qemu-e2k/hw/misc/iotkit-secctl.c

739 lines
21 KiB
C
Raw Normal View History

/*
* Arm IoT Kit security controller
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/misc/iotkit-secctl.h"
/* Registers in the secure privilege control block */
REG32(SECRESPCFG, 0x10)
REG32(NSCCFG, 0x14)
REG32(SECMPCINTSTATUS, 0x1c)
REG32(SECPPCINTSTAT, 0x20)
REG32(SECPPCINTCLR, 0x24)
REG32(SECPPCINTEN, 0x28)
REG32(SECMSCINTSTAT, 0x30)
REG32(SECMSCINTCLR, 0x34)
REG32(SECMSCINTEN, 0x38)
REG32(BRGINTSTAT, 0x40)
REG32(BRGINTCLR, 0x44)
REG32(BRGINTEN, 0x48)
REG32(AHBNSPPC0, 0x50)
REG32(AHBNSPPCEXP0, 0x60)
REG32(AHBNSPPCEXP1, 0x64)
REG32(AHBNSPPCEXP2, 0x68)
REG32(AHBNSPPCEXP3, 0x6c)
REG32(APBNSPPC0, 0x70)
REG32(APBNSPPC1, 0x74)
REG32(APBNSPPCEXP0, 0x80)
REG32(APBNSPPCEXP1, 0x84)
REG32(APBNSPPCEXP2, 0x88)
REG32(APBNSPPCEXP3, 0x8c)
REG32(AHBSPPPC0, 0x90)
REG32(AHBSPPPCEXP0, 0xa0)
REG32(AHBSPPPCEXP1, 0xa4)
REG32(AHBSPPPCEXP2, 0xa8)
REG32(AHBSPPPCEXP3, 0xac)
REG32(APBSPPPC0, 0xb0)
REG32(APBSPPPC1, 0xb4)
REG32(APBSPPPCEXP0, 0xc0)
REG32(APBSPPPCEXP1, 0xc4)
REG32(APBSPPPCEXP2, 0xc8)
REG32(APBSPPPCEXP3, 0xcc)
REG32(NSMSCEXP, 0xd0)
REG32(PID4, 0xfd0)
REG32(PID5, 0xfd4)
REG32(PID6, 0xfd8)
REG32(PID7, 0xfdc)
REG32(PID0, 0xfe0)
REG32(PID1, 0xfe4)
REG32(PID2, 0xfe8)
REG32(PID3, 0xfec)
REG32(CID0, 0xff0)
REG32(CID1, 0xff4)
REG32(CID2, 0xff8)
REG32(CID3, 0xffc)
/* Registers in the non-secure privilege control block */
REG32(AHBNSPPPC0, 0x90)
REG32(AHBNSPPPCEXP0, 0xa0)
REG32(AHBNSPPPCEXP1, 0xa4)
REG32(AHBNSPPPCEXP2, 0xa8)
REG32(AHBNSPPPCEXP3, 0xac)
REG32(APBNSPPPC0, 0xb0)
REG32(APBNSPPPC1, 0xb4)
REG32(APBNSPPPCEXP0, 0xc0)
REG32(APBNSPPPCEXP1, 0xc4)
REG32(APBNSPPPCEXP2, 0xc8)
REG32(APBNSPPPCEXP3, 0xcc)
/* PID and CID registers are also present in the NS block */
static const uint8_t iotkit_secctl_s_idregs[] = {
0x04, 0x00, 0x00, 0x00,
0x52, 0xb8, 0x0b, 0x00,
0x0d, 0xf0, 0x05, 0xb1,
};
static const uint8_t iotkit_secctl_ns_idregs[] = {
0x04, 0x00, 0x00, 0x00,
0x53, 0xb8, 0x0b, 0x00,
0x0d, 0xf0, 0x05, 0xb1,
};
/* The register sets for the various PPCs (AHB internal, APB internal,
* AHB expansion, APB expansion) are all set up so that they are
* in 16-aligned blocks so offsets 0xN0, 0xN4, 0xN8, 0xNC are PPCs
* 0, 1, 2, 3 of that type, so we can convert a register address offset
* into an an index into a PPC array easily.
*/
static inline int offset_to_ppc_idx(uint32_t offset)
{
return extract32(offset, 2, 2);
}
typedef void PerPPCFunction(IoTKitSecCtlPPC *ppc);
static void foreach_ppc(IoTKitSecCtl *s, PerPPCFunction *fn)
{
int i;
for (i = 0; i < IOTS_NUM_APB_PPC; i++) {
fn(&s->apb[i]);
}
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
fn(&s->apbexp[i]);
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
fn(&s->ahbexp[i]);
}
}
static MemTxResult iotkit_secctl_s_read(void *opaque, hwaddr addr,
uint64_t *pdata,
unsigned size, MemTxAttrs attrs)
{
uint64_t r;
uint32_t offset = addr & ~0x3;
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
switch (offset) {
case A_AHBNSPPC0:
case A_AHBSPPPC0:
r = 0;
break;
case A_SECRESPCFG:
r = s->secrespcfg;
break;
case A_NSCCFG:
r = s->nsccfg;
break;
case A_SECMPCINTSTATUS:
r = s->mpcintstatus;
break;
case A_SECPPCINTSTAT:
r = s->secppcintstat;
break;
case A_SECPPCINTEN:
r = s->secppcinten;
break;
case A_BRGINTSTAT:
/* QEMU's bus fabric can never report errors as it doesn't buffer
* writes, so we never report bridge interrupts.
*/
r = 0;
break;
case A_BRGINTEN:
r = s->brginten;
break;
case A_AHBNSPPCEXP0:
case A_AHBNSPPCEXP1:
case A_AHBNSPPCEXP2:
case A_AHBNSPPCEXP3:
r = s->ahbexp[offset_to_ppc_idx(offset)].ns;
break;
case A_APBNSPPC0:
case A_APBNSPPC1:
r = s->apb[offset_to_ppc_idx(offset)].ns;
break;
case A_APBNSPPCEXP0:
case A_APBNSPPCEXP1:
case A_APBNSPPCEXP2:
case A_APBNSPPCEXP3:
r = s->apbexp[offset_to_ppc_idx(offset)].ns;
break;
case A_AHBSPPPCEXP0:
case A_AHBSPPPCEXP1:
case A_AHBSPPPCEXP2:
case A_AHBSPPPCEXP3:
r = s->apbexp[offset_to_ppc_idx(offset)].sp;
break;
case A_APBSPPPC0:
case A_APBSPPPC1:
r = s->apb[offset_to_ppc_idx(offset)].sp;
break;
case A_APBSPPPCEXP0:
case A_APBSPPPCEXP1:
case A_APBSPPPCEXP2:
case A_APBSPPPCEXP3:
r = s->apbexp[offset_to_ppc_idx(offset)].sp;
break;
case A_SECMSCINTSTAT:
case A_SECMSCINTEN:
case A_NSMSCEXP:
qemu_log_mask(LOG_UNIMP,
"IoTKit SecCtl S block read: "
"unimplemented offset 0x%x\n", offset);
r = 0;
break;
case A_PID4:
case A_PID5:
case A_PID6:
case A_PID7:
case A_PID0:
case A_PID1:
case A_PID2:
case A_PID3:
case A_CID0:
case A_CID1:
case A_CID2:
case A_CID3:
r = iotkit_secctl_s_idregs[(offset - A_PID4) / 4];
break;
case A_SECPPCINTCLR:
case A_SECMSCINTCLR:
case A_BRGINTCLR:
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl S block read: write-only offset 0x%x\n",
offset);
r = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl S block read: bad offset 0x%x\n", offset);
r = 0;
break;
}
if (size != 4) {
/* None of our registers are access-sensitive, so just pull the right
* byte out of the word read result.
*/
r = extract32(r, (addr & 3) * 8, size * 8);
}
trace_iotkit_secctl_s_read(offset, r, size);
*pdata = r;
return MEMTX_OK;
}
static void iotkit_secctl_update_ppc_ap(IoTKitSecCtlPPC *ppc)
{
int i;
for (i = 0; i < ppc->numports; i++) {
bool v;
if (extract32(ppc->ns, i, 1)) {
v = extract32(ppc->nsp, i, 1);
} else {
v = extract32(ppc->sp, i, 1);
}
qemu_set_irq(ppc->ap[i], v);
}
}
static void iotkit_secctl_ppc_ns_write(IoTKitSecCtlPPC *ppc, uint32_t value)
{
int i;
ppc->ns = value & MAKE_64BIT_MASK(0, ppc->numports);
for (i = 0; i < ppc->numports; i++) {
qemu_set_irq(ppc->nonsec[i], extract32(ppc->ns, i, 1));
}
iotkit_secctl_update_ppc_ap(ppc);
}
static void iotkit_secctl_ppc_sp_write(IoTKitSecCtlPPC *ppc, uint32_t value)
{
ppc->sp = value & MAKE_64BIT_MASK(0, ppc->numports);
iotkit_secctl_update_ppc_ap(ppc);
}
static void iotkit_secctl_ppc_nsp_write(IoTKitSecCtlPPC *ppc, uint32_t value)
{
ppc->nsp = value & MAKE_64BIT_MASK(0, ppc->numports);
iotkit_secctl_update_ppc_ap(ppc);
}
static void iotkit_secctl_ppc_update_irq_clear(IoTKitSecCtlPPC *ppc)
{
uint32_t value = ppc->parent->secppcintstat;
qemu_set_irq(ppc->irq_clear, extract32(value, ppc->irq_bit_offset, 1));
}
static void iotkit_secctl_ppc_update_irq_enable(IoTKitSecCtlPPC *ppc)
{
uint32_t value = ppc->parent->secppcinten;
qemu_set_irq(ppc->irq_enable, extract32(value, ppc->irq_bit_offset, 1));
}
static MemTxResult iotkit_secctl_s_write(void *opaque, hwaddr addr,
uint64_t value,
unsigned size, MemTxAttrs attrs)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
uint32_t offset = addr;
IoTKitSecCtlPPC *ppc;
trace_iotkit_secctl_s_write(offset, value, size);
if (size != 4) {
/* Byte and halfword writes are ignored */
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl S block write: bad size, ignored\n");
return MEMTX_OK;
}
switch (offset) {
case A_NSCCFG:
s->nsccfg = value & 3;
qemu_set_irq(s->nsc_cfg_irq, s->nsccfg);
break;
case A_SECRESPCFG:
value &= 1;
s->secrespcfg = value;
qemu_set_irq(s->sec_resp_cfg, s->secrespcfg);
break;
case A_SECPPCINTCLR:
value &= 0x00f000f3;
foreach_ppc(s, iotkit_secctl_ppc_update_irq_clear);
break;
case A_SECPPCINTEN:
s->secppcinten = value & 0x00f000f3;
foreach_ppc(s, iotkit_secctl_ppc_update_irq_enable);
break;
case A_BRGINTCLR:
break;
case A_BRGINTEN:
s->brginten = value & 0xffff0000;
break;
case A_AHBNSPPCEXP0:
case A_AHBNSPPCEXP1:
case A_AHBNSPPCEXP2:
case A_AHBNSPPCEXP3:
ppc = &s->ahbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_ns_write(ppc, value);
break;
case A_APBNSPPC0:
case A_APBNSPPC1:
ppc = &s->apb[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_ns_write(ppc, value);
break;
case A_APBNSPPCEXP0:
case A_APBNSPPCEXP1:
case A_APBNSPPCEXP2:
case A_APBNSPPCEXP3:
ppc = &s->apbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_ns_write(ppc, value);
break;
case A_AHBSPPPCEXP0:
case A_AHBSPPPCEXP1:
case A_AHBSPPPCEXP2:
case A_AHBSPPPCEXP3:
ppc = &s->ahbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_sp_write(ppc, value);
break;
case A_APBSPPPC0:
case A_APBSPPPC1:
ppc = &s->apb[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_sp_write(ppc, value);
break;
case A_APBSPPPCEXP0:
case A_APBSPPPCEXP1:
case A_APBSPPPCEXP2:
case A_APBSPPPCEXP3:
ppc = &s->apbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_sp_write(ppc, value);
break;
case A_SECMSCINTCLR:
case A_SECMSCINTEN:
qemu_log_mask(LOG_UNIMP,
"IoTKit SecCtl S block write: "
"unimplemented offset 0x%x\n", offset);
break;
case A_SECMPCINTSTATUS:
case A_SECPPCINTSTAT:
case A_SECMSCINTSTAT:
case A_BRGINTSTAT:
case A_AHBNSPPC0:
case A_AHBSPPPC0:
case A_NSMSCEXP:
case A_PID4:
case A_PID5:
case A_PID6:
case A_PID7:
case A_PID0:
case A_PID1:
case A_PID2:
case A_PID3:
case A_CID0:
case A_CID1:
case A_CID2:
case A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SecCtl S block write: "
"read-only offset 0x%x\n", offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl S block write: bad offset 0x%x\n",
offset);
break;
}
return MEMTX_OK;
}
static MemTxResult iotkit_secctl_ns_read(void *opaque, hwaddr addr,
uint64_t *pdata,
unsigned size, MemTxAttrs attrs)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
uint64_t r;
uint32_t offset = addr & ~0x3;
switch (offset) {
case A_AHBNSPPPC0:
r = 0;
break;
case A_AHBNSPPPCEXP0:
case A_AHBNSPPPCEXP1:
case A_AHBNSPPPCEXP2:
case A_AHBNSPPPCEXP3:
r = s->ahbexp[offset_to_ppc_idx(offset)].nsp;
break;
case A_APBNSPPPC0:
case A_APBNSPPPC1:
r = s->apb[offset_to_ppc_idx(offset)].nsp;
break;
case A_APBNSPPPCEXP0:
case A_APBNSPPPCEXP1:
case A_APBNSPPPCEXP2:
case A_APBNSPPPCEXP3:
r = s->apbexp[offset_to_ppc_idx(offset)].nsp;
break;
case A_PID4:
case A_PID5:
case A_PID6:
case A_PID7:
case A_PID0:
case A_PID1:
case A_PID2:
case A_PID3:
case A_CID0:
case A_CID1:
case A_CID2:
case A_CID3:
r = iotkit_secctl_ns_idregs[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl NS block write: bad offset 0x%x\n",
offset);
r = 0;
break;
}
if (size != 4) {
/* None of our registers are access-sensitive, so just pull the right
* byte out of the word read result.
*/
r = extract32(r, (addr & 3) * 8, size * 8);
}
trace_iotkit_secctl_ns_read(offset, r, size);
*pdata = r;
return MEMTX_OK;
}
static MemTxResult iotkit_secctl_ns_write(void *opaque, hwaddr addr,
uint64_t value,
unsigned size, MemTxAttrs attrs)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
uint32_t offset = addr;
IoTKitSecCtlPPC *ppc;
trace_iotkit_secctl_ns_write(offset, value, size);
if (size != 4) {
/* Byte and halfword writes are ignored */
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl NS block write: bad size, ignored\n");
return MEMTX_OK;
}
switch (offset) {
case A_AHBNSPPPCEXP0:
case A_AHBNSPPPCEXP1:
case A_AHBNSPPPCEXP2:
case A_AHBNSPPPCEXP3:
ppc = &s->ahbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_nsp_write(ppc, value);
break;
case A_APBNSPPPC0:
case A_APBNSPPPC1:
ppc = &s->apb[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_nsp_write(ppc, value);
break;
case A_APBNSPPPCEXP0:
case A_APBNSPPPCEXP1:
case A_APBNSPPPCEXP2:
case A_APBNSPPPCEXP3:
ppc = &s->apbexp[offset_to_ppc_idx(offset)];
iotkit_secctl_ppc_nsp_write(ppc, value);
break;
case A_AHBNSPPPC0:
case A_PID4:
case A_PID5:
case A_PID6:
case A_PID7:
case A_PID0:
case A_PID1:
case A_PID2:
case A_PID3:
case A_CID0:
case A_CID1:
case A_CID2:
case A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SecCtl NS block write: "
"read-only offset 0x%x\n", offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"IotKit SecCtl NS block write: bad offset 0x%x\n",
offset);
break;
}
return MEMTX_OK;
}
static const MemoryRegionOps iotkit_secctl_s_ops = {
.read_with_attrs = iotkit_secctl_s_read,
.write_with_attrs = iotkit_secctl_s_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
};
static const MemoryRegionOps iotkit_secctl_ns_ops = {
.read_with_attrs = iotkit_secctl_ns_read,
.write_with_attrs = iotkit_secctl_ns_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
};
static void iotkit_secctl_reset_ppc(IoTKitSecCtlPPC *ppc)
{
ppc->ns = 0;
ppc->sp = 0;
ppc->nsp = 0;
}
static void iotkit_secctl_reset(DeviceState *dev)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(dev);
s->secppcintstat = 0;
s->secppcinten = 0;
s->secrespcfg = 0;
s->nsccfg = 0;
s->brginten = 0;
foreach_ppc(s, iotkit_secctl_reset_ppc);
}
static void iotkit_secctl_mpc_status(void *opaque, int n, int level)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
s->mpcintstatus = deposit32(s->mpcintstatus, 0, 1, !!level);
}
static void iotkit_secctl_mpcexp_status(void *opaque, int n, int level)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
s->mpcintstatus = deposit32(s->mpcintstatus, n + 16, 1, !!level);
}
static void iotkit_secctl_ppc_irqstatus(void *opaque, int n, int level)
{
IoTKitSecCtlPPC *ppc = opaque;
IoTKitSecCtl *s = IOTKIT_SECCTL(ppc->parent);
int irqbit = ppc->irq_bit_offset + n;
s->secppcintstat = deposit32(s->secppcintstat, irqbit, 1, level);
}
static void iotkit_secctl_init_ppc(IoTKitSecCtl *s,
IoTKitSecCtlPPC *ppc,
const char *name,
int numports,
int irq_bit_offset)
{
char *gpioname;
DeviceState *dev = DEVICE(s);
ppc->numports = numports;
ppc->irq_bit_offset = irq_bit_offset;
ppc->parent = s;
gpioname = g_strdup_printf("%s_nonsec", name);
qdev_init_gpio_out_named(dev, ppc->nonsec, gpioname, numports);
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", name);
qdev_init_gpio_out_named(dev, ppc->ap, gpioname, numports);
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_enable", name);
qdev_init_gpio_out_named(dev, &ppc->irq_enable, gpioname, 1);
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", name);
qdev_init_gpio_out_named(dev, &ppc->irq_clear, gpioname, 1);
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", name);
qdev_init_gpio_in_named_with_opaque(dev, iotkit_secctl_ppc_irqstatus,
ppc, gpioname, 1);
g_free(gpioname);
}
static void iotkit_secctl_init(Object *obj)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
DeviceState *dev = DEVICE(obj);
int i;
iotkit_secctl_init_ppc(s, &s->apb[0], "apb_ppc0",
IOTS_APB_PPC0_NUM_PORTS, 0);
iotkit_secctl_init_ppc(s, &s->apb[1], "apb_ppc1",
IOTS_APB_PPC1_NUM_PORTS, 1);
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
IoTKitSecCtlPPC *ppc = &s->apbexp[i];
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
iotkit_secctl_init_ppc(s, ppc, ppcname, IOTS_PPC_NUM_PORTS, 4 + i);
g_free(ppcname);
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
IoTKitSecCtlPPC *ppc = &s->ahbexp[i];
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
iotkit_secctl_init_ppc(s, ppc, ppcname, IOTS_PPC_NUM_PORTS, 20 + i);
g_free(ppcname);
}
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
qdev_init_gpio_out_named(dev, &s->nsc_cfg_irq, "nsc_cfg", 1);
qdev_init_gpio_in_named(dev, iotkit_secctl_mpc_status, "mpc_status", 1);
qdev_init_gpio_in_named(dev, iotkit_secctl_mpcexp_status,
"mpcexp_status", IOTS_NUM_EXP_MPC);
memory_region_init_io(&s->s_regs, obj, &iotkit_secctl_s_ops,
s, "iotkit-secctl-s-regs", 0x1000);
memory_region_init_io(&s->ns_regs, obj, &iotkit_secctl_ns_ops,
s, "iotkit-secctl-ns-regs", 0x1000);
sysbus_init_mmio(sbd, &s->s_regs);
sysbus_init_mmio(sbd, &s->ns_regs);
}
static const VMStateDescription iotkit_secctl_ppc_vmstate = {
.name = "iotkit-secctl-ppc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ns, IoTKitSecCtlPPC),
VMSTATE_UINT32(sp, IoTKitSecCtlPPC),
VMSTATE_UINT32(nsp, IoTKitSecCtlPPC),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription iotkit_secctl_mpcintstatus_vmstate = {
.name = "iotkit-secctl-mpcintstatus",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mpcintstatus, IoTKitSecCtl),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription iotkit_secctl_vmstate = {
.name = "iotkit-secctl",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(secppcintstat, IoTKitSecCtl),
VMSTATE_UINT32(secppcinten, IoTKitSecCtl),
VMSTATE_UINT32(secrespcfg, IoTKitSecCtl),
VMSTATE_UINT32(nsccfg, IoTKitSecCtl),
VMSTATE_UINT32(brginten, IoTKitSecCtl),
VMSTATE_STRUCT_ARRAY(apb, IoTKitSecCtl, IOTS_NUM_APB_PPC, 1,
iotkit_secctl_ppc_vmstate, IoTKitSecCtlPPC),
VMSTATE_STRUCT_ARRAY(apbexp, IoTKitSecCtl, IOTS_NUM_APB_EXP_PPC, 1,
iotkit_secctl_ppc_vmstate, IoTKitSecCtlPPC),
VMSTATE_STRUCT_ARRAY(ahbexp, IoTKitSecCtl, IOTS_NUM_AHB_EXP_PPC, 1,
iotkit_secctl_ppc_vmstate, IoTKitSecCtlPPC),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&iotkit_secctl_mpcintstatus_vmstate,
NULL
},
};
static void iotkit_secctl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &iotkit_secctl_vmstate;
dc->reset = iotkit_secctl_reset;
}
static const TypeInfo iotkit_secctl_info = {
.name = TYPE_IOTKIT_SECCTL,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IoTKitSecCtl),
.instance_init = iotkit_secctl_init,
.class_init = iotkit_secctl_class_init,
};
static void iotkit_secctl_register_types(void)
{
type_register_static(&iotkit_secctl_info);
}
type_init(iotkit_secctl_register_types);