qemu-e2k/hw/xen/xen_pt.c

975 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007, Neocleus Corporation.
* Copyright (c) 2007, Intel Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Alex Novik <alex@neocleus.com>
* Allen Kay <allen.m.kay@intel.com>
* Guy Zana <guy@neocleus.com>
*
* This file implements direct PCI assignment to a HVM guest
*/
/*
* Interrupt Disable policy:
*
* INTx interrupt:
* Initialize(register_real_device)
* Map INTx(xc_physdev_map_pirq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Set machine_irq and assigned_device->machine_irq to '0'.
* * Don't bind INTx.
*
* Bind INTx(xc_domain_bind_pt_pci_irq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Unmap INTx.
* - Decrement xen_pt_mapped_machine_irq[machine_irq]
* - Set assigned_device->machine_irq to '0'.
*
* Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write)
* Write '0'
* - Set real bit to '0' if assigned_device->machine_irq isn't '0'.
*
* Write '1'
* - Set real bit to '1'.
*
* MSI interrupt:
* Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update)
* Bind MSI(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI.
* - Set dev->msi->pirq to '-1'.
*
* MSI-X interrupt:
* Initialize MSI-X register(xen_pt_msix_update_one)
* Bind MSI-X(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI-X.
* - Set entry->pirq to '-1'.
*/
#include "qemu/osdep.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include <sys/ioctl.h>
#include "hw/pci/pci.h"
#include "hw/xen/xen.h"
#include "hw/i386/pc.h"
#include "hw/xen/xen_backend.h"
#include "xen_pt.h"
#include "qemu/range.h"
#include "exec/address-spaces.h"
#define XEN_PT_NR_IRQS (256)
static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0};
void xen_pt_log(const PCIDevice *d, const char *f, ...)
{
va_list ap;
va_start(ap, f);
if (d) {
fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus),
PCI_SLOT(d->devfn), PCI_FUNC(d->devfn));
}
vfprintf(stderr, f, ap);
va_end(ap);
}
/* Config Space */
static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len)
{
/* check offset range */
if (addr >= 0xFF) {
XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check read size */
if ((len != 1) && (len != 2) && (len != 4)) {
XEN_PT_ERR(d, "Failed to access register with invalid access length. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check offset alignment */
if (addr & (len - 1)) {
XEN_PT_ERR(d, "Failed to access register with invalid access size "
"alignment. (addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
return 0;
}
int xen_pt_bar_offset_to_index(uint32_t offset)
{
int index = 0;
/* check Exp ROM BAR */
if (offset == PCI_ROM_ADDRESS) {
return PCI_ROM_SLOT;
}
/* calculate BAR index */
index = (offset - PCI_BASE_ADDRESS_0) >> 2;
if (index >= PCI_NUM_REGIONS) {
return -1;
}
return index;
}
static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len)
{
XenPCIPassthroughState *s = XEN_PT_DEVICE(d);
uint32_t val = 0;
XenPTRegGroup *reg_grp_entry = NULL;
XenPTReg *reg_entry = NULL;
int rc = 0;
int emul_len = 0;
uint32_t find_addr = addr;
if (xen_pt_pci_config_access_check(d, addr, len)) {
goto exit;
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* no need to emulate, just return 0 */
val = 0;
goto exit;
}
}
/* read I/O device register value */
rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&val, 0xff, len);
}
/* just return the I/O device register value for
* passthrough type register group */
if (reg_grp_entry == NULL) {
goto exit;
}
/* adjust the read value to appropriate CFC-CFF window */
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
XenPTRegInfo *reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.read) {
rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask);
}
break;
case 2:
if (reg->u.w.read) {
rc = reg->u.w.read(s, reg_entry,
(uint16_t *)ptr_val, valid_mask);
}
break;
case 4:
if (reg->u.dw.read) {
rc = reg->u.dw.read(s, reg_entry,
(uint32_t *)ptr_val, valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid read "
"emulation. (%s, rc: %d)\n",
__func__, rc);
return 0;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
emul_len--;
find_addr++;
}
}
/* need to shift back before returning them to pci bus emulator */
val >>= ((addr & 3) << 3);
exit:
XEN_PT_LOG_CONFIG(d, addr, val, len);
return val;
}
static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr,
uint32_t val, int len)
{
XenPCIPassthroughState *s = XEN_PT_DEVICE(d);
int index = 0;
XenPTRegGroup *reg_grp_entry = NULL;
int rc = 0;
uint32_t read_val = 0, wb_mask;
int emul_len = 0;
XenPTReg *reg_entry = NULL;
uint32_t find_addr = addr;
XenPTRegInfo *reg = NULL;
bool wp_flag = false;
if (xen_pt_pci_config_access_check(d, addr, len)) {
return;
}
XEN_PT_LOG_CONFIG(d, addr, val, len);
/* check unused BAR register */
index = xen_pt_bar_offset_to_index(addr);
if ((index >= 0) && (val != 0)) {
uint32_t chk = val;
if (index == PCI_ROM_SLOT)
chk |= (uint32_t)~PCI_ROM_ADDRESS_MASK;
if ((chk != XEN_PT_BAR_ALLF) &&
(s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) {
XEN_PT_WARN(d, "Guest attempt to set address to unused "
"Base Address Register. (addr: 0x%02x, len: %d)\n",
addr, len);
}
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* ignore silently */
XEN_PT_WARN(d, "Access to 0-Hardwired register. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return;
}
}
rc = xen_host_pci_get_block(&s->real_device, addr,
(uint8_t *)&read_val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&read_val, 0xff, len);
wb_mask = 0;
} else {
wb_mask = 0xFFFFFFFF >> ((4 - len) << 3);
}
/* pass directly to the real device for passthrough type register group */
if (reg_grp_entry == NULL) {
if (!s->permissive) {
wb_mask = 0;
wp_flag = true;
}
goto out;
}
memory_region_transaction_begin();
pci_default_write_config(d, addr, val, len);
/* adjust the read and write value to appropriate CFC-CFF window */
read_val <<= (addr & 3) << 3;
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
uint32_t wp_mask = reg->emu_mask | reg->ro_mask;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
if (!s->permissive) {
wp_mask |= reg->res_mask;
}
if (wp_mask == (0xFFFFFFFF >> ((4 - reg->size) << 3))) {
wb_mask &= ~((wp_mask >> ((find_addr - real_offset) << 3))
<< ((len - emul_len) << 3));
}
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.write) {
rc = reg->u.b.write(s, reg_entry, ptr_val,
read_val >> ((real_offset & 3) << 3),
valid_mask);
}
break;
case 2:
if (reg->u.w.write) {
rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
case 4:
if (reg->u.dw.write) {
rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid write"
" emulation. (%s, rc: %d)\n",
__func__, rc);
return;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
if (!s->permissive) {
wb_mask &= ~(0xff << ((len - emul_len) << 3));
/* Unused BARs will make it here, but we don't want to issue
* warnings for writes to them (bogus writes get dealt with
* above).
*/
if (index < 0) {
wp_flag = true;
}
}
emul_len--;
find_addr++;
}
}
/* need to shift back before passing them to xen_host_pci_set_block. */
val >>= (addr & 3) << 3;
memory_region_transaction_commit();
out:
if (wp_flag && !s->permissive_warned) {
s->permissive_warned = true;
xen_pt_log(d, "Write-back to unknown field 0x%02x (partially) inhibited (0x%0*x)\n",
addr, len * 2, wb_mask);
xen_pt_log(d, "If the device doesn't work, try enabling permissive mode\n");
xen_pt_log(d, "(unsafe) and if it helps report the problem to xen-devel\n");
}
for (index = 0; wb_mask; index += len) {
/* unknown regs are passed through */
while (!(wb_mask & 0xff)) {
index++;
wb_mask >>= 8;
}
len = 0;
do {
len++;
wb_mask >>= 8;
} while (wb_mask & 0xff);
rc = xen_host_pci_set_block(&s->real_device, addr + index,
(uint8_t *)&val + index, len);
if (rc < 0) {
XEN_PT_ERR(d, "xen_host_pci_set_block failed. return value: %d.\n", rc);
}
}
}
/* register regions */
static uint64_t xen_pt_bar_read(void *o, hwaddr addr,
unsigned size)
{
PCIDevice *d = o;
/* if this function is called, that probably means that there is a
* misconfiguration of the IOMMU. */
XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
return 0;
}
static void xen_pt_bar_write(void *o, hwaddr addr, uint64_t val,
unsigned size)
{
PCIDevice *d = o;
/* Same comment as xen_pt_bar_read function */
XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
}
static const MemoryRegionOps ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
.read = xen_pt_bar_read,
.write = xen_pt_bar_write,
};
static int xen_pt_register_regions(XenPCIPassthroughState *s, uint16_t *cmd)
{
int i = 0;
XenHostPCIDevice *d = &s->real_device;
/* Register PIO/MMIO BARs */
for (i = 0; i < PCI_ROM_SLOT; i++) {
XenHostPCIIORegion *r = &d->io_regions[i];
uint8_t type;
if (r->base_addr == 0 || r->size == 0) {
continue;
}
s->bases[i].access.u = r->base_addr;
if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) {
type = PCI_BASE_ADDRESS_SPACE_IO;
*cmd |= PCI_COMMAND_IO;
} else {
type = PCI_BASE_ADDRESS_SPACE_MEMORY;
if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) {
type |= PCI_BASE_ADDRESS_MEM_PREFETCH;
}
if (r->type & XEN_HOST_PCI_REGION_TYPE_MEM_64) {
type |= PCI_BASE_ADDRESS_MEM_TYPE_64;
}
*cmd |= PCI_COMMAND_MEMORY;
}
memory_region_init_io(&s->bar[i], OBJECT(s), &ops, &s->dev,
"xen-pci-pt-bar", r->size);
pci_register_bar(&s->dev, i, type, &s->bar[i]);
XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%08"PRIx64
" base_addr=0x%08"PRIx64" type: %#x)\n",
i, r->size, r->base_addr, type);
}
/* Register expansion ROM address */
if (d->rom.base_addr && d->rom.size) {
uint32_t bar_data = 0;
/* Re-set BAR reported by OS, otherwise ROM can't be read. */
if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) {
return 0;
}
if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) {
bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK;
xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data);
}
s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr;
memory_region_init_io(&s->rom, OBJECT(s), &ops, &s->dev,
"xen-pci-pt-rom", d->rom.size);
pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH,
&s->rom);
XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64
" base_addr=0x%08"PRIx64")\n",
d->rom.size, d->rom.base_addr);
}
xen_pt_register_vga_regions(d);
return 0;
}
/* region mapping */
static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr)
{
int i = 0;
for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
if (mr == &s->bar[i]) {
return i;
}
}
if (mr == &s->rom) {
return PCI_ROM_SLOT;
}
return -1;
}
/*
* This function checks if an io_region overlaps an io_region from another
* device. The io_region to check is provided with (addr, size and type)
* A callback can be provided and will be called for every region that is
* overlapped.
* The return value indicates if the region is overlappsed */
struct CheckBarArgs {
XenPCIPassthroughState *s;
pcibus_t addr;
pcibus_t size;
uint8_t type;
bool rc;
};
static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque)
{
struct CheckBarArgs *arg = opaque;
XenPCIPassthroughState *s = arg->s;
uint8_t type = arg->type;
int i;
if (d->devfn == s->dev.devfn) {
return;
}
/* xxx: This ignores bridges. */
for (i = 0; i < PCI_NUM_REGIONS; i++) {
const PCIIORegion *r = &d->io_regions[i];
if (!r->size) {
continue;
}
if ((type & PCI_BASE_ADDRESS_SPACE_IO)
!= (r->type & PCI_BASE_ADDRESS_SPACE_IO)) {
continue;
}
if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) {
XEN_PT_WARN(&s->dev,
"Overlapped to device [%02x:%02x.%d] Region: %i"
" (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n",
pci_bus_num(bus), PCI_SLOT(d->devfn),
PCI_FUNC(d->devfn), i, r->addr, r->size);
arg->rc = true;
}
}
}
static void xen_pt_region_update(XenPCIPassthroughState *s,
MemoryRegionSection *sec, bool adding)
{
PCIDevice *d = &s->dev;
MemoryRegion *mr = sec->mr;
int bar = -1;
int rc;
int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING;
struct CheckBarArgs args = {
.s = s,
.addr = sec->offset_within_address_space,
.size = int128_get64(sec->size),
.rc = false,
};
bar = xen_pt_bar_from_region(s, mr);
if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) {
return;
}
if (s->msix && &s->msix->mmio == mr) {
if (adding) {
s->msix->mmio_base_addr = sec->offset_within_address_space;
rc = xen_pt_msix_update_remap(s, s->msix->bar_index);
}
return;
}
args.type = d->io_regions[bar].type;
pci_for_each_device(d->bus, pci_bus_num(d->bus),
xen_pt_check_bar_overlap, &args);
if (args.rc) {
XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS
", len: %#"FMT_PCIBUS") is overlapped.\n",
bar, sec->offset_within_address_space,
int128_get64(sec->size));
}
if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) {
uint32_t guest_port = sec->offset_within_address_space;
uint32_t machine_port = s->bases[bar].access.pio_base;
uint32_t size = int128_get64(sec->size);
rc = xc_domain_ioport_mapping(xen_xc, xen_domid,
guest_port, machine_port, size,
op);
if (rc) {
XEN_PT_ERR(d, "%s ioport mapping failed! (err: %i)\n",
adding ? "create new" : "remove old", errno);
}
} else {
pcibus_t guest_addr = sec->offset_within_address_space;
pcibus_t machine_addr = s->bases[bar].access.maddr
+ sec->offset_within_region;
pcibus_t size = int128_get64(sec->size);
rc = xc_domain_memory_mapping(xen_xc, xen_domid,
XEN_PFN(guest_addr + XC_PAGE_SIZE - 1),
XEN_PFN(machine_addr + XC_PAGE_SIZE - 1),
XEN_PFN(size + XC_PAGE_SIZE - 1),
op);
if (rc) {
XEN_PT_ERR(d, "%s mem mapping failed! (err: %i)\n",
adding ? "create new" : "remove old", errno);
}
}
}
static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
memory_region_ref(sec->mr);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
xen_pt_region_update(s, sec, false);
memory_region_unref(sec->mr);
}
static void xen_pt_io_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
memory_region_ref(sec->mr);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_io_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
xen_pt_region_update(s, sec, false);
memory_region_unref(sec->mr);
}
static const MemoryListener xen_pt_memory_listener = {
.region_add = xen_pt_region_add,
.region_del = xen_pt_region_del,
.priority = 10,
};
static const MemoryListener xen_pt_io_listener = {
.region_add = xen_pt_io_region_add,
.region_del = xen_pt_io_region_del,
.priority = 10,
};
static void
xen_igd_passthrough_isa_bridge_create(XenPCIPassthroughState *s,
XenHostPCIDevice *dev)
{
uint16_t gpu_dev_id;
PCIDevice *d = &s->dev;
gpu_dev_id = dev->device_id;
igd_passthrough_isa_bridge_create(d->bus, gpu_dev_id);
}
/* destroy. */
static void xen_pt_destroy(PCIDevice *d) {
XenPCIPassthroughState *s = XEN_PT_DEVICE(d);
XenHostPCIDevice *host_dev = &s->real_device;
uint8_t machine_irq = s->machine_irq;
uint8_t intx;
int rc;
if (machine_irq && !xen_host_pci_device_closed(&s->real_device)) {
intx = xen_pt_pci_intx(s);
rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq,
PT_IRQ_TYPE_PCI,
pci_bus_num(d->bus),
PCI_SLOT(s->dev.devfn),
intx,
0 /* isa_irq */);
if (rc < 0) {
XEN_PT_ERR(d, "unbinding of interrupt INT%c failed."
" (machine irq: %i, err: %d)"
" But bravely continuing on..\n",
'a' + intx, machine_irq, errno);
}
}
/* N.B. xen_pt_config_delete takes care of freeing them. */
if (s->msi) {
xen_pt_msi_disable(s);
}
if (s->msix) {
xen_pt_msix_disable(s);
}
if (machine_irq) {
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq);
if (rc < 0) {
XEN_PT_ERR(d, "unmapping of interrupt %i failed. (err: %d)"
" But bravely continuing on..\n",
machine_irq, errno);
}
}
s->machine_irq = 0;
}
/* delete all emulated config registers */
xen_pt_config_delete(s);
xen_pt_unregister_vga_regions(host_dev);
if (s->listener_set) {
memory_listener_unregister(&s->memory_listener);
memory_listener_unregister(&s->io_listener);
s->listener_set = false;
}
if (!xen_host_pci_device_closed(&s->real_device)) {
xen_host_pci_device_put(&s->real_device);
}
}
/* init */
static void xen_pt_realize(PCIDevice *d, Error **errp)
{
XenPCIPassthroughState *s = XEN_PT_DEVICE(d);
int i, rc = 0;
uint8_t machine_irq = 0, scratch;
uint16_t cmd = 0;
int pirq = XEN_PT_UNASSIGNED_PIRQ;
Error *err = NULL;
/* register real device */
XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d"
" to devfn %#x\n",
s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function,
s->dev.devfn);
xen_host_pci_device_get(&s->real_device,
s->hostaddr.domain, s->hostaddr.bus,
s->hostaddr.slot, s->hostaddr.function,
&err);
if (err) {
error_append_hint(&err, "Failed to \"open\" the real pci device");
error_propagate(errp, err);
return;
}
s->is_virtfn = s->real_device.is_virtfn;
if (s->is_virtfn) {
XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n",
s->real_device.domain, s->real_device.bus,
s->real_device.dev, s->real_device.func);
}
/* Initialize virtualized PCI configuration (Extended 256 Bytes) */
memset(d->config, 0, PCI_CONFIG_SPACE_SIZE);
s->memory_listener = xen_pt_memory_listener;
s->io_listener = xen_pt_io_listener;
/* Setup VGA bios for passthrough GFX */
if ((s->real_device.domain == 0) && (s->real_device.bus == 0) &&
(s->real_device.dev == 2) && (s->real_device.func == 0)) {
if (!is_igd_vga_passthrough(&s->real_device)) {
error_setg(errp, "Need to enable igd-passthru if you're trying"
" to passthrough IGD GFX");
xen_host_pci_device_put(&s->real_device);
return;
}
xen_pt_setup_vga(s, &s->real_device, &err);
if (err) {
error_append_hint(&err, "Setup VGA BIOS of passthrough"
" GFX failed");
error_propagate(errp, err);
xen_host_pci_device_put(&s->real_device);
return;
}
/* Register ISA bridge for passthrough GFX. */
xen_igd_passthrough_isa_bridge_create(s, &s->real_device);
}
/* Handle real device's MMIO/PIO BARs */
xen_pt_register_regions(s, &cmd);
/* reinitialize each config register to be emulated */
xen_pt_config_init(s, &err);
if (err) {
error_append_hint(&err, "PCI Config space initialisation failed");
error_report_err(err);
rc = -1;
goto err_out;
}
/* Bind interrupt */
rc = xen_host_pci_get_byte(&s->real_device, PCI_INTERRUPT_PIN, &scratch);
if (rc) {
error_setg_errno(errp, errno, "Failed to read PCI_INTERRUPT_PIN");
goto err_out;
}
if (!scratch) {
error_setg(errp, "no pin interrupt");
goto out;
}
machine_irq = s->real_device.irq;
rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq);
if (rc < 0) {
error_setg_errno(errp, errno, "Mapping machine irq %u to"
" pirq %i failed", machine_irq, pirq);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
cmd |= PCI_COMMAND_INTX_DISABLE;
machine_irq = 0;
s->machine_irq = 0;
} else {
machine_irq = pirq;
s->machine_irq = pirq;
xen_pt_mapped_machine_irq[machine_irq]++;
}
/* bind machine_irq to device */
if (machine_irq != 0) {
uint8_t e_intx = xen_pt_pci_intx(s);
rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq,
pci_bus_num(d->bus),
PCI_SLOT(d->devfn),
e_intx);
if (rc < 0) {
error_setg_errno(errp, errno, "Binding of interrupt %u failed",
e_intx);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
cmd |= PCI_COMMAND_INTX_DISABLE;
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) {
error_setg_errno(errp, errno, "Unmapping of machine"
" interrupt %u failed", machine_irq);
}
}
s->machine_irq = 0;
}
}
out:
if (cmd) {
uint16_t val;
rc = xen_host_pci_get_word(&s->real_device, PCI_COMMAND, &val);
if (rc) {
error_setg_errno(errp, errno, "Failed to read PCI_COMMAND");
goto err_out;
} else {
val |= cmd;
rc = xen_host_pci_set_word(&s->real_device, PCI_COMMAND, val);
if (rc) {
error_setg_errno(errp, errno, "Failed to write PCI_COMMAND"
" val = 0x%x", val);
goto err_out;
}
}
}
memory_listener_register(&s->memory_listener, &s->dev.bus_master_as);
memory_listener_register(&s->io_listener, &address_space_io);
s->listener_set = true;
XEN_PT_LOG(d,
"Real physical device %02x:%02x.%d registered successfully\n",
s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function);
return;
err_out:
for (i = 0; i < PCI_ROM_SLOT; i++) {
object_unparent(OBJECT(&s->bar[i]));
}
object_unparent(OBJECT(&s->rom));
xen_pt_destroy(d);
assert(rc);
}
static void xen_pt_unregister_device(PCIDevice *d)
{
xen_pt_destroy(d);
}
static Property xen_pci_passthrough_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr),
DEFINE_PROP_BOOL("permissive", XenPCIPassthroughState, permissive, false),
DEFINE_PROP_END_OF_LIST(),
};
static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = xen_pt_realize;
k->exit = xen_pt_unregister_device;
k->config_read = xen_pt_pci_read_config;
k->config_write = xen_pt_pci_write_config;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->desc = "Assign an host PCI device with Xen";
dc->props = xen_pci_passthrough_properties;
};
static void xen_pci_passthrough_finalize(Object *obj)
{
XenPCIPassthroughState *s = XEN_PT_DEVICE(obj);
xen_pt_msix_delete(s);
}
static const TypeInfo xen_pci_passthrough_info = {
.name = TYPE_XEN_PT_DEVICE,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(XenPCIPassthroughState),
.instance_finalize = xen_pci_passthrough_finalize,
.class_init = xen_pci_passthrough_class_init,
};
static void xen_pci_passthrough_register_types(void)
{
type_register_static(&xen_pci_passthrough_info);
}
type_init(xen_pci_passthrough_register_types)