qemu-e2k/tcg/ppc/tcg-target.c

1958 lines
56 KiB
C
Raw Normal View History

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tcg-be-ldst.h"
static uint8_t *tb_ret_addr;
#if defined _CALL_DARWIN || defined __APPLE__
#define TCG_TARGET_CALL_DARWIN
#endif
#ifdef TCG_TARGET_CALL_DARWIN
#define LINKAGE_AREA_SIZE 24
#define LR_OFFSET 8
#elif defined _CALL_AIX
#define LINKAGE_AREA_SIZE 52
#define LR_OFFSET 8
#else
#define LINKAGE_AREA_SIZE 8
#define LR_OFFSET 4
#endif
#ifndef GUEST_BASE
#define GUEST_BASE 0
#endif
#ifdef CONFIG_USE_GUEST_BASE
#define TCG_GUEST_BASE_REG 30
#else
#define TCG_GUEST_BASE_REG 0
#endif
#ifndef NDEBUG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"r15",
"r16",
"r17",
"r18",
"r19",
"r20",
"r21",
"r22",
"r23",
"r24",
"r25",
"r26",
"r27",
"r28",
"r29",
"r30",
"r31"
};
#endif
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31,
#ifdef TCG_TARGET_CALL_DARWIN
TCG_REG_R2,
#endif
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10,
#ifndef TCG_TARGET_CALL_DARWIN
TCG_REG_R11,
#endif
TCG_REG_R12,
#ifndef _CALL_SYSV
TCG_REG_R13,
#endif
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10
};
static const int tcg_target_call_oarg_regs[2] = {
TCG_REG_R3,
TCG_REG_R4
};
static const int tcg_target_callee_save_regs[] = {
#ifdef TCG_TARGET_CALL_DARWIN
TCG_REG_R11,
TCG_REG_R13,
#endif
#ifdef _CALL_AIX
TCG_REG_R13,
#endif
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27, /* currently used for the global env */
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31
};
static uint32_t reloc_pc24_val (void *pc, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) pc;
if ((disp << 6) >> 6 != disp)
tcg_abort ();
return disp & 0x3fffffc;
}
static void reloc_pc24 (void *pc, tcg_target_long target)
{
*(uint32_t *) pc = (*(uint32_t *) pc & ~0x3fffffc)
| reloc_pc24_val (pc, target);
}
static uint16_t reloc_pc14_val (void *pc, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) pc;
if (disp != (int16_t) disp)
tcg_abort ();
return disp & 0xfffc;
}
static void reloc_pc14 (void *pc, tcg_target_long target)
{
*(uint32_t *) pc = (*(uint32_t *) pc & ~0xfffc)
| reloc_pc14_val (pc, target);
}
static void patch_reloc(uint8_t *code_ptr, int type,
intptr_t value, intptr_t addend)
{
value += addend;
switch (type) {
case R_PPC_REL14:
reloc_pc14 (code_ptr, value);
break;
case R_PPC_REL24:
reloc_pc24 (code_ptr, value);
break;
default:
tcg_abort();
}
}
/* parse target specific constraints */
static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str)
{
const char *ct_str;
ct_str = *pct_str;
switch (ct_str[0]) {
case 'A': case 'B': case 'C': case 'D':
ct->ct |= TCG_CT_REG;
tcg_regset_set_reg(ct->u.regs, 3 + ct_str[0] - 'A');
break;
case 'r':
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
break;
#ifdef CONFIG_SOFTMMU
case 'L': /* qemu_ld constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
#if TARGET_LONG_BITS == 64
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6);
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R7);
#endif
#endif
break;
case 'K': /* qemu_st[8..32] constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6);
#if TARGET_LONG_BITS == 64
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R7);
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R8);
#endif
#endif
break;
case 'M': /* qemu_st64 constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R7);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R8);
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R9);
#endif
break;
#else
case 'L':
case 'K':
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
break;
case 'M':
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
break;
#endif
default:
return -1;
}
ct_str++;
*pct_str = ct_str;
return 0;
}
/* test if a constant matches the constraint */
static int tcg_target_const_match(tcg_target_long val,
const TCGArgConstraint *arg_ct)
{
int ct;
ct = arg_ct->ct;
if (ct & TCG_CT_CONST)
return 1;
return 0;
}
#define OPCD(opc) ((opc)<<26)
#define XO31(opc) (OPCD(31)|((opc)<<1))
#define XO19(opc) (OPCD(19)|((opc)<<1))
#define B OPCD(18)
#define BC OPCD(16)
#define LBZ OPCD(34)
#define LHZ OPCD(40)
#define LHA OPCD(42)
#define LWZ OPCD(32)
#define STB OPCD(38)
#define STH OPCD(44)
#define STW OPCD(36)
#define ADDIC OPCD(12)
#define ADDI OPCD(14)
#define ADDIS OPCD(15)
#define ORI OPCD(24)
#define ORIS OPCD(25)
#define XORI OPCD(26)
#define XORIS OPCD(27)
#define ANDI OPCD(28)
#define ANDIS OPCD(29)
#define MULLI OPCD( 7)
#define CMPLI OPCD(10)
#define CMPI OPCD(11)
#define SUBFIC OPCD( 8)
#define LWZU OPCD(33)
#define STWU OPCD(37)
#define RLWIMI OPCD(20)
#define RLWINM OPCD(21)
#define RLWNM OPCD(23)
#define BCLR XO19( 16)
#define BCCTR XO19(528)
#define CRAND XO19(257)
#define CRANDC XO19(129)
#define CRNAND XO19(225)
#define CROR XO19(449)
#define CRNOR XO19( 33)
#define EXTSB XO31(954)
#define EXTSH XO31(922)
#define ADD XO31(266)
#define ADDE XO31(138)
#define ADDC XO31( 10)
#define AND XO31( 28)
#define SUBF XO31( 40)
#define SUBFC XO31( 8)
#define SUBFE XO31(136)
#define OR XO31(444)
#define XOR XO31(316)
#define MULLW XO31(235)
#define MULHWU XO31( 11)
#define DIVW XO31(491)
#define DIVWU XO31(459)
#define CMP XO31( 0)
#define CMPL XO31( 32)
#define LHBRX XO31(790)
#define LWBRX XO31(534)
#define STHBRX XO31(918)
#define STWBRX XO31(662)
#define MFSPR XO31(339)
#define MTSPR XO31(467)
#define SRAWI XO31(824)
#define NEG XO31(104)
#define MFCR XO31( 19)
#define CNTLZW XO31( 26)
#define NOR XO31(124)
#define ANDC XO31( 60)
#define ORC XO31(412)
#define EQV XO31(284)
#define NAND XO31(476)
#define ISEL XO31( 15)
#define LBZX XO31( 87)
#define LHZX XO31(279)
#define LHAX XO31(343)
#define LWZX XO31( 23)
#define STBX XO31(215)
#define STHX XO31(407)
#define STWX XO31(151)
#define SPR(a,b) ((((a)<<5)|(b))<<11)
#define LR SPR(8, 0)
#define CTR SPR(9, 0)
#define SLW XO31( 24)
#define SRW XO31(536)
#define SRAW XO31(792)
#define TW XO31(4)
#define TRAP (TW | TO (31))
#define RT(r) ((r)<<21)
#define RS(r) ((r)<<21)
#define RA(r) ((r)<<16)
#define RB(r) ((r)<<11)
#define TO(t) ((t)<<21)
#define SH(s) ((s)<<11)
#define MB(b) ((b)<<6)
#define ME(e) ((e)<<1)
#define BO(o) ((o)<<21)
#define LK 1
#define TAB(t,a,b) (RT(t) | RA(a) | RB(b))
#define SAB(s,a,b) (RS(s) | RA(a) | RB(b))
#define BF(n) ((n)<<23)
#define BI(n, c) (((c)+((n)*4))<<16)
#define BT(n, c) (((c)+((n)*4))<<21)
#define BA(n, c) (((c)+((n)*4))<<16)
#define BB(n, c) (((c)+((n)*4))<<11)
#define BO_COND_TRUE BO (12)
#define BO_COND_FALSE BO (4)
#define BO_ALWAYS BO (20)
enum {
CR_LT,
CR_GT,
CR_EQ,
CR_SO
};
static const uint32_t tcg_to_bc[] = {
[TCG_COND_EQ] = BC | BI (7, CR_EQ) | BO_COND_TRUE,
[TCG_COND_NE] = BC | BI (7, CR_EQ) | BO_COND_FALSE,
[TCG_COND_LT] = BC | BI (7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GE] = BC | BI (7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LE] = BC | BI (7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GT] = BC | BI (7, CR_GT) | BO_COND_TRUE,
[TCG_COND_LTU] = BC | BI (7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GEU] = BC | BI (7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LEU] = BC | BI (7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GTU] = BC | BI (7, CR_GT) | BO_COND_TRUE,
};
static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out32(s, OR | SAB(arg, ret, arg));
}
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
if (arg == (int16_t) arg)
tcg_out32 (s, ADDI | RT (ret) | RA (0) | (arg & 0xffff));
else {
tcg_out32 (s, ADDIS | RT (ret) | RA (0) | ((arg >> 16) & 0xffff));
if (arg & 0xffff)
tcg_out32 (s, ORI | RS (ret) | RA (ret) | (arg & 0xffff));
}
}
static void tcg_out_ldst (TCGContext *s, int ret, int addr,
int offset, int op1, int op2)
{
if (offset == (int16_t) offset)
tcg_out32 (s, op1 | RT (ret) | RA (addr) | (offset & 0xffff));
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, offset);
tcg_out32 (s, op2 | RT (ret) | RA (addr) | RB (0));
}
}
static void tcg_out_b (TCGContext *s, int mask, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) s->code_ptr;
if ((disp << 6) >> 6 == disp)
tcg_out32 (s, B | (disp & 0x3fffffc) | mask);
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, (tcg_target_long) target);
tcg_out32 (s, MTSPR | RS (0) | CTR);
tcg_out32 (s, BCCTR | BO_ALWAYS | mask);
}
}
static void tcg_out_call (TCGContext *s, tcg_target_long arg, int const_arg,
int lk)
{
#ifdef _CALL_AIX
int reg;
if (const_arg) {
reg = 2;
tcg_out_movi (s, TCG_TYPE_I32, reg, arg);
}
else reg = arg;
tcg_out32 (s, LWZ | RT (0) | RA (reg));
tcg_out32 (s, MTSPR | RA (0) | CTR);
tcg_out32 (s, LWZ | RT (2) | RA (reg) | 4);
tcg_out32 (s, BCCTR | BO_ALWAYS | lk);
#else
if (const_arg) {
tcg_out_b (s, lk, arg);
}
else {
tcg_out32 (s, MTSPR | RS (arg) | LR);
tcg_out32 (s, BCLR | BO_ALWAYS | lk);
}
#endif
}
#if defined(CONFIG_SOFTMMU)
static void add_qemu_ldst_label (TCGContext *s,
int is_ld,
TCGMemOp opc,
int data_reg,
int data_reg2,
int addrlo_reg,
int addrhi_reg,
int mem_index,
uint8_t *raddr,
uint8_t *label_ptr)
{
TCGLabelQemuLdst *label = new_ldst_label(s);
label->is_ld = is_ld;
label->opc = opc;
label->datalo_reg = data_reg;
label->datahi_reg = data_reg2;
label->addrlo_reg = addrlo_reg;
label->addrhi_reg = addrhi_reg;
label->mem_index = mem_index;
label->raddr = raddr;
label->label_ptr[0] = label_ptr;
}
/* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
* int mmu_idx, uintptr_t ra)
*/
static const void * const qemu_ld_helpers[16] = {
[MO_UB] = helper_ret_ldub_mmu,
[MO_LEUW] = helper_le_lduw_mmu,
[MO_LEUL] = helper_le_ldul_mmu,
[MO_LEQ] = helper_le_ldq_mmu,
[MO_BEUW] = helper_be_lduw_mmu,
[MO_BEUL] = helper_be_ldul_mmu,
[MO_BEQ] = helper_be_ldq_mmu,
};
/* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
* uintxx_t val, int mmu_idx, uintptr_t ra)
*/
static const void * const qemu_st_helpers[16] = {
[MO_UB] = helper_ret_stb_mmu,
[MO_LEUW] = helper_le_stw_mmu,
[MO_LEUL] = helper_le_stl_mmu,
[MO_LEQ] = helper_le_stq_mmu,
[MO_BEUW] = helper_be_stw_mmu,
[MO_BEUL] = helper_be_stl_mmu,
[MO_BEQ] = helper_be_stq_mmu,
};
static void *ld_trampolines[16];
static void *st_trampolines[16];
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
/* Perform the TLB load and compare. Branches to the slow path, placing the
address of the branch in *LABEL_PTR. Loads the addend of the TLB into R0.
Clobbers R1 and R2. */
static void tcg_out_tlb_check(TCGContext *s, TCGReg r0, TCGReg r1, TCGReg r2,
TCGReg addrlo, TCGReg addrhi, TCGMemOp s_bits,
int mem_index, int is_load, uint8_t **label_ptr)
{
int cmp_off =
(is_load
? offsetof(CPUArchState, tlb_table[mem_index][0].addr_read)
: offsetof(CPUArchState, tlb_table[mem_index][0].addr_write));
int add_off = offsetof(CPUArchState, tlb_table[mem_index][0].addend);
uint16_t retranst;
TCGReg base = TCG_AREG0;
/* Extract the page index, shifted into place for tlb index. */
tcg_out32(s, (RLWINM
| RA(r0)
| RS(addrlo)
| SH(32 - (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS))
| MB(32 - (CPU_TLB_BITS + CPU_TLB_ENTRY_BITS))
| ME(31 - CPU_TLB_ENTRY_BITS)));
/* Compensate for very large offsets. */
if (add_off >= 0x8000) {
/* Most target env are smaller than 32k; none are larger than 64k.
Simplify the logic here merely to offset by 0x7ff0, giving us a
range just shy of 64k. Check this assumption. */
QEMU_BUILD_BUG_ON(offsetof(CPUArchState,
tlb_table[NB_MMU_MODES - 1][1])
> 0x7ff0 + 0x7fff);
tcg_out32(s, ADDI | RT(r1) | RA(base) | 0x7ff0);
base = r1;
cmp_off -= 0x7ff0;
add_off -= 0x7ff0;
}
/* Clear the non-page, non-alignment bits from the address. */
tcg_out32(s, (RLWINM
| RA(r2)
| RS(addrlo)
| SH(0)
| MB((32 - s_bits) & 31)
| ME(31 - TARGET_PAGE_BITS)));
tcg_out32(s, ADD | RT(r0) | RA(r0) | RB(base));
base = r0;
/* Load the tlb comparator. */
tcg_out32(s, LWZ | RT(r1) | RA(base) | (cmp_off & 0xffff));
tcg_out32(s, CMP | BF(7) | RA(r2) | RB(r1));
if (TARGET_LONG_BITS == 64) {
tcg_out32(s, LWZ | RT(r1) | RA(base) | ((cmp_off + 4) & 0xffff));
}
/* Load the tlb addend for use on the fast path.
Do this asap to minimize load delay. */
tcg_out32(s, LWZ | RT(r0) | RA(base) | (add_off & 0xffff));
if (TARGET_LONG_BITS == 64) {
tcg_out32(s, CMP | BF(6) | RA(addrhi) | RB(r1));
tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
}
/* Use a conditional branch-and-link so that we load a pointer to
somewhere within the current opcode, for passing on to the helper.
This address cannot be used for a tail call, but it's shorter
than forming an address from scratch. */
*label_ptr = s->code_ptr;
retranst = ((uint16_t *) s->code_ptr)[1] & ~3;
tcg_out32(s, BC | BI(7, CR_EQ) | retranst | BO_COND_FALSE | LK);
}
#endif
static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
{
TCGReg addrlo, datalo, datahi, rbase, addrhi __attribute__((unused));
TCGMemOp opc, bswap;
#ifdef CONFIG_SOFTMMU
int mem_index;
uint8_t *label_ptr;
#endif
datalo = *args++;
datahi = (is64 ? *args++ : 0);
addrlo = *args++;
addrhi = (TARGET_LONG_BITS == 64 ? *args++ : 0);
opc = *args++;
bswap = opc & MO_BSWAP;
#ifdef CONFIG_SOFTMMU
mem_index = *args;
tcg_out_tlb_check(s, TCG_REG_R3, TCG_REG_R4, TCG_REG_R0, addrlo,
addrhi, opc & MO_SIZE, mem_index, 0, &label_ptr);
rbase = TCG_REG_R3;
#else /* !CONFIG_SOFTMMU */
rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0;
#endif
switch (opc & MO_SSIZE) {
default:
case MO_UB:
tcg_out32(s, LBZX | TAB(datalo, rbase, addrlo));
break;
case MO_SB:
tcg_out32(s, LBZX | TAB(datalo, rbase, addrlo));
tcg_out32(s, EXTSB | RA(datalo) | RS(datalo));
break;
case MO_UW:
tcg_out32(s, (bswap ? LHBRX : LHZX) | TAB(datalo, rbase, addrlo));
break;
case MO_SW:
if (bswap) {
tcg_out32(s, LHBRX | TAB(datalo, rbase, addrlo));
tcg_out32(s, EXTSH | RA(datalo) | RS(datalo));
} else {
tcg_out32(s, LHAX | TAB(datalo, rbase, addrlo));
}
break;
case MO_UL:
tcg_out32(s, (bswap ? LWBRX : LWZX) | TAB(datalo, rbase, addrlo));
break;
case MO_Q:
if (bswap) {
tcg_out32(s, ADDI | RT(TCG_REG_R0) | RA(addrlo) | 4);
tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
} else if (rbase != 0) {
tcg_out32(s, ADDI | RT(TCG_REG_R0) | RA(addrlo) | 4);
tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
} else if (addrlo == datahi) {
tcg_out32(s, LWZ | RT(datalo) | RA(addrlo) | 4);
tcg_out32(s, LWZ | RT(datahi) | RA(addrlo));
} else {
tcg_out32(s, LWZ | RT(datahi) | RA(addrlo));
tcg_out32(s, LWZ | RT(datalo) | RA(addrlo) | 4);
}
break;
}
#ifdef CONFIG_SOFTMMU
add_qemu_ldst_label(s, 1, opc, datalo, datahi, addrlo,
addrhi, mem_index, s->code_ptr, label_ptr);
#endif
}
static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
{
TCGReg addrlo, datalo, datahi, rbase, addrhi __attribute__((unused));
TCGMemOp opc, bswap, s_bits;
#ifdef CONFIG_SOFTMMU
int mem_index;
uint8_t *label_ptr;
#endif
datalo = *args++;
datahi = (is64 ? *args++ : 0);
addrlo = *args++;
addrhi = (TARGET_LONG_BITS == 64 ? *args++ : 0);
opc = *args++;
bswap = opc & MO_BSWAP;
s_bits = opc & MO_SIZE;
#ifdef CONFIG_SOFTMMU
mem_index = *args;
tcg_out_tlb_check(s, TCG_REG_R3, TCG_REG_R4, TCG_REG_R0, addrlo,
addrhi, s_bits, mem_index, 0, &label_ptr);
rbase = TCG_REG_R3;
#else /* !CONFIG_SOFTMMU */
rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0;
#endif
switch (s_bits) {
case MO_8:
tcg_out32(s, STBX | SAB(datalo, rbase, addrlo));
break;
case MO_16:
tcg_out32(s, (bswap ? STHBRX : STHX) | SAB(datalo, rbase, addrlo));
break;
case MO_32:
default:
tcg_out32(s, (bswap ? STWBRX : STWX) | SAB(datalo, rbase, addrlo));
break;
case MO_64:
if (bswap) {
tcg_out32(s, ADDI | RT(TCG_REG_R0) | RA(addrlo) | 4);
tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
} else if (rbase != 0) {
tcg_out32(s, ADDI | RT(TCG_REG_R0) | RA(addrlo) | 4);
tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
} else {
tcg_out32(s, STW | RS(datahi) | RA(addrlo));
tcg_out32(s, STW | RS(datalo) | RA(addrlo) | 4);
}
break;
}
#ifdef CONFIG_SOFTMMU
add_qemu_ldst_label(s, 0, opc, datalo, datahi, addrlo, addrhi,
mem_index, s->code_ptr, label_ptr);
#endif
}
#if defined(CONFIG_SOFTMMU)
static void tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
TCGReg ir, datalo, datahi;
TCGMemOp opc = l->opc;
reloc_pc14 (l->label_ptr[0], (uintptr_t)s->code_ptr);
ir = TCG_REG_R4;
if (TARGET_LONG_BITS == 32) {
tcg_out_mov(s, TCG_TYPE_I32, ir++, l->addrlo_reg);
} else {
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
ir |= 1;
#endif
tcg_out_mov(s, TCG_TYPE_I32, ir++, l->addrhi_reg);
tcg_out_mov(s, TCG_TYPE_I32, ir++, l->addrlo_reg);
}
tcg_out_movi(s, TCG_TYPE_I32, ir++, l->mem_index);
tcg_out32(s, MFSPR | RT(ir++) | LR);
tcg_out_b(s, LK, (uintptr_t)ld_trampolines[opc & ~MO_SIGN]);
datalo = l->datalo_reg;
switch (opc & MO_SSIZE) {
case MO_SB:
tcg_out32(s, EXTSB | RA(datalo) | RS(TCG_REG_R3));
break;
case MO_SW:
tcg_out32(s, EXTSH | RA(datalo) | RS(TCG_REG_R3));
break;
default:
tcg_out_mov(s, TCG_TYPE_I32, datalo, TCG_REG_R3);
break;
case MO_Q:
datahi = l->datahi_reg;
if (datalo != TCG_REG_R3) {
tcg_out_mov(s, TCG_TYPE_I32, datalo, TCG_REG_R4);
tcg_out_mov(s, TCG_TYPE_I32, datahi, TCG_REG_R3);
} else if (datahi != TCG_REG_R4) {
tcg_out_mov(s, TCG_TYPE_I32, datahi, TCG_REG_R3);
tcg_out_mov(s, TCG_TYPE_I32, datalo, TCG_REG_R4);
} else {
tcg_out_mov(s, TCG_TYPE_I32, TCG_REG_R0, TCG_REG_R4);
tcg_out_mov(s, TCG_TYPE_I32, datahi, TCG_REG_R3);
tcg_out_mov(s, TCG_TYPE_I32, datalo, TCG_REG_R0);
}
break;
}
tcg_out_b (s, 0, (uintptr_t)l->raddr);
}
static void tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
TCGReg ir, datalo;
TCGMemOp opc = l->opc;
reloc_pc14 (l->label_ptr[0], (tcg_target_long) s->code_ptr);
ir = TCG_REG_R4;
if (TARGET_LONG_BITS == 32) {
tcg_out_mov (s, TCG_TYPE_I32, ir++, l->addrlo_reg);
} else {
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
ir |= 1;
#endif
tcg_out_mov (s, TCG_TYPE_I32, ir++, l->addrhi_reg);
tcg_out_mov (s, TCG_TYPE_I32, ir++, l->addrlo_reg);
}
datalo = l->datalo_reg;
switch (opc & MO_SIZE) {
case MO_8:
tcg_out32(s, (RLWINM | RA (ir) | RS (datalo)
| SH (0) | MB (24) | ME (31)));
break;
case MO_16:
tcg_out32(s, (RLWINM | RA (ir) | RS (datalo)
| SH (0) | MB (16) | ME (31)));
break;
default:
tcg_out_mov(s, TCG_TYPE_I32, ir, datalo);
break;
case MO_64:
#ifdef TCG_TARGET_CALL_ALIGN_ARGS
ir |= 1;
#endif
tcg_out_mov(s, TCG_TYPE_I32, ir++, l->datahi_reg);
tcg_out_mov(s, TCG_TYPE_I32, ir, datalo);
break;
}
ir++;
tcg_out_movi(s, TCG_TYPE_I32, ir++, l->mem_index);
tcg_out32(s, MFSPR | RT(ir++) | LR);
tcg_out_b(s, LK, (uintptr_t)st_trampolines[opc]);
tcg_out_b(s, 0, (uintptr_t)l->raddr);
}
#endif
#ifdef CONFIG_SOFTMMU
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
static void emit_ldst_trampoline (TCGContext *s, const void *ptr)
{
tcg_out_mov (s, TCG_TYPE_I32, 3, TCG_AREG0);
tcg_out_call (s, (tcg_target_long) ptr, 1, 0);
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
}
#endif
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
static void tcg_target_qemu_prologue (TCGContext *s)
{
int i, frame_size;
frame_size = 0
+ LINKAGE_AREA_SIZE
+ TCG_STATIC_CALL_ARGS_SIZE
+ ARRAY_SIZE (tcg_target_callee_save_regs) * 4
+ CPU_TEMP_BUF_NLONGS * sizeof(long)
;
frame_size = (frame_size + 15) & ~15;
tcg_set_frame(s, TCG_REG_CALL_STACK, frame_size
- CPU_TEMP_BUF_NLONGS * sizeof(long),
CPU_TEMP_BUF_NLONGS * sizeof(long));
#ifdef _CALL_AIX
{
uint32_t addr;
/* First emit adhoc function descriptor */
addr = (uint32_t) s->code_ptr + 12;
tcg_out32 (s, addr); /* entry point */
s->code_ptr += 8; /* skip TOC and environment pointer */
}
#endif
tcg_out32 (s, MFSPR | RT (0) | LR);
tcg_out32 (s, STWU | RS (1) | RA (1) | (-frame_size & 0xffff));
for (i = 0; i < ARRAY_SIZE (tcg_target_callee_save_regs); ++i)
tcg_out32 (s, (STW
| RS (tcg_target_callee_save_regs[i])
| RA (1)
| (i * 4 + LINKAGE_AREA_SIZE + TCG_STATIC_CALL_ARGS_SIZE)
)
);
tcg_out32 (s, STW | RS (0) | RA (1) | (frame_size + LR_OFFSET));
#ifdef CONFIG_USE_GUEST_BASE
if (GUEST_BASE) {
tcg_out_movi (s, TCG_TYPE_I32, TCG_GUEST_BASE_REG, GUEST_BASE);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out_mov (s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tcg_out32 (s, MTSPR | RS (tcg_target_call_iarg_regs[1]) | CTR);
tcg_out32 (s, BCCTR | BO_ALWAYS);
tb_ret_addr = s->code_ptr;
for (i = 0; i < ARRAY_SIZE (tcg_target_callee_save_regs); ++i)
tcg_out32 (s, (LWZ
| RT (tcg_target_callee_save_regs[i])
| RA (1)
| (i * 4 + LINKAGE_AREA_SIZE + TCG_STATIC_CALL_ARGS_SIZE)
)
);
tcg_out32 (s, LWZ | RT (0) | RA (1) | (frame_size + LR_OFFSET));
tcg_out32 (s, MTSPR | RS (0) | LR);
tcg_out32 (s, ADDI | RT (1) | RA (1) | frame_size);
tcg_out32 (s, BCLR | BO_ALWAYS);
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
#ifdef CONFIG_SOFTMMU
for (i = 0; i < 16; ++i) {
if (qemu_ld_helpers[i]) {
ld_trampolines[i] = s->code_ptr;
emit_ldst_trampoline(s, qemu_ld_helpers[i]);
}
if (qemu_st_helpers[i]) {
st_trampolines[i] = s->code_ptr;
emit_ldst_trampoline(s, qemu_st_helpers[i]);
}
tcg/ppc32: Use trampolines to trim the code size for mmu slow path accessors mmu access looks something like: <check tlb> if miss goto slow_path <fast path> done: ... ; end of the TB slow_path: <pre process> mr r3, r27 ; move areg0 to r3 ; (r3 holds the first argument for all the PPC32 ABIs) <call mmu_helper> b $+8 .long done <post process> b done On ppc32 <call mmu_helper> is: (SysV and Darwin) mmu_helper is most likely not within direct branching distance from the call site, necessitating a. moving 32 bit offset of mmu_helper into a GPR ; 8 bytes b. moving GPR to CTR/LR ; 4 bytes c. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 16 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 28 bytes (PowerOpen (AIX)) a. moving 32 bit offset of mmu_helper's TOC into a GPR1 ; 8 bytes b. loading 32 bit function pointer into GPR2 ; 4 bytes c. moving GPR2 to CTR/LR ; 4 bytes d. loading 32 bit small area pointer into R2 ; 4 bytes e. (finally) branching to CTR/LR ; 4 bytes r3 setting - 4 bytes call - 24 bytes dummy jump over retaddr - 4 bytes embedded retaddr - 4 bytes Total overhead - 36 bytes Following is done to trim the code size of slow path sections: In tcg_target_qemu_prologue trampolines are emitted that look like this: trampoline: mfspr r3, LR addi r3, 4 mtspr LR, r3 ; fixup LR to point over embedded retaddr mr r3, r27 <jump mmu_helper> ; tail call of sorts And slow path becomes: slow_path: <pre process> <call trampoline> .long done <post process> b done call - 4 bytes (trampoline is within code gen buffer and most likely accessible via direct branch) embedded retaddr - 4 bytes Total overhead - 8 bytes In the end the icache pressure is decreased by 20/28 bytes at the cost of an extra jump to trampoline and adjusting LR (to skip over embedded retaddr) once inside. Signed-off-by: malc <av1474@comtv.ru>
2012-11-05 21:47:04 +04:00
}
#endif
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
intptr_t arg2)
{
tcg_out_ldst (s, ret, arg1, arg2, LWZ, LWZX);
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
intptr_t arg2)
{
tcg_out_ldst (s, arg, arg1, arg2, STW, STWX);
}
static void ppc_addi (TCGContext *s, int rt, int ra, tcg_target_long si)
{
if (!si && rt == ra)
return;
if (si == (int16_t) si)
tcg_out32 (s, ADDI | RT (rt) | RA (ra) | (si & 0xffff));
else {
uint16_t h = ((si >> 16) & 0xffff) + ((uint16_t) si >> 15);
tcg_out32 (s, ADDIS | RT (rt) | RA (ra) | h);
tcg_out32 (s, ADDI | RT (rt) | RA (rt) | (si & 0xffff));
}
}
static void tcg_out_cmp (TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
int const_arg2, int cr)
{
int imm;
uint32_t op;
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
}
else if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
case TCG_COND_LT:
case TCG_COND_GE:
case TCG_COND_LE:
case TCG_COND_GT:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
}
}
op = CMP;
imm = 0;
break;
case TCG_COND_LTU:
case TCG_COND_GEU:
case TCG_COND_LEU:
case TCG_COND_GTU:
if (const_arg2) {
if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
default:
tcg_abort ();
}
op |= BF (cr);
if (imm)
tcg_out32 (s, op | RA (arg1) | (arg2 & 0xffff));
else {
if (const_arg2) {
tcg_out_movi (s, TCG_TYPE_I32, 0, arg2);
tcg_out32 (s, op | RA (arg1) | RB (0));
}
else
tcg_out32 (s, op | RA (arg1) | RB (arg2));
}
}
static void tcg_out_bc (TCGContext *s, int bc, int label_index)
{
TCGLabel *l = &s->labels[label_index];
if (l->has_value)
tcg_out32 (s, bc | reloc_pc14_val (s->code_ptr, l->u.value));
else {
uint16_t val = *(uint16_t *) &s->code_ptr[2];
/* Thanks to Andrzej Zaborowski */
tcg_out32 (s, bc | (val & 0xfffc));
tcg_out_reloc (s, s->code_ptr - 4, R_PPC_REL14, label_index, 0);
}
}
static void tcg_out_cr7eq_from_cond (TCGContext *s, const TCGArg *args,
const int *const_args)
{
TCGCond cond = args[4];
int op;
struct { int bit1; int bit2; int cond2; } bits[] = {
[TCG_COND_LT ] = { CR_LT, CR_LT, TCG_COND_LT },
[TCG_COND_LE ] = { CR_LT, CR_GT, TCG_COND_LT },
[TCG_COND_GT ] = { CR_GT, CR_GT, TCG_COND_GT },
[TCG_COND_GE ] = { CR_GT, CR_LT, TCG_COND_GT },
[TCG_COND_LTU] = { CR_LT, CR_LT, TCG_COND_LTU },
[TCG_COND_LEU] = { CR_LT, CR_GT, TCG_COND_LTU },
[TCG_COND_GTU] = { CR_GT, CR_GT, TCG_COND_GTU },
[TCG_COND_GEU] = { CR_GT, CR_LT, TCG_COND_GTU },
}, *b = &bits[cond];
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
op = (cond == TCG_COND_EQ) ? CRAND : CRNAND;
tcg_out_cmp (s, cond, args[0], args[2], const_args[2], 6);
tcg_out_cmp (s, cond, args[1], args[3], const_args[3], 7);
tcg_out32 (s, op | BT (7, CR_EQ) | BA (6, CR_EQ) | BB (7, CR_EQ));
break;
case TCG_COND_LT:
case TCG_COND_LE:
case TCG_COND_GT:
case TCG_COND_GE:
case TCG_COND_LTU:
case TCG_COND_LEU:
case TCG_COND_GTU:
case TCG_COND_GEU:
op = (b->bit1 != b->bit2) ? CRANDC : CRAND;
tcg_out_cmp (s, b->cond2, args[1], args[3], const_args[3], 5);
tcg_out_cmp (s, tcg_unsigned_cond (cond), args[0], args[2],
const_args[2], 7);
tcg_out32 (s, op | BT (7, CR_EQ) | BA (5, CR_EQ) | BB (7, b->bit2));
tcg_out32 (s, CROR | BT (7, CR_EQ) | BA (5, b->bit1) | BB (7, CR_EQ));
break;
default:
tcg_abort();
}
}
static void tcg_out_setcond (TCGContext *s, TCGCond cond, TCGArg arg0,
TCGArg arg1, TCGArg arg2, int const_arg2)
{
int crop, sh, arg;
switch (cond) {
case TCG_COND_EQ:
if (const_arg2) {
if (!arg2) {
arg = arg1;
}
else {
arg = 0;
if ((uint16_t) arg2 == arg2) {
tcg_out32 (s, XORI | RS (arg1) | RA (0) | arg2);
}
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, arg2);
tcg_out32 (s, XOR | SAB (arg1, 0, 0));
}
}
}
else {
arg = 0;
tcg_out32 (s, XOR | SAB (arg1, 0, arg2));
}
tcg_out32 (s, CNTLZW | RS (arg) | RA (0));
tcg_out32 (s, (RLWINM
| RA (arg0)
| RS (0)
| SH (27)
| MB (5)
| ME (31)
)
);
break;
case TCG_COND_NE:
if (const_arg2) {
if (!arg2) {
arg = arg1;
}
else {
arg = 0;
if ((uint16_t) arg2 == arg2) {
tcg_out32 (s, XORI | RS (arg1) | RA (0) | arg2);
}
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, arg2);
tcg_out32 (s, XOR | SAB (arg1, 0, 0));
}
}
}
else {
arg = 0;
tcg_out32 (s, XOR | SAB (arg1, 0, arg2));
}
if (arg == arg1 && arg1 == arg0) {
tcg_out32 (s, ADDIC | RT (0) | RA (arg) | 0xffff);
tcg_out32 (s, SUBFE | TAB (arg0, 0, arg));
}
else {
tcg_out32 (s, ADDIC | RT (arg0) | RA (arg) | 0xffff);
tcg_out32 (s, SUBFE | TAB (arg0, arg0, arg));
}
break;
case TCG_COND_GT:
case TCG_COND_GTU:
sh = 30;
crop = 0;
goto crtest;
case TCG_COND_LT:
case TCG_COND_LTU:
sh = 29;
crop = 0;
goto crtest;
case TCG_COND_GE:
case TCG_COND_GEU:
sh = 31;
crop = CRNOR | BT (7, CR_EQ) | BA (7, CR_LT) | BB (7, CR_LT);
goto crtest;
case TCG_COND_LE:
case TCG_COND_LEU:
sh = 31;
crop = CRNOR | BT (7, CR_EQ) | BA (7, CR_GT) | BB (7, CR_GT);
crtest:
tcg_out_cmp (s, cond, arg1, arg2, const_arg2, 7);
if (crop) tcg_out32 (s, crop);
tcg_out32 (s, MFCR | RT (0));
tcg_out32 (s, (RLWINM
| RA (arg0)
| RS (0)
| SH (sh)
| MB (31)
| ME (31)
)
);
break;
default:
tcg_abort ();
}
}
static void tcg_out_setcond2 (TCGContext *s, const TCGArg *args,
const int *const_args)
{
tcg_out_cr7eq_from_cond (s, args + 1, const_args + 1);
tcg_out32 (s, MFCR | RT (0));
tcg_out32 (s, (RLWINM
| RA (args[0])
| RS (0)
| SH (31)
| MB (31)
| ME (31)
)
);
}
static void tcg_out_movcond (TCGContext *s, TCGCond cond,
TCGArg dest,
TCGArg c1, TCGArg c2,
TCGArg v1, TCGArg v2,
int const_c2)
{
tcg_out_cmp (s, cond, c1, c2, const_c2, 7);
if (1) {
/* At least here on 7747A bit twiddling hacks are outperformed
by jumpy code (the testing was not scientific) */
if (dest == v2) {
cond = tcg_invert_cond (cond);
v2 = v1;
}
else {
if (dest != v1) {
tcg_out_mov (s, TCG_TYPE_I32, dest, v1);
}
}
/* Branch forward over one insn */
tcg_out32 (s, tcg_to_bc[cond] | 8);
tcg_out_mov (s, TCG_TYPE_I32, dest, v2);
}
else {
/* isel version, "if (1)" above should be replaced once a way
to figure out availability of isel on the underlying
hardware is found */
int tab, bc;
switch (cond) {
case TCG_COND_EQ:
tab = TAB (dest, v1, v2);
bc = CR_EQ;
break;
case TCG_COND_NE:
tab = TAB (dest, v2, v1);
bc = CR_EQ;
break;
case TCG_COND_LTU:
case TCG_COND_LT:
tab = TAB (dest, v1, v2);
bc = CR_LT;
break;
case TCG_COND_GEU:
case TCG_COND_GE:
tab = TAB (dest, v2, v1);
bc = CR_LT;
break;
case TCG_COND_LEU:
case TCG_COND_LE:
tab = TAB (dest, v2, v1);
bc = CR_GT;
break;
case TCG_COND_GTU:
case TCG_COND_GT:
tab = TAB (dest, v1, v2);
bc = CR_GT;
break;
default:
tcg_abort ();
}
tcg_out32 (s, ISEL | tab | ((bc + 28) << 6));
}
}
static void tcg_out_brcond (TCGContext *s, TCGCond cond,
TCGArg arg1, TCGArg arg2, int const_arg2,
int label_index)
{
tcg_out_cmp (s, cond, arg1, arg2, const_arg2, 7);
tcg_out_bc (s, tcg_to_bc[cond], label_index);
}
/* XXX: we implement it at the target level to avoid having to
handle cross basic blocks temporaries */
static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
const int *const_args)
{
tcg_out_cr7eq_from_cond (s, args, const_args);
tcg_out_bc (s, (BC | BI (7, CR_EQ) | BO_COND_TRUE), args[5]);
}
void ppc_tb_set_jmp_target (unsigned long jmp_addr, unsigned long addr)
{
uint32_t *ptr;
long disp = addr - jmp_addr;
unsigned long patch_size;
ptr = (uint32_t *)jmp_addr;
if ((disp << 6) >> 6 != disp) {
ptr[0] = 0x3c000000 | (addr >> 16); /* lis 0,addr@ha */
ptr[1] = 0x60000000 | (addr & 0xffff); /* la 0,addr@l(0) */
ptr[2] = 0x7c0903a6; /* mtctr 0 */
ptr[3] = 0x4e800420; /* brctr */
patch_size = 16;
} else {
/* patch the branch destination */
if (disp != 16) {
*ptr = 0x48000000 | (disp & 0x03fffffc); /* b disp */
patch_size = 4;
} else {
ptr[0] = 0x60000000; /* nop */
ptr[1] = 0x60000000;
ptr[2] = 0x60000000;
ptr[3] = 0x60000000;
patch_size = 16;
}
}
/* flush icache */
flush_icache_range(jmp_addr, jmp_addr + patch_size);
}
static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
const int *const_args)
{
switch (opc) {
case INDEX_op_exit_tb:
tcg_out_movi (s, TCG_TYPE_I32, TCG_REG_R3, args[0]);
tcg_out_b (s, 0, (tcg_target_long) tb_ret_addr);
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_offset) {
/* direct jump method */
s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf;
s->code_ptr += 16;
}
else {
tcg_abort ();
}
s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf;
break;
case INDEX_op_br:
{
TCGLabel *l = &s->labels[args[0]];
if (l->has_value) {
tcg_out_b (s, 0, l->u.value);
}
else {
uint32_t val = *(uint32_t *) s->code_ptr;
/* Thanks to Andrzej Zaborowski */
tcg_out32 (s, B | (val & 0x3fffffc));
tcg_out_reloc (s, s->code_ptr - 4, R_PPC_REL24, args[0], 0);
}
}
break;
case INDEX_op_call:
tcg_out_call (s, args[0], const_args[0], LK);
break;
case INDEX_op_movi_i32:
tcg_out_movi(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_ld8u_i32:
tcg_out_ldst (s, args[0], args[1], args[2], LBZ, LBZX);
break;
case INDEX_op_ld8s_i32:
tcg_out_ldst (s, args[0], args[1], args[2], LBZ, LBZX);
tcg_out32 (s, EXTSB | RS (args[0]) | RA (args[0]));
break;
case INDEX_op_ld16u_i32:
tcg_out_ldst (s, args[0], args[1], args[2], LHZ, LHZX);
break;
case INDEX_op_ld16s_i32:
tcg_out_ldst (s, args[0], args[1], args[2], LHA, LHAX);
break;
case INDEX_op_ld_i32:
tcg_out_ldst (s, args[0], args[1], args[2], LWZ, LWZX);
break;
case INDEX_op_st8_i32:
tcg_out_ldst (s, args[0], args[1], args[2], STB, STBX);
break;
case INDEX_op_st16_i32:
tcg_out_ldst (s, args[0], args[1], args[2], STH, STHX);
break;
case INDEX_op_st_i32:
tcg_out_ldst (s, args[0], args[1], args[2], STW, STWX);
break;
case INDEX_op_add_i32:
if (const_args[2])
ppc_addi (s, args[0], args[1], args[2]);
else
tcg_out32 (s, ADD | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_sub_i32:
if (const_args[2])
ppc_addi (s, args[0], args[1], -args[2]);
else
tcg_out32 (s, SUBF | TAB (args[0], args[2], args[1]));
break;
case INDEX_op_and_i32:
if (const_args[2]) {
uint32_t c;
c = args[2];
if (!c) {
tcg_out_movi (s, TCG_TYPE_I32, args[0], 0);
break;
}
#ifdef __PPU__
uint32_t t, n;
int mb, me;
n = c ^ -(c & 1);
t = n + (n & -n);
if ((t & (t - 1)) == 0) {
int lzc, tzc;
if ((c & 0x80000001) == 0x80000001) {
lzc = clz32 (n);
tzc = ctz32 (n);
mb = 32 - tzc;
me = lzc - 1;
}
else {
lzc = clz32 (c);
tzc = ctz32 (c);
mb = lzc;
me = 31 - tzc;
}
tcg_out32 (s, (RLWINM
| RA (args[0])
| RS (args[1])
| SH (0)
| MB (mb)
| ME (me)
)
);
}
else
#endif /* !__PPU__ */
{
if ((c & 0xffff) == c)
tcg_out32 (s, ANDI | RS (args[1]) | RA (args[0]) | c);
else if ((c & 0xffff0000) == c)
tcg_out32 (s, ANDIS | RS (args[1]) | RA (args[0])
| ((c >> 16) & 0xffff));
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, c);
tcg_out32 (s, AND | SAB (args[1], args[0], 0));
}
}
}
else
tcg_out32 (s, AND | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_or_i32:
if (const_args[2]) {
if (args[2] & 0xffff) {
tcg_out32 (s, ORI | RS (args[1]) | RA (args[0])
| (args[2] & 0xffff));
if (args[2] >> 16)
tcg_out32 (s, ORIS | RS (args[0]) | RA (args[0])
| ((args[2] >> 16) & 0xffff));
}
else {
tcg_out32 (s, ORIS | RS (args[1]) | RA (args[0])
| ((args[2] >> 16) & 0xffff));
}
}
else
tcg_out32 (s, OR | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_xor_i32:
if (const_args[2]) {
if ((args[2] & 0xffff) == args[2])
tcg_out32 (s, XORI | RS (args[1]) | RA (args[0])
| (args[2] & 0xffff));
else if ((args[2] & 0xffff0000) == args[2])
tcg_out32 (s, XORIS | RS (args[1]) | RA (args[0])
| ((args[2] >> 16) & 0xffff));
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, args[2]);
tcg_out32 (s, XOR | SAB (args[1], args[0], 0));
}
}
else
tcg_out32 (s, XOR | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_andc_i32:
tcg_out32 (s, ANDC | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_orc_i32:
tcg_out32 (s, ORC | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_eqv_i32:
tcg_out32 (s, EQV | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_nand_i32:
tcg_out32 (s, NAND | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_nor_i32:
tcg_out32 (s, NOR | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_mul_i32:
if (const_args[2]) {
if (args[2] == (int16_t) args[2])
tcg_out32 (s, MULLI | RT (args[0]) | RA (args[1])
| (args[2] & 0xffff));
else {
tcg_out_movi (s, TCG_TYPE_I32, 0, args[2]);
tcg_out32 (s, MULLW | TAB (args[0], args[1], 0));
}
}
else
tcg_out32 (s, MULLW | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_div_i32:
tcg_out32 (s, DIVW | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_divu_i32:
tcg_out32 (s, DIVWU | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_mulu2_i32:
if (args[0] == args[2] || args[0] == args[3]) {
tcg_out32 (s, MULLW | TAB (0, args[2], args[3]));
tcg_out32 (s, MULHWU | TAB (args[1], args[2], args[3]));
tcg_out_mov (s, TCG_TYPE_I32, args[0], 0);
}
else {
tcg_out32 (s, MULLW | TAB (args[0], args[2], args[3]));
tcg_out32 (s, MULHWU | TAB (args[1], args[2], args[3]));
}
break;
case INDEX_op_shl_i32:
if (const_args[2]) {
tcg_out32 (s, (RLWINM
| RA (args[0])
| RS (args[1])
| SH (args[2])
| MB (0)
| ME (31 - args[2])
)
);
}
else
tcg_out32 (s, SLW | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_shr_i32:
if (const_args[2]) {
tcg_out32 (s, (RLWINM
| RA (args[0])
| RS (args[1])
| SH (32 - args[2])
| MB (args[2])
| ME (31)
)
);
}
else
tcg_out32 (s, SRW | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_sar_i32:
if (const_args[2])
tcg_out32 (s, SRAWI | RS (args[1]) | RA (args[0]) | SH (args[2]));
else
tcg_out32 (s, SRAW | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_rotl_i32:
{
int op = 0
| RA (args[0])
| RS (args[1])
| MB (0)
| ME (31)
| (const_args[2] ? RLWINM | SH (args[2])
: RLWNM | RB (args[2]))
;
tcg_out32 (s, op);
}
break;
case INDEX_op_rotr_i32:
if (const_args[2]) {
if (!args[2]) {
tcg_out_mov (s, TCG_TYPE_I32, args[0], args[1]);
}
else {
tcg_out32 (s, RLWINM
| RA (args[0])
| RS (args[1])
| SH (32 - args[2])
| MB (0)
| ME (31)
);
}
}
else {
tcg_out32 (s, SUBFIC | RT (0) | RA (args[2]) | 32);
tcg_out32 (s, RLWNM
| RA (args[0])
| RS (args[1])
| RB (0)
| MB (0)
| ME (31)
);
}
break;
case INDEX_op_add2_i32:
if (args[0] == args[3] || args[0] == args[5]) {
tcg_out32 (s, ADDC | TAB (0, args[2], args[4]));
tcg_out32 (s, ADDE | TAB (args[1], args[3], args[5]));
tcg_out_mov (s, TCG_TYPE_I32, args[0], 0);
}
else {
tcg_out32 (s, ADDC | TAB (args[0], args[2], args[4]));
tcg_out32 (s, ADDE | TAB (args[1], args[3], args[5]));
}
break;
case INDEX_op_sub2_i32:
if (args[0] == args[3] || args[0] == args[5]) {
tcg_out32 (s, SUBFC | TAB (0, args[4], args[2]));
tcg_out32 (s, SUBFE | TAB (args[1], args[5], args[3]));
tcg_out_mov (s, TCG_TYPE_I32, args[0], 0);
}
else {
tcg_out32 (s, SUBFC | TAB (args[0], args[4], args[2]));
tcg_out32 (s, SUBFE | TAB (args[1], args[5], args[3]));
}
break;
case INDEX_op_brcond_i32:
/*
args[0] = r0
args[1] = r1
args[2] = cond
args[3] = r1 is const
args[4] = label_index
*/
tcg_out_brcond (s, args[2], args[0], args[1], const_args[1], args[3]);
break;
case INDEX_op_brcond2_i32:
tcg_out_brcond2(s, args, const_args);
break;
case INDEX_op_neg_i32:
tcg_out32 (s, NEG | RT (args[0]) | RA (args[1]));
break;
case INDEX_op_not_i32:
tcg_out32 (s, NOR | SAB (args[1], args[0], args[1]));
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, args, 0);
break;
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, args, 1);
break;
case INDEX_op_qemu_st_i32:
tcg_out_qemu_st(s, args, 0);
break;
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, args, 1);
break;
case INDEX_op_ext8s_i32:
tcg_out32 (s, EXTSB | RS (args[1]) | RA (args[0]));
break;
case INDEX_op_ext8u_i32:
tcg_out32 (s, RLWINM
| RA (args[0])
| RS (args[1])
| SH (0)
| MB (24)
| ME (31)
);
break;
case INDEX_op_ext16s_i32:
tcg_out32 (s, EXTSH | RS (args[1]) | RA (args[0]));
break;
case INDEX_op_ext16u_i32:
tcg_out32 (s, RLWINM
| RA (args[0])
| RS (args[1])
| SH (0)
| MB (16)
| ME (31)
);
break;
case INDEX_op_setcond_i32:
tcg_out_setcond (s, args[3], args[0], args[1], args[2], const_args[2]);
break;
case INDEX_op_setcond2_i32:
tcg_out_setcond2 (s, args, const_args);
break;
case INDEX_op_bswap16_i32:
/* Stolen from gcc's builtin_bswap16 */
/* a1 = abcd */
/* r0 = (a1 << 8) & 0xff00 # 00d0 */
tcg_out32 (s, RLWINM
| RA (0)
| RS (args[1])
| SH (8)
| MB (16)
| ME (23)
);
/* a0 = rotate_left (a1, 24) & 0xff # 000c */
tcg_out32 (s, RLWINM
| RA (args[0])
| RS (args[1])
| SH (24)
| MB (24)
| ME (31)
);
/* a0 = a0 | r0 # 00dc */
tcg_out32 (s, OR | SAB (0, args[0], args[0]));
break;
case INDEX_op_bswap32_i32:
/* Stolen from gcc's builtin_bswap32 */
{
int a0 = args[0];
/* a1 = args[1] # abcd */
if (a0 == args[1]) {
a0 = 0;
}
/* a0 = rotate_left (a1, 8) # bcda */
tcg_out32 (s, RLWINM
| RA (a0)
| RS (args[1])
| SH (8)
| MB (0)
| ME (31)
);
/* a0 = (a0 & ~0xff000000) | ((a1 << 24) & 0xff000000) # dcda */
tcg_out32 (s, RLWIMI
| RA (a0)
| RS (args[1])
| SH (24)
| MB (0)
| ME (7)
);
/* a0 = (a0 & ~0x0000ff00) | ((a1 << 24) & 0x0000ff00) # dcba */
tcg_out32 (s, RLWIMI
| RA (a0)
| RS (args[1])
| SH (24)
| MB (16)
| ME (23)
);
if (!a0) {
tcg_out_mov (s, TCG_TYPE_I32, args[0], a0);
}
}
break;
case INDEX_op_deposit_i32:
tcg_out32 (s, RLWIMI
| RA (args[0])
| RS (args[2])
| SH (args[3])
| MB (32 - args[3] - args[4])
| ME (31 - args[3])
);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond (s, args[5], args[0],
args[1], args[2],
args[3], args[4],
const_args[2]);
break;
default:
tcg_dump_ops (s);
tcg_abort ();
}
}
static const TCGTargetOpDef ppc_op_defs[] = {
{ INDEX_op_exit_tb, { } },
{ INDEX_op_goto_tb, { } },
{ INDEX_op_call, { "ri" } },
{ INDEX_op_br, { } },
{ INDEX_op_mov_i32, { "r", "r" } },
{ INDEX_op_movi_i32, { "r" } },
{ INDEX_op_ld8u_i32, { "r", "r" } },
{ INDEX_op_ld8s_i32, { "r", "r" } },
{ INDEX_op_ld16u_i32, { "r", "r" } },
{ INDEX_op_ld16s_i32, { "r", "r" } },
{ INDEX_op_ld_i32, { "r", "r" } },
{ INDEX_op_st8_i32, { "r", "r" } },
{ INDEX_op_st16_i32, { "r", "r" } },
{ INDEX_op_st_i32, { "r", "r" } },
{ INDEX_op_add_i32, { "r", "r", "ri" } },
{ INDEX_op_mul_i32, { "r", "r", "ri" } },
{ INDEX_op_div_i32, { "r", "r", "r" } },
{ INDEX_op_divu_i32, { "r", "r", "r" } },
{ INDEX_op_mulu2_i32, { "r", "r", "r", "r" } },
{ INDEX_op_sub_i32, { "r", "r", "ri" } },
{ INDEX_op_and_i32, { "r", "r", "ri" } },
{ INDEX_op_or_i32, { "r", "r", "ri" } },
{ INDEX_op_xor_i32, { "r", "r", "ri" } },
{ INDEX_op_shl_i32, { "r", "r", "ri" } },
{ INDEX_op_shr_i32, { "r", "r", "ri" } },
{ INDEX_op_sar_i32, { "r", "r", "ri" } },
{ INDEX_op_rotl_i32, { "r", "r", "ri" } },
{ INDEX_op_rotr_i32, { "r", "r", "ri" } },
{ INDEX_op_brcond_i32, { "r", "ri" } },
{ INDEX_op_add2_i32, { "r", "r", "r", "r", "r", "r" } },
{ INDEX_op_sub2_i32, { "r", "r", "r", "r", "r", "r" } },
{ INDEX_op_brcond2_i32, { "r", "r", "r", "r" } },
{ INDEX_op_neg_i32, { "r", "r" } },
{ INDEX_op_not_i32, { "r", "r" } },
{ INDEX_op_andc_i32, { "r", "r", "r" } },
{ INDEX_op_orc_i32, { "r", "r", "r" } },
{ INDEX_op_eqv_i32, { "r", "r", "r" } },
{ INDEX_op_nand_i32, { "r", "r", "r" } },
{ INDEX_op_nor_i32, { "r", "r", "r" } },
{ INDEX_op_setcond_i32, { "r", "r", "ri" } },
{ INDEX_op_setcond2_i32, { "r", "r", "r", "ri", "ri" } },
{ INDEX_op_bswap16_i32, { "r", "r" } },
{ INDEX_op_bswap32_i32, { "r", "r" } },
#if TARGET_LONG_BITS == 32
{ INDEX_op_qemu_ld_i32, { "r", "L" } },
{ INDEX_op_qemu_ld_i64, { "L", "L", "L" } },
{ INDEX_op_qemu_st_i32, { "K", "K" } },
{ INDEX_op_qemu_st_i64, { "M", "M", "M" } },
#else
{ INDEX_op_qemu_ld_i32, { "r", "L", "L" } },
{ INDEX_op_qemu_ld_i64, { "L", "L", "L", "L" } },
{ INDEX_op_qemu_st_i32, { "K", "K", "K" } },
{ INDEX_op_qemu_st_i64, { "M", "M", "M", "M" } },
#endif
{ INDEX_op_ext8s_i32, { "r", "r" } },
{ INDEX_op_ext8u_i32, { "r", "r" } },
{ INDEX_op_ext16s_i32, { "r", "r" } },
{ INDEX_op_ext16u_i32, { "r", "r" } },
{ INDEX_op_deposit_i32, { "r", "0", "r" } },
{ INDEX_op_movcond_i32, { "r", "r", "ri", "r", "r" } },
{ -1 },
};
static void tcg_target_init(TCGContext *s)
{
tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffffffff);
tcg_regset_set32(tcg_target_call_clobber_regs, 0,
(1 << TCG_REG_R0) |
#ifdef TCG_TARGET_CALL_DARWIN
(1 << TCG_REG_R2) |
#endif
(1 << TCG_REG_R3) |
(1 << TCG_REG_R4) |
(1 << TCG_REG_R5) |
(1 << TCG_REG_R6) |
(1 << TCG_REG_R7) |
(1 << TCG_REG_R8) |
(1 << TCG_REG_R9) |
(1 << TCG_REG_R10) |
(1 << TCG_REG_R11) |
(1 << TCG_REG_R12)
);
tcg_regset_clear(s->reserved_regs);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1);
#ifndef TCG_TARGET_CALL_DARWIN
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2);
#endif
#ifdef _CALL_SYSV
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13);
#endif
tcg_add_target_add_op_defs(ppc_op_defs);
}