vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
/*
|
|
|
|
* vfio based device assignment support
|
|
|
|
*
|
|
|
|
* Copyright Red Hat, Inc. 2012
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Alex Williamson <alex.williamson@redhat.com>
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
|
|
* the COPYING file in the top-level directory.
|
|
|
|
*
|
|
|
|
* Based on qemu-kvm device-assignment:
|
|
|
|
* Adapted for KVM by Qumranet.
|
|
|
|
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
|
|
|
|
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
|
|
|
|
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
|
|
|
|
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
|
|
|
|
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <dirent.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <linux/vfio.h>
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
#include "event_notifier.h"
|
|
|
|
#include "exec-memory.h"
|
|
|
|
#include "kvm.h"
|
|
|
|
#include "memory.h"
|
2012-12-12 14:24:50 +02:00
|
|
|
#include "pci/msi.h"
|
|
|
|
#include "pci/msix.h"
|
|
|
|
#include "pci/pci.h"
|
2012-10-08 08:45:30 -06:00
|
|
|
#include "qemu-common.h"
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
#include "qemu-error.h"
|
2012-10-08 08:45:30 -06:00
|
|
|
#include "qemu-queue.h"
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
#include "range.h"
|
|
|
|
|
|
|
|
/* #define DEBUG_VFIO */
|
|
|
|
#ifdef DEBUG_VFIO
|
|
|
|
#define DPRINTF(fmt, ...) \
|
|
|
|
do { fprintf(stderr, "vfio: " fmt, ## __VA_ARGS__); } while (0)
|
|
|
|
#else
|
|
|
|
#define DPRINTF(fmt, ...) \
|
|
|
|
do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
2012-10-08 08:45:30 -06:00
|
|
|
typedef struct VFIOBAR {
|
|
|
|
off_t fd_offset; /* offset of BAR within device fd */
|
|
|
|
int fd; /* device fd, allows us to pass VFIOBAR as opaque data */
|
|
|
|
MemoryRegion mem; /* slow, read/write access */
|
|
|
|
MemoryRegion mmap_mem; /* direct mapped access */
|
|
|
|
void *mmap;
|
|
|
|
size_t size;
|
|
|
|
uint32_t flags; /* VFIO region flags (rd/wr/mmap) */
|
|
|
|
uint8_t nr; /* cache the BAR number for debug */
|
|
|
|
} VFIOBAR;
|
|
|
|
|
|
|
|
typedef struct VFIOINTx {
|
|
|
|
bool pending; /* interrupt pending */
|
|
|
|
bool kvm_accel; /* set when QEMU bypass through KVM enabled */
|
|
|
|
uint8_t pin; /* which pin to pull for qemu_set_irq */
|
|
|
|
EventNotifier interrupt; /* eventfd triggered on interrupt */
|
|
|
|
EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
|
|
|
|
PCIINTxRoute route; /* routing info for QEMU bypass */
|
|
|
|
uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
|
|
|
|
QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
|
|
|
|
} VFIOINTx;
|
|
|
|
|
|
|
|
struct VFIODevice;
|
|
|
|
|
|
|
|
typedef struct VFIOMSIVector {
|
|
|
|
EventNotifier interrupt; /* eventfd triggered on interrupt */
|
|
|
|
struct VFIODevice *vdev; /* back pointer to device */
|
|
|
|
int virq; /* KVM irqchip route for QEMU bypass */
|
|
|
|
bool use;
|
|
|
|
} VFIOMSIVector;
|
|
|
|
|
|
|
|
enum {
|
|
|
|
VFIO_INT_NONE = 0,
|
|
|
|
VFIO_INT_INTx = 1,
|
|
|
|
VFIO_INT_MSI = 2,
|
|
|
|
VFIO_INT_MSIX = 3,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct VFIOGroup;
|
|
|
|
|
|
|
|
typedef struct VFIOContainer {
|
|
|
|
int fd; /* /dev/vfio/vfio, empowered by the attached groups */
|
|
|
|
struct {
|
|
|
|
/* enable abstraction to support various iommu backends */
|
|
|
|
union {
|
|
|
|
MemoryListener listener; /* Used by type1 iommu */
|
|
|
|
};
|
|
|
|
void (*release)(struct VFIOContainer *);
|
|
|
|
} iommu_data;
|
|
|
|
QLIST_HEAD(, VFIOGroup) group_list;
|
|
|
|
QLIST_ENTRY(VFIOContainer) next;
|
|
|
|
} VFIOContainer;
|
|
|
|
|
|
|
|
/* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
|
|
|
|
typedef struct VFIOMSIXInfo {
|
|
|
|
uint8_t table_bar;
|
|
|
|
uint8_t pba_bar;
|
|
|
|
uint16_t entries;
|
|
|
|
uint32_t table_offset;
|
|
|
|
uint32_t pba_offset;
|
|
|
|
MemoryRegion mmap_mem;
|
|
|
|
void *mmap;
|
|
|
|
} VFIOMSIXInfo;
|
|
|
|
|
|
|
|
typedef struct VFIODevice {
|
|
|
|
PCIDevice pdev;
|
|
|
|
int fd;
|
|
|
|
VFIOINTx intx;
|
|
|
|
unsigned int config_size;
|
|
|
|
off_t config_offset; /* Offset of config space region within device fd */
|
|
|
|
unsigned int rom_size;
|
|
|
|
off_t rom_offset; /* Offset of ROM region within device fd */
|
|
|
|
int msi_cap_size;
|
|
|
|
VFIOMSIVector *msi_vectors;
|
|
|
|
VFIOMSIXInfo *msix;
|
|
|
|
int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
|
|
|
|
int interrupt; /* Current interrupt type */
|
|
|
|
VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
|
|
|
|
PCIHostDeviceAddress host;
|
|
|
|
QLIST_ENTRY(VFIODevice) next;
|
|
|
|
struct VFIOGroup *group;
|
|
|
|
bool reset_works;
|
|
|
|
} VFIODevice;
|
|
|
|
|
|
|
|
typedef struct VFIOGroup {
|
|
|
|
int fd;
|
|
|
|
int groupid;
|
|
|
|
VFIOContainer *container;
|
|
|
|
QLIST_HEAD(, VFIODevice) device_list;
|
|
|
|
QLIST_ENTRY(VFIOGroup) next;
|
|
|
|
QLIST_ENTRY(VFIOGroup) container_next;
|
|
|
|
} VFIOGroup;
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
#define MSIX_CAP_LENGTH 12
|
|
|
|
|
|
|
|
static QLIST_HEAD(, VFIOContainer)
|
|
|
|
container_list = QLIST_HEAD_INITIALIZER(container_list);
|
|
|
|
|
|
|
|
static QLIST_HEAD(, VFIOGroup)
|
|
|
|
group_list = QLIST_HEAD_INITIALIZER(group_list);
|
|
|
|
|
|
|
|
static void vfio_disable_interrupts(VFIODevice *vdev);
|
|
|
|
static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
|
|
|
|
static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common VFIO interrupt disable
|
|
|
|
*/
|
|
|
|
static void vfio_disable_irqindex(VFIODevice *vdev, int index)
|
|
|
|
{
|
|
|
|
struct vfio_irq_set irq_set = {
|
|
|
|
.argsz = sizeof(irq_set),
|
|
|
|
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
|
|
|
|
.index = index,
|
|
|
|
.start = 0,
|
|
|
|
.count = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* INTx
|
|
|
|
*/
|
|
|
|
static void vfio_unmask_intx(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
struct vfio_irq_set irq_set = {
|
|
|
|
.argsz = sizeof(irq_set),
|
|
|
|
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
|
|
|
|
.index = VFIO_PCI_INTX_IRQ_INDEX,
|
|
|
|
.start = 0,
|
|
|
|
.count = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
|
|
|
|
}
|
|
|
|
|
2012-11-13 12:27:40 -07:00
|
|
|
#ifdef CONFIG_KVM /* Unused outside of CONFIG_KVM code */
|
|
|
|
static void vfio_mask_intx(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
struct vfio_irq_set irq_set = {
|
|
|
|
.argsz = sizeof(irq_set),
|
|
|
|
.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
|
|
|
|
.index = VFIO_PCI_INTX_IRQ_INDEX,
|
|
|
|
.start = 0,
|
|
|
|
.count = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
/*
|
|
|
|
* Disabling BAR mmaping can be slow, but toggling it around INTx can
|
|
|
|
* also be a huge overhead. We try to get the best of both worlds by
|
|
|
|
* waiting until an interrupt to disable mmaps (subsequent transitions
|
|
|
|
* to the same state are effectively no overhead). If the interrupt has
|
|
|
|
* been serviced and the time gap is long enough, we re-enable mmaps for
|
|
|
|
* performance. This works well for things like graphics cards, which
|
|
|
|
* may not use their interrupt at all and are penalized to an unusable
|
|
|
|
* level by read/write BAR traps. Other devices, like NICs, have more
|
|
|
|
* regular interrupts and see much better latency by staying in non-mmap
|
|
|
|
* mode. We therefore set the default mmap_timeout such that a ping
|
|
|
|
* is just enough to keep the mmap disabled. Users can experiment with
|
|
|
|
* other options with the x-intx-mmap-timeout-ms parameter (a value of
|
|
|
|
* zero disables the timer).
|
|
|
|
*/
|
|
|
|
static void vfio_intx_mmap_enable(void *opaque)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = opaque;
|
|
|
|
|
|
|
|
if (vdev->intx.pending) {
|
|
|
|
qemu_mod_timer(vdev->intx.mmap_timer,
|
|
|
|
qemu_get_clock_ms(vm_clock) + vdev->intx.mmap_timeout);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_mmap_set_enabled(vdev, true);
|
|
|
|
}
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
static void vfio_intx_interrupt(void *opaque)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = opaque;
|
|
|
|
|
|
|
|
if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) Pin %c\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function,
|
|
|
|
'A' + vdev->intx.pin);
|
|
|
|
|
|
|
|
vdev->intx.pending = true;
|
|
|
|
qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 1);
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
vfio_mmap_set_enabled(vdev, false);
|
|
|
|
if (vdev->intx.mmap_timeout) {
|
|
|
|
qemu_mod_timer(vdev->intx.mmap_timer,
|
|
|
|
qemu_get_clock_ms(vm_clock) + vdev->intx.mmap_timeout);
|
|
|
|
}
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_eoi(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
if (!vdev->intx.pending) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) EOI\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
|
|
|
|
vdev->intx.pending = false;
|
|
|
|
qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0);
|
|
|
|
vfio_unmask_intx(vdev);
|
|
|
|
}
|
|
|
|
|
2012-11-13 12:27:40 -07:00
|
|
|
static void vfio_enable_intx_kvm(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_KVM
|
|
|
|
struct kvm_irqfd irqfd = {
|
|
|
|
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
|
|
|
|
.gsi = vdev->intx.route.irq,
|
|
|
|
.flags = KVM_IRQFD_FLAG_RESAMPLE,
|
|
|
|
};
|
|
|
|
struct vfio_irq_set *irq_set;
|
|
|
|
int ret, argsz;
|
|
|
|
int32_t *pfd;
|
|
|
|
|
2012-12-10 11:30:03 -07:00
|
|
|
if (!kvm_irqfds_enabled() ||
|
2012-11-13 12:27:40 -07:00
|
|
|
vdev->intx.route.mode != PCI_INTX_ENABLED ||
|
|
|
|
!kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get to a known interrupt state */
|
|
|
|
qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
|
|
|
|
vfio_mask_intx(vdev);
|
|
|
|
vdev->intx.pending = false;
|
|
|
|
qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0);
|
|
|
|
|
|
|
|
/* Get an eventfd for resample/unmask */
|
|
|
|
if (event_notifier_init(&vdev->intx.unmask, 0)) {
|
|
|
|
error_report("vfio: Error: event_notifier_init failed eoi\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* KVM triggers it, VFIO listens for it */
|
|
|
|
irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
|
|
|
|
|
|
|
|
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
|
|
|
|
error_report("vfio: Error: Failed to setup resample irqfd: %m\n");
|
|
|
|
goto fail_irqfd;
|
|
|
|
}
|
|
|
|
|
|
|
|
argsz = sizeof(*irq_set) + sizeof(*pfd);
|
|
|
|
|
|
|
|
irq_set = g_malloc0(argsz);
|
|
|
|
irq_set->argsz = argsz;
|
|
|
|
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
|
|
|
|
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
|
|
|
|
irq_set->start = 0;
|
|
|
|
irq_set->count = 1;
|
|
|
|
pfd = (int32_t *)&irq_set->data;
|
|
|
|
|
|
|
|
*pfd = irqfd.resamplefd;
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
|
|
|
|
g_free(irq_set);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: Error: Failed to setup INTx unmask fd: %m\n");
|
|
|
|
goto fail_vfio;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Let'em rip */
|
|
|
|
vfio_unmask_intx(vdev);
|
|
|
|
|
|
|
|
vdev->intx.kvm_accel = true;
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel enabled\n",
|
|
|
|
__func__, vdev->host.domain, vdev->host.bus,
|
|
|
|
vdev->host.slot, vdev->host.function);
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
fail_vfio:
|
|
|
|
irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
|
|
|
|
kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
|
|
|
|
fail_irqfd:
|
|
|
|
event_notifier_cleanup(&vdev->intx.unmask);
|
|
|
|
fail:
|
|
|
|
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
|
|
|
|
vfio_unmask_intx(vdev);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_disable_intx_kvm(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_KVM
|
|
|
|
struct kvm_irqfd irqfd = {
|
|
|
|
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
|
|
|
|
.gsi = vdev->intx.route.irq,
|
|
|
|
.flags = KVM_IRQFD_FLAG_DEASSIGN,
|
|
|
|
};
|
|
|
|
|
|
|
|
if (!vdev->intx.kvm_accel) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get to a known state, hardware masked, QEMU ready to accept new
|
|
|
|
* interrupts, QEMU IRQ de-asserted.
|
|
|
|
*/
|
|
|
|
vfio_mask_intx(vdev);
|
|
|
|
vdev->intx.pending = false;
|
|
|
|
qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0);
|
|
|
|
|
|
|
|
/* Tell KVM to stop listening for an INTx irqfd */
|
|
|
|
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
|
|
|
|
error_report("vfio: Error: Failed to disable INTx irqfd: %m\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We only need to close the eventfd for VFIO to cleanup the kernel side */
|
|
|
|
event_notifier_cleanup(&vdev->intx.unmask);
|
|
|
|
|
|
|
|
/* QEMU starts listening for interrupt events. */
|
|
|
|
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
|
|
|
|
|
|
|
|
vdev->intx.kvm_accel = false;
|
|
|
|
|
|
|
|
/* If we've missed an event, let it re-fire through QEMU */
|
|
|
|
vfio_unmask_intx(vdev);
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel disabled\n",
|
|
|
|
__func__, vdev->host.domain, vdev->host.bus,
|
|
|
|
vdev->host.slot, vdev->host.function);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_update_irq(PCIDevice *pdev)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
PCIINTxRoute route;
|
|
|
|
|
|
|
|
if (vdev->interrupt != VFIO_INT_INTx) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
|
|
|
|
|
|
|
|
if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
|
|
|
|
return; /* Nothing changed */
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) IRQ moved %d -> %d\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, vdev->intx.route.irq, route.irq);
|
|
|
|
|
|
|
|
vfio_disable_intx_kvm(vdev);
|
|
|
|
|
|
|
|
vdev->intx.route = route;
|
|
|
|
|
|
|
|
if (route.mode != PCI_INTX_ENABLED) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_enable_intx_kvm(vdev);
|
|
|
|
|
|
|
|
/* Re-enable the interrupt in cased we missed an EOI */
|
|
|
|
vfio_eoi(vdev);
|
|
|
|
}
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
static int vfio_enable_intx(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
|
2012-10-08 08:45:31 -06:00
|
|
|
int ret, argsz;
|
|
|
|
struct vfio_irq_set *irq_set;
|
|
|
|
int32_t *pfd;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
if (!pin) {
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_disable_interrupts(vdev);
|
|
|
|
|
|
|
|
vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
|
2012-11-13 12:27:40 -07:00
|
|
|
|
|
|
|
#ifdef CONFIG_KVM
|
|
|
|
/*
|
|
|
|
* Only conditional to avoid generating error messages on platforms
|
|
|
|
* where we won't actually use the result anyway.
|
|
|
|
*/
|
2012-12-10 11:30:03 -07:00
|
|
|
if (kvm_irqfds_enabled() &&
|
|
|
|
kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) {
|
2012-11-13 12:27:40 -07:00
|
|
|
vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
|
|
|
|
vdev->intx.pin);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
ret = event_notifier_init(&vdev->intx.interrupt, 0);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: Error: event_notifier_init failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:31 -06:00
|
|
|
argsz = sizeof(*irq_set) + sizeof(*pfd);
|
|
|
|
|
|
|
|
irq_set = g_malloc0(argsz);
|
|
|
|
irq_set->argsz = argsz;
|
|
|
|
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
|
|
|
|
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
|
|
|
|
irq_set->start = 0;
|
|
|
|
irq_set->count = 1;
|
|
|
|
pfd = (int32_t *)&irq_set->data;
|
|
|
|
|
|
|
|
*pfd = event_notifier_get_fd(&vdev->intx.interrupt);
|
|
|
|
qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
2012-10-08 08:45:31 -06:00
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
|
|
|
|
g_free(irq_set);
|
|
|
|
if (ret) {
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
error_report("vfio: Error: Failed to setup INTx fd: %m\n");
|
2012-10-08 08:45:31 -06:00
|
|
|
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
|
2012-10-08 08:45:30 -06:00
|
|
|
event_notifier_cleanup(&vdev->intx.interrupt);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
2012-11-13 12:27:40 -07:00
|
|
|
vfio_enable_intx_kvm(vdev);
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
vdev->interrupt = VFIO_INT_INTx;
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_disable_intx(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
int fd;
|
|
|
|
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
qemu_del_timer(vdev->intx.mmap_timer);
|
2012-11-13 12:27:40 -07:00
|
|
|
vfio_disable_intx_kvm(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
vfio_disable_irqindex(vdev, VFIO_PCI_INTX_IRQ_INDEX);
|
|
|
|
vdev->intx.pending = false;
|
|
|
|
qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0);
|
|
|
|
vfio_mmap_set_enabled(vdev, true);
|
|
|
|
|
|
|
|
fd = event_notifier_get_fd(&vdev->intx.interrupt);
|
|
|
|
qemu_set_fd_handler(fd, NULL, NULL, vdev);
|
|
|
|
event_notifier_cleanup(&vdev->intx.interrupt);
|
|
|
|
|
|
|
|
vdev->interrupt = VFIO_INT_NONE;
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MSI/X
|
|
|
|
*/
|
|
|
|
static void vfio_msi_interrupt(void *opaque)
|
|
|
|
{
|
|
|
|
VFIOMSIVector *vector = opaque;
|
|
|
|
VFIODevice *vdev = vector->vdev;
|
|
|
|
int nr = vector - vdev->msi_vectors;
|
|
|
|
|
|
|
|
if (!event_notifier_test_and_clear(&vector->interrupt)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) vector %d\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, nr);
|
|
|
|
|
|
|
|
if (vdev->interrupt == VFIO_INT_MSIX) {
|
|
|
|
msix_notify(&vdev->pdev, nr);
|
|
|
|
} else if (vdev->interrupt == VFIO_INT_MSI) {
|
|
|
|
msi_notify(&vdev->pdev, nr);
|
|
|
|
} else {
|
|
|
|
error_report("vfio: MSI interrupt receieved, but not enabled?\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_enable_vectors(VFIODevice *vdev, bool msix)
|
|
|
|
{
|
|
|
|
struct vfio_irq_set *irq_set;
|
|
|
|
int ret = 0, i, argsz;
|
|
|
|
int32_t *fds;
|
|
|
|
|
|
|
|
argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
|
|
|
|
|
|
|
|
irq_set = g_malloc0(argsz);
|
|
|
|
irq_set->argsz = argsz;
|
|
|
|
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
|
|
|
|
irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
|
|
|
|
irq_set->start = 0;
|
|
|
|
irq_set->count = vdev->nr_vectors;
|
|
|
|
fds = (int32_t *)&irq_set->data;
|
|
|
|
|
|
|
|
for (i = 0; i < vdev->nr_vectors; i++) {
|
|
|
|
if (!vdev->msi_vectors[i].use) {
|
|
|
|
fds[i] = -1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
fds[i] = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
|
|
|
|
|
|
|
|
g_free(irq_set);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_msix_vector_use(PCIDevice *pdev,
|
|
|
|
unsigned int nr, MSIMessage msg)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
VFIOMSIVector *vector;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) vector %d used\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, nr);
|
|
|
|
|
|
|
|
vector = &vdev->msi_vectors[nr];
|
|
|
|
vector->vdev = vdev;
|
|
|
|
vector->use = true;
|
|
|
|
|
|
|
|
msix_vector_use(pdev, nr);
|
|
|
|
|
|
|
|
if (event_notifier_init(&vector->interrupt, 0)) {
|
|
|
|
error_report("vfio: Error: event_notifier_init failed\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attempt to enable route through KVM irqchip,
|
|
|
|
* default to userspace handling if unavailable.
|
|
|
|
*/
|
|
|
|
vector->virq = kvm_irqchip_add_msi_route(kvm_state, msg);
|
|
|
|
if (vector->virq < 0 ||
|
|
|
|
kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->interrupt,
|
|
|
|
vector->virq) < 0) {
|
|
|
|
if (vector->virq >= 0) {
|
|
|
|
kvm_irqchip_release_virq(kvm_state, vector->virq);
|
|
|
|
vector->virq = -1;
|
|
|
|
}
|
|
|
|
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
|
|
|
|
vfio_msi_interrupt, NULL, vector);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't want to have the host allocate all possible MSI vectors
|
|
|
|
* for a device if they're not in use, so we shutdown and incrementally
|
|
|
|
* increase them as needed.
|
|
|
|
*/
|
|
|
|
if (vdev->nr_vectors < nr + 1) {
|
|
|
|
vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX);
|
|
|
|
vdev->nr_vectors = nr + 1;
|
|
|
|
ret = vfio_enable_vectors(vdev, true);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: failed to enable vectors, %d\n", ret);
|
|
|
|
}
|
|
|
|
} else {
|
2012-10-08 08:45:31 -06:00
|
|
|
int argsz;
|
|
|
|
struct vfio_irq_set *irq_set;
|
|
|
|
int32_t *pfd;
|
|
|
|
|
|
|
|
argsz = sizeof(*irq_set) + sizeof(*pfd);
|
|
|
|
|
|
|
|
irq_set = g_malloc0(argsz);
|
|
|
|
irq_set->argsz = argsz;
|
|
|
|
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
|
|
|
|
VFIO_IRQ_SET_ACTION_TRIGGER;
|
|
|
|
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
|
|
|
|
irq_set->start = nr;
|
|
|
|
irq_set->count = 1;
|
|
|
|
pfd = (int32_t *)&irq_set->data;
|
|
|
|
|
|
|
|
*pfd = event_notifier_get_fd(&vector->interrupt);
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
|
|
|
|
g_free(irq_set);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: failed to modify vector, %d\n", ret);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
VFIOMSIVector *vector = &vdev->msi_vectors[nr];
|
2012-10-08 08:45:31 -06:00
|
|
|
int argsz;
|
|
|
|
struct vfio_irq_set *irq_set;
|
|
|
|
int32_t *pfd;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) vector %d released\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, nr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX What's the right thing to do here? This turns off the interrupt
|
|
|
|
* completely, but do we really just want to switch the interrupt to
|
|
|
|
* bouncing through userspace and let msix.c drop it? Not sure.
|
|
|
|
*/
|
|
|
|
msix_vector_unuse(pdev, nr);
|
2012-10-08 08:45:31 -06:00
|
|
|
|
|
|
|
argsz = sizeof(*irq_set) + sizeof(*pfd);
|
|
|
|
|
|
|
|
irq_set = g_malloc0(argsz);
|
|
|
|
irq_set->argsz = argsz;
|
|
|
|
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
|
|
|
|
VFIO_IRQ_SET_ACTION_TRIGGER;
|
|
|
|
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
|
|
|
|
irq_set->start = nr;
|
|
|
|
irq_set->count = 1;
|
|
|
|
pfd = (int32_t *)&irq_set->data;
|
|
|
|
|
|
|
|
*pfd = -1;
|
|
|
|
|
|
|
|
ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set);
|
|
|
|
|
|
|
|
g_free(irq_set);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
if (vector->virq < 0) {
|
|
|
|
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
|
|
|
|
NULL, NULL, NULL);
|
|
|
|
} else {
|
|
|
|
kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->interrupt,
|
|
|
|
vector->virq);
|
|
|
|
kvm_irqchip_release_virq(kvm_state, vector->virq);
|
|
|
|
vector->virq = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
event_notifier_cleanup(&vector->interrupt);
|
|
|
|
vector->use = false;
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
static void vfio_enable_msix(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
vfio_disable_interrupts(vdev);
|
|
|
|
|
|
|
|
vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
|
|
|
|
|
|
|
|
vdev->interrupt = VFIO_INT_MSIX;
|
|
|
|
|
|
|
|
if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
|
|
|
|
vfio_msix_vector_release)) {
|
|
|
|
error_report("vfio: msix_set_vector_notifiers failed\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
}
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
static void vfio_enable_msi(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
int ret, i;
|
|
|
|
|
|
|
|
vfio_disable_interrupts(vdev);
|
|
|
|
|
|
|
|
vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
|
|
|
|
retry:
|
|
|
|
vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
|
|
|
|
|
|
|
|
for (i = 0; i < vdev->nr_vectors; i++) {
|
|
|
|
MSIMessage msg;
|
|
|
|
VFIOMSIVector *vector = &vdev->msi_vectors[i];
|
|
|
|
|
|
|
|
vector->vdev = vdev;
|
|
|
|
vector->use = true;
|
|
|
|
|
|
|
|
if (event_notifier_init(&vector->interrupt, 0)) {
|
|
|
|
error_report("vfio: Error: event_notifier_init failed\n");
|
|
|
|
}
|
|
|
|
|
2012-11-13 12:27:40 -07:00
|
|
|
msg = msi_get_message(&vdev->pdev, i);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Attempt to enable route through KVM irqchip,
|
|
|
|
* default to userspace handling if unavailable.
|
|
|
|
*/
|
|
|
|
vector->virq = kvm_irqchip_add_msi_route(kvm_state, msg);
|
|
|
|
if (vector->virq < 0 ||
|
|
|
|
kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->interrupt,
|
|
|
|
vector->virq) < 0) {
|
|
|
|
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
|
|
|
|
vfio_msi_interrupt, NULL, vector);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = vfio_enable_vectors(vdev, false);
|
|
|
|
if (ret) {
|
|
|
|
if (ret < 0) {
|
|
|
|
error_report("vfio: Error: Failed to setup MSI fds: %m\n");
|
|
|
|
} else if (ret != vdev->nr_vectors) {
|
|
|
|
error_report("vfio: Error: Failed to enable %d "
|
|
|
|
"MSI vectors, retry with %d\n", vdev->nr_vectors, ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < vdev->nr_vectors; i++) {
|
|
|
|
VFIOMSIVector *vector = &vdev->msi_vectors[i];
|
|
|
|
if (vector->virq >= 0) {
|
|
|
|
kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->interrupt,
|
|
|
|
vector->virq);
|
|
|
|
kvm_irqchip_release_virq(kvm_state, vector->virq);
|
|
|
|
vector->virq = -1;
|
|
|
|
} else {
|
|
|
|
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
|
|
|
|
NULL, NULL, NULL);
|
|
|
|
}
|
|
|
|
event_notifier_cleanup(&vector->interrupt);
|
|
|
|
}
|
|
|
|
|
|
|
|
g_free(vdev->msi_vectors);
|
|
|
|
|
|
|
|
if (ret > 0 && ret != vdev->nr_vectors) {
|
|
|
|
vdev->nr_vectors = ret;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
vdev->nr_vectors = 0;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
vdev->interrupt = VFIO_INT_MSI;
|
|
|
|
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) Enabled %d MSI vectors\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, vdev->nr_vectors);
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
static void vfio_disable_msi_common(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
g_free(vdev->msi_vectors);
|
|
|
|
vdev->msi_vectors = NULL;
|
|
|
|
vdev->nr_vectors = 0;
|
|
|
|
vdev->interrupt = VFIO_INT_NONE;
|
|
|
|
|
|
|
|
vfio_enable_intx(vdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_disable_msix(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
msix_unset_vector_notifiers(&vdev->pdev);
|
|
|
|
|
|
|
|
if (vdev->nr_vectors) {
|
|
|
|
vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_disable_msi_common(vdev);
|
|
|
|
|
2012-10-17 11:20:11 -06:00
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
2012-10-08 08:45:29 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_disable_msi(VFIODevice *vdev)
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_irqindex(vdev, VFIO_PCI_MSI_IRQ_INDEX);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
for (i = 0; i < vdev->nr_vectors; i++) {
|
|
|
|
VFIOMSIVector *vector = &vdev->msi_vectors[i];
|
|
|
|
|
|
|
|
if (!vector->use) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vector->virq >= 0) {
|
|
|
|
kvm_irqchip_remove_irqfd_notifier(kvm_state,
|
|
|
|
&vector->interrupt, vector->virq);
|
|
|
|
kvm_irqchip_release_virq(kvm_state, vector->virq);
|
|
|
|
vector->virq = -1;
|
|
|
|
} else {
|
|
|
|
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
|
|
|
|
NULL, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
event_notifier_cleanup(&vector->interrupt);
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_msi_common(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IO Port/MMIO - Beware of the endians, VFIO is always little endian
|
|
|
|
*/
|
2012-10-23 12:30:10 +02:00
|
|
|
static void vfio_bar_write(void *opaque, hwaddr addr,
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
uint64_t data, unsigned size)
|
|
|
|
{
|
|
|
|
VFIOBAR *bar = opaque;
|
|
|
|
union {
|
|
|
|
uint8_t byte;
|
|
|
|
uint16_t word;
|
|
|
|
uint32_t dword;
|
|
|
|
uint64_t qword;
|
|
|
|
} buf;
|
|
|
|
|
|
|
|
switch (size) {
|
|
|
|
case 1:
|
|
|
|
buf.byte = data;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
buf.word = cpu_to_le16(data);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
buf.dword = cpu_to_le32(data);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
hw_error("vfio: unsupported write size, %d bytes\n", size);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pwrite(bar->fd, &buf, size, bar->fd_offset + addr) != size) {
|
2012-10-23 12:30:10 +02:00
|
|
|
error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
__func__, addr, data, size);
|
|
|
|
}
|
|
|
|
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("%s(BAR%d+0x%"HWADDR_PRIx", 0x%"PRIx64", %d)\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
__func__, bar->nr, addr, data, size);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A read or write to a BAR always signals an INTx EOI. This will
|
|
|
|
* do nothing if not pending (including not in INTx mode). We assume
|
|
|
|
* that a BAR access is in response to an interrupt and that BAR
|
|
|
|
* accesses will service the interrupt. Unfortunately, we don't know
|
|
|
|
* which access will service the interrupt, so we're potentially
|
|
|
|
* getting quite a few host interrupts per guest interrupt.
|
|
|
|
*/
|
2012-10-08 08:45:31 -06:00
|
|
|
vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr]));
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t vfio_bar_read(void *opaque,
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr addr, unsigned size)
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
{
|
|
|
|
VFIOBAR *bar = opaque;
|
|
|
|
union {
|
|
|
|
uint8_t byte;
|
|
|
|
uint16_t word;
|
|
|
|
uint32_t dword;
|
|
|
|
uint64_t qword;
|
|
|
|
} buf;
|
|
|
|
uint64_t data = 0;
|
|
|
|
|
|
|
|
if (pread(bar->fd, &buf, size, bar->fd_offset + addr) != size) {
|
2012-10-23 12:30:10 +02:00
|
|
|
error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
__func__, addr, size);
|
|
|
|
return (uint64_t)-1;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (size) {
|
|
|
|
case 1:
|
|
|
|
data = buf.byte;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
data = le16_to_cpu(buf.word);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
data = le32_to_cpu(buf.dword);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
hw_error("vfio: unsupported read size, %d bytes\n", size);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("%s(BAR%d+0x%"HWADDR_PRIx", %d) = 0x%"PRIx64"\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
__func__, bar->nr, addr, size, data);
|
|
|
|
|
|
|
|
/* Same as write above */
|
2012-10-08 08:45:31 -06:00
|
|
|
vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr]));
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const MemoryRegionOps vfio_bar_ops = {
|
|
|
|
.read = vfio_bar_read,
|
|
|
|
.write = vfio_bar_write,
|
|
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PCI config space
|
|
|
|
*/
|
|
|
|
static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
uint32_t val = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We only need QEMU PCI config support for the ROM BAR, the MSI and MSIX
|
|
|
|
* capabilities, and the multifunction bit below. We let VFIO handle
|
|
|
|
* virtualizing everything else. Performance is not a concern here.
|
|
|
|
*/
|
|
|
|
if (ranges_overlap(addr, len, PCI_ROM_ADDRESS, 4) ||
|
|
|
|
(pdev->cap_present & QEMU_PCI_CAP_MSIX &&
|
|
|
|
ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) ||
|
|
|
|
(pdev->cap_present & QEMU_PCI_CAP_MSI &&
|
|
|
|
ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size))) {
|
|
|
|
|
|
|
|
val = pci_default_read_config(pdev, addr, len);
|
|
|
|
} else {
|
|
|
|
if (pread(vdev->fd, &val, len, vdev->config_offset + addr) != len) {
|
|
|
|
error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m\n",
|
|
|
|
__func__, vdev->host.domain, vdev->host.bus,
|
|
|
|
vdev->host.slot, vdev->host.function, addr, len);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
val = le32_to_cpu(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multifunction bit is virualized in QEMU */
|
|
|
|
if (unlikely(ranges_overlap(addr, len, PCI_HEADER_TYPE, 1))) {
|
|
|
|
uint32_t mask = PCI_HEADER_TYPE_MULTI_FUNCTION;
|
|
|
|
|
|
|
|
if (len == 4) {
|
|
|
|
mask <<= 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pdev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
|
|
|
|
val |= mask;
|
|
|
|
} else {
|
|
|
|
val &= ~mask;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, len=0x%x) %x\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, addr, len, val);
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
|
|
|
|
uint32_t val, int len)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
uint32_t val_le = cpu_to_le32(val);
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, 0x%x, len=0x%x)\n", __func__,
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, addr, val, len);
|
|
|
|
|
|
|
|
/* Write everything to VFIO, let it filter out what we can't write */
|
|
|
|
if (pwrite(vdev->fd, &val_le, len, vdev->config_offset + addr) != len) {
|
|
|
|
error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m\n",
|
|
|
|
__func__, vdev->host.domain, vdev->host.bus,
|
|
|
|
vdev->host.slot, vdev->host.function, addr, val, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Write standard header bits to emulation */
|
|
|
|
if (addr < PCI_CONFIG_HEADER_SIZE) {
|
|
|
|
pci_default_write_config(pdev, addr, val, len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MSI/MSI-X Enabling/Disabling */
|
|
|
|
if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
|
|
|
|
ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
|
|
|
|
int is_enabled, was_enabled = msi_enabled(pdev);
|
|
|
|
|
|
|
|
pci_default_write_config(pdev, addr, val, len);
|
|
|
|
|
|
|
|
is_enabled = msi_enabled(pdev);
|
|
|
|
|
|
|
|
if (!was_enabled && is_enabled) {
|
|
|
|
vfio_enable_msi(vdev);
|
|
|
|
} else if (was_enabled && !is_enabled) {
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_msi(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
|
|
|
|
ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
|
|
|
|
int is_enabled, was_enabled = msix_enabled(pdev);
|
|
|
|
|
|
|
|
pci_default_write_config(pdev, addr, val, len);
|
|
|
|
|
|
|
|
is_enabled = msix_enabled(pdev);
|
|
|
|
|
|
|
|
if (!was_enabled && is_enabled) {
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_enable_msix(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
} else if (was_enabled && !is_enabled) {
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_msix(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
|
|
|
|
*/
|
2012-10-08 08:45:29 -06:00
|
|
|
static int vfio_dma_unmap(VFIOContainer *container,
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr iova, ram_addr_t size)
|
2012-10-08 08:45:29 -06:00
|
|
|
{
|
|
|
|
struct vfio_iommu_type1_dma_unmap unmap = {
|
|
|
|
.argsz = sizeof(unmap),
|
|
|
|
.flags = 0,
|
|
|
|
.iova = iova,
|
|
|
|
.size = size,
|
|
|
|
};
|
|
|
|
|
|
|
|
if (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
|
|
|
|
DPRINTF("VFIO_UNMAP_DMA: %d\n", -errno);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-10-23 12:30:10 +02:00
|
|
|
static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
ram_addr_t size, void *vaddr, bool readonly)
|
|
|
|
{
|
|
|
|
struct vfio_iommu_type1_dma_map map = {
|
|
|
|
.argsz = sizeof(map),
|
|
|
|
.flags = VFIO_DMA_MAP_FLAG_READ,
|
2012-10-08 08:45:30 -06:00
|
|
|
.vaddr = (__u64)(uintptr_t)vaddr,
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
.iova = iova,
|
|
|
|
.size = size,
|
|
|
|
};
|
|
|
|
|
|
|
|
if (!readonly) {
|
|
|
|
map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
|
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
/*
|
|
|
|
* Try the mapping, if it fails with EBUSY, unmap the region and try
|
|
|
|
* again. This shouldn't be necessary, but we sometimes see it in
|
|
|
|
* the the VGA ROM space.
|
|
|
|
*/
|
|
|
|
if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
|
|
|
|
(errno == EBUSY && vfio_dma_unmap(container, iova, size) == 0 &&
|
|
|
|
ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
|
|
|
|
return 0;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
2012-10-08 08:45:29 -06:00
|
|
|
DPRINTF("VFIO_MAP_DMA: %d\n", -errno);
|
|
|
|
return -errno;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool vfio_listener_skipped_section(MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
return !memory_region_is_ram(section->mr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_listener_region_add(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
VFIOContainer *container = container_of(listener, VFIOContainer,
|
|
|
|
iommu_data.listener);
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr iova, end;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
void *vaddr;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (vfio_listener_skipped_section(section)) {
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("vfio: SKIPPING region_add %"HWADDR_PRIx" - %"PRIx64"\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
section->offset_within_address_space,
|
|
|
|
section->offset_within_address_space + section->size - 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
|
|
|
|
(section->offset_within_region & ~TARGET_PAGE_MASK))) {
|
|
|
|
error_report("%s received unaligned region\n", __func__);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
|
|
|
|
end = (section->offset_within_address_space + section->size) &
|
|
|
|
TARGET_PAGE_MASK;
|
|
|
|
|
|
|
|
if (iova >= end) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vaddr = memory_region_get_ram_ptr(section->mr) +
|
|
|
|
section->offset_within_region +
|
|
|
|
(iova - section->offset_within_address_space);
|
|
|
|
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("vfio: region_add %"HWADDR_PRIx" - %"HWADDR_PRIx" [%p]\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
iova, end - 1, vaddr);
|
|
|
|
|
|
|
|
ret = vfio_dma_map(container, iova, end - iova, vaddr, section->readonly);
|
|
|
|
if (ret) {
|
2012-10-23 12:30:10 +02:00
|
|
|
error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
|
|
|
|
"0x%"HWADDR_PRIx", %p) = %d (%m)\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
container, iova, end - iova, vaddr, ret);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_listener_region_del(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
VFIOContainer *container = container_of(listener, VFIOContainer,
|
|
|
|
iommu_data.listener);
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr iova, end;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (vfio_listener_skipped_section(section)) {
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("vfio: SKIPPING region_del %"HWADDR_PRIx" - %"PRIx64"\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
section->offset_within_address_space,
|
|
|
|
section->offset_within_address_space + section->size - 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
|
|
|
|
(section->offset_within_region & ~TARGET_PAGE_MASK))) {
|
|
|
|
error_report("%s received unaligned region\n", __func__);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
|
|
|
|
end = (section->offset_within_address_space + section->size) &
|
|
|
|
TARGET_PAGE_MASK;
|
|
|
|
|
|
|
|
if (iova >= end) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-10-23 12:30:10 +02:00
|
|
|
DPRINTF("vfio: region_del %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
iova, end - 1);
|
|
|
|
|
|
|
|
ret = vfio_dma_unmap(container, iova, end - iova);
|
|
|
|
if (ret) {
|
2012-10-23 12:30:10 +02:00
|
|
|
error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
|
|
|
|
"0x%"HWADDR_PRIx") = %d (%m)\n",
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
container, iova, end - iova, ret);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static MemoryListener vfio_memory_listener = {
|
|
|
|
.region_add = vfio_listener_region_add,
|
|
|
|
.region_del = vfio_listener_region_del,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void vfio_listener_release(VFIOContainer *container)
|
|
|
|
{
|
|
|
|
memory_listener_unregister(&container->iommu_data.listener);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt setup
|
|
|
|
*/
|
|
|
|
static void vfio_disable_interrupts(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
switch (vdev->interrupt) {
|
|
|
|
case VFIO_INT_INTx:
|
|
|
|
vfio_disable_intx(vdev);
|
|
|
|
break;
|
|
|
|
case VFIO_INT_MSI:
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_msi(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
break;
|
|
|
|
case VFIO_INT_MSIX:
|
2012-10-08 08:45:29 -06:00
|
|
|
vfio_disable_msix(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_setup_msi(VFIODevice *vdev, int pos)
|
|
|
|
{
|
|
|
|
uint16_t ctrl;
|
|
|
|
bool msi_64bit, msi_maskbit;
|
|
|
|
int ret, entries;
|
|
|
|
|
|
|
|
if (pread(vdev->fd, &ctrl, sizeof(ctrl),
|
|
|
|
vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
ctrl = le16_to_cpu(ctrl);
|
|
|
|
|
|
|
|
msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
|
|
|
|
msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
|
|
|
|
entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
|
|
|
|
|
|
|
|
DPRINTF("%04x:%02x:%02x.%x PCI MSI CAP @0x%x\n", vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function, pos);
|
|
|
|
|
|
|
|
ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
|
|
|
|
if (ret < 0) {
|
2012-10-08 08:45:30 -06:00
|
|
|
if (ret == -ENOTSUP) {
|
|
|
|
return 0;
|
|
|
|
}
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
error_report("vfio: msi_init failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't have any control over how pci_add_capability() inserts
|
|
|
|
* capabilities into the chain. In order to setup MSI-X we need a
|
|
|
|
* MemoryRegion for the BAR. In order to setup the BAR and not
|
|
|
|
* attempt to mmap the MSI-X table area, which VFIO won't allow, we
|
|
|
|
* need to first look for where the MSI-X table lives. So we
|
|
|
|
* unfortunately split MSI-X setup across two functions.
|
|
|
|
*/
|
|
|
|
static int vfio_early_setup_msix(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
uint8_t pos;
|
|
|
|
uint16_t ctrl;
|
|
|
|
uint32_t table, pba;
|
|
|
|
|
|
|
|
pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
|
|
|
|
if (!pos) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pread(vdev->fd, &ctrl, sizeof(ctrl),
|
|
|
|
vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pread(vdev->fd, &table, sizeof(table),
|
|
|
|
vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pread(vdev->fd, &pba, sizeof(pba),
|
|
|
|
vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctrl = le16_to_cpu(ctrl);
|
|
|
|
table = le32_to_cpu(table);
|
|
|
|
pba = le32_to_cpu(pba);
|
|
|
|
|
|
|
|
vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
|
|
|
|
vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
|
|
|
|
vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
|
|
|
|
vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
|
|
|
|
vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
|
|
|
|
vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
|
|
|
|
|
|
DPRINTF("%04x:%02x:%02x.%x "
|
|
|
|
"PCI MSI-X CAP @0x%x, BAR %d, offset 0x%x, entries %d\n",
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, pos, vdev->msix->table_bar,
|
|
|
|
vdev->msix->table_offset, vdev->msix->entries);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_setup_msix(VFIODevice *vdev, int pos)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = msix_init(&vdev->pdev, vdev->msix->entries,
|
|
|
|
&vdev->bars[vdev->msix->table_bar].mem,
|
|
|
|
vdev->msix->table_bar, vdev->msix->table_offset,
|
|
|
|
&vdev->bars[vdev->msix->pba_bar].mem,
|
|
|
|
vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
|
|
|
|
if (ret < 0) {
|
2012-10-08 08:45:30 -06:00
|
|
|
if (ret == -ENOTSUP) {
|
|
|
|
return 0;
|
|
|
|
}
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
error_report("vfio: msix_init failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_teardown_msi(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
msi_uninit(&vdev->pdev);
|
|
|
|
|
|
|
|
if (vdev->msix) {
|
|
|
|
msix_uninit(&vdev->pdev, &vdev->bars[vdev->msix->table_bar].mem,
|
|
|
|
&vdev->bars[vdev->msix->pba_bar].mem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Resource setup
|
|
|
|
*/
|
|
|
|
static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < PCI_ROM_SLOT; i++) {
|
|
|
|
VFIOBAR *bar = &vdev->bars[i];
|
|
|
|
|
|
|
|
if (!bar->size) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
memory_region_set_enabled(&bar->mmap_mem, enabled);
|
|
|
|
if (vdev->msix && vdev->msix->table_bar == i) {
|
|
|
|
memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_unmap_bar(VFIODevice *vdev, int nr)
|
|
|
|
{
|
|
|
|
VFIOBAR *bar = &vdev->bars[nr];
|
|
|
|
|
|
|
|
if (!bar->size) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
memory_region_del_subregion(&bar->mem, &bar->mmap_mem);
|
|
|
|
munmap(bar->mmap, memory_region_size(&bar->mmap_mem));
|
|
|
|
|
|
|
|
if (vdev->msix && vdev->msix->table_bar == nr) {
|
|
|
|
memory_region_del_subregion(&bar->mem, &vdev->msix->mmap_mem);
|
|
|
|
munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
|
|
|
|
}
|
|
|
|
|
|
|
|
memory_region_destroy(&bar->mem);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_mmap_bar(VFIOBAR *bar, MemoryRegion *mem, MemoryRegion *submem,
|
|
|
|
void **map, size_t size, off_t offset,
|
|
|
|
const char *name)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (size && bar->flags & VFIO_REGION_INFO_FLAG_MMAP) {
|
|
|
|
int prot = 0;
|
|
|
|
|
|
|
|
if (bar->flags & VFIO_REGION_INFO_FLAG_READ) {
|
|
|
|
prot |= PROT_READ;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bar->flags & VFIO_REGION_INFO_FLAG_WRITE) {
|
|
|
|
prot |= PROT_WRITE;
|
|
|
|
}
|
|
|
|
|
|
|
|
*map = mmap(NULL, size, prot, MAP_SHARED,
|
|
|
|
bar->fd, bar->fd_offset + offset);
|
|
|
|
if (*map == MAP_FAILED) {
|
|
|
|
*map = NULL;
|
|
|
|
ret = -errno;
|
|
|
|
goto empty_region;
|
|
|
|
}
|
|
|
|
|
|
|
|
memory_region_init_ram_ptr(submem, name, size, *map);
|
|
|
|
} else {
|
|
|
|
empty_region:
|
|
|
|
/* Create a zero sized sub-region to make cleanup easy. */
|
|
|
|
memory_region_init(submem, name, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
memory_region_add_subregion(mem, offset, submem);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_map_bar(VFIODevice *vdev, int nr)
|
|
|
|
{
|
|
|
|
VFIOBAR *bar = &vdev->bars[nr];
|
|
|
|
unsigned size = bar->size;
|
|
|
|
char name[64];
|
|
|
|
uint32_t pci_bar;
|
|
|
|
uint8_t type;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Skip both unimplemented BARs and the upper half of 64bit BARS. */
|
|
|
|
if (!size) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function, nr);
|
|
|
|
|
|
|
|
/* Determine what type of BAR this is for registration */
|
|
|
|
ret = pread(vdev->fd, &pci_bar, sizeof(pci_bar),
|
|
|
|
vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
|
|
|
|
if (ret != sizeof(pci_bar)) {
|
|
|
|
error_report("vfio: Failed to read BAR %d (%m)\n", nr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pci_bar = le32_to_cpu(pci_bar);
|
|
|
|
type = pci_bar & (pci_bar & PCI_BASE_ADDRESS_SPACE_IO ?
|
|
|
|
~PCI_BASE_ADDRESS_IO_MASK : ~PCI_BASE_ADDRESS_MEM_MASK);
|
|
|
|
|
|
|
|
/* A "slow" read/write mapping underlies all BARs */
|
|
|
|
memory_region_init_io(&bar->mem, &vfio_bar_ops, bar, name, size);
|
|
|
|
pci_register_bar(&vdev->pdev, nr, type, &bar->mem);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We can't mmap areas overlapping the MSIX vector table, so we
|
|
|
|
* potentially insert a direct-mapped subregion before and after it.
|
|
|
|
*/
|
|
|
|
if (vdev->msix && vdev->msix->table_bar == nr) {
|
|
|
|
size = vdev->msix->table_offset & TARGET_PAGE_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
|
|
|
|
if (vfio_mmap_bar(bar, &bar->mem,
|
|
|
|
&bar->mmap_mem, &bar->mmap, size, 0, name)) {
|
|
|
|
error_report("%s unsupported. Performance may be slow\n", name);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vdev->msix && vdev->msix->table_bar == nr) {
|
|
|
|
unsigned start;
|
|
|
|
|
|
|
|
start = TARGET_PAGE_ALIGN(vdev->msix->table_offset +
|
|
|
|
(vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
|
|
|
|
|
|
|
|
size = start < bar->size ? bar->size - start : 0;
|
|
|
|
strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
|
|
|
|
/* VFIOMSIXInfo contains another MemoryRegion for this mapping */
|
|
|
|
if (vfio_mmap_bar(bar, &bar->mem, &vdev->msix->mmap_mem,
|
|
|
|
&vdev->msix->mmap, size, start, name)) {
|
|
|
|
error_report("%s unsupported. Performance may be slow\n", name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_map_bars(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < PCI_ROM_SLOT; i++) {
|
|
|
|
vfio_map_bar(vdev, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_unmap_bars(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < PCI_ROM_SLOT; i++) {
|
|
|
|
vfio_unmap_bar(vdev, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* General setup
|
|
|
|
*/
|
|
|
|
static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
|
|
|
|
{
|
|
|
|
uint8_t tmp, next = 0xff;
|
|
|
|
|
|
|
|
for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
|
|
|
|
tmp = pdev->config[tmp + 1]) {
|
|
|
|
if (tmp > pos && tmp < next) {
|
|
|
|
next = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return next - pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_add_std_cap(VFIODevice *vdev, uint8_t pos)
|
|
|
|
{
|
|
|
|
PCIDevice *pdev = &vdev->pdev;
|
|
|
|
uint8_t cap_id, next, size;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
cap_id = pdev->config[pos];
|
|
|
|
next = pdev->config[pos + 1];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If it becomes important to configure capabilities to their actual
|
|
|
|
* size, use this as the default when it's something we don't recognize.
|
|
|
|
* Since QEMU doesn't actually handle many of the config accesses,
|
|
|
|
* exact size doesn't seem worthwhile.
|
|
|
|
*/
|
|
|
|
size = vfio_std_cap_max_size(pdev, pos);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pci_add_capability always inserts the new capability at the head
|
|
|
|
* of the chain. Therefore to end up with a chain that matches the
|
|
|
|
* physical device, we insert from the end by making this recursive.
|
|
|
|
* This is also why we pre-caclulate size above as cached config space
|
|
|
|
* will be changed as we unwind the stack.
|
|
|
|
*/
|
|
|
|
if (next) {
|
|
|
|
ret = vfio_add_std_cap(vdev, next);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pdev->config[PCI_CAPABILITY_LIST] = 0; /* Begin the rebuild */
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (cap_id) {
|
|
|
|
case PCI_CAP_ID_MSI:
|
|
|
|
ret = vfio_setup_msi(vdev, pos);
|
|
|
|
break;
|
|
|
|
case PCI_CAP_ID_MSIX:
|
|
|
|
ret = vfio_setup_msix(vdev, pos);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = pci_add_capability(pdev, cap_id, pos, size);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret < 0) {
|
|
|
|
error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
|
|
|
|
"0x%x[0x%x]@0x%x: %d\n", vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function,
|
|
|
|
cap_id, size, pos, ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_add_capabilities(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
PCIDevice *pdev = &vdev->pdev;
|
|
|
|
|
|
|
|
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
|
|
|
|
!pdev->config[PCI_CAPABILITY_LIST]) {
|
|
|
|
return 0; /* Nothing to add */
|
|
|
|
}
|
|
|
|
|
|
|
|
return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_load_rom(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
uint64_t size = vdev->rom_size;
|
|
|
|
char name[32];
|
|
|
|
off_t off = 0, voff = vdev->rom_offset;
|
|
|
|
ssize_t bytes;
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
/* If loading ROM from file, pci handles it */
|
|
|
|
if (vdev->pdev.romfile || !vdev->pdev.rom_bar || !size) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
|
|
|
|
snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function);
|
|
|
|
memory_region_init_ram(&vdev->pdev.rom, name, size);
|
|
|
|
ptr = memory_region_get_ram_ptr(&vdev->pdev.rom);
|
|
|
|
memset(ptr, 0xff, size);
|
|
|
|
|
|
|
|
while (size) {
|
|
|
|
bytes = pread(vdev->fd, ptr + off, size, voff + off);
|
|
|
|
if (bytes == 0) {
|
|
|
|
break; /* expect that we could get back less than the ROM BAR */
|
|
|
|
} else if (bytes > 0) {
|
|
|
|
off += bytes;
|
|
|
|
size -= bytes;
|
|
|
|
} else {
|
|
|
|
if (errno == EINTR || errno == EAGAIN) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
error_report("vfio: Error reading device ROM: %m\n");
|
|
|
|
memory_region_destroy(&vdev->pdev.rom);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 0, &vdev->pdev.rom);
|
|
|
|
vdev->pdev.has_rom = true;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_connect_container(VFIOGroup *group)
|
|
|
|
{
|
|
|
|
VFIOContainer *container;
|
|
|
|
int ret, fd;
|
|
|
|
|
|
|
|
if (group->container) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
QLIST_FOREACH(container, &container_list, next) {
|
|
|
|
if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
|
|
|
|
group->container = container;
|
|
|
|
QLIST_INSERT_HEAD(&container->group_list, group, container_next);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fd = qemu_open("/dev/vfio/vfio", O_RDWR);
|
|
|
|
if (fd < 0) {
|
|
|
|
error_report("vfio: failed to open /dev/vfio/vfio: %m\n");
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = ioctl(fd, VFIO_GET_API_VERSION);
|
|
|
|
if (ret != VFIO_API_VERSION) {
|
|
|
|
error_report("vfio: supported vfio version: %d, "
|
|
|
|
"reported version: %d\n", VFIO_API_VERSION, ret);
|
|
|
|
close(fd);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
container = g_malloc0(sizeof(*container));
|
|
|
|
container->fd = fd;
|
|
|
|
|
|
|
|
if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU)) {
|
|
|
|
ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: failed to set group container: %m\n");
|
|
|
|
g_free(container);
|
|
|
|
close(fd);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = ioctl(fd, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: failed to set iommu for container: %m\n");
|
|
|
|
g_free(container);
|
|
|
|
close(fd);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
container->iommu_data.listener = vfio_memory_listener;
|
|
|
|
container->iommu_data.release = vfio_listener_release;
|
|
|
|
|
2012-10-02 20:13:51 +02:00
|
|
|
memory_listener_register(&container->iommu_data.listener, &address_space_memory);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
} else {
|
|
|
|
error_report("vfio: No available IOMMU models\n");
|
|
|
|
g_free(container);
|
|
|
|
close(fd);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
QLIST_INIT(&container->group_list);
|
|
|
|
QLIST_INSERT_HEAD(&container_list, container, next);
|
|
|
|
|
|
|
|
group->container = container;
|
|
|
|
QLIST_INSERT_HEAD(&container->group_list, group, container_next);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_disconnect_container(VFIOGroup *group)
|
|
|
|
{
|
|
|
|
VFIOContainer *container = group->container;
|
|
|
|
|
|
|
|
if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
|
|
|
|
error_report("vfio: error disconnecting group %d from container\n",
|
|
|
|
group->groupid);
|
|
|
|
}
|
|
|
|
|
|
|
|
QLIST_REMOVE(group, container_next);
|
|
|
|
group->container = NULL;
|
|
|
|
|
|
|
|
if (QLIST_EMPTY(&container->group_list)) {
|
|
|
|
if (container->iommu_data.release) {
|
|
|
|
container->iommu_data.release(container);
|
|
|
|
}
|
|
|
|
QLIST_REMOVE(container, next);
|
|
|
|
DPRINTF("vfio_disconnect_container: close container->fd\n");
|
|
|
|
close(container->fd);
|
|
|
|
g_free(container);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static VFIOGroup *vfio_get_group(int groupid)
|
|
|
|
{
|
|
|
|
VFIOGroup *group;
|
|
|
|
char path[32];
|
|
|
|
struct vfio_group_status status = { .argsz = sizeof(status) };
|
|
|
|
|
|
|
|
QLIST_FOREACH(group, &group_list, next) {
|
|
|
|
if (group->groupid == groupid) {
|
|
|
|
return group;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
group = g_malloc0(sizeof(*group));
|
|
|
|
|
|
|
|
snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
|
|
|
|
group->fd = qemu_open(path, O_RDWR);
|
|
|
|
if (group->fd < 0) {
|
|
|
|
error_report("vfio: error opening %s: %m\n", path);
|
|
|
|
g_free(group);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
|
|
|
|
error_report("vfio: error getting group status: %m\n");
|
|
|
|
close(group->fd);
|
|
|
|
g_free(group);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
|
|
|
|
error_report("vfio: error, group %d is not viable, please ensure "
|
|
|
|
"all devices within the iommu_group are bound to their "
|
|
|
|
"vfio bus driver.\n", groupid);
|
|
|
|
close(group->fd);
|
|
|
|
g_free(group);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
group->groupid = groupid;
|
|
|
|
QLIST_INIT(&group->device_list);
|
|
|
|
|
|
|
|
if (vfio_connect_container(group)) {
|
|
|
|
error_report("vfio: failed to setup container for group %d\n", groupid);
|
|
|
|
close(group->fd);
|
|
|
|
g_free(group);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
QLIST_INSERT_HEAD(&group_list, group, next);
|
|
|
|
|
|
|
|
return group;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_put_group(VFIOGroup *group)
|
|
|
|
{
|
|
|
|
if (!QLIST_EMPTY(&group->device_list)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_disconnect_container(group);
|
|
|
|
QLIST_REMOVE(group, next);
|
|
|
|
DPRINTF("vfio_put_group: close group->fd\n");
|
|
|
|
close(group->fd);
|
|
|
|
g_free(group);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_get_device(VFIOGroup *group, const char *name, VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
|
|
|
|
struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
|
|
|
|
int ret, i;
|
|
|
|
|
|
|
|
ret = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
|
|
|
|
if (ret < 0) {
|
|
|
|
error_report("vfio: error getting device %s from group %d: %m\n",
|
|
|
|
name, group->groupid);
|
|
|
|
error_report("Verify all devices in group %d are bound to vfio-pci "
|
|
|
|
"or pci-stub and not already in use\n", group->groupid);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev->fd = ret;
|
|
|
|
vdev->group = group;
|
|
|
|
QLIST_INSERT_HEAD(&group->device_list, vdev, next);
|
|
|
|
|
|
|
|
/* Sanity check device */
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_INFO, &dev_info);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: error getting device info: %m\n");
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("Device %s flags: %u, regions: %u, irgs: %u\n", name,
|
|
|
|
dev_info.flags, dev_info.num_regions, dev_info.num_irqs);
|
|
|
|
|
|
|
|
if (!(dev_info.flags & VFIO_DEVICE_FLAGS_PCI)) {
|
|
|
|
error_report("vfio: Um, this isn't a PCI device\n");
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
|
|
|
|
if (!vdev->reset_works) {
|
|
|
|
error_report("Warning, device %s does not support reset\n", name);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev_info.num_regions != VFIO_PCI_NUM_REGIONS) {
|
|
|
|
error_report("vfio: unexpected number of io regions %u\n",
|
|
|
|
dev_info.num_regions);
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev_info.num_irqs != VFIO_PCI_NUM_IRQS) {
|
|
|
|
error_report("vfio: unexpected number of irqs %u\n", dev_info.num_irqs);
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
|
|
|
|
reg_info.index = i;
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: Error getting region %d info: %m\n", i);
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("Device %s region %d:\n", name, i);
|
|
|
|
DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n",
|
|
|
|
(unsigned long)reg_info.size, (unsigned long)reg_info.offset,
|
|
|
|
(unsigned long)reg_info.flags);
|
|
|
|
|
|
|
|
vdev->bars[i].flags = reg_info.flags;
|
|
|
|
vdev->bars[i].size = reg_info.size;
|
|
|
|
vdev->bars[i].fd_offset = reg_info.offset;
|
|
|
|
vdev->bars[i].fd = vdev->fd;
|
|
|
|
vdev->bars[i].nr = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg_info.index = VFIO_PCI_ROM_REGION_INDEX;
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: Error getting ROM info: %m\n");
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("Device %s ROM:\n", name);
|
|
|
|
DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n",
|
|
|
|
(unsigned long)reg_info.size, (unsigned long)reg_info.offset,
|
|
|
|
(unsigned long)reg_info.flags);
|
|
|
|
|
|
|
|
vdev->rom_size = reg_info.size;
|
|
|
|
vdev->rom_offset = reg_info.offset;
|
|
|
|
|
|
|
|
reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
|
|
|
|
|
|
|
|
ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: Error getting config info: %m\n");
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("Device %s config:\n", name);
|
|
|
|
DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n",
|
|
|
|
(unsigned long)reg_info.size, (unsigned long)reg_info.offset,
|
|
|
|
(unsigned long)reg_info.flags);
|
|
|
|
|
|
|
|
vdev->config_size = reg_info.size;
|
|
|
|
vdev->config_offset = reg_info.offset;
|
|
|
|
|
|
|
|
error:
|
|
|
|
if (ret) {
|
|
|
|
QLIST_REMOVE(vdev, next);
|
|
|
|
vdev->group = NULL;
|
|
|
|
close(vdev->fd);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_put_device(VFIODevice *vdev)
|
|
|
|
{
|
|
|
|
QLIST_REMOVE(vdev, next);
|
|
|
|
vdev->group = NULL;
|
|
|
|
DPRINTF("vfio_put_device: close vdev->fd\n");
|
|
|
|
close(vdev->fd);
|
|
|
|
if (vdev->msix) {
|
|
|
|
g_free(vdev->msix);
|
|
|
|
vdev->msix = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vfio_initfn(PCIDevice *pdev)
|
|
|
|
{
|
|
|
|
VFIODevice *pvdev, *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
VFIOGroup *group;
|
|
|
|
char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
|
|
|
|
ssize_t len;
|
|
|
|
struct stat st;
|
|
|
|
int groupid;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Check that the host device exists */
|
|
|
|
snprintf(path, sizeof(path),
|
|
|
|
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function);
|
|
|
|
if (stat(path, &st) < 0) {
|
|
|
|
error_report("vfio: error: no such host device: %s\n", path);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
|
|
|
|
|
|
|
|
len = readlink(path, iommu_group_path, PATH_MAX);
|
|
|
|
if (len <= 0) {
|
|
|
|
error_report("vfio: error no iommu_group for device\n");
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
iommu_group_path[len] = 0;
|
|
|
|
group_name = basename(iommu_group_path);
|
|
|
|
|
|
|
|
if (sscanf(group_name, "%d", &groupid) != 1) {
|
|
|
|
error_report("vfio: error reading %s: %m\n", path);
|
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x) group %d\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function, groupid);
|
|
|
|
|
|
|
|
group = vfio_get_group(groupid);
|
|
|
|
if (!group) {
|
|
|
|
error_report("vfio: failed to get group %d\n", groupid);
|
|
|
|
return -ENOENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
|
|
|
|
vdev->host.domain, vdev->host.bus, vdev->host.slot,
|
|
|
|
vdev->host.function);
|
|
|
|
|
|
|
|
QLIST_FOREACH(pvdev, &group->device_list, next) {
|
|
|
|
if (pvdev->host.domain == vdev->host.domain &&
|
|
|
|
pvdev->host.bus == vdev->host.bus &&
|
|
|
|
pvdev->host.slot == vdev->host.slot &&
|
|
|
|
pvdev->host.function == vdev->host.function) {
|
|
|
|
|
|
|
|
error_report("vfio: error: device %s is already attached\n", path);
|
|
|
|
vfio_put_group(group);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = vfio_get_device(group, path, vdev);
|
|
|
|
if (ret) {
|
|
|
|
error_report("vfio: failed to get device %s\n", path);
|
|
|
|
vfio_put_group(group);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get a copy of config space */
|
|
|
|
ret = pread(vdev->fd, vdev->pdev.config,
|
|
|
|
MIN(pci_config_size(&vdev->pdev), vdev->config_size),
|
|
|
|
vdev->config_offset);
|
|
|
|
if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
|
|
|
|
ret = ret < 0 ? -errno : -EFAULT;
|
|
|
|
error_report("vfio: Failed to read device config space\n");
|
|
|
|
goto out_put;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear host resource mapping info. If we choose not to register a
|
|
|
|
* BAR, such as might be the case with the option ROM, we can get
|
|
|
|
* confusing, unwritable, residual addresses from the host here.
|
|
|
|
*/
|
|
|
|
memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
|
|
|
|
memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
|
|
|
|
|
|
|
|
vfio_load_rom(vdev);
|
|
|
|
|
|
|
|
ret = vfio_early_setup_msix(vdev);
|
|
|
|
if (ret) {
|
|
|
|
goto out_put;
|
|
|
|
}
|
|
|
|
|
|
|
|
vfio_map_bars(vdev);
|
|
|
|
|
|
|
|
ret = vfio_add_capabilities(vdev);
|
|
|
|
if (ret) {
|
|
|
|
goto out_teardown;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
vdev->intx.mmap_timer = qemu_new_timer_ms(vm_clock,
|
|
|
|
vfio_intx_mmap_enable, vdev);
|
2012-11-13 12:27:40 -07:00
|
|
|
pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
ret = vfio_enable_intx(vdev);
|
|
|
|
if (ret) {
|
|
|
|
goto out_teardown;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_teardown:
|
|
|
|
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
|
|
|
|
vfio_teardown_msi(vdev);
|
|
|
|
vfio_unmap_bars(vdev);
|
|
|
|
out_put:
|
|
|
|
vfio_put_device(vdev);
|
|
|
|
vfio_put_group(group);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_exitfn(PCIDevice *pdev)
|
|
|
|
{
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
|
|
|
VFIOGroup *group = vdev->group;
|
|
|
|
|
|
|
|
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
|
|
|
|
vfio_disable_interrupts(vdev);
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
if (vdev->intx.mmap_timer) {
|
|
|
|
qemu_free_timer(vdev->intx.mmap_timer);
|
|
|
|
}
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
vfio_teardown_msi(vdev);
|
|
|
|
vfio_unmap_bars(vdev);
|
|
|
|
vfio_put_device(vdev);
|
|
|
|
vfio_put_group(group);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vfio_pci_reset(DeviceState *dev)
|
|
|
|
{
|
|
|
|
PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
|
|
|
|
VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev);
|
2012-10-08 08:45:30 -06:00
|
|
|
uint16_t cmd;
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
2012-10-08 08:45:30 -06:00
|
|
|
DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
|
|
|
|
vfio_disable_interrupts(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
2012-10-08 08:45:30 -06:00
|
|
|
/*
|
|
|
|
* Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
|
|
|
|
* Also put INTx Disable in known state.
|
|
|
|
*/
|
|
|
|
cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
|
|
|
|
cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
|
|
|
|
PCI_COMMAND_INTX_DISABLE);
|
|
|
|
vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
|
|
|
|
|
|
|
|
if (vdev->reset_works) {
|
|
|
|
if (ioctl(vdev->fd, VFIO_DEVICE_RESET)) {
|
|
|
|
error_report("vfio: Error unable to reset physical device "
|
|
|
|
"(%04x:%02x:%02x.%x): %m\n", vdev->host.domain,
|
|
|
|
vdev->host.bus, vdev->host.slot, vdev->host.function);
|
|
|
|
}
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
2012-10-08 08:45:30 -06:00
|
|
|
|
|
|
|
vfio_enable_intx(vdev);
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static Property vfio_pci_dev_properties[] = {
|
|
|
|
DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIODevice, host),
|
vfio-pci: Update slow path INTx algorithm
We can't afford the overhead of switching out and back into mmap mode
around each interrupt, but we can do it lazily via a timer. On INTx
interrupt, disable the mmap'd memory regions and set a timer. On
every interrupt, push the timer out. If the timer expires and the
interrupt is no longer pending, switch back to mmap mode.
This has the benefit that things like graphics cards, which rarely or
never, fire an interrupt don't need manual user intervention to add
the x-intx=off parameter. They'll just remain in mmap mode until they
trigger an interrupt, and if they don't continue to regularly fire
interrupts, they'll switch back.
The default timeout is tuned for network cards so that a ping is just
enough to keep them in non-mmap mode, where they have much better
latency. It is tunable with an experimental option,
x-intx-mmap-timeout-ms. A value of 0 keeps the device in non-mmap
mode after the first interrupt.
It's possible we could look at the class code of devices and come up
with reasonable per-class defaults based on expected interrupt
frequency and latency. None of this is used for MSI interrupts and
also won't be used if we can bypass through KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2012-10-08 08:45:29 -06:00
|
|
|
DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIODevice,
|
|
|
|
intx.mmap_timeout, 1100),
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
/*
|
|
|
|
* TODO - support passed fds... is this necessary?
|
|
|
|
* DEFINE_PROP_STRING("vfiofd", VFIODevice, vfiofd_name),
|
|
|
|
* DEFINE_PROP_STRING("vfiogroupfd, VFIODevice, vfiogroupfd_name),
|
|
|
|
*/
|
|
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
|
|
};
|
|
|
|
|
2012-10-17 11:20:14 -06:00
|
|
|
static const VMStateDescription vfio_pci_vmstate = {
|
|
|
|
.name = "vfio-pci",
|
|
|
|
.unmigratable = 1,
|
|
|
|
};
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
|
|
|
|
static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
|
|
|
|
{
|
|
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
|
|
|
|
|
|
|
|
dc->reset = vfio_pci_reset;
|
|
|
|
dc->props = vfio_pci_dev_properties;
|
2012-10-17 11:20:14 -06:00
|
|
|
dc->vmsd = &vfio_pci_vmstate;
|
|
|
|
dc->desc = "VFIO-based PCI device assignment";
|
vfio: vfio-pci device assignment driver
This adds the core of the QEMU VFIO-based PCI device assignment driver.
To make use of this driver, enable CONFIG_VFIO, CONFIG_VFIO_IOMMU_TYPE1,
and CONFIG_VFIO_PCI in your host Linux kernel config. Load the vfio-pci
module. To assign device 0000:05:00.0 to a guest, do the following:
for dev in $(ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices); do
vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
device=$(cat /sys/bus/pci/devices/$dev/device)
if [ -e /sys/bus/pci/devices/$dev/driver ]; then
echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
fi
echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done
See Documentation/vfio.txt in the Linux kernel tree for further
description of IOMMU groups and VFIO.
Then launch qemu including the option:
-device vfio-pci,host=0000:05:00.0
Legacy PCI interrupts (INTx) currently makes use of a kludge where we
trap BAR accesses and assume the access is in response to an interrupt,
therefore de-asserting and unmasking the interrupt. It's not quite as
targetted as using the EOI for this, but it's self contained and seems
to work across all architectures. The side-effect is a significant
performance slow-down for device in INTx mode. Some devices, like
graphics cards, don't really use their interrupt, so this can be turned
off with the x-intx=off option, which disables INTx alltogether. This
should be considered an experimental option until we refine this code.
Both MSI and MSI-X are supported and avoid these issues.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-09-26 11:19:32 -06:00
|
|
|
pdc->init = vfio_initfn;
|
|
|
|
pdc->exit = vfio_exitfn;
|
|
|
|
pdc->config_read = vfio_pci_read_config;
|
|
|
|
pdc->config_write = vfio_pci_write_config;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const TypeInfo vfio_pci_dev_info = {
|
|
|
|
.name = "vfio-pci",
|
|
|
|
.parent = TYPE_PCI_DEVICE,
|
|
|
|
.instance_size = sizeof(VFIODevice),
|
|
|
|
.class_init = vfio_pci_dev_class_init,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void register_vfio_pci_dev_type(void)
|
|
|
|
{
|
|
|
|
type_register_static(&vfio_pci_dev_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
type_init(register_vfio_pci_dev_type)
|