linux/drivers/iio/common/st_sensors/st_sensors_core.c

637 lines
16 KiB
C
Raw Normal View History

/*
* STMicroelectronics sensors core library driver
*
* Copyright 2012-2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*
* Licensed under the GPL-2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <asm/unaligned.h>
#include <linux/iio/common/st_sensors.h>
#include "st_sensors_core.h"
static inline u32 st_sensors_get_unaligned_le24(const u8 *p)
{
return (s32)((p[0] | p[1] << 8 | p[2] << 16) << 8) >> 8;
}
int st_sensors_write_data_with_mask(struct iio_dev *indio_dev,
u8 reg_addr, u8 mask, u8 data)
{
int err;
u8 new_data;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = sdata->tf->read_byte(&sdata->tb, sdata->dev, reg_addr, &new_data);
if (err < 0)
goto st_sensors_write_data_with_mask_error;
new_data = ((new_data & (~mask)) | ((data << __ffs(mask)) & mask));
err = sdata->tf->write_byte(&sdata->tb, sdata->dev, reg_addr, new_data);
st_sensors_write_data_with_mask_error:
return err;
}
int st_sensors_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
u8 readdata;
int err;
if (!readval)
return sdata->tf->write_byte(&sdata->tb, sdata->dev,
(u8)reg, (u8)writeval);
err = sdata->tf->read_byte(&sdata->tb, sdata->dev, (u8)reg, &readdata);
if (err < 0)
return err;
*readval = (unsigned)readdata;
return 0;
}
EXPORT_SYMBOL(st_sensors_debugfs_reg_access);
static int st_sensors_match_odr(struct st_sensor_settings *sensor_settings,
unsigned int odr, struct st_sensor_odr_avl *odr_out)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sensor_settings->odr.odr_avl[i].hz == 0)
goto st_sensors_match_odr_error;
if (sensor_settings->odr.odr_avl[i].hz == odr) {
odr_out->hz = sensor_settings->odr.odr_avl[i].hz;
odr_out->value = sensor_settings->odr.odr_avl[i].value;
ret = 0;
break;
}
}
st_sensors_match_odr_error:
return ret;
}
int st_sensors_set_odr(struct iio_dev *indio_dev, unsigned int odr)
{
int err;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = st_sensors_match_odr(sdata->sensor_settings, odr, &odr_out);
if (err < 0)
goto st_sensors_match_odr_error;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
if (sdata->enabled == true) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
} else {
err = 0;
}
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
}
if (err >= 0)
sdata->odr = odr_out.hz;
st_sensors_match_odr_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_odr);
static int st_sensors_match_fs(struct st_sensor_settings *sensor_settings,
unsigned int fs, int *index_fs_avl)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sensor_settings->fs.fs_avl[i].num == 0)
goto st_sensors_match_odr_error;
if (sensor_settings->fs.fs_avl[i].num == fs) {
*index_fs_avl = i;
ret = 0;
break;
}
}
st_sensors_match_odr_error:
return ret;
}
static int st_sensors_set_fullscale(struct iio_dev *indio_dev, unsigned int fs)
{
int err, i = 0;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (sdata->sensor_settings->fs.addr == 0)
return 0;
err = st_sensors_match_fs(sdata->sensor_settings, fs, &i);
if (err < 0)
goto st_accel_set_fullscale_error;
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->fs.addr,
sdata->sensor_settings->fs.mask,
sdata->sensor_settings->fs.fs_avl[i].value);
if (err < 0)
goto st_accel_set_fullscale_error;
sdata->current_fullscale = (struct st_sensor_fullscale_avl *)
&sdata->sensor_settings->fs.fs_avl[i];
return err;
st_accel_set_fullscale_error:
dev_err(&indio_dev->dev, "failed to set new fullscale.\n");
return err;
}
int st_sensors_set_enable(struct iio_dev *indio_dev, bool enable)
{
u8 tmp_value;
int err = -EINVAL;
bool found = false;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (enable) {
tmp_value = sdata->sensor_settings->pw.value_on;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
err = st_sensors_match_odr(sdata->sensor_settings,
sdata->odr, &odr_out);
if (err < 0)
goto set_enable_error;
tmp_value = odr_out.value;
found = true;
}
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask, tmp_value);
if (err < 0)
goto set_enable_error;
sdata->enabled = true;
if (found)
sdata->odr = odr_out.hz;
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask,
sdata->sensor_settings->pw.value_off);
if (err < 0)
goto set_enable_error;
sdata->enabled = false;
}
set_enable_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_enable);
int st_sensors_set_axis_enable(struct iio_dev *indio_dev, u8 axis_enable)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
return st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->enable_axis.addr,
sdata->sensor_settings->enable_axis.mask,
axis_enable);
}
EXPORT_SYMBOL(st_sensors_set_axis_enable);
int st_sensors_power_enable(struct iio_dev *indio_dev)
{
struct st_sensor_data *pdata = iio_priv(indio_dev);
int err;
/* Regulators not mandatory, but if requested we should enable them. */
pdata->vdd = devm_regulator_get(indio_dev->dev.parent, "vdd");
if (IS_ERR(pdata->vdd)) {
dev_err(&indio_dev->dev, "unable to get Vdd supply\n");
return PTR_ERR(pdata->vdd);
}
err = regulator_enable(pdata->vdd);
if (err != 0) {
dev_warn(&indio_dev->dev,
"Failed to enable specified Vdd supply\n");
return err;
}
pdata->vdd_io = devm_regulator_get(indio_dev->dev.parent, "vddio");
if (IS_ERR(pdata->vdd_io)) {
dev_err(&indio_dev->dev, "unable to get Vdd_IO supply\n");
err = PTR_ERR(pdata->vdd_io);
goto st_sensors_disable_vdd;
}
err = regulator_enable(pdata->vdd_io);
if (err != 0) {
dev_warn(&indio_dev->dev,
"Failed to enable specified Vdd_IO supply\n");
goto st_sensors_disable_vdd;
}
return 0;
st_sensors_disable_vdd:
regulator_disable(pdata->vdd);
return err;
}
EXPORT_SYMBOL(st_sensors_power_enable);
void st_sensors_power_disable(struct iio_dev *indio_dev)
{
struct st_sensor_data *pdata = iio_priv(indio_dev);
regulator_disable(pdata->vdd);
regulator_disable(pdata->vdd_io);
}
EXPORT_SYMBOL(st_sensors_power_disable);
static int st_sensors_set_drdy_int_pin(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
/* Sensor does not support interrupts */
if (sdata->sensor_settings->drdy_irq.addr == 0) {
if (pdata->drdy_int_pin)
dev_info(&indio_dev->dev,
"DRDY on pin INT%d specified, but sensor "
"does not support interrupts\n",
pdata->drdy_int_pin);
return 0;
}
switch (pdata->drdy_int_pin) {
case 1:
if (sdata->sensor_settings->drdy_irq.mask_int1 == 0) {
dev_err(&indio_dev->dev,
"DRDY on INT1 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 1;
break;
case 2:
if (sdata->sensor_settings->drdy_irq.mask_int2 == 0) {
dev_err(&indio_dev->dev,
"DRDY on INT2 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 2;
break;
default:
dev_err(&indio_dev->dev, "DRDY on pdata not valid.\n");
return -EINVAL;
}
if (pdata->open_drain) {
if (!sdata->sensor_settings->drdy_irq.addr_od)
dev_err(&indio_dev->dev,
"open drain requested but unsupported.\n");
else
sdata->int_pin_open_drain = true;
}
return 0;
}
#ifdef CONFIG_OF
static struct st_sensors_platform_data *st_sensors_of_probe(struct device *dev,
struct st_sensors_platform_data *defdata)
{
struct st_sensors_platform_data *pdata;
struct device_node *np = dev->of_node;
u32 val;
if (!np)
return NULL;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!of_property_read_u32(np, "st,drdy-int-pin", &val) && (val <= 2))
pdata->drdy_int_pin = (u8) val;
else
pdata->drdy_int_pin = defdata ? defdata->drdy_int_pin : 0;
pdata->open_drain = of_property_read_bool(np, "drive-open-drain");
return pdata;
}
#else
static struct st_sensors_platform_data *st_sensors_of_probe(struct device *dev,
struct st_sensors_platform_data *defdata)
{
return NULL;
}
#endif
int st_sensors_init_sensor(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
struct st_sensors_platform_data *of_pdata;
int err = 0;
/* If OF/DT pdata exists, it will take precedence of anything else */
of_pdata = st_sensors_of_probe(indio_dev->dev.parent, pdata);
if (of_pdata)
pdata = of_pdata;
if (pdata) {
err = st_sensors_set_drdy_int_pin(indio_dev, pdata);
if (err < 0)
return err;
}
err = st_sensors_set_enable(indio_dev, false);
if (err < 0)
return err;
/* Disable DRDY, this might be still be enabled after reboot. */
err = st_sensors_set_dataready_irq(indio_dev, false);
if (err < 0)
return err;
if (sdata->current_fullscale) {
err = st_sensors_set_fullscale(indio_dev,
sdata->current_fullscale->num);
if (err < 0)
return err;
} else
dev_info(&indio_dev->dev, "Full-scale not possible\n");
err = st_sensors_set_odr(indio_dev, sdata->odr);
if (err < 0)
return err;
/* set BDU */
if (sdata->sensor_settings->bdu.addr) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->bdu.addr,
sdata->sensor_settings->bdu.mask, true);
if (err < 0)
return err;
}
if (sdata->int_pin_open_drain) {
dev_info(&indio_dev->dev,
"set interrupt line to open drain mode\n");
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.addr_od,
sdata->sensor_settings->drdy_irq.mask_od, 1);
if (err < 0)
return err;
}
err = st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS);
return err;
}
EXPORT_SYMBOL(st_sensors_init_sensor);
int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable)
{
int err;
u8 drdy_mask;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (!sdata->sensor_settings->drdy_irq.addr)
return 0;
/* Enable/Disable the interrupt generator 1. */
if (sdata->sensor_settings->drdy_irq.ig1.en_addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.ig1.en_addr,
sdata->sensor_settings->drdy_irq.ig1.en_mask,
(int)enable);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
if (sdata->drdy_int_pin == 1)
drdy_mask = sdata->sensor_settings->drdy_irq.mask_int1;
else
drdy_mask = sdata->sensor_settings->drdy_irq.mask_int2;
iio: st_sensors: switch to a threaded interrupt commit 98ad8b41f58dff6b30713d7f09ae3834b8df7ded ("iio: st_sensors: verify interrupt event to status") caused a regression when reading ST sensors from a HRTimer trigger rather than the intrinsic interrupts: the HRTimer may trigger faster than the sensor provides new values, and as the check against new values available as a cause of the interrupt trigger was done in the poll function, this would bail out of the HRTimer interrupt with IRQ_NONE. So clearly we need to only check the new values available from the proper interrupt handler and not from the poll function, which should rather just read the raw values from the registers, put them into the buffer and be happy. To achieve this: switch the ST Sensors over to using a true threaded interrupt handler. In the interrupt thread, check if new values are available, else yield to the (potential) next device on the same interrupt line to check the registers. If the interrupt was ours, proceed to poll the values. Instead of relying on iio_trigger_generic_data_rdy_poll() as a top half to wake up the thread that polls the sensor for new data, have the thread call iio_trigger_poll_chained() after determining that is is the proper source of the interrupt. This is modelled on drivers/iio/accel/mma8452.c which is already using a properly threaded interrupt handler. In order to get the same precision in timestamps as previously, where samples would be timestamped in the poll function pf->timestamp when calling iio_trigger_generic_data_rdy_poll() we introduce a local timestamp in the sensor data, set it in the top half (fastpath) of the interrupt handler and provide that to the core when calling iio_push_to_buffers_with_timestamp(). Additionally: if the active scanmask is not set for the sensor no IRQs should be enabled and we need to bail out with IRQ_NONE. This can happen if spurious IRQs fire when installing the threaded interrupt handler. Tested with hard interrupt triggers on LIS331DL, then also tested with hrtimers on the same sensor by creating a 75Hz HRTimer and using it to poll the sensor. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Cc: Giuseppe Barba <giuseppe.barba@st.com> Cc: Denis Ciocca <denis.ciocca@st.com> Reported-by: Crestez Dan Leonard <cdleonard@gmail.com> Tested-by: Crestez Dan Leonard <cdleonard@gmail.com> Tested-by: Jonathan Cameron <jic23@kernel.org> Fixes: 97865fe41322 ("iio: st_sensors: verify interrupt event to status") Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2016-05-21 20:43:16 +02:00
/* Flag to the poll function that the hardware trigger is in use */
sdata->hw_irq_trigger = enable;
/* Enable/Disable the interrupt generator for data ready. */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.addr,
drdy_mask, (int)enable);
st_accel_set_dataready_irq_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_dataready_irq);
int st_sensors_set_fullscale_by_gain(struct iio_dev *indio_dev, int scale)
{
int err = -EINVAL, i;
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if ((sdata->sensor_settings->fs.fs_avl[i].gain == scale) &&
(sdata->sensor_settings->fs.fs_avl[i].gain != 0)) {
err = 0;
break;
}
}
if (err < 0)
goto st_sensors_match_scale_error;
err = st_sensors_set_fullscale(indio_dev,
sdata->sensor_settings->fs.fs_avl[i].num);
st_sensors_match_scale_error:
return err;
}
EXPORT_SYMBOL(st_sensors_set_fullscale_by_gain);
static int st_sensors_read_axis_data(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *data)
{
int err;
u8 *outdata;
struct st_sensor_data *sdata = iio_priv(indio_dev);
unsigned int byte_for_channel = ch->scan_type.realbits >> 3;
outdata = kmalloc(byte_for_channel, GFP_KERNEL);
if (!outdata)
return -ENOMEM;
err = sdata->tf->read_multiple_byte(&sdata->tb, sdata->dev,
ch->address, byte_for_channel,
outdata, sdata->multiread_bit);
if (err < 0)
goto st_sensors_free_memory;
if (byte_for_channel == 1)
*data = (s8)*outdata;
else if (byte_for_channel == 2)
*data = (s16)get_unaligned_le16(outdata);
else if (byte_for_channel == 3)
*data = (s32)st_sensors_get_unaligned_le24(outdata);
st_sensors_free_memory:
kfree(outdata);
return err;
}
int st_sensors_read_info_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val)
{
int err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
err = -EBUSY;
goto out;
} else {
err = st_sensors_set_enable(indio_dev, true);
if (err < 0)
goto out;
msleep((sdata->sensor_settings->bootime * 1000) / sdata->odr);
err = st_sensors_read_axis_data(indio_dev, ch, val);
if (err < 0)
goto out;
*val = *val >> ch->scan_type.shift;
err = st_sensors_set_enable(indio_dev, false);
}
out:
mutex_unlock(&indio_dev->mlock);
return err;
}
EXPORT_SYMBOL(st_sensors_read_info_raw);
int st_sensors_check_device_support(struct iio_dev *indio_dev,
int num_sensors_list,
const struct st_sensor_settings *sensor_settings)
{
2016-05-22 21:39:29 +02:00
int i, n, err = 0;
u8 wai;
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < num_sensors_list; i++) {
for (n = 0; n < ST_SENSORS_MAX_4WAI; n++) {
if (strcmp(indio_dev->name,
sensor_settings[i].sensors_supported[n]) == 0) {
break;
}
}
if (n < ST_SENSORS_MAX_4WAI)
break;
}
if (i == num_sensors_list) {
dev_err(&indio_dev->dev, "device name %s not recognized.\n",
indio_dev->name);
return -ENODEV;
}
2016-05-22 21:39:29 +02:00
if (sensor_settings[i].wai_addr) {
err = sdata->tf->read_byte(&sdata->tb, sdata->dev,
sensor_settings[i].wai_addr, &wai);
if (err < 0) {
dev_err(&indio_dev->dev,
"failed to read Who-Am-I register.\n");
return err;
}
2016-05-22 21:39:29 +02:00
if (sensor_settings[i].wai != wai) {
dev_err(&indio_dev->dev,
"%s: WhoAmI mismatch (0x%x).\n",
indio_dev->name, wai);
return -EINVAL;
}
}
sdata->sensor_settings =
(struct st_sensor_settings *)&sensor_settings[i];
return i;
}
EXPORT_SYMBOL(st_sensors_check_device_support);
ssize_t st_sensors_sysfs_sampling_frequency_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sdata->sensor_settings->odr.odr_avl[i].hz == 0)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
sdata->sensor_settings->odr.odr_avl[i].hz);
}
mutex_unlock(&indio_dev->mlock);
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL(st_sensors_sysfs_sampling_frequency_avail);
ssize_t st_sensors_sysfs_scale_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sdata->sensor_settings->fs.fs_avl[i].num == 0)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "0.%06u ",
sdata->sensor_settings->fs.fs_avl[i].gain);
}
mutex_unlock(&indio_dev->mlock);
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL(st_sensors_sysfs_scale_avail);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics ST-sensors core");
MODULE_LICENSE("GPL v2");