Let's reparent non-root kmem_caches on memcg offlining. This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g. dentry used by another application).
Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.
Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.
We can race with the slab allocation and deallocation paths. It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats. The child
cgroup is already offline, so we don't use or show it anywhere.
Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes(). But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.
[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every slab page charged to a non-root memory cgroup has a pointer to the
memory cgroup and holds a reference to it, which protects a non-empty
memory cgroup from being released. At the same time the page has a
pointer to the corresponding kmem_cache, and also hold a reference to the
kmem_cache. And kmem_cache by itself holds a reference to the cgroup.
So there is clearly some redundancy, which allows to stop setting the
page->mem_cgroup pointer and rely on getting memcg pointer indirectly via
kmem_cache. Further it will allow to change this pointer easier, without
a need to go over all charged pages.
So let's stop setting page->mem_cgroup pointer for slab pages, and stop
using the css refcounter directly for protecting the memory cgroup from
going away. Instead rely on kmem_cache as an intermediate object.
Make sure that vmstats and shrinker lists are working as previously, as
well as /proc/kpagecgroup interface.
Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently each charged slab page holds a reference to the cgroup to which
it's charged. Kmem_caches are held by the memcg and are released all
together with the memory cgroup. It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.
Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.
To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches. The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation. The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.
To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation. Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.
* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):
time find / -name fname-no-exist
echo 2 > /proc/sys/vm/drop_caches
repeat 10 times
Results:
orig patched
real 0m1.455s real 0m1.355s
user 0m0.206s user 0m0.219s
sys 0m0.855s sys 0m0.807s
real 0m1.487s real 0m1.699s
user 0m0.221s user 0m0.256s
sys 0m0.806s sys 0m0.948s
real 0m1.515s real 0m1.505s
user 0m0.183s user 0m0.215s
sys 0m0.876s sys 0m0.858s
real 0m1.291s real 0m1.380s
user 0m0.193s user 0m0.198s
sys 0m0.843s sys 0m0.786s
real 0m1.364s real 0m1.374s
user 0m0.180s user 0m0.182s
sys 0m0.868s sys 0m0.806s
real 0m1.352s real 0m1.312s
user 0m0.201s user 0m0.212s
sys 0m0.820s sys 0m0.761s
real 0m1.302s real 0m1.349s
user 0m0.205s user 0m0.203s
sys 0m0.803s sys 0m0.792s
real 0m1.334s real 0m1.301s
user 0m0.194s user 0m0.201s
sys 0m0.806s sys 0m0.779s
real 0m1.426s real 0m1.434s
user 0m0.216s user 0m0.181s
sys 0m0.824s sys 0m0.864s
real 0m1.350s real 0m1.295s
user 0m0.200s user 0m0.190s
sys 0m0.842s sys 0m0.811s
So it looks like the difference is not noticeable in this test.
[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.
This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.
Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file. Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup. There are
existing users which depend on this behavior.
However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg. One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system. The jobs can create their sub-hierarchy
for their own sub-tasks. The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs. Using the current memory.events for such
centralized monitor is very inconvenient. The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one. So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.
Now, does memory.stat and memory.pressure need their local versions. IMHO
no due to the no internal process contraint of the cgroup v2. The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree. The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that. Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.
Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM
killer will not be triggered and indeed the page alloc does not invoke OOM
killer for such allocations. However we do trigger memcg OOM killer for
__GFP_RETRY_MAYFAIL. Fix that. This flag will used later to not trigger
oom-killer in the charging path for fanotify and inotify event
allocations.
Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we calculate total statistics for memcg1_stats and memcg1_events,
we use the the index 'i' in the for loop as the events index. Actually
we should use memcg1_stats[i] and memcg1_events[i] as the events index.
Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty").
Signed-off-by: Yafang Shao <laoar.shao@gmail.com
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a3003535 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty"). This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.
We can fix this by getting rid of the batched local counters instead.
Originally, there were *only* group-local counters, and they were fully
maintained per cpu. A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view. This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.
With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level. When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.
This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.
Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.
The scheme will then be as such:
when a memcg statistic changes, the writer will:
- update the local counter (per-cpu)
- update the batch counter (per-cpu). If the batch is full:
- spill the batch into the group's atomic_t
- spill the batch into all ancestors' atomic_ts
- empty out the batch counter (per-cpu)
when a local memcg counter is read, the reader will:
- collect the local counter from all cpus
when a hiearchy memcg counter is read, the reader will:
- read the atomic_t
We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites. Deal with the
immediate regression for now.
Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When a cgroup is reclaimed on behalf of a configured limit, reclaim
needs to round-robin through all NUMA nodes that hold pages of the memcg
in question. However, when assembling the mask of candidate NUMA nodes,
the code only consults the *local* cgroup LRU counters, not the
recursive counters for the entire subtree. Cgroup limits are frequently
configured against intermediate cgroups that do not have memory on their
own LRUs. In this case, the node mask will always come up empty and
reclaim falls back to scanning only the current node.
If a cgroup subtree has some memory on one node but the processes are
bound to another node afterwards, the limit reclaim will never age or
reclaim that memory anymore.
To fix this, use the recursive LRU counts for a cgroup subtree to
determine which nodes hold memory of that cgroup.
The code has been broken like this forever, so it doesn't seem to be a
problem in practice. I just noticed it while reviewing the way the LRU
counters are used in general.
Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.
There are two issues with this:
1. When a cgroup gets deleted, its stats are lost. The state counters
should all be 0 at that point, of course, but the events are not.
When this happens, the event counters, which are supposed to be
monotonic, can go backwards in the parent cgroups.
2. During regular operation, we always have a certain number of lazily
freed cgroups sitting around that have been deleted, have no tasks,
but have a few cache pages remaining. These groups' statistics do not
change until we eventually hit memory pressure, but somebody
watching, say, memory.stat on an ancestor has to iterate those every
time.
This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.
Upward propagation happens when the per-cpu caches spill over into the
local atomic counter. This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate. In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.
Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are getting too big to be inlined in every callsite. They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since. The callsites aren't that hot, either.
Move __mod_memcg_state()
__mod_lruvec_state() and
__count_memcg_events() out of line and add kerneldoc comments.
Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcontrol: memory.stat cost & correctness".
The cgroup memory.stat file holds recursive statistics for the entire
subtree. The current implementation does this tree walk on-demand
whenever the file is read. This is giving us problems in production.
1. The cost of aggregating the statistics on-demand is high. A lot of
system service cgroups are mostly idle and their stats don't change
between reads, yet we always have to check them. There are also always
some lazily-dying cgroups sitting around that are pinned by a handful
of remaining page cache; the same applies to them.
In an application that periodically monitors memory.stat in our
fleet, we have seen the aggregation consume up to 5% CPU time.
2. When cgroups die and disappear from the cgroup tree, so do their
accumulated vm events. The result is that the event counters at
higher-level cgroups can go backwards and confuse some of our
automation, let alone people looking at the graphs over time.
To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.
The upward spilling is batched using the existing per-cpu cache. In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).
This patch (of 4):
memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.
In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.
Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases. To reflect that in the name, add a _local suffix to the
current implementations.
The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.
This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.
There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.
This commit contains code cleanup only: there are no logic changes.
[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.
Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).
Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.
This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.
Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.
mm/memcontrol.c:5774: warning: bad line: | 0, otherwise.
Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide. This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.
For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic]. This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page. It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.
[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current oom report doesn't display victim's memcg context during the
global OOM situation. While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process. Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.
Below is the single line output in the oom report after this patch.
- global oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
- memcg oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Galbraith reported a regression caused by the commit 9b6f7e163c
("mm: rework memcg kernel stack accounting") on a system with
"cgroup_disable=memory" boot option: the system panics with the following
stack trace:
BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4
RIP: 0010:page_counter_try_charge+0x22/0xc0
Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49
Call Trace:
try_charge+0xcb/0x780
memcg_kmem_charge_memcg+0x28/0x80
memcg_kmem_charge+0x8b/0x1d0
copy_process.part.41+0x1ca/0x2070
_do_fork+0xd7/0x3d0
do_syscall_64+0x5a/0x180
entry_SYSCALL_64_after_hwframe+0x49/0xbe
The problem occurs because get_mem_cgroup_from_current() returns the NULL
pointer if memory controller is disabled. Let's check if this is a case
at the beginning of memcg_kmem_charge() and just return 0 if
mem_cgroup_disabled() returns true. This is how we handle this case in
many other places in the memory controller code.
Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com
Fixes: 9b6f7e163c ("mm: rework memcg kernel stack accounting")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
It was reported that on some of our machines containers were restarted
with OOM symptoms without an obvious reason. Despite there were almost no
memory pressure and plenty of page cache, MEMCG_OOM event was raised
occasionally, causing the container management software to think, that OOM
has happened. However, no tasks have been killed.
The following investigation showed that the problem is caused by a failing
attempt to charge a high-order page. In such case, the OOM killer is
never invoked. As shown below, it can happen under conditions, which are
very far from a real OOM: e.g. there is plenty of clean page cache and no
memory pressure.
There is no sense in raising an OOM event in this case, as it might
confuse a user and lead to wrong and excessive actions (e.g. restart the
workload, as in my case).
Let's look at the charging path in try_charge(). If the memory usage is
about memory.max, which is absolutely natural for most memory cgroups, we
try to reclaim some pages. Even if we were able to reclaim enough memory
for the allocation, the following check can fail due to a race with
another concurrent allocation:
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
For regular pages the following condition will save us from triggering
the OOM:
if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
goto retry;
But for high-order allocation this condition will intentionally fail. The
reason behind is that we'll likely fall to regular pages anyway, so it's
ok and even preferred to return ENOMEM.
In this case the idea of raising MEMCG_OOM looks dubious.
Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation
order check, so that the event won't be raised for high order allocations.
This change doesn't affect regular pages allocation and charging.
Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will allow to use generic refcount_t interfaces to check counters
overflow instead of currently existing VM_BUG_ON(). The only difference
after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires
with WARN(). But this seems not to be significant here, since such the
problems are usually caught by syzbot with panic-on-warn enabled.
Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flag memcg_kmem_skip_account was added during the era of opt-out kmem
accounting. There is no need for such flag in the opt-in world as there
aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue().
Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The refault stats go better with the page fault stats, and are of
higher interest than the stats on LRU operations. In fact they used to
be grouped together; when the LRU operation stats were added later on,
they were wedged in between.
Move them back together. Documentation/admin-guide/cgroup-v2.rst
already lists them in the right order.
Link: http://lkml.kernel.org/r/20181010140239.GA2527@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg charge is batched using per-cpu stocks, so an offline memcg can be
pinned by a cached charge up to a moment, when a process belonging to some
other cgroup will charge some memory on the same cpu. In other words,
cached charges can prevent a memory cgroup from being reclaimed for some
time, without any clear need.
Let's optimize it by explicit draining of all stocks on css offlining. As
draining is performed asynchronously, and is skipped if any parallel
draining is happening, it's cheap.
Link: http://lkml.kernel.org/r/20180827162621.30187-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When the memcg OOM killer runs out of killable tasks, it currently
prints a WARN with no further OOM context. This has caused some user
confusion.
Warnings indicate a kernel problem. In a reported case, however, the
situation was triggered by a nonsensical memcg configuration (hard limit
set to 0). But without any VM context this wasn't obvious from the
report, and it took some back and forth on the mailing list to identify
what is actually a trivial issue.
Handle this OOM condition like we handle it in the global OOM killer:
dump the full OOM context and tell the user we ran out of tasks.
This way the user can identify misconfigurations easily by themselves
and rectify the problem - without having to go through the hassle of
running into an obscure but unsettling warning, finding the appropriate
kernel mailing list and waiting for a kernel developer to remote-analyze
that the memcg configuration caused this.
If users cannot make sense of why the OOM killer was triggered or why it
failed, they will still report it to the mailing list, we know that from
experience. So in case there is an actual kernel bug causing this,
kernel developers will very likely hear about it.
Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.
Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
all outstanding processes.
Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.
In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom. Also, it can simplify the cgroup
management for userspace applications.
This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group. The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer. If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.
To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.
Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.
This patch doesn't change the OOM victim selection algorithm.
Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times
to collect the stats while cgroup-v2's memory_stat_show traverses the
memcg tree thrice. On a large machine, a couple thousand memcgs is very
normal and if the churn is high and memcgs stick around during to several
reasons, tens of thousands of nodes in memcg tree can exist. This patch
has refactored and shared the stat collection code between cgroup-v1 and
cgroup-v2 and has reduced the tree traversal to just one.
I ran a simple benchmark which reads the root_mem_cgroup's stat file
1000 times in the presense of 2500 memcgs on cgroup-v1. The results are:
Without the patch:
$ time ./read-root-stat-1000-times
real 0m1.663s
user 0m0.000s
sys 0m1.660s
With the patch:
$ time ./read-root-stat-1000-times
real 0m0.468s
user 0m0.000s
sys 0m0.467s
Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Bruce Merry <bmerry@ska.ac.za>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.
This patch introduces a lockless mechanism to do that without races
without parallel list lru add. After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.
Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:
1)list_lru_add() shrink_slab_memcg
list_add_tail() for_each_set_bit() <--- read bit
do_shrink_slab() <--- missed list update (no barrier)
<MB> <MB>
set_bit() do_shrink_slab() <--- seen list update
This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare. So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case. Also, it's need the
second call as seen in below in (2).
2)list_lru_add() shrink_slab_memcg()
list_add_tail() ...
set_bit() ...
... for_each_set_bit()
do_shrink_slab() do_shrink_slab()
clear_bit() ...
... ...
list_lru_add() ...
list_add_tail() clear_bit()
<MB> <MB>
set_bit() do_shrink_slab()
The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit. This case is
drawn in the code comment.
[Results/performance of the patchset]
After the whole patchset applied the below test shows signify increase
of performance:
$echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
$mkdir /sys/fs/cgroup/memory/ct
$echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
$for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
mkdir -p s/$i; mount -t tmpfs $i s/$i;
touch s/$i/file; done
Then, 5 sequential calls of drop caches:
$time echo 3 > /proc/sys/vm/drop_caches
1)Before:
0.00user 13.78system 0:13.78elapsed 99%CPU
0.00user 5.59system 0:05.60elapsed 99%CPU
0.00user 5.48system 0:05.48elapsed 99%CPU
0.00user 8.35system 0:08.35elapsed 99%CPU
0.00user 8.34system 0:08.35elapsed 99%CPU
2)After
0.00user 1.10system 0:01.10elapsed 99%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
The results show the performance increases at least in 548 times.
Shakeel Butt tested this patchset with fork-bomb on his configuration:
> I created 255 memcgs, 255 ext4 mounts and made each memcg create a
> file containing few KiBs on corresponding mount. Then in a separate
> memcg of 200 MiB limit ran a fork-bomb.
>
> I ran the "perf record -ag -- sleep 60" and below are the results:
>
> Without the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
> + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab
> + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one
> + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count
> + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 0.27% fb.sh [kernel.kallsyms] [k] up_read
> + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock
> + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node
>
> With the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
> + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 30.72% fb.sh [kernel.kallsyms] [k] up_read
> + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected
> + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath
> + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock
> + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size
> + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node
> + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on
> + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce set_shrinker_bit() function to set shrinker-related bit in
memcg shrinker bitmap, and set the bit after the first item is added and
in case of reparenting destroyed memcg's items.
This will allow next patch to make shrinkers be called only, in case of
they have charged objects at the moment, and to improve shrink_slab()
performance.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just refactoring to allow the next patches to have dst_memcg
pointer in memcg_drain_list_lru_node().
Link: http://lkml.kernel.org/r/153063062118.1818.2761273817739499749.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Imagine a big node with many cpus, memory cgroups and containers. Let
we have 200 containers, every container has 10 mounts, and 10 cgroups.
All container tasks don't touch foreign containers mounts. If there is
intensive pages write, and global reclaim happens, a writing task has to
iterate over all memcgs to shrink slab, before it's able to go to
shrink_page_list().
Iteration over all the memcg slabs is very expensive: the task has to
visit 200 * 10 = 2000 shrinkers for every memcg, and since there are
2000 memcgs, the total calls are 2000 * 2000 = 4000000.
So, the shrinker makes 4 million do_shrink_slab() calls just to try to
isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via
shrink_page_list(). I've observed a node spending almost 100% in
kernel, making useless iteration over already shrinked slab.
This patch adds bitmap of memcg-aware shrinkers to memcg. The size of
the bitmap depends on bitmap_nr_ids, and during memcg life it's
maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in
the map is related to corresponding shrinker id.
Next patches will maintain set bit only for really charged memcg. This
will allow shrink_slab() to increase its performance in significant way.
See the last patch for the numbers.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain
[ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()]
Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com
Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Next patch requires these defines are above their current position, so
here they are moved to declarations.
Link: http://lkml.kernel.org/r/153063055665.1818.5200425793649695598.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.
Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>