qemu-e2k/hw/ppc/spapr_rtas.c

788 lines
25 KiB
C
Raw Normal View History

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Hypercall based emulated RTAS
*
* Copyright (c) 2010-2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/log.h"
#include "sysemu/sysemu.h"
#include "sysemu/char.h"
#include "hw/qdev.h"
#include "sysemu/device_tree.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "qapi-event.h"
#include "hw/boards.h"
#include <libfdt.h>
#include "hw/ppc/spapr_drc.h"
#include "qemu/cutils.h"
/* #define DEBUG_SPAPR */
#ifdef DEBUG_SPAPR
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr,
uint32_t drc_index)
{
sPAPRConfigureConnectorState *ccs = NULL;
QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
if (ccs->drc_index == drc_index) {
break;
}
}
return ccs;
}
static void spapr_ccs_add(sPAPRMachineState *spapr,
sPAPRConfigureConnectorState *ccs)
{
g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
}
static void spapr_ccs_remove(sPAPRMachineState *spapr,
sPAPRConfigureConnectorState *ccs)
{
QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
g_free(ccs);
}
void spapr_ccs_reset_hook(void *opaque)
{
sPAPRMachineState *spapr = opaque;
sPAPRConfigureConnectorState *ccs, *ccs_tmp;
QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
spapr_ccs_remove(spapr, ccs);
}
}
static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint8_t c = rtas_ld(args, 0);
VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
if (!sdev) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
} else {
vty_putchars(sdev, &c, sizeof(c));
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
}
static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
if (nargs != 2 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
qemu_system_shutdown_request();
cpu_stop_current();
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
if (nargs != 0 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
qemu_system_reset_request();
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong id;
PowerPCCPU *cpu;
if (nargs != 1 || nret != 2) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
id = rtas_ld(args, 0);
cpu = ppc_get_vcpu_by_dt_id(id);
if (cpu != NULL) {
if (CPU(cpu)->halted) {
rtas_st(rets, 1, 0);
} else {
rtas_st(rets, 1, 2);
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
}
/* Didn't find a matching cpu */
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong id, start, r3;
PowerPCCPU *cpu;
if (nargs != 3 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
id = rtas_ld(args, 0);
start = rtas_ld(args, 1);
r3 = rtas_ld(args, 2);
cpu = ppc_get_vcpu_by_dt_id(id);
if (cpu != NULL) {
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (!cs->halted) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pseries: Fix and cleanup CPU initialization and reset The current pseries machine init function iterates over the CPUs at several points, doing various bits of initialization. This is messy; these can and should be merged into a single iteration doing all the necessary per cpu initialization. Worse, some of these initializations were setting up state which should be set on every reset, not just at machine init time. A few of the initializations simply weren't necessary at all. This patch, therefore, moves those things that need to be to the per-cpu reset handler, and combines the remainder into two loops over the cpus (which also creates them). The second loop is for setting up hash table information, and will be removed in a subsequent patch also making other fixes to the hash table setup. This exposes a bug in our start-cpu RTAS routine (called by the guest to start up CPUs other than CPU0) under kvm. Previously, this function did not make a call to ensure that it's changes to the new cpu's state were pushed into KVM in-kernel state. We sort-of got away with this because some of the initializations had already placed the secondary CPUs into the right starting state for the sorts of Linux guests we've been running. Nonetheless the start-cpu RTAS call's behaviour was not correct and could easily have been broken by guest changes. This patch also fixes it. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2012-09-12 18:57:10 +02:00
/* This will make sure qemu state is up to date with kvm, and
* mark it dirty so our changes get flushed back before the
* new cpu enters */
kvm_cpu_synchronize_state(cs);
pseries: Fix and cleanup CPU initialization and reset The current pseries machine init function iterates over the CPUs at several points, doing various bits of initialization. This is messy; these can and should be merged into a single iteration doing all the necessary per cpu initialization. Worse, some of these initializations were setting up state which should be set on every reset, not just at machine init time. A few of the initializations simply weren't necessary at all. This patch, therefore, moves those things that need to be to the per-cpu reset handler, and combines the remainder into two loops over the cpus (which also creates them). The second loop is for setting up hash table information, and will be removed in a subsequent patch also making other fixes to the hash table setup. This exposes a bug in our start-cpu RTAS routine (called by the guest to start up CPUs other than CPU0) under kvm. Previously, this function did not make a call to ensure that it's changes to the new cpu's state were pushed into KVM in-kernel state. We sort-of got away with this because some of the initializations had already placed the secondary CPUs into the right starting state for the sorts of Linux guests we've been running. Nonetheless the start-cpu RTAS call's behaviour was not correct and could easily have been broken by guest changes. This patch also fixes it. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2012-09-12 18:57:10 +02:00
env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
env->nip = start;
env->gpr[3] = r3;
cs->halted = 0;
qemu_cpu_kick(cs);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
}
/* Didn't find a matching cpu */
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cs->halted = 1;
qemu_cpu_kick(cs);
/*
* While stopping a CPU, the guest calls H_CPPR which
* effectively disables interrupts on XICS level.
* However decrementer interrupts in TCG can still
* wake the CPU up so here we disable interrupts in MSR
* as well.
* As rtas_start_cpu() resets the whole MSR anyway, there is
* no need to bother with specific bits, we just clear it.
*/
env->msr = 0;
}
static inline int sysparm_st(target_ulong addr, target_ulong len,
const void *val, uint16_t vallen)
{
hwaddr phys = ppc64_phys_to_real(addr);
if (len < 2) {
return RTAS_OUT_SYSPARM_PARAM_ERROR;
}
stw_be_phys(&address_space_memory, phys, vallen);
cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen));
return RTAS_OUT_SUCCESS;
}
static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong parameter = rtas_ld(args, 0);
target_ulong buffer = rtas_ld(args, 1);
target_ulong length = rtas_ld(args, 2);
target_ulong ret;
switch (parameter) {
case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
char *param_val = g_strdup_printf("MaxEntCap=%d,"
"DesMem=%llu,"
"DesProcs=%d,"
"MaxPlatProcs=%d",
max_cpus,
current_machine->ram_size / M_BYTE,
smp_cpus,
max_cpus);
ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1);
g_free(param_val);
break;
}
case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
ret = sysparm_st(buffer, length, &param_val, sizeof(param_val));
break;
}
case RTAS_SYSPARM_UUID:
ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0));
break;
default:
ret = RTAS_OUT_NOT_SUPPORTED;
}
rtas_st(rets, 0, ret);
}
static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong parameter = rtas_ld(args, 0);
target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
switch (parameter) {
case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS:
case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE:
case RTAS_SYSPARM_UUID:
ret = RTAS_OUT_NOT_AUTHORIZED;
break;
}
rtas_st(rets, 0, ret);
}
static void rtas_ibm_os_term(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong ret = 0;
qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort);
rtas_st(rets, 0, ret);
}
static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
int32_t power_domain;
if (nargs != 2 || nret != 2) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* we currently only use a single, "live insert" powerdomain for
* hotplugged/dlpar'd resources, so the power is always live/full (100)
*/
power_domain = rtas_ld(args, 0);
if (power_domain != -1) {
rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
return;
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, 100);
}
static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
int32_t power_domain;
if (nargs != 1 || nret != 2) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* we currently only use a single, "live insert" powerdomain for
* hotplugged/dlpar'd resources, so the power is always live/full (100)
*/
power_domain = rtas_ld(args, 0);
if (power_domain != -1) {
rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
return;
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, 100);
}
static bool sensor_type_is_dr(uint32_t sensor_type)
{
switch (sensor_type) {
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
case RTAS_SENSOR_TYPE_DR:
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
return true;
}
return false;
}
static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t sensor_type;
uint32_t sensor_index;
uint32_t sensor_state;
uint32_t ret = RTAS_OUT_SUCCESS;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
if (nargs != 3 || nret != 1) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
sensor_type = rtas_ld(args, 0);
sensor_index = rtas_ld(args, 1);
sensor_state = rtas_ld(args, 2);
if (!sensor_type_is_dr(sensor_type)) {
goto out_unimplemented;
}
/* if this is a DR sensor we can assume sensor_index == drc_index */
drc = spapr_dr_connector_by_index(sensor_index);
if (!drc) {
DPRINTF("rtas_set_indicator: invalid sensor/DRC index: %xh\n",
sensor_index);
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
switch (sensor_type) {
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
/* if the guest is configuring a device attached to this
* DRC, we should reset the configuration state at this
* point since it may no longer be reliable (guest released
* device and needs to start over, or unplug occurred so
* the FDT is no longer valid)
*/
if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
sensor_index);
if (ccs) {
spapr_ccs_remove(spapr, ccs);
}
}
ret = drck->set_isolation_state(drc, sensor_state);
break;
case RTAS_SENSOR_TYPE_DR:
ret = drck->set_indicator_state(drc, sensor_state);
break;
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
ret = drck->set_allocation_state(drc, sensor_state);
break;
default:
goto out_unimplemented;
}
out:
rtas_st(rets, 0, ret);
return;
out_unimplemented:
/* currently only DR-related sensors are implemented */
DPRINTF("rtas_set_indicator: sensor/indicator not implemented: %d\n",
sensor_type);
rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
}
static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t sensor_type;
uint32_t sensor_index;
uint32_t sensor_state = 0;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
uint32_t ret = RTAS_OUT_SUCCESS;
if (nargs != 2 || nret != 2) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
sensor_type = rtas_ld(args, 0);
sensor_index = rtas_ld(args, 1);
if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
/* currently only DR-related sensors are implemented */
DPRINTF("rtas_get_sensor_state: sensor/indicator not implemented: %d\n",
sensor_type);
ret = RTAS_OUT_NOT_SUPPORTED;
goto out;
}
drc = spapr_dr_connector_by_index(sensor_index);
if (!drc) {
DPRINTF("rtas_get_sensor_state: invalid sensor/DRC index: %xh\n",
sensor_index);
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
ret = drck->entity_sense(drc, &sensor_state);
out:
rtas_st(rets, 0, ret);
rtas_st(rets, 1, sensor_state);
}
/* configure-connector work area offsets, int32_t units for field
* indexes, bytes for field offset/len values.
*
* as documented by PAPR+ v2.7, 13.5.3.5
*/
#define CC_IDX_NODE_NAME_OFFSET 2
#define CC_IDX_PROP_NAME_OFFSET 2
#define CC_IDX_PROP_LEN 3
#define CC_IDX_PROP_DATA_OFFSET 4
#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
#define CC_WA_LEN 4096
static void configure_connector_st(target_ulong addr, target_ulong offset,
const void *buf, size_t len)
{
cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
buf, MIN(len, CC_WA_LEN - offset));
}
static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint64_t wa_addr;
uint64_t wa_offset;
uint32_t drc_index;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
sPAPRConfigureConnectorState *ccs;
sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
int rc;
const void *fdt;
if (nargs != 2 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
drc_index = rtas_ld(wa_addr, 0);
drc = spapr_dr_connector_by_index(drc_index);
if (!drc) {
DPRINTF("rtas_ibm_configure_connector: invalid DRC index: %xh\n",
drc_index);
rc = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
fdt = drck->get_fdt(drc, NULL);
if (!fdt) {
DPRINTF("rtas_ibm_configure_connector: Missing FDT for DRC index: %xh\n",
drc_index);
rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
goto out;
}
ccs = spapr_ccs_find(spapr, drc_index);
if (!ccs) {
ccs = g_new0(sPAPRConfigureConnectorState, 1);
(void)drck->get_fdt(drc, &ccs->fdt_offset);
ccs->drc_index = drc_index;
spapr_ccs_add(spapr, ccs);
}
do {
uint32_t tag;
const char *name;
const struct fdt_property *prop;
int fdt_offset_next, prop_len;
tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next);
switch (tag) {
case FDT_BEGIN_NODE:
ccs->fdt_depth++;
name = fdt_get_name(fdt, ccs->fdt_offset, NULL);
/* provide the name of the next OF node */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
break;
case FDT_END_NODE:
ccs->fdt_depth--;
if (ccs->fdt_depth == 0) {
/* done sending the device tree, don't need to track
* the state anymore
*/
drck->set_configured(drc);
spapr_ccs_remove(spapr, ccs);
ccs = NULL;
resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
} else {
resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
}
break;
case FDT_PROP:
prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset,
&prop_len);
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
/* provide the name of the next OF property */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
/* provide the length and value of the OF property. data gets
* placed immediately after NULL terminator of the OF property's
* name string
*/
wa_offset += strlen(name) + 1,
rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
break;
case FDT_END:
resp = SPAPR_DR_CC_RESPONSE_ERROR;
default:
/* keep seeking for an actionable tag */
break;
}
if (ccs) {
ccs->fdt_offset = fdt_offset_next;
}
} while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
rc = resp;
out:
rtas_st(rets, 0, rc);
}
static struct rtas_call {
const char *name;
spapr_rtas_fn fn;
} rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
if (call->fn) {
call->fn(cpu, spapr, token, nargs, args, nret, rets);
return H_SUCCESS;
}
}
/* HACK: Some Linux early debug code uses RTAS display-character,
* but assumes the token value is 0xa (which it is on some real
* machines) without looking it up in the device tree. This
* special case makes this work */
if (token == 0xa) {
rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
return H_SUCCESS;
}
hcall_dprintf("Unknown RTAS token 0x%x\n", token);
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return H_PARAMETER;
}
void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
{
assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX));
token -= RTAS_TOKEN_BASE;
assert(!rtas_table[token].name);
rtas_table[token].name = name;
rtas_table[token].fn = fn;
}
int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr,
hwaddr rtas_size)
{
int ret;
int i;
uint32_t lrdr_capacity[5];
MachineState *machine = MACHINE(qdev_get_machine());
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
memory_region_size(&spapr->hotplug_memory.mr);
ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't add RTAS reserve entry: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base",
rtas_addr);
if (ret < 0) {
fprintf(stderr, "Couldn't add linux,rtas-base property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry",
rtas_addr);
if (ret < 0) {
fprintf(stderr, "Couldn't add linux,rtas-entry property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size",
rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't add rtas-size property: %s\n",
fdt_strerror(ret));
return ret;
}
for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
struct rtas_call *call = &rtas_table[i];
if (!call->name) {
continue;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name,
i + RTAS_TOKEN_BASE);
if (ret < 0) {
fprintf(stderr, "Couldn't add rtas token for %s: %s\n",
call->name, fdt_strerror(ret));
return ret;
}
}
lrdr_capacity[0] = cpu_to_be32(max_hotplug_addr >> 32);
lrdr_capacity[1] = cpu_to_be32(max_hotplug_addr & 0xffffffff);
lrdr_capacity[2] = 0;
lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE);
lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads);
ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity,
sizeof(lrdr_capacity));
if (ret < 0) {
fprintf(stderr, "Couldn't add ibm,lrdr-capacity rtas property\n");
return ret;
}
return 0;
}
static void core_rtas_register_types(void)
{
spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
rtas_display_character);
spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
rtas_system_reboot);
spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
rtas_query_cpu_stopped_state);
spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
"ibm,get-system-parameter",
rtas_ibm_get_system_parameter);
spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
"ibm,set-system-parameter",
rtas_ibm_set_system_parameter);
spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term",
rtas_ibm_os_term);
spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level",
rtas_set_power_level);
spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level",
rtas_get_power_level);
spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
rtas_set_indicator);
spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
rtas_get_sensor_state);
spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
rtas_ibm_configure_connector);
}
type_init(core_rtas_register_types)