|
|
print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), 4, TDF_VOPS);
|
|
fprintf (stderr, "\nActual definition statement:\n");
|
|
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
|
|
goto err;
|
|
}
|
|
|
|
return false;
|
|
|
|
err:
|
|
fprintf (stderr, "while verifying SSA_NAME ");
|
|
print_generic_expr (stderr, ssa_name);
|
|
fprintf (stderr, " in statement\n");
|
|
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return true if the use of SSA_NAME at statement STMT in block BB is
|
|
malformed.
|
|
|
|
DEF_BB is the block where SSA_NAME was found to be created.
|
|
|
|
IDOM contains immediate dominator information for the flowgraph.
|
|
|
|
CHECK_ABNORMAL is true if the caller wants to check whether this use
|
|
is flowing through an abnormal edge (only used when checking PHI
|
|
arguments).
|
|
|
|
If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
|
|
that are defined before STMT in basic block BB. */
|
|
|
|
static bool
|
|
verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
|
|
gimple *stmt, bool check_abnormal, bitmap names_defined_in_bb)
|
|
{
|
|
bool err = false;
|
|
tree ssa_name = USE_FROM_PTR (use_p);
|
|
|
|
if (!TREE_VISITED (ssa_name))
|
|
if (verify_imm_links (stderr, ssa_name))
|
|
err = true;
|
|
|
|
TREE_VISITED (ssa_name) = 1;
|
|
|
|
if (gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))
|
|
&& SSA_NAME_IS_DEFAULT_DEF (ssa_name))
|
|
; /* Default definitions have empty statements. Nothing to do. */
|
|
else if (!def_bb)
|
|
{
|
|
error ("missing definition");
|
|
err = true;
|
|
}
|
|
else if (bb != def_bb
|
|
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
|
{
|
|
error ("definition in block %i does not dominate use in block %i",
|
|
def_bb->index, bb->index);
|
|
err = true;
|
|
}
|
|
else if (bb == def_bb
|
|
&& names_defined_in_bb != NULL
|
|
&& !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
|
|
{
|
|
error ("definition in block %i follows the use", def_bb->index);
|
|
err = true;
|
|
}
|
|
|
|
if (check_abnormal
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
|
{
|
|
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
|
|
err = true;
|
|
}
|
|
|
|
/* Make sure the use is in an appropriate list by checking the previous
|
|
element to make sure it's the same. */
|
|
if (use_p->prev == NULL)
|
|
{
|
|
error ("no immediate_use list");
|
|
err = true;
|
|
}
|
|
else
|
|
{
|
|
tree listvar;
|
|
if (use_p->prev->use == NULL)
|
|
listvar = use_p->prev->loc.ssa_name;
|
|
else
|
|
listvar = USE_FROM_PTR (use_p->prev);
|
|
if (listvar != ssa_name)
|
|
{
|
|
error ("wrong immediate use list");
|
|
err = true;
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
{
|
|
fprintf (stderr, "for SSA_NAME: ");
|
|
print_generic_expr (stderr, ssa_name, TDF_VOPS);
|
|
fprintf (stderr, " in statement:\n");
|
|
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Return true if any of the arguments for PHI node PHI at block BB is
|
|
malformed.
|
|
|
|
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
|
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
|
it means that the block in that array slot contains the
|
|
definition of SSA_NAME. */
|
|
|
|
static bool
|
|
verify_phi_args (gphi *phi, basic_block bb, basic_block *definition_block)
|
|
{
|
|
edge e;
|
|
bool err = false;
|
|
size_t i, phi_num_args = gimple_phi_num_args (phi);
|
|
|
|
if (EDGE_COUNT (bb->preds) != phi_num_args)
|
|
{
|
|
error ("incoming edge count does not match number of PHI arguments");
|
|
err = true;
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < phi_num_args; i++)
|
|
{
|
|
use_operand_p op_p = gimple_phi_arg_imm_use_ptr (phi, i);
|
|
tree op = USE_FROM_PTR (op_p);
|
|
|
|
e = EDGE_PRED (bb, i);
|
|
|
|
if (op == NULL_TREE)
|
|
{
|
|
error ("PHI argument is missing for edge %d->%d",
|
|
e->src->index,
|
|
e->dest->index);
|
|
err = true;
|
|
goto error;
|
|
}
|
|
|
|
if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
|
|
{
|
|
error ("PHI argument is not SSA_NAME, or invariant");
|
|
err = true;
|
|
}
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
err = verify_ssa_name (op, virtual_operand_p (gimple_phi_result (phi)));
|
|
err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)],
|
|
op_p, phi, e->flags & EDGE_ABNORMAL, NULL);
|
|
}
|
|
|
|
if (TREE_CODE (op) == ADDR_EXPR)
|
|
{
|
|
tree base = TREE_OPERAND (op, 0);
|
|
while (handled_component_p (base))
|
|
base = TREE_OPERAND (base, 0);
|
|
if ((VAR_P (base)
|
|
|| TREE_CODE (base) == PARM_DECL
|
|
|| TREE_CODE (base) == RESULT_DECL)
|
|
&& !TREE_ADDRESSABLE (base))
|
|
{
|
|
error ("address taken, but ADDRESSABLE bit not set");
|
|
err = true;
|
|
}
|
|
}
|
|
|
|
if (e->dest != bb)
|
|
{
|
|
error ("wrong edge %d->%d for PHI argument",
|
|
e->src->index, e->dest->index);
|
|
err = true;
|
|
}
|
|
|
|
if (err)
|
|
{
|
|
fprintf (stderr, "PHI argument\n");
|
|
print_generic_stmt (stderr, op, TDF_VOPS);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
error:
|
|
if (err)
|
|
{
|
|
fprintf (stderr, "for PHI node\n");
|
|
print_gimple_stmt (stderr, phi, 0, TDF_VOPS|TDF_MEMSYMS);
|
|
}
|
|
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Verify common invariants in the SSA web.
|
|
TODO: verify the variable annotations. */
|
|
|
|
DEBUG_FUNCTION void
|
|
verify_ssa (bool check_modified_stmt, bool check_ssa_operands)
|
|
{
|
|
basic_block bb;
|
|
basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
|
|
ssa_op_iter iter;
|
|
tree op;
|
|
enum dom_state orig_dom_state = dom_info_state (CDI_DOMINATORS);
|
|
auto_bitmap names_defined_in_bb;
|
|
|
|
gcc_assert (!need_ssa_update_p (cfun));
|
|
|
|
timevar_push (TV_TREE_SSA_VERIFY);
|
|
|
|
{
|
|
/* Keep track of SSA names present in the IL. */
|
|
size_t i;
|
|
tree name;
|
|
hash_map <void *, tree> ssa_info;
|
|
|
|
FOR_EACH_SSA_NAME (i, name, cfun)
|
|
{
|
|
gimple *stmt;
|
|
TREE_VISITED (name) = 0;
|
|
|
|
verify_ssa_name (name, virtual_operand_p (name));
|
|
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
|
if (!gimple_nop_p (stmt))
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
if (verify_def (bb, definition_block,
|
|
name, stmt, virtual_operand_p (name)))
|
|
goto err;
|
|
}
|
|
|
|
void *info = NULL;
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)))
|
|
info = SSA_NAME_PTR_INFO (name);
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (name)))
|
|
info = SSA_NAME_RANGE_INFO (name);
|
|
if (info)
|
|
{
|
|
bool existed;
|
|
tree &val = ssa_info.get_or_insert (info, &existed);
|
|
if (existed)
|
|
{
|
|
error ("shared SSA name info");
|
|
print_generic_expr (stderr, val);
|
|
fprintf (stderr, " and ");
|
|
print_generic_expr (stderr, name);
|
|
fprintf (stderr, "\n");
|
|
goto err;
|
|
}
|
|
else
|
|
val = name;
|
|
}
|
|
}
|
|
}
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Now verify all the uses and make sure they agree with the definitions
|
|
found in the previous pass. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
/* Make sure that all edges have a clear 'aux' field. */
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
if (e->aux)
|
|
{
|
|
error ("AUX pointer initialized for edge %d->%d", e->src->index,
|
|
e->dest->index);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Verify the arguments for every PHI node in the block. */
|
|
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
if (verify_phi_args (phi, bb, definition_block))
|
|
goto err;
|
|
|
|
bitmap_set_bit (names_defined_in_bb,
|
|
SSA_NAME_VERSION (gimple_phi_result (phi)));
|
|
}
|
|
|
|
/* Now verify all the uses and vuses in every statement of the block. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
use_operand_p use_p;
|
|
|
|
if (check_modified_stmt && gimple_modified_p (stmt))
|
|
{
|
|
error ("stmt (%p) marked modified after optimization pass: ",
|
|
(void *)stmt);
|
|
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
|
|
goto err;
|
|
}
|
|
|
|
if (check_ssa_operands && verify_ssa_operands (cfun, stmt))
|
|
{
|
|
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
|
|
goto err;
|
|
}
|
|
|
|
if (gimple_debug_bind_p (stmt)
|
|
&& !gimple_debug_bind_has_value_p (stmt))
|
|
continue;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE|SSA_OP_VUSE)
|
|
{
|
|
op = USE_FROM_PTR (use_p);
|
|
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
|
use_p, stmt, false, names_defined_in_bb))
|
|
goto err;
|
|
}
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
if (SSA_NAME_DEF_STMT (op) != stmt)
|
|
{
|
|
error ("SSA_NAME_DEF_STMT is wrong");
|
|
fprintf (stderr, "Expected definition statement:\n");
|
|
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
|
|
fprintf (stderr, "\nActual definition statement:\n");
|
|
print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (op),
|
|
4, TDF_VOPS);
|
|
goto err;
|
|
}
|
|
bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
|
|
}
|
|
}
|
|
|
|
bitmap_clear (names_defined_in_bb);
|
|
}
|
|
|
|
free (definition_block);
|
|
|
|
if (gimple_vop (cfun)
|
|
&& ssa_default_def (cfun, gimple_vop (cfun)))
|
|
{
|
|
auto_sbitmap visited (last_basic_block_for_fn (cfun) + 1);
|
|
bitmap_clear (visited);
|
|
if (verify_vssa (ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
|
ssa_default_def (cfun, gimple_vop (cfun)), visited))
|
|
goto err;
|
|
}
|
|
|
|
/* Restore the dominance information to its prior known state, so
|
|
that we do not perturb the compiler's subsequent behavior. */
|
|
if (orig_dom_state == DOM_NONE)
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
else
|
|
set_dom_info_availability (CDI_DOMINATORS, orig_dom_state);
|
|
|
|
timevar_pop (TV_TREE_SSA_VERIFY);
|
|
return;
|
|
|
|
err:
|
|
internal_error ("verify_ssa failed");
|
|
}
|
|
|
|
|
|
/* Initialize global DFA and SSA structures. */
|
|
|
|
void
|
|
init_tree_ssa (struct function *fn)
|
|
{
|
|
fn->gimple_df = ggc_cleared_alloc<gimple_df> ();
|
|
fn->gimple_df->default_defs = hash_table<ssa_name_hasher>::create_ggc (20);
|
|
pt_solution_reset (&fn->gimple_df->escaped);
|
|
init_ssanames (fn, 0);
|
|
}
|
|
|
|
/* Deallocate memory associated with SSA data structures for FNDECL. */
|
|
|
|
void
|
|
delete_tree_ssa (struct function *fn)
|
|
{
|
|
fini_ssanames (fn);
|
|
|
|
/* We no longer maintain the SSA operand cache at this point. */
|
|
if (ssa_operands_active (fn))
|
|
fini_ssa_operands (fn);
|
|
|
|
fn->gimple_df->default_defs->empty ();
|
|
fn->gimple_df->default_defs = NULL;
|
|
pt_solution_reset (&fn->gimple_df->escaped);
|
|
if (fn->gimple_df->decls_to_pointers != NULL)
|
|
delete fn->gimple_df->decls_to_pointers;
|
|
fn->gimple_df->decls_to_pointers = NULL;
|
|
fn->gimple_df = NULL;
|
|
|
|
/* We no longer need the edge variable maps. */
|
|
redirect_edge_var_map_empty ();
|
|
}
|
|
|
|
/* Return true if EXPR is a useless type conversion, otherwise return
|
|
false. */
|
|
|
|
bool
|
|
tree_ssa_useless_type_conversion (tree expr)
|
|
{
|
|
/* If we have an assignment that merely uses a NOP_EXPR to change
|
|
the top of the RHS to the type of the LHS and the type conversion
|
|
is "safe", then strip away the type conversion so that we can
|
|
enter LHS = RHS into the const_and_copies table. */
|
|
if (CONVERT_EXPR_P (expr)
|
|
|| TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
|
|
return useless_type_conversion_p
|
|
(TREE_TYPE (expr),
|
|
TREE_TYPE (TREE_OPERAND (expr, 0)));
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Strip conversions from EXP according to
|
|
tree_ssa_useless_type_conversion and return the resulting
|
|
expression. */
|
|
|
|
tree
|
|
tree_ssa_strip_useless_type_conversions (tree exp)
|
|
{
|
|
while (tree_ssa_useless_type_conversion (exp))
|
|
exp = TREE_OPERAND (exp, 0);
|
|
return exp;
|
|
}
|
|
|
|
/* Return true if T, as SSA_NAME, has an implicit default defined value. */
|
|
|
|
bool
|
|
ssa_defined_default_def_p (tree t)
|
|
{
|
|
tree var = SSA_NAME_VAR (t);
|
|
|
|
if (!var)
|
|
;
|
|
/* Parameters get their initial value from the function entry. */
|
|
else if (TREE_CODE (var) == PARM_DECL)
|
|
return true;
|
|
/* When returning by reference the return address is actually a hidden
|
|
parameter. */
|
|
else if (TREE_CODE (var) == RESULT_DECL && DECL_BY_REFERENCE (var))
|
|
return true;
|
|
/* Hard register variables get their initial value from the ether. */
|
|
else if (VAR_P (var) && DECL_HARD_REGISTER (var))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return true if T, an SSA_NAME, has an undefined value. PARTIAL is what
|
|
should be returned if the value is only partially undefined. */
|
|
|
|
bool
|
|
ssa_undefined_value_p (tree t, bool partial)
|
|
{
|
|
gimple *def_stmt;
|
|
|
|
if (ssa_defined_default_def_p (t))
|
|
return false;
|
|
|
|
/* The value is undefined iff its definition statement is empty. */
|
|
def_stmt = SSA_NAME_DEF_STMT (t);
|
|
if (gimple_nop_p (def_stmt))
|
|
return true;
|
|
|
|
/* Check if the complex was not only partially defined. */
|
|
if (partial && is_gimple_assign (def_stmt)
|
|
&& gimple_assign_rhs_code (def_stmt) == COMPLEX_EXPR)
|
|
{
|
|
tree rhs1, rhs2;
|
|
|
|
rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
rhs2 = gimple_assign_rhs2 (def_stmt);
|
|
return (TREE_CODE (rhs1) == SSA_NAME && ssa_undefined_value_p (rhs1))
|
|
|| (TREE_CODE (rhs2) == SSA_NAME && ssa_undefined_value_p (rhs2));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return TRUE iff STMT, a gimple statement, references an undefined
|
|
SSA name. */
|
|
|
|
bool
|
|
gimple_uses_undefined_value_p (gimple *stmt)
|
|
{
|
|
ssa_op_iter iter;
|
|
tree op;
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
|
if (ssa_undefined_value_p (op))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/* If necessary, rewrite the base of the reference tree *TP from
|
|
a MEM_REF to a plain or converted symbol. */
|
|
|
|
static void
|
|
maybe_rewrite_mem_ref_base (tree *tp, bitmap suitable_for_renaming)
|
|
{
|
|
tree sym;
|
|
|
|
while (handled_component_p (*tp))
|
|
tp = &TREE_OPERAND (*tp, 0);
|
|
if (TREE_CODE (*tp) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (*tp, 0)) == ADDR_EXPR
|
|
&& (sym = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0))
|
|
&& DECL_P (sym)
|
|
&& !TREE_ADDRESSABLE (sym)
|
|
&& bitmap_bit_p (suitable_for_renaming, DECL_UID (sym))
|
|
&& is_gimple_reg_type (TREE_TYPE (*tp))
|
|
&& ! VOID_TYPE_P (TREE_TYPE (*tp)))
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (sym)) == VECTOR_TYPE
|
|
&& useless_type_conversion_p (TREE_TYPE (*tp),
|
|
TREE_TYPE (TREE_TYPE (sym)))
|
|
&& multiple_of_p (sizetype, TREE_OPERAND (*tp, 1),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (*tp))))
|
|
{
|
|
*tp = build3 (BIT_FIELD_REF, TREE_TYPE (*tp), sym,
|
|
TYPE_SIZE (TREE_TYPE (*tp)),
|
|
int_const_binop (MULT_EXPR,
|
|
bitsize_int (BITS_PER_UNIT),
|
|
TREE_OPERAND (*tp, 1)));
|
|
}
|
|
else if (TREE_CODE (TREE_TYPE (sym)) == COMPLEX_TYPE
|
|
&& useless_type_conversion_p (TREE_TYPE (*tp),
|
|
TREE_TYPE (TREE_TYPE (sym))))
|
|
{
|
|
*tp = build1 (integer_zerop (TREE_OPERAND (*tp, 1))
|
|
? REALPART_EXPR : IMAGPART_EXPR,
|
|
TREE_TYPE (*tp), sym);
|
|
}
|
|
else if (integer_zerop (TREE_OPERAND (*tp, 1))
|
|
&& DECL_SIZE (sym) == TYPE_SIZE (TREE_TYPE (*tp)))
|
|
{
|
|
if (!useless_type_conversion_p (TREE_TYPE (*tp),
|
|
TREE_TYPE (sym)))
|
|
*tp = build1 (VIEW_CONVERT_EXPR,
|
|
TREE_TYPE (*tp), sym);
|
|
else
|
|
*tp = sym;
|
|
}
|
|
else if (DECL_SIZE (sym)
|
|
&& TREE_CODE (DECL_SIZE (sym)) == INTEGER_CST
|
|
&& (known_subrange_p
|
|
(mem_ref_offset (*tp),
|
|
wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (*tp))),
|
|
0, wi::to_offset (DECL_SIZE_UNIT (sym))))
|
|
&& (! INTEGRAL_TYPE_P (TREE_TYPE (*tp))
|
|
|| (wi::to_offset (TYPE_SIZE (TREE_TYPE (*tp)))
|
|
== TYPE_PRECISION (TREE_TYPE (*tp))))
|
|
&& wi::umod_trunc (wi::to_offset (TYPE_SIZE (TREE_TYPE (*tp))),
|
|
BITS_PER_UNIT) == 0)
|
|
{
|
|
*tp = build3 (BIT_FIELD_REF, TREE_TYPE (*tp), sym,
|
|
TYPE_SIZE (TREE_TYPE (*tp)),
|
|
wide_int_to_tree (bitsizetype,
|
|
mem_ref_offset (*tp)
|
|
<< LOG2_BITS_PER_UNIT));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For a tree REF return its base if it is the base of a MEM_REF
|
|
that cannot be rewritten into SSA form. Otherwise return NULL_TREE. */
|
|
|
|
static tree
|
|
non_rewritable_mem_ref_base (tree ref)
|
|
{
|
|
tree base;
|
|
|
|
/* A plain decl does not need it set. */
|
|
if (DECL_P (ref))
|
|
return NULL_TREE;
|
|
|
|
if (! (base = CONST_CAST_TREE (strip_invariant_refs (ref))))
|
|
{
|
|
base = get_base_address (ref);
|
|
if (DECL_P (base))
|
|
return base;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* But watch out for MEM_REFs we cannot lower to a
|
|
VIEW_CONVERT_EXPR or a BIT_FIELD_REF. */
|
|
if (TREE_CODE (base) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
|
|
{
|
|
tree decl = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
|
|
if (! DECL_P (decl))
|
|
return NULL_TREE;
|
|
if (! is_gimple_reg_type (TREE_TYPE (base))
|
|
|| VOID_TYPE_P (TREE_TYPE (base))
|
|
|| TREE_THIS_VOLATILE (decl) != TREE_THIS_VOLATILE (base))
|
|
return decl;
|
|
if ((TREE_CODE (TREE_TYPE (decl)) == VECTOR_TYPE
|
|
|| TREE_CODE (TREE_TYPE (decl)) == COMPLEX_TYPE)
|
|
&& useless_type_conversion_p (TREE_TYPE (base),
|
|
TREE_TYPE (TREE_TYPE (decl)))
|
|
&& known_ge (mem_ref_offset (base), 0)
|
|
&& known_gt (wi::to_poly_offset (TYPE_SIZE_UNIT (TREE_TYPE (decl))),
|
|
mem_ref_offset (base))
|
|
&& multiple_of_p (sizetype, TREE_OPERAND (base, 1),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (base))))
|
|
return NULL_TREE;
|
|
/* For same sizes and zero offset we can use a VIEW_CONVERT_EXPR. */
|
|
if (integer_zerop (TREE_OPERAND (base, 1))
|
|
&& DECL_SIZE (decl) == TYPE_SIZE (TREE_TYPE (base)))
|
|
return NULL_TREE;
|
|
/* For integral typed extracts we can use a BIT_FIELD_REF. */
|
|
if (DECL_SIZE (decl)
|
|
&& (known_subrange_p
|
|
(mem_ref_offset (base),
|
|
wi::to_poly_offset (TYPE_SIZE_UNIT (TREE_TYPE (base))),
|
|
0, wi::to_poly_offset (DECL_SIZE_UNIT (decl))))
|
|
/* ??? We can't handle bitfield precision extracts without
|
|
either using an alternate type for the BIT_FIELD_REF and
|
|
then doing a conversion or possibly adjusting the offset
|
|
according to endianness. */
|
|
&& (! INTEGRAL_TYPE_P (TREE_TYPE (base))
|
|
|| (wi::to_offset (TYPE_SIZE (TREE_TYPE (base)))
|
|
== TYPE_PRECISION (TREE_TYPE (base))))
|
|
&& wi::umod_trunc (wi::to_offset (TYPE_SIZE (TREE_TYPE (base))),
|
|
BITS_PER_UNIT) == 0)
|
|
return NULL_TREE;
|
|
return decl;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* For an lvalue tree LHS return true if it cannot be rewritten into SSA form.
|
|
Otherwise return true. */
|
|
|
|
static bool
|
|
non_rewritable_lvalue_p (tree lhs)
|
|
{
|
|
/* A plain decl is always rewritable. */
|
|
if (DECL_P (lhs))
|
|
return false;
|
|
|
|
/* We can re-write REALPART_EXPR and IMAGPART_EXPR sets in
|
|
a reasonably efficient manner... */
|
|
if ((TREE_CODE (lhs) == REALPART_EXPR
|
|
|| TREE_CODE (lhs) == IMAGPART_EXPR)
|
|
&& DECL_P (TREE_OPERAND (lhs, 0)))
|
|
return false;
|
|
|
|
/* ??? The following could be relaxed allowing component
|
|
references that do not change the access size. */
|
|
if (TREE_CODE (lhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == ADDR_EXPR)
|
|
{
|
|
tree decl = TREE_OPERAND (TREE_OPERAND (lhs, 0), 0);
|
|
|
|
/* A decl that is wrapped inside a MEM-REF that covers
|
|
it full is also rewritable. */
|
|
if (integer_zerop (TREE_OPERAND (lhs, 1))
|
|
&& DECL_P (decl)
|
|
&& DECL_SIZE (decl) == TYPE_SIZE (TREE_TYPE (lhs))
|
|
/* If the dynamic type of the decl has larger precision than
|
|
the decl itself we can't use the decls type for SSA rewriting. */
|
|
&& ((! INTEGRAL_TYPE_P (TREE_TYPE (decl))
|
|
|| compare_tree_int (DECL_SIZE (decl),
|
|
TYPE_PRECISION (TREE_TYPE (decl))) == 0)
|
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|
&& (TYPE_PRECISION (TREE_TYPE (decl))
|
|
>= TYPE_PRECISION (TREE_TYPE (lhs)))))
|
|
/* Make sure we are not re-writing non-float copying into float
|
|
copying as that can incur normalization. */
|
|
&& (! FLOAT_TYPE_P (TREE_TYPE (decl))
|
|
|| types_compatible_p (TREE_TYPE (lhs), TREE_TYPE (decl)))
|
|
&& (TREE_THIS_VOLATILE (decl) == TREE_THIS_VOLATILE (lhs)))
|
|
return false;
|
|
|
|
/* A vector-insert using a MEM_REF or ARRAY_REF is rewritable
|
|
using a BIT_INSERT_EXPR. */
|
|
if (DECL_P (decl)
|
|
&& VECTOR_TYPE_P (TREE_TYPE (decl))
|
|
&& TYPE_MODE (TREE_TYPE (decl)) != BLKmode
|
|
&& operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (lhs)),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (decl))), 0)
|
|
&& known_ge (mem_ref_offset (lhs), 0)
|
|
&& known_gt (wi::to_poly_offset (TYPE_SIZE_UNIT (TREE_TYPE (decl))),
|
|
mem_ref_offset (lhs))
|
|
&& multiple_of_p (sizetype, TREE_OPERAND (lhs, 1),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (lhs))))
|
|
return false;
|
|
}
|
|
|
|
/* A vector-insert using a BIT_FIELD_REF is rewritable using
|
|
BIT_INSERT_EXPR. */
|
|
if (TREE_CODE (lhs) == BIT_FIELD_REF
|
|
&& DECL_P (TREE_OPERAND (lhs, 0))
|
|
&& VECTOR_TYPE_P (TREE_TYPE (TREE_OPERAND (lhs, 0)))
|
|
&& TYPE_MODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) != BLKmode
|
|
&& operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (lhs)),
|
|
TYPE_SIZE_UNIT
|
|
(TREE_TYPE (TREE_TYPE (TREE_OPERAND (lhs, 0)))), 0)
|
|
&& (tree_to_uhwi (TREE_OPERAND (lhs, 2))
|
|
% tree_to_uhwi (TYPE_SIZE (TREE_TYPE (lhs)))) == 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* When possible, clear TREE_ADDRESSABLE bit or set DECL_GIMPLE_REG_P bit and
|
|
mark the variable VAR for conversion into SSA. Return true when updating
|
|
stmts is required. */
|
|
|
|
static void
|
|
maybe_optimize_var (tree var, bitmap addresses_taken, bitmap not_reg_needs,
|
|
bitmap suitable_for_renaming)
|
|
{
|
|
/* Global Variables, result decls cannot be changed. */
|
|
if (is_global_var (var)
|
|
|| TREE_CODE (var) == RESULT_DECL
|
|
|| bitmap_bit_p (addresses_taken, DECL_UID (var)))
|
|
return;
|
|
|
|
if (TREE_ADDRESSABLE (var)
|
|
/* Do not change TREE_ADDRESSABLE if we need to preserve var as
|
|
a non-register. Otherwise we are confused and forget to
|
|
add virtual operands for it. */
|
|
&& (!is_gimple_reg_type (TREE_TYPE (var))
|
|
|| TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE
|
|
|| TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE
|
|
|| !bitmap_bit_p (not_reg_needs, DECL_UID (var))))
|
|
{
|
|
TREE_ADDRESSABLE (var) = 0;
|
|
/* If we cleared TREE_ADDRESSABLE make sure DECL_GIMPLE_REG_P
|
|
is unset if we cannot rewrite the var into SSA. */
|
|
if ((TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE
|
|
|| TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE)
|
|
&& bitmap_bit_p (not_reg_needs, DECL_UID (var)))
|
|
DECL_GIMPLE_REG_P (var) = 0;
|
|
if (is_gimple_reg (var))
|
|
bitmap_set_bit (suitable_for_renaming, DECL_UID (var));
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "No longer having address taken: ");
|
|
print_generic_expr (dump_file, var);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
if (!DECL_GIMPLE_REG_P (var)
|
|
&& !bitmap_bit_p (not_reg_needs, DECL_UID (var))
|
|
&& (TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE
|
|
|| TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE)
|
|
&& !TREE_THIS_VOLATILE (var)
|
|
&& (!VAR_P (var) || !DECL_HARD_REGISTER (var)))
|
|
{
|
|
DECL_GIMPLE_REG_P (var) = 1;
|
|
bitmap_set_bit (suitable_for_renaming, DECL_UID (var));
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Now a gimple register: ");
|
|
print_generic_expr (dump_file, var);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true when STMT is ASAN mark where second argument is an address
|
|
of a local variable. */
|
|
|
|
static bool
|
|
is_asan_mark_p (gimple *stmt)
|
|
{
|
|
if (!gimple_call_internal_p (stmt, IFN_ASAN_MARK))
|
|
return false;
|
|
|
|
tree addr = get_base_address (gimple_call_arg (stmt, 1));
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& VAR_P (TREE_OPERAND (addr, 0)))
|
|
{
|
|
tree var = TREE_OPERAND (addr, 0);
|
|
if (lookup_attribute (ASAN_USE_AFTER_SCOPE_ATTRIBUTE,
|
|
DECL_ATTRIBUTES (var)))
|
|
return false;
|
|
|
|
unsigned addressable = TREE_ADDRESSABLE (var);
|
|
TREE_ADDRESSABLE (var) = 0;
|
|
bool r = is_gimple_reg (var);
|
|
TREE_ADDRESSABLE (var) = addressable;
|
|
return r;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Compute TREE_ADDRESSABLE and DECL_GIMPLE_REG_P for local variables. */
|
|
|
|
void
|
|
execute_update_addresses_taken (void)
|
|
{
|
|
basic_block bb;
|
|
auto_bitmap addresses_taken;
|
|
auto_bitmap not_reg_needs;
|
|
auto_bitmap suitable_for_renaming;
|
|
tree var;
|
|
unsigned i;
|
|
|
|
timevar_push (TV_ADDRESS_TAKEN);
|
|
|
|
/* Collect into ADDRESSES_TAKEN all variables whose address is taken within
|
|
the function body. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
enum gimple_code code = gimple_code (stmt);
|
|
tree decl;
|
|
|
|
if (code == GIMPLE_CALL)
|
|
{
|
|
if (optimize_atomic_compare_exchange_p (stmt))
|
|
{
|
|
/* For __atomic_compare_exchange_N if the second argument
|
|
is &var, don't mark var addressable;
|
|
if it becomes non-addressable, we'll rewrite it into
|
|
ATOMIC_COMPARE_EXCHANGE call. */
|
|
tree arg = gimple_call_arg (stmt, 1);
|
|
gimple_call_set_arg (stmt, 1, null_pointer_node);
|
|
gimple_ior_addresses_taken (addresses_taken, stmt);
|
|
gimple_call_set_arg (stmt, 1, arg);
|
|
}
|
|
else if (is_asan_mark_p (stmt)
|
|
|| gimple_call_internal_p (stmt, IFN_GOMP_SIMT_ENTER))
|
|
;
|
|
else
|
|
gimple_ior_addresses_taken (addresses_taken, stmt);
|
|
}
|
|
else
|
|
/* Note all addresses taken by the stmt. */
|
|
gimple_ior_addresses_taken (addresses_taken, stmt);
|
|
|
|
/* If we have a call or an assignment, see if the lhs contains
|
|
a local decl that requires not to be a gimple register. */
|
|
if (code == GIMPLE_ASSIGN || code == GIMPLE_CALL)
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (lhs
|
|
&& TREE_CODE (lhs) != SSA_NAME
|
|
&& ((code == GIMPLE_CALL && ! DECL_P (lhs))
|
|
|| non_rewritable_lvalue_p (lhs)))
|
|
{
|
|
decl = get_base_address (lhs);
|
|
if (DECL_P (decl))
|
|
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
|
|
}
|
|
}
|
|
|
|
if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
if ((decl = non_rewritable_mem_ref_base (rhs)))
|
|
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
|
|
}
|
|
|
|
else if (code == GIMPLE_CALL)
|
|
{
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if ((decl = non_rewritable_mem_ref_base (arg)))
|
|
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
|
|
}
|
|
}
|
|
|
|
else if (code == GIMPLE_ASM)
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
tree lhs = TREE_VALUE (link);
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
{
|
|
decl = get_base_address (lhs);
|
|
if (DECL_P (decl)
|
|
&& (non_rewritable_lvalue_p (lhs)
|
|
/* We cannot move required conversions from
|
|
the lhs to the rhs in asm statements, so
|
|
require we do not need any. */
|
|
|| !useless_type_conversion_p
|
|
(TREE_TYPE (lhs), TREE_TYPE (decl))))
|
|
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
|
|
}
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
if ((decl = non_rewritable_mem_ref_base (TREE_VALUE (link))))
|
|
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
size_t i;
|
|
gphi *phi = gsi.phi ();
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree op = PHI_ARG_DEF (phi, i), var;
|
|
if (TREE_CODE (op) == ADDR_EXPR
|
|
&& (var = get_base_address (TREE_OPERAND (op, 0))) != NULL
|
|
&& DECL_P (var))
|
|
bitmap_set_bit (addresses_taken, DECL_UID (var));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We cannot iterate over all referenced vars because that can contain
|
|
unused vars from BLOCK trees, which causes code generation differences
|
|
for -g vs. -g0. */
|
|
for (var = DECL_ARGUMENTS (cfun->decl); var; var = DECL_CHAIN (var))
|
|
maybe_optimize_var (var, addresses_taken, not_reg_needs,
|
|
suitable_for_renaming);
|
|
|
|
FOR_EACH_VEC_SAFE_ELT (cfun->local_decls, i, var)
|
|
maybe_optimize_var (var, addresses_taken, not_reg_needs,
|
|
suitable_for_renaming);
|
|
|
|
/* Operand caches need to be recomputed for operands referencing the updated
|
|
variables and operands need to be rewritten to expose bare symbols. */
|
|
if (!bitmap_empty_p (suitable_for_renaming))
|
|
{
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
/* Re-write TARGET_MEM_REFs of symbols we want to
|
|
rewrite into SSA form. */
|
|
if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs, *rhsp = gimple_assign_rhs1_ptr (stmt);
|
|
tree sym;
|
|
|
|
/* Rewrite LHS IMAG/REALPART_EXPR similar to
|
|
gimplify_modify_expr_complex_part. */
|
|
if ((TREE_CODE (lhs) == IMAGPART_EXPR
|
|
|| TREE_CODE (lhs) == REALPART_EXPR)
|
|
&& DECL_P (TREE_OPERAND (lhs, 0))
|
|
&& bitmap_bit_p (suitable_for_renaming,
|
|
DECL_UID (TREE_OPERAND (lhs, 0))))
|
|
{
|
|
tree other = make_ssa_name (TREE_TYPE (lhs));
|
|
tree lrhs = build1 (TREE_CODE (lhs) == IMAGPART_EXPR
|
|
? REALPART_EXPR : IMAGPART_EXPR,
|
|
TREE_TYPE (other),
|
|
TREE_OPERAND (lhs, 0));
|
|
gimple *load = gimple_build_assign (other, lrhs);
|
|
location_t loc = gimple_location (stmt);
|
|
gimple_set_location (load, loc);
|
|
gimple_set_vuse (load, gimple_vuse (stmt));
|
|
gsi_insert_before (&gsi, load, GSI_SAME_STMT);
|
|
gimple_assign_set_lhs (stmt, TREE_OPERAND (lhs, 0));
|
|
gimple_assign_set_rhs_with_ops
|
|
(&gsi, COMPLEX_EXPR,
|
|
TREE_CODE (lhs) == IMAGPART_EXPR
|
|
? other : gimple_assign_rhs1 (stmt),
|
|
TREE_CODE (lhs) == IMAGPART_EXPR
|
|
? gimple_assign_rhs1 (stmt) : other, NULL_TREE);
|
|
stmt = gsi_stmt (gsi);
|
|
unlink_stmt_vdef (stmt);
|
|
update_stmt (stmt);
|
|
continue;
|
|
}
|
|
|
|
/* Rewrite a vector insert via a BIT_FIELD_REF on the LHS
|
|
into a BIT_INSERT_EXPR. */
|
|
if (TREE_CODE (lhs) == BIT_FIELD_REF
|
|
&& DECL_P (TREE_OPERAND (lhs, 0))
|
|
&& bitmap_bit_p (suitable_for_renaming,
|
|
DECL_UID (TREE_OPERAND (lhs, 0)))
|
|
&& VECTOR_TYPE_P (TREE_TYPE (TREE_OPERAND (lhs, 0)))
|
|
&& TYPE_MODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) != BLKmode
|
|
&& operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (lhs)),
|
|
TYPE_SIZE_UNIT (TREE_TYPE
|
|
(TREE_TYPE (TREE_OPERAND (lhs, 0)))),
|
|
0)
|
|
&& (tree_to_uhwi (TREE_OPERAND (lhs, 2))
|
|
% tree_to_uhwi (TYPE_SIZE (TREE_TYPE (lhs))) == 0))
|
|
{
|
|
tree var = TREE_OPERAND (lhs, 0);
|
|
tree val = gimple_assign_rhs1 (stmt);
|
|
if (! types_compatible_p (TREE_TYPE (TREE_TYPE (var)),
|
|
TREE_TYPE (val)))
|
|
{
|
|
tree tem = make_ssa_name (TREE_TYPE (TREE_TYPE (var)));
|
|
gimple *pun
|
|
= gimple_build_assign (tem,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
TREE_TYPE (tem), val));
|
|
gsi_insert_before (&gsi, pun, GSI_SAME_STMT);
|
|
val = tem;
|
|
}
|
|
tree bitpos = TREE_OPERAND (lhs, 2);
|
|
gimple_assign_set_lhs (stmt, var);
|
|
gimple_assign_set_rhs_with_ops
|
|
(&gsi, BIT_INSERT_EXPR, var, val, bitpos);
|
|
stmt = gsi_stmt (gsi);
|
|
unlink_stmt_vdef (stmt);
|
|
update_stmt (stmt);
|
|
continue;
|
|
}
|
|
|
|
/* Rewrite a vector insert using a MEM_REF on the LHS
|
|
into a BIT_INSERT_EXPR. */
|
|
if (TREE_CODE (lhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == ADDR_EXPR
|
|
&& (sym = TREE_OPERAND (TREE_OPERAND (lhs, 0), 0))
|
|
&& DECL_P (sym)
|
|
&& bitmap_bit_p (suitable_for_renaming, DECL_UID (sym))
|
|
&& VECTOR_TYPE_P (TREE_TYPE (sym))
|
|
&& TYPE_MODE (TREE_TYPE (sym)) != BLKmode
|
|
&& operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (lhs)),
|
|
TYPE_SIZE_UNIT
|
|
(TREE_TYPE (TREE_TYPE (sym))), 0)
|
|
&& tree_fits_uhwi_p (TREE_OPERAND (lhs, 1))
|
|
&& tree_int_cst_lt (TREE_OPERAND (lhs, 1),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (sym)))
|
|
&& (tree_to_uhwi (TREE_OPERAND (lhs, 1))
|
|
% tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (lhs)))) == 0)
|
|
{
|
|
tree val = gimple_assign_rhs1 (stmt);
|
|
if (! types_compatible_p (TREE_TYPE (val),
|
|
TREE_TYPE (TREE_TYPE (sym))))
|
|
{
|
|
tree tem = make_ssa_name (TREE_TYPE (TREE_TYPE (sym)));
|
|
gimple *pun
|
|
= gimple_build_assign (tem,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
TREE_TYPE (tem), val));
|
|
gsi_insert_before (&gsi, pun, GSI_SAME_STMT);
|
|
val = tem;
|
|
}
|
|
tree bitpos
|
|
= wide_int_to_tree (bitsizetype,
|
|
mem_ref_offset (lhs) * BITS_PER_UNIT);
|
|
gimple_assign_set_lhs (stmt, sym);
|
|
gimple_assign_set_rhs_with_ops
|
|
(&gsi, BIT_INSERT_EXPR, sym, val, bitpos);
|
|
stmt = gsi_stmt (gsi);
|
|
unlink_stmt_vdef (stmt);
|
|
update_stmt (stmt);
|
|
continue;
|
|
}
|
|
|
|
/* We shouldn't have any fancy wrapping of
|
|
component-refs on the LHS, but look through
|
|
VIEW_CONVERT_EXPRs as that is easy. */
|
|
while (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
|
|
lhs = TREE_OPERAND (lhs, 0);
|
|
if (TREE_CODE (lhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == ADDR_EXPR
|
|
&& integer_zerop (TREE_OPERAND (lhs, 1))
|
|
&& (sym = TREE_OPERAND (TREE_OPERAND (lhs, 0), 0))
|
|
&& DECL_P (sym)
|
|
&& !TREE_ADDRESSABLE (sym)
|
|
&& bitmap_bit_p (suitable_for_renaming, DECL_UID (sym)))
|
|
lhs = sym;
|
|
else
|
|
lhs = gimple_assign_lhs (stmt);
|
|
|
|
/* Rewrite the RHS and make sure the resulting assignment
|
|
is validly typed. */
|
|
maybe_rewrite_mem_ref_base (rhsp, suitable_for_renaming);
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
if (gimple_assign_lhs (stmt) != lhs
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (rhs)))
|
|
{
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
rhs = build_constructor (TREE_TYPE (lhs), NULL);
|
|
TREE_THIS_VOLATILE (rhs) = 1;
|
|
}
|
|
else
|
|
rhs = fold_build1 (VIEW_CONVERT_EXPR,
|
|
TREE_TYPE (lhs), rhs);
|
|
}
|
|
if (gimple_assign_lhs (stmt) != lhs)
|
|
gimple_assign_set_lhs (stmt, lhs);
|
|
|
|
if (gimple_assign_rhs1 (stmt) != rhs)
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
gimple_assign_set_rhs_from_tree (&gsi, rhs);
|
|
}
|
|
}
|
|
|
|
else if (gimple_code (stmt) == GIMPLE_CALL)
|
|
{
|
|
unsigned i;
|
|
if (optimize_atomic_compare_exchange_p (stmt))
|
|
{
|
|
tree expected = gimple_call_arg (stmt, 1);
|
|
if (bitmap_bit_p (suitable_for_renaming,
|
|
DECL_UID (TREE_OPERAND (expected, 0))))
|
|
{
|
|
fold_builtin_atomic_compare_exchange (&gsi);
|
|
continue;
|
|
}
|
|
}
|
|
else if (is_asan_mark_p (stmt))
|
|
{
|
|
tree var = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
|
|
if (bitmap_bit_p (suitable_for_renaming, DECL_UID (var)))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
if (asan_mark_p (stmt, ASAN_MARK_POISON))
|
|
{
|
|
gcall *call
|
|
= gimple_build_call_internal (IFN_ASAN_POISON, 0);
|
|
gimple_call_set_lhs (call, var);
|
|
gsi_replace (&gsi, call, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
/* In ASAN_MARK (UNPOISON, &b, ...) the variable
|
|
is uninitialized. Avoid dependencies on
|
|
previous out of scope value. */
|
|
tree clobber
|
|
= build_constructor (TREE_TYPE (var), NULL);
|
|
TREE_THIS_VOLATILE (clobber) = 1;
|
|
gimple *g = gimple_build_assign (var, clobber);
|
|
gsi_replace (&gsi, g, GSI_SAME_STMT);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
else if (gimple_call_internal_p (stmt, IFN_GOMP_SIMT_ENTER))
|
|
for (i = 1; i < gimple_call_num_args (stmt); i++)
|
|
{
|
|
tree *argp = gimple_call_arg_ptr (stmt, i);
|
|
if (*argp == null_pointer_node)
|
|
continue;
|
|
gcc_assert (TREE_CODE (*argp) == ADDR_EXPR
|
|
&& VAR_P (TREE_OPERAND (*argp, 0)));
|
|
tree var = TREE_OPERAND (*argp, 0);
|
|
if (bitmap_bit_p (suitable_for_renaming, DECL_UID (var)))
|
|
*argp = null_pointer_node;
|
|
}
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
{
|
|
tree *argp = gimple_call_arg_ptr (stmt, i);
|
|
maybe_rewrite_mem_ref_base (argp, suitable_for_renaming);
|
|
}
|
|
}
|
|
|
|
else if (gimple_code (stmt) == GIMPLE_ASM)
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
unsigned i;
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
maybe_rewrite_mem_ref_base (&TREE_VALUE (link),
|
|
suitable_for_renaming);
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
maybe_rewrite_mem_ref_base (&TREE_VALUE (link),
|
|
suitable_for_renaming);
|
|
}
|
|
}
|
|
|
|
else if (gimple_debug_bind_p (stmt)
|
|
&& gimple_debug_bind_has_value_p (stmt))
|
|
{
|
|
tree *valuep = gimple_debug_bind_get_value_ptr (stmt);
|
|
tree decl;
|
|
maybe_rewrite_mem_ref_base (valuep, suitable_for_renaming);
|
|
decl = non_rewritable_mem_ref_base (*valuep);
|
|
if (decl
|
|
&& bitmap_bit_p (suitable_for_renaming, DECL_UID (decl)))
|
|
gimple_debug_bind_reset_value (stmt);
|
|
}
|
|
|
|
if (gimple_references_memory_p (stmt)
|
|
|| is_gimple_debug (stmt))
|
|
update_stmt (stmt);
|
|
|
|
gsi_next (&gsi);
|
|
}
|
|
|
|
/* Update SSA form here, we are called as non-pass as well. */
|
|
if (number_of_loops (cfun) > 1
|
|
&& loops_state_satisfies_p (LOOP_CLOSED_SSA))
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
|
else
|
|
update_ssa (TODO_update_ssa);
|
|
}
|
|
|
|
timevar_pop (TV_ADDRESS_TAKEN);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_update_address_taken =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"addressables", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_ADDRESS_TAKEN, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_update_address_taken, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_update_address_taken : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_update_address_taken (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_update_address_taken, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
|
|
}; // class pass_update_address_taken
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_update_address_taken (gcc::context *ctxt)
|
|
{
|
|
return new pass_update_address_taken (ctxt);
|
|
}
|