2019-07-01 17:26:21 +01:00
|
|
|
/*
|
|
|
|
* ARM TLB (Translation lookaside buffer) helpers.
|
|
|
|
*
|
|
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
|
|
#include "internals.h"
|
|
|
|
#include "exec/exec-all.h"
|
2021-11-03 00:03:49 -04:00
|
|
|
#include "exec/helper-proto.h"
|
2019-07-01 17:26:21 +01:00
|
|
|
|
|
|
|
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
|
|
|
unsigned int target_el,
|
|
|
|
bool same_el, bool ea,
|
|
|
|
bool s1ptw, bool is_write,
|
|
|
|
int fsc)
|
|
|
|
{
|
|
|
|
uint32_t syn;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ISV is only set for data aborts routed to EL2 and
|
|
|
|
* never for stage-1 page table walks faulting on stage 2.
|
|
|
|
*
|
|
|
|
* Furthermore, ISV is only set for certain kinds of load/stores.
|
|
|
|
* If the template syndrome does not have ISV set, we should leave
|
|
|
|
* it cleared.
|
|
|
|
*
|
|
|
|
* See ARMv8 specs, D7-1974:
|
|
|
|
* ISS encoding for an exception from a Data Abort, the
|
|
|
|
* ISV field.
|
|
|
|
*/
|
|
|
|
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
|
target-arm: kvm64: handle SIGBUS signal from kernel or KVM
Add a SIGBUS signal handler. In this handler, it checks the SIGBUS type,
translates the host VA delivered by host to guest PA, then fills this PA
to guest APEI GHES memory, then notifies guest according to the SIGBUS
type.
When guest accesses the poisoned memory, it will generate a Synchronous
External Abort(SEA). Then host kernel gets an APEI notification and calls
memory_failure() to unmapped the affected page in stage 2, finally
returns to guest.
Guest continues to access the PG_hwpoison page, it will trap to KVM as
stage2 fault, then a SIGBUS_MCEERR_AR synchronous signal is delivered to
Qemu, Qemu records this error address into guest APEI GHES memory and
notifes guest using Synchronous-External-Abort(SEA).
In order to inject a vSEA, we introduce the kvm_inject_arm_sea() function
in which we can setup the type of exception and the syndrome information.
When switching to guest, the target vcpu will jump to the synchronous
external abort vector table entry.
The ESR_ELx.DFSC is set to synchronous external abort(0x10), and the
ESR_ELx.FnV is set to not valid(0x1), which will tell guest that FAR is
not valid and hold an UNKNOWN value. These values will be set to KVM
register structures through KVM_SET_ONE_REG IOCTL.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Signed-off-by: Xiang Zheng <zhengxiang9@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Xiang Zheng <zhengxiang9@huawei.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20200512030609.19593-10-gengdongjiu@huawei.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-05-12 11:06:08 +08:00
|
|
|
syn = syn_data_abort_no_iss(same_el, 0,
|
2019-07-01 17:26:21 +01:00
|
|
|
ea, 0, s1ptw, is_write, fsc);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
|
|
|
* syndrome created at translation time.
|
|
|
|
* Now we create the runtime syndrome with the remaining fields.
|
|
|
|
*/
|
|
|
|
syn = syn_data_abort_with_iss(same_el,
|
|
|
|
0, 0, 0, 0, 0,
|
|
|
|
ea, 0, s1ptw, is_write, fsc,
|
2020-01-17 14:09:31 +00:00
|
|
|
true);
|
2019-07-01 17:26:21 +01:00
|
|
|
/* Merge the runtime syndrome with the template syndrome. */
|
|
|
|
syn |= template_syn;
|
|
|
|
}
|
|
|
|
return syn;
|
|
|
|
}
|
|
|
|
|
2021-11-03 00:03:48 -04:00
|
|
|
static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
|
|
|
|
int target_el, int mmu_idx, uint32_t *ret_fsc)
|
2019-07-01 17:26:21 +01:00
|
|
|
{
|
|
|
|
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
2021-11-03 00:03:48 -04:00
|
|
|
uint32_t fsr, fsc;
|
2019-07-01 17:26:21 +01:00
|
|
|
|
|
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
|
|
|
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
|
|
|
|
/*
|
|
|
|
* LPAE format fault status register : bottom 6 bits are
|
|
|
|
* status code in the same form as needed for syndrome
|
|
|
|
*/
|
|
|
|
fsr = arm_fi_to_lfsc(fi);
|
|
|
|
fsc = extract32(fsr, 0, 6);
|
|
|
|
} else {
|
|
|
|
fsr = arm_fi_to_sfsc(fi);
|
|
|
|
/*
|
|
|
|
* Short format FSR : this fault will never actually be reported
|
|
|
|
* to an EL that uses a syndrome register. Use a (currently)
|
|
|
|
* reserved FSR code in case the constructed syndrome does leak
|
|
|
|
* into the guest somehow.
|
|
|
|
*/
|
|
|
|
fsc = 0x3f;
|
|
|
|
}
|
|
|
|
|
2021-11-03 00:03:48 -04:00
|
|
|
*ret_fsc = fsc;
|
|
|
|
return fsr;
|
|
|
|
}
|
|
|
|
|
2022-04-20 17:26:02 +04:00
|
|
|
static G_NORETURN
|
|
|
|
void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
int mmu_idx, ARMMMUFaultInfo *fi)
|
2021-11-03 00:03:48 -04:00
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
int target_el;
|
|
|
|
bool same_el;
|
|
|
|
uint32_t syn, exc, fsr, fsc;
|
|
|
|
|
|
|
|
target_el = exception_target_el(env);
|
|
|
|
if (fi->stage2) {
|
|
|
|
target_el = 2;
|
|
|
|
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
|
|
|
if (arm_is_secure_below_el3(env) && fi->s1ns) {
|
|
|
|
env->cp15.hpfar_el2 |= HPFAR_NS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
same_el = (arm_current_el(env) == target_el);
|
|
|
|
|
|
|
|
fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
|
|
|
|
|
2019-07-01 17:26:21 +01:00
|
|
|
if (access_type == MMU_INST_FETCH) {
|
|
|
|
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
|
|
|
exc = EXCP_PREFETCH_ABORT;
|
|
|
|
} else {
|
|
|
|
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
|
|
|
|
same_el, fi->ea, fi->s1ptw,
|
|
|
|
access_type == MMU_DATA_STORE,
|
|
|
|
fsc);
|
|
|
|
if (access_type == MMU_DATA_STORE
|
|
|
|
&& arm_feature(env, ARM_FEATURE_V6)) {
|
|
|
|
fsr |= (1 << 11);
|
|
|
|
}
|
|
|
|
exc = EXCP_DATA_ABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
env->exception.vaddress = addr;
|
|
|
|
env->exception.fsr = fsr;
|
|
|
|
raise_exception(env, exc, syn, target_el);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
|
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
int mmu_idx, uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
ARMMMUFaultInfo fi = {};
|
|
|
|
|
|
|
|
/* now we have a real cpu fault */
|
|
|
|
cpu_restore_state(cs, retaddr, true);
|
|
|
|
|
|
|
|
fi.type = ARMFault_Alignment;
|
|
|
|
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
|
|
|
}
|
|
|
|
|
2021-11-03 00:03:49 -04:00
|
|
|
void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
|
|
|
|
{
|
|
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
|
|
|
|
int target_el = exception_target_el(env);
|
|
|
|
int mmu_idx = cpu_mmu_index(env, true);
|
|
|
|
uint32_t fsc;
|
|
|
|
|
|
|
|
env->exception.vaddress = pc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that the fsc is not applicable to this exception,
|
|
|
|
* since any syndrome is pcalignment not insn_abort.
|
|
|
|
*/
|
|
|
|
env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
|
|
|
|
raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
|
|
|
|
}
|
|
|
|
|
2020-06-25 20:31:12 -07:00
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
|
2019-07-01 17:26:21 +01:00
|
|
|
/*
|
|
|
|
* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
|
|
* exception
|
|
|
|
*/
|
|
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
|
|
vaddr addr, unsigned size,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
|
|
MemTxResult response, uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
ARMMMUFaultInfo fi = {};
|
|
|
|
|
|
|
|
/* now we have a real cpu fault */
|
|
|
|
cpu_restore_state(cs, retaddr, true);
|
|
|
|
|
|
|
|
fi.ea = arm_extabort_type(response);
|
|
|
|
fi.type = ARMFault_SyncExternal;
|
|
|
|
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
|
|
MMUAccessType access_type, int mmu_idx,
|
|
|
|
bool probe, uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
2021-02-12 10:48:57 -08:00
|
|
|
ARMMMUFaultInfo fi = {};
|
2019-07-01 17:26:21 +01:00
|
|
|
hwaddr phys_addr;
|
|
|
|
target_ulong page_size;
|
|
|
|
int prot, ret;
|
|
|
|
MemTxAttrs attrs = {};
|
2020-06-25 20:31:39 -07:00
|
|
|
ARMCacheAttrs cacheattrs = {};
|
2019-07-01 17:26:21 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk the page table and (if the mapping exists) add the page
|
|
|
|
* to the TLB. On success, return true. Otherwise, if probing,
|
|
|
|
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
|
|
|
|
* register format, and signal the fault.
|
|
|
|
*/
|
|
|
|
ret = get_phys_addr(&cpu->env, address, access_type,
|
|
|
|
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
|
2020-06-25 20:31:39 -07:00
|
|
|
&phys_addr, &attrs, &prot, &page_size,
|
|
|
|
&fi, &cacheattrs);
|
2019-07-01 17:26:21 +01:00
|
|
|
if (likely(!ret)) {
|
|
|
|
/*
|
|
|
|
* Map a single [sub]page. Regions smaller than our declared
|
|
|
|
* target page size are handled specially, so for those we
|
|
|
|
* pass in the exact addresses.
|
|
|
|
*/
|
|
|
|
if (page_size >= TARGET_PAGE_SIZE) {
|
|
|
|
phys_addr &= TARGET_PAGE_MASK;
|
|
|
|
address &= TARGET_PAGE_MASK;
|
|
|
|
}
|
2020-06-25 20:31:40 -07:00
|
|
|
/* Notice and record tagged memory. */
|
|
|
|
if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) {
|
|
|
|
arm_tlb_mte_tagged(&attrs) = true;
|
|
|
|
}
|
|
|
|
|
2019-07-01 17:26:21 +01:00
|
|
|
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
|
|
|
|
prot, mmu_idx, page_size);
|
|
|
|
return true;
|
|
|
|
} else if (probe) {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
/* now we have a real cpu fault */
|
|
|
|
cpu_restore_state(cs, retaddr, true);
|
|
|
|
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
|
|
|
|
}
|
|
|
|
}
|
2021-09-17 18:23:07 -07:00
|
|
|
#else
|
|
|
|
void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
bool maperr, uintptr_t ra)
|
|
|
|
{
|
|
|
|
ARMMMUFaultInfo fi = {
|
|
|
|
.type = maperr ? ARMFault_Translation : ARMFault_Permission,
|
|
|
|
.level = 3,
|
|
|
|
};
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We report both ESR and FAR to signal handlers.
|
|
|
|
* For now, it's easiest to deliver the fault normally.
|
|
|
|
*/
|
|
|
|
cpu_restore_state(cs, ra, true);
|
|
|
|
arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
|
|
|
|
}
|
2021-07-23 12:22:54 -10:00
|
|
|
|
|
|
|
void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
|
|
|
|
MMUAccessType access_type, uintptr_t ra)
|
|
|
|
{
|
|
|
|
arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
|
|
|
|
}
|
2021-09-17 18:23:07 -07:00
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|