qemu-e2k/hw/usb/hcd-ohci.c

2029 lines
58 KiB
C
Raw Normal View History

/*
* QEMU USB OHCI Emulation
* Copyright (c) 2004 Gianni Tedesco
* Copyright (c) 2006 CodeSourcery
* Copyright (c) 2006 Openedhand Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* TODO:
* o Isochronous transfers
* o Allocate bandwidth in frames properly
* o Disable timers when nothing needs to be done, or remove timer usage
* all together.
* o BIOS work to boot from USB storage
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include "hw/usb.h"
#include "migration/vmstate.h"
#include "hw/sysbus.h"
#include "hw/qdev-dma.h"
#include "hw/qdev-properties.h"
#include "trace.h"
#include "hcd-ohci.h"
/* This causes frames to occur 1000x slower */
//#define OHCI_TIME_WARP 1
#define ED_LINK_LIMIT 32
static int64_t usb_frame_time;
static int64_t usb_bit_time;
/* Host Controller Communications Area */
struct ohci_hcca {
uint32_t intr[32];
uint16_t frame, pad;
uint32_t done;
};
2012-03-08 02:10:44 +01:00
#define HCCA_WRITEBACK_OFFSET offsetof(struct ohci_hcca, frame)
#define HCCA_WRITEBACK_SIZE 8 /* frame, pad, done */
#define ED_WBACK_OFFSET offsetof(struct ohci_ed, head)
#define ED_WBACK_SIZE 4
static void ohci_async_cancel_device(OHCIState *ohci, USBDevice *dev);
/* Bitfields for the first word of an Endpoint Desciptor. */
#define OHCI_ED_FA_SHIFT 0
#define OHCI_ED_FA_MASK (0x7f<<OHCI_ED_FA_SHIFT)
#define OHCI_ED_EN_SHIFT 7
#define OHCI_ED_EN_MASK (0xf<<OHCI_ED_EN_SHIFT)
#define OHCI_ED_D_SHIFT 11
#define OHCI_ED_D_MASK (3<<OHCI_ED_D_SHIFT)
#define OHCI_ED_S (1<<13)
#define OHCI_ED_K (1<<14)
#define OHCI_ED_F (1<<15)
#define OHCI_ED_MPS_SHIFT 16
#define OHCI_ED_MPS_MASK (0x7ff<<OHCI_ED_MPS_SHIFT)
/* Flags in the head field of an Endpoint Desciptor. */
#define OHCI_ED_H 1
#define OHCI_ED_C 2
/* Bitfields for the first word of a Transfer Desciptor. */
#define OHCI_TD_R (1<<18)
#define OHCI_TD_DP_SHIFT 19
#define OHCI_TD_DP_MASK (3<<OHCI_TD_DP_SHIFT)
#define OHCI_TD_DI_SHIFT 21
#define OHCI_TD_DI_MASK (7<<OHCI_TD_DI_SHIFT)
#define OHCI_TD_T0 (1<<24)
#define OHCI_TD_T1 (1<<25)
#define OHCI_TD_EC_SHIFT 26
#define OHCI_TD_EC_MASK (3<<OHCI_TD_EC_SHIFT)
#define OHCI_TD_CC_SHIFT 28
#define OHCI_TD_CC_MASK (0xf<<OHCI_TD_CC_SHIFT)
/* Bitfields for the first word of an Isochronous Transfer Desciptor. */
/* CC & DI - same as in the General Transfer Desciptor */
#define OHCI_TD_SF_SHIFT 0
#define OHCI_TD_SF_MASK (0xffff<<OHCI_TD_SF_SHIFT)
#define OHCI_TD_FC_SHIFT 24
#define OHCI_TD_FC_MASK (7<<OHCI_TD_FC_SHIFT)
/* Isochronous Transfer Desciptor - Offset / PacketStatusWord */
#define OHCI_TD_PSW_CC_SHIFT 12
#define OHCI_TD_PSW_CC_MASK (0xf<<OHCI_TD_PSW_CC_SHIFT)
#define OHCI_TD_PSW_SIZE_SHIFT 0
#define OHCI_TD_PSW_SIZE_MASK (0xfff<<OHCI_TD_PSW_SIZE_SHIFT)
#define OHCI_PAGE_MASK 0xfffff000
#define OHCI_OFFSET_MASK 0xfff
#define OHCI_DPTR_MASK 0xfffffff0
#define OHCI_BM(val, field) \
(((val) & OHCI_##field##_MASK) >> OHCI_##field##_SHIFT)
#define OHCI_SET_BM(val, field, newval) do { \
val &= ~OHCI_##field##_MASK; \
val |= ((newval) << OHCI_##field##_SHIFT) & OHCI_##field##_MASK; \
} while(0)
/* endpoint descriptor */
struct ohci_ed {
uint32_t flags;
uint32_t tail;
uint32_t head;
uint32_t next;
};
/* General transfer descriptor */
struct ohci_td {
uint32_t flags;
uint32_t cbp;
uint32_t next;
uint32_t be;
};
/* Isochronous transfer descriptor */
struct ohci_iso_td {
uint32_t flags;
uint32_t bp;
uint32_t next;
uint32_t be;
uint16_t offset[8];
};
#define USB_HZ 12000000
/* OHCI Local stuff */
#define OHCI_CTL_CBSR ((1<<0)|(1<<1))
#define OHCI_CTL_PLE (1<<2)
#define OHCI_CTL_IE (1<<3)
#define OHCI_CTL_CLE (1<<4)
#define OHCI_CTL_BLE (1<<5)
#define OHCI_CTL_HCFS ((1<<6)|(1<<7))
#define OHCI_USB_RESET 0x00
#define OHCI_USB_RESUME 0x40
#define OHCI_USB_OPERATIONAL 0x80
#define OHCI_USB_SUSPEND 0xc0
#define OHCI_CTL_IR (1<<8)
#define OHCI_CTL_RWC (1<<9)
#define OHCI_CTL_RWE (1<<10)
#define OHCI_STATUS_HCR (1<<0)
#define OHCI_STATUS_CLF (1<<1)
#define OHCI_STATUS_BLF (1<<2)
#define OHCI_STATUS_OCR (1<<3)
#define OHCI_STATUS_SOC ((1<<6)|(1<<7))
#define OHCI_INTR_SO (1U<<0) /* Scheduling overrun */
#define OHCI_INTR_WD (1U<<1) /* HcDoneHead writeback */
#define OHCI_INTR_SF (1U<<2) /* Start of frame */
#define OHCI_INTR_RD (1U<<3) /* Resume detect */
#define OHCI_INTR_UE (1U<<4) /* Unrecoverable error */
#define OHCI_INTR_FNO (1U<<5) /* Frame number overflow */
#define OHCI_INTR_RHSC (1U<<6) /* Root hub status change */
#define OHCI_INTR_OC (1U<<30) /* Ownership change */
#define OHCI_INTR_MIE (1U<<31) /* Master Interrupt Enable */
#define OHCI_HCCA_SIZE 0x100
#define OHCI_HCCA_MASK 0xffffff00
#define OHCI_EDPTR_MASK 0xfffffff0
#define OHCI_FMI_FI 0x00003fff
#define OHCI_FMI_FSMPS 0xffff0000
#define OHCI_FMI_FIT 0x80000000
#define OHCI_FR_RT (1U<<31)
#define OHCI_LS_THRESH 0x628
#define OHCI_RHA_RW_MASK 0x00000000 /* Mask of supported features. */
#define OHCI_RHA_PSM (1<<8)
#define OHCI_RHA_NPS (1<<9)
#define OHCI_RHA_DT (1<<10)
#define OHCI_RHA_OCPM (1<<11)
#define OHCI_RHA_NOCP (1<<12)
#define OHCI_RHA_POTPGT_MASK 0xff000000
#define OHCI_RHS_LPS (1U<<0)
#define OHCI_RHS_OCI (1U<<1)
#define OHCI_RHS_DRWE (1U<<15)
#define OHCI_RHS_LPSC (1U<<16)
#define OHCI_RHS_OCIC (1U<<17)
#define OHCI_RHS_CRWE (1U<<31)
#define OHCI_PORT_CCS (1<<0)
#define OHCI_PORT_PES (1<<1)
#define OHCI_PORT_PSS (1<<2)
#define OHCI_PORT_POCI (1<<3)
#define OHCI_PORT_PRS (1<<4)
#define OHCI_PORT_PPS (1<<8)
#define OHCI_PORT_LSDA (1<<9)
#define OHCI_PORT_CSC (1<<16)
#define OHCI_PORT_PESC (1<<17)
#define OHCI_PORT_PSSC (1<<18)
#define OHCI_PORT_OCIC (1<<19)
#define OHCI_PORT_PRSC (1<<20)
#define OHCI_PORT_WTC (OHCI_PORT_CSC|OHCI_PORT_PESC|OHCI_PORT_PSSC \
|OHCI_PORT_OCIC|OHCI_PORT_PRSC)
#define OHCI_TD_DIR_SETUP 0x0
#define OHCI_TD_DIR_OUT 0x1
#define OHCI_TD_DIR_IN 0x2
#define OHCI_TD_DIR_RESERVED 0x3
#define OHCI_CC_NOERROR 0x0
#define OHCI_CC_CRC 0x1
#define OHCI_CC_BITSTUFFING 0x2
#define OHCI_CC_DATATOGGLEMISMATCH 0x3
#define OHCI_CC_STALL 0x4
#define OHCI_CC_DEVICENOTRESPONDING 0x5
#define OHCI_CC_PIDCHECKFAILURE 0x6
#define OHCI_CC_UNDEXPETEDPID 0x7
#define OHCI_CC_DATAOVERRUN 0x8
#define OHCI_CC_DATAUNDERRUN 0x9
#define OHCI_CC_BUFFEROVERRUN 0xc
#define OHCI_CC_BUFFERUNDERRUN 0xd
#define OHCI_HRESET_FSBIR (1 << 0)
static void ohci_die(OHCIState *ohci)
{
ohci->ohci_die(ohci);
}
/* Update IRQ levels */
static inline void ohci_intr_update(OHCIState *ohci)
{
int level = 0;
if ((ohci->intr & OHCI_INTR_MIE) &&
(ohci->intr_status & ohci->intr))
level = 1;
qemu_set_irq(ohci->irq, level);
}
/* Set an interrupt */
static inline void ohci_set_interrupt(OHCIState *ohci, uint32_t intr)
{
ohci->intr_status |= intr;
ohci_intr_update(ohci);
}
/* Attach or detach a device on a root hub port. */
static void ohci_attach(USBPort *port1)
{
OHCIState *s = port1->opaque;
OHCIPort *port = &s->rhport[port1->index];
uint32_t old_state = port->ctrl;
/* set connect status */
port->ctrl |= OHCI_PORT_CCS | OHCI_PORT_CSC;
/* update speed */
if (port->port.dev->speed == USB_SPEED_LOW) {
port->ctrl |= OHCI_PORT_LSDA;
} else {
port->ctrl &= ~OHCI_PORT_LSDA;
}
/* notify of remote-wakeup */
if ((s->ctl & OHCI_CTL_HCFS) == OHCI_USB_SUSPEND) {
ohci_set_interrupt(s, OHCI_INTR_RD);
}
trace_usb_ohci_port_attach(port1->index);
if (old_state != port->ctrl) {
ohci_set_interrupt(s, OHCI_INTR_RHSC);
}
}
static void ohci_detach(USBPort *port1)
{
OHCIState *s = port1->opaque;
OHCIPort *port = &s->rhport[port1->index];
uint32_t old_state = port->ctrl;
ohci_async_cancel_device(s, port1->dev);
/* set connect status */
if (port->ctrl & OHCI_PORT_CCS) {
port->ctrl &= ~OHCI_PORT_CCS;
port->ctrl |= OHCI_PORT_CSC;
}
/* disable port */
if (port->ctrl & OHCI_PORT_PES) {
port->ctrl &= ~OHCI_PORT_PES;
port->ctrl |= OHCI_PORT_PESC;
}
trace_usb_ohci_port_detach(port1->index);
if (old_state != port->ctrl) {
ohci_set_interrupt(s, OHCI_INTR_RHSC);
}
}
static void ohci_wakeup(USBPort *port1)
{
OHCIState *s = port1->opaque;
OHCIPort *port = &s->rhport[port1->index];
uint32_t intr = 0;
if (port->ctrl & OHCI_PORT_PSS) {
trace_usb_ohci_port_wakeup(port1->index);
port->ctrl |= OHCI_PORT_PSSC;
port->ctrl &= ~OHCI_PORT_PSS;
intr = OHCI_INTR_RHSC;
}
/* Note that the controller can be suspended even if this port is not */
if ((s->ctl & OHCI_CTL_HCFS) == OHCI_USB_SUSPEND) {
trace_usb_ohci_remote_wakeup(s->name);
/* This is the one state transition the controller can do by itself */
s->ctl &= ~OHCI_CTL_HCFS;
s->ctl |= OHCI_USB_RESUME;
/* In suspend mode only ResumeDetected is possible, not RHSC:
* see the OHCI spec 5.1.2.3.
*/
intr = OHCI_INTR_RD;
}
ohci_set_interrupt(s, intr);
}
static void ohci_child_detach(USBPort *port1, USBDevice *child)
{
OHCIState *s = port1->opaque;
ohci_async_cancel_device(s, child);
}
static USBDevice *ohci_find_device(OHCIState *ohci, uint8_t addr)
{
USBDevice *dev;
int i;
for (i = 0; i < ohci->num_ports; i++) {
if ((ohci->rhport[i].ctrl & OHCI_PORT_PES) == 0) {
continue;
}
dev = usb_find_device(&ohci->rhport[i].port, addr);
if (dev != NULL) {
return dev;
}
}
return NULL;
}
void ohci_stop_endpoints(OHCIState *ohci)
{
USBDevice *dev;
int i, j;
for (i = 0; i < ohci->num_ports; i++) {
dev = ohci->rhport[i].port.dev;
if (dev && dev->attached) {
usb_device_ep_stopped(dev, &dev->ep_ctl);
for (j = 0; j < USB_MAX_ENDPOINTS; j++) {
usb_device_ep_stopped(dev, &dev->ep_in[j]);
usb_device_ep_stopped(dev, &dev->ep_out[j]);
}
}
}
}
static void ohci_roothub_reset(OHCIState *ohci)
{
OHCIPort *port;
int i;
ohci_bus_stop(ohci);
ohci->rhdesc_a = OHCI_RHA_NPS | ohci->num_ports;
ohci->rhdesc_b = 0x0; /* Impl. specific */
ohci->rhstatus = 0;
for (i = 0; i < ohci->num_ports; i++) {
port = &ohci->rhport[i];
port->ctrl = 0;
if (port->port.dev && port->port.dev->attached) {
usb_port_reset(&port->port);
}
}
if (ohci->async_td) {
usb_cancel_packet(&ohci->usb_packet);
ohci->async_td = 0;
}
ohci_stop_endpoints(ohci);
}
/* Reset the controller */
static void ohci_soft_reset(OHCIState *ohci)
{
trace_usb_ohci_reset(ohci->name);
ohci_bus_stop(ohci);
ohci->ctl = (ohci->ctl & OHCI_CTL_IR) | OHCI_USB_SUSPEND;
ohci->old_ctl = 0;
ohci->status = 0;
ohci->intr_status = 0;
ohci->intr = OHCI_INTR_MIE;
ohci->hcca = 0;
ohci->ctrl_head = ohci->ctrl_cur = 0;
ohci->bulk_head = ohci->bulk_cur = 0;
ohci->per_cur = 0;
ohci->done = 0;
ohci->done_count = 7;
/* FSMPS is marked TBD in OCHI 1.0, what gives ffs?
* I took the value linux sets ...
*/
ohci->fsmps = 0x2778;
ohci->fi = 0x2edf;
ohci->fit = 0;
ohci->frt = 0;
ohci->frame_number = 0;
ohci->pstart = 0;
ohci->lst = OHCI_LS_THRESH;
}
void ohci_hard_reset(OHCIState *ohci)
{
ohci_soft_reset(ohci);
ohci->ctl = 0;
ohci_roothub_reset(ohci);
}
/* Get an array of dwords from main memory */
static inline int get_dwords(OHCIState *ohci,
dma_addr_t addr, uint32_t *buf, int num)
{
int i;
addr += ohci->localmem_base;
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
if (dma_memory_read(ohci->as, addr, buf, sizeof(*buf))) {
return -1;
}
*buf = le32_to_cpu(*buf);
}
return 0;
}
/* Put an array of dwords in to main memory */
static inline int put_dwords(OHCIState *ohci,
dma_addr_t addr, uint32_t *buf, int num)
{
int i;
addr += ohci->localmem_base;
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint32_t tmp = cpu_to_le32(*buf);
if (dma_memory_write(ohci->as, addr, &tmp, sizeof(tmp))) {
return -1;
}
}
return 0;
}
/* Get an array of words from main memory */
static inline int get_words(OHCIState *ohci,
dma_addr_t addr, uint16_t *buf, int num)
{
int i;
addr += ohci->localmem_base;
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
if (dma_memory_read(ohci->as, addr, buf, sizeof(*buf))) {
return -1;
}
*buf = le16_to_cpu(*buf);
}
return 0;
}
/* Put an array of words in to main memory */
static inline int put_words(OHCIState *ohci,
dma_addr_t addr, uint16_t *buf, int num)
{
int i;
addr += ohci->localmem_base;
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint16_t tmp = cpu_to_le16(*buf);
if (dma_memory_write(ohci->as, addr, &tmp, sizeof(tmp))) {
return -1;
}
}
return 0;
}
static inline int ohci_read_ed(OHCIState *ohci,
dma_addr_t addr, struct ohci_ed *ed)
{
return get_dwords(ohci, addr, (uint32_t *)ed, sizeof(*ed) >> 2);
}
static inline int ohci_read_td(OHCIState *ohci,
dma_addr_t addr, struct ohci_td *td)
{
return get_dwords(ohci, addr, (uint32_t *)td, sizeof(*td) >> 2);
}
static inline int ohci_read_iso_td(OHCIState *ohci,
dma_addr_t addr, struct ohci_iso_td *td)
{
return get_dwords(ohci, addr, (uint32_t *)td, 4) ||
get_words(ohci, addr + 16, td->offset, 8);
}
static inline int ohci_read_hcca(OHCIState *ohci,
dma_addr_t addr, struct ohci_hcca *hcca)
{
return dma_memory_read(ohci->as, addr + ohci->localmem_base,
hcca, sizeof(*hcca));
}
static inline int ohci_put_ed(OHCIState *ohci,
dma_addr_t addr, struct ohci_ed *ed)
{
2012-03-08 02:10:44 +01:00
/* ed->tail is under control of the HCD.
* Since just ed->head is changed by HC, just write back this
*/
return put_dwords(ohci, addr + ED_WBACK_OFFSET,
(uint32_t *)((char *)ed + ED_WBACK_OFFSET),
ED_WBACK_SIZE >> 2);
}
static inline int ohci_put_td(OHCIState *ohci,
dma_addr_t addr, struct ohci_td *td)
{
return put_dwords(ohci, addr, (uint32_t *)td, sizeof(*td) >> 2);
}
static inline int ohci_put_iso_td(OHCIState *ohci,
dma_addr_t addr, struct ohci_iso_td *td)
{
return put_dwords(ohci, addr, (uint32_t *)td, 4) ||
put_words(ohci, addr + 16, td->offset, 8);
}
static inline int ohci_put_hcca(OHCIState *ohci,
dma_addr_t addr, struct ohci_hcca *hcca)
{
return dma_memory_write(ohci->as,
addr + ohci->localmem_base + HCCA_WRITEBACK_OFFSET,
(char *)hcca + HCCA_WRITEBACK_OFFSET,
HCCA_WRITEBACK_SIZE);
}
/* Read/Write the contents of a TD from/to main memory. */
static int ohci_copy_td(OHCIState *ohci, struct ohci_td *td,
uint8_t *buf, int len, DMADirection dir)
{
dma_addr_t ptr, n;
ptr = td->cbp;
n = 0x1000 - (ptr & 0xfff);
if (n > len)
n = len;
if (dma_memory_rw(ohci->as, ptr + ohci->localmem_base, buf, n, dir)) {
return -1;
}
if (n == len) {
return 0;
}
ptr = td->be & ~0xfffu;
buf += n;
if (dma_memory_rw(ohci->as, ptr + ohci->localmem_base, buf,
len - n, dir)) {
return -1;
}
return 0;
}
/* Read/Write the contents of an ISO TD from/to main memory. */
static int ohci_copy_iso_td(OHCIState *ohci,
uint32_t start_addr, uint32_t end_addr,
uint8_t *buf, int len, DMADirection dir)
{
dma_addr_t ptr, n;
ptr = start_addr;
n = 0x1000 - (ptr & 0xfff);
if (n > len)
n = len;
if (dma_memory_rw(ohci->as, ptr + ohci->localmem_base, buf, n, dir)) {
return -1;
}
if (n == len) {
return 0;
}
ptr = end_addr & ~0xfffu;
buf += n;
if (dma_memory_rw(ohci->as, ptr + ohci->localmem_base, buf,
len - n, dir)) {
return -1;
}
return 0;
}
static void ohci_process_lists(OHCIState *ohci, int completion);
static void ohci_async_complete_packet(USBPort *port, USBPacket *packet)
{
OHCIState *ohci = container_of(packet, OHCIState, usb_packet);
trace_usb_ohci_async_complete();
ohci->async_complete = true;
ohci_process_lists(ohci, 1);
}
#define USUB(a, b) ((int16_t)((uint16_t)(a) - (uint16_t)(b)))
static int ohci_service_iso_td(OHCIState *ohci, struct ohci_ed *ed,
int completion)
{
int dir;
size_t len = 0;
const char *str = NULL;
int pid;
int ret;
int i;
USBDevice *dev;
USBEndpoint *ep;
struct ohci_iso_td iso_td;
uint32_t addr;
uint16_t starting_frame;
int16_t relative_frame_number;
int frame_count;
uint32_t start_offset, next_offset, end_offset = 0;
uint32_t start_addr, end_addr;
addr = ed->head & OHCI_DPTR_MASK;
if (ohci_read_iso_td(ohci, addr, &iso_td)) {
trace_usb_ohci_iso_td_read_failed(addr);
ohci_die(ohci);
return 1;
}
starting_frame = OHCI_BM(iso_td.flags, TD_SF);
frame_count = OHCI_BM(iso_td.flags, TD_FC);
relative_frame_number = USUB(ohci->frame_number, starting_frame);
trace_usb_ohci_iso_td_head(
ed->head & OHCI_DPTR_MASK, ed->tail & OHCI_DPTR_MASK,
iso_td.flags, iso_td.bp, iso_td.next, iso_td.be,
ohci->frame_number, starting_frame,
frame_count, relative_frame_number);
trace_usb_ohci_iso_td_head_offset(
iso_td.offset[0], iso_td.offset[1],
iso_td.offset[2], iso_td.offset[3],
iso_td.offset[4], iso_td.offset[5],
iso_td.offset[6], iso_td.offset[7]);
if (relative_frame_number < 0) {
trace_usb_ohci_iso_td_relative_frame_number_neg(relative_frame_number);
return 1;
} else if (relative_frame_number > frame_count) {
/* ISO TD expired - retire the TD to the Done Queue and continue with
the next ISO TD of the same ED */
trace_usb_ohci_iso_td_relative_frame_number_big(relative_frame_number,
frame_count);
if (OHCI_CC_DATAOVERRUN == OHCI_BM(iso_td.flags, TD_CC)) {
/* avoid infinite loop */
return 1;
}
OHCI_SET_BM(iso_td.flags, TD_CC, OHCI_CC_DATAOVERRUN);
ed->head &= ~OHCI_DPTR_MASK;
ed->head |= (iso_td.next & OHCI_DPTR_MASK);
iso_td.next = ohci->done;
ohci->done = addr;
i = OHCI_BM(iso_td.flags, TD_DI);
if (i < ohci->done_count)
ohci->done_count = i;
if (ohci_put_iso_td(ohci, addr, &iso_td)) {
ohci_die(ohci);
return 1;
}
return 0;
}
dir = OHCI_BM(ed->flags, ED_D);
switch (dir) {
case OHCI_TD_DIR_IN:
str = "in";
pid = USB_TOKEN_IN;
break;
case OHCI_TD_DIR_OUT:
str = "out";
pid = USB_TOKEN_OUT;
break;
case OHCI_TD_DIR_SETUP:
str = "setup";
pid = USB_TOKEN_SETUP;
break;
default:
trace_usb_ohci_iso_td_bad_direction(dir);
return 1;
}
if (!iso_td.bp || !iso_td.be) {
trace_usb_ohci_iso_td_bad_bp_be(iso_td.bp, iso_td.be);
return 1;
}
start_offset = iso_td.offset[relative_frame_number];
if (relative_frame_number < frame_count) {
next_offset = iso_td.offset[relative_frame_number + 1];
} else {
next_offset = iso_td.be;
}
if (!(OHCI_BM(start_offset, TD_PSW_CC) & 0xe) ||
((relative_frame_number < frame_count) &&
!(OHCI_BM(next_offset, TD_PSW_CC) & 0xe))) {
trace_usb_ohci_iso_td_bad_cc_not_accessed(start_offset, next_offset);
return 1;
}
if ((relative_frame_number < frame_count) && (start_offset > next_offset)) {
trace_usb_ohci_iso_td_bad_cc_overrun(start_offset, next_offset);
return 1;
}
if ((start_offset & 0x1000) == 0) {
start_addr = (iso_td.bp & OHCI_PAGE_MASK) |
(start_offset & OHCI_OFFSET_MASK);
} else {
start_addr = (iso_td.be & OHCI_PAGE_MASK) |
(start_offset & OHCI_OFFSET_MASK);
}
if (relative_frame_number < frame_count) {
end_offset = next_offset - 1;
if ((end_offset & 0x1000) == 0) {
end_addr = (iso_td.bp & OHCI_PAGE_MASK) |
(end_offset & OHCI_OFFSET_MASK);
} else {
end_addr = (iso_td.be & OHCI_PAGE_MASK) |
(end_offset & OHCI_OFFSET_MASK);
}
} else {
/* Last packet in the ISO TD */
end_addr = next_offset;
}
if (start_addr > end_addr) {
trace_usb_ohci_iso_td_bad_cc_overrun(start_addr, end_addr);
return 1;
}
if ((start_addr & OHCI_PAGE_MASK) != (end_addr & OHCI_PAGE_MASK)) {
len = (end_addr & OHCI_OFFSET_MASK) + 0x1001
- (start_addr & OHCI_OFFSET_MASK);
} else {
len = end_addr - start_addr + 1;
}
if (len > sizeof(ohci->usb_buf)) {
len = sizeof(ohci->usb_buf);
}
if (len && dir != OHCI_TD_DIR_IN) {
if (ohci_copy_iso_td(ohci, start_addr, end_addr, ohci->usb_buf, len,
DMA_DIRECTION_TO_DEVICE)) {
ohci_die(ohci);
return 1;
}
}
if (!completion) {
bool int_req = relative_frame_number == frame_count &&
OHCI_BM(iso_td.flags, TD_DI) == 0;
dev = ohci_find_device(ohci, OHCI_BM(ed->flags, ED_FA));
if (dev == NULL) {
trace_usb_ohci_td_dev_error();
return 1;
}
ep = usb_ep_get(dev, pid, OHCI_BM(ed->flags, ED_EN));
usb_packet_setup(&ohci->usb_packet, pid, ep, 0, addr, false, int_req);
usb_packet_addbuf(&ohci->usb_packet, ohci->usb_buf, len);
usb_handle_packet(dev, &ohci->usb_packet);
if (ohci->usb_packet.status == USB_RET_ASYNC) {
usb_device_flush_ep_queue(dev, ep);
return 1;
}
}
if (ohci->usb_packet.status == USB_RET_SUCCESS) {
ret = ohci->usb_packet.actual_length;
} else {
ret = ohci->usb_packet.status;
}
trace_usb_ohci_iso_td_so(start_offset, end_offset, start_addr, end_addr,
str, len, ret);
/* Writeback */
if (dir == OHCI_TD_DIR_IN && ret >= 0 && ret <= len) {
/* IN transfer succeeded */
if (ohci_copy_iso_td(ohci, start_addr, end_addr, ohci->usb_buf, ret,
DMA_DIRECTION_FROM_DEVICE)) {
ohci_die(ohci);
return 1;
}
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_NOERROR);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, ret);
} else if (dir == OHCI_TD_DIR_OUT && ret == len) {
/* OUT transfer succeeded */
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_NOERROR);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, 0);
} else {
if (ret > (ssize_t) len) {
trace_usb_ohci_iso_td_data_overrun(ret, len);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_DATAOVERRUN);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE,
len);
} else if (ret >= 0) {
trace_usb_ohci_iso_td_data_underrun(ret);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_DATAUNDERRUN);
} else {
switch (ret) {
case USB_RET_IOERROR:
case USB_RET_NODEV:
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_DEVICENOTRESPONDING);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE,
0);
break;
case USB_RET_NAK:
case USB_RET_STALL:
trace_usb_ohci_iso_td_nak(ret);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_STALL);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE,
0);
break;
default:
trace_usb_ohci_iso_td_bad_response(ret);
OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC,
OHCI_CC_UNDEXPETEDPID);
break;
}
}
}
if (relative_frame_number == frame_count) {
/* Last data packet of ISO TD - retire the TD to the Done Queue */
OHCI_SET_BM(iso_td.flags, TD_CC, OHCI_CC_NOERROR);
ed->head &= ~OHCI_DPTR_MASK;
ed->head |= (iso_td.next & OHCI_DPTR_MASK);
iso_td.next = ohci->done;
ohci->done = addr;
i = OHCI_BM(iso_td.flags, TD_DI);
if (i < ohci->done_count)
ohci->done_count = i;
}
if (ohci_put_iso_td(ohci, addr, &iso_td)) {
ohci_die(ohci);
}
return 1;
}
static void ohci_td_pkt(const char *msg, const uint8_t *buf, size_t len)
{
bool print16;
bool printall;
const int width = 16;
int i;
char tmp[3 * width + 1];
char *p = tmp;
print16 = !!trace_event_get_state_backends(TRACE_USB_OHCI_TD_PKT_SHORT);
printall = !!trace_event_get_state_backends(TRACE_USB_OHCI_TD_PKT_FULL);
if (!printall && !print16) {
return;
}
for (i = 0; ; i++) {
if (i && (!(i % width) || (i == len))) {
if (!printall) {
trace_usb_ohci_td_pkt_short(msg, tmp);
break;
}
trace_usb_ohci_td_pkt_full(msg, tmp);
p = tmp;
*p = 0;
}
if (i == len) {
break;
}
p += sprintf(p, " %.2x", buf[i]);
}
}
/* Service a transport descriptor.
Returns nonzero to terminate processing of this endpoint. */
static int ohci_service_td(OHCIState *ohci, struct ohci_ed *ed)
{
int dir;
size_t len = 0, pktlen = 0;
const char *str = NULL;
int pid;
int ret;
int i;
USBDevice *dev;
USBEndpoint *ep;
struct ohci_td td;
uint32_t addr;
int flag_r;
int completion;
addr = ed->head & OHCI_DPTR_MASK;
/* See if this TD has already been submitted to the device. */
completion = (addr == ohci->async_td);
if (completion && !ohci->async_complete) {
trace_usb_ohci_td_skip_async();
return 1;
}
if (ohci_read_td(ohci, addr, &td)) {
trace_usb_ohci_td_read_error(addr);
ohci_die(ohci);
return 1;
}
dir = OHCI_BM(ed->flags, ED_D);
switch (dir) {
case OHCI_TD_DIR_OUT:
case OHCI_TD_DIR_IN:
/* Same value. */
break;
default:
dir = OHCI_BM(td.flags, TD_DP);
break;
}
switch (dir) {
case OHCI_TD_DIR_IN:
str = "in";
pid = USB_TOKEN_IN;
break;
case OHCI_TD_DIR_OUT:
str = "out";
pid = USB_TOKEN_OUT;
break;
case OHCI_TD_DIR_SETUP:
str = "setup";
pid = USB_TOKEN_SETUP;
break;
default:
trace_usb_ohci_td_bad_direction(dir);
return 1;
}
if (td.cbp && td.be) {
if ((td.cbp & 0xfffff000) != (td.be & 0xfffff000)) {
len = (td.be & 0xfff) + 0x1001 - (td.cbp & 0xfff);
} else {
if (td.cbp > td.be) {
trace_usb_ohci_iso_td_bad_cc_overrun(td.cbp, td.be);
ohci_die(ohci);
return 1;
}
len = (td.be - td.cbp) + 1;
}
if (len > sizeof(ohci->usb_buf)) {
len = sizeof(ohci->usb_buf);
}
pktlen = len;
if (len && dir != OHCI_TD_DIR_IN) {
/* The endpoint may not allow us to transfer it all now */
pktlen = (ed->flags & OHCI_ED_MPS_MASK) >> OHCI_ED_MPS_SHIFT;
if (pktlen > len) {
pktlen = len;
}
if (!completion) {
if (ohci_copy_td(ohci, &td, ohci->usb_buf, pktlen,
DMA_DIRECTION_TO_DEVICE)) {
ohci_die(ohci);
}
}
}
}
flag_r = (td.flags & OHCI_TD_R) != 0;
trace_usb_ohci_td_pkt_hdr(addr, (int64_t)pktlen, (int64_t)len, str,
flag_r, td.cbp, td.be);
ohci_td_pkt("OUT", ohci->usb_buf, pktlen);
if (completion) {
ohci->async_td = 0;
ohci->async_complete = false;
} else {
if (ohci->async_td) {
/* ??? The hardware should allow one active packet per
endpoint. We only allow one active packet per controller.
This should be sufficient as long as devices respond in a
timely manner.
*/
trace_usb_ohci_td_too_many_pending();
return 1;
}
dev = ohci_find_device(ohci, OHCI_BM(ed->flags, ED_FA));
if (dev == NULL) {
trace_usb_ohci_td_dev_error();
return 1;
}
ep = usb_ep_get(dev, pid, OHCI_BM(ed->flags, ED_EN));
usb_packet_setup(&ohci->usb_packet, pid, ep, 0, addr, !flag_r,
OHCI_BM(td.flags, TD_DI) == 0);
usb_packet_addbuf(&ohci->usb_packet, ohci->usb_buf, pktlen);
usb_handle_packet(dev, &ohci->usb_packet);
trace_usb_ohci_td_packet_status(ohci->usb_packet.status);
if (ohci->usb_packet.status == USB_RET_ASYNC) {
usb_device_flush_ep_queue(dev, ep);
ohci->async_td = addr;
return 1;
}
}
if (ohci->usb_packet.status == USB_RET_SUCCESS) {
ret = ohci->usb_packet.actual_length;
} else {
ret = ohci->usb_packet.status;
}
if (ret >= 0) {
if (dir == OHCI_TD_DIR_IN) {
if (ohci_copy_td(ohci, &td, ohci->usb_buf, ret,
DMA_DIRECTION_FROM_DEVICE)) {
ohci_die(ohci);
}
ohci_td_pkt("IN", ohci->usb_buf, pktlen);
} else {
ret = pktlen;
}
}
/* Writeback */
if (ret == pktlen || (dir == OHCI_TD_DIR_IN && ret >= 0 && flag_r)) {
/* Transmission succeeded. */
if (ret == len) {
td.cbp = 0;
} else {
if ((td.cbp & 0xfff) + ret > 0xfff) {
td.cbp = (td.be & ~0xfff) + ((td.cbp + ret) & 0xfff);
} else {
td.cbp += ret;
}
}
td.flags |= OHCI_TD_T1;
td.flags ^= OHCI_TD_T0;
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_NOERROR);
OHCI_SET_BM(td.flags, TD_EC, 0);
if ((dir != OHCI_TD_DIR_IN) && (ret != len)) {
/* Partial packet transfer: TD not ready to retire yet */
goto exit_no_retire;
}
/* Setting ED_C is part of the TD retirement process */
ed->head &= ~OHCI_ED_C;
if (td.flags & OHCI_TD_T0)
ed->head |= OHCI_ED_C;
} else {
if (ret >= 0) {
trace_usb_ohci_td_underrun();
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_DATAUNDERRUN);
} else {
switch (ret) {
case USB_RET_IOERROR:
case USB_RET_NODEV:
trace_usb_ohci_td_dev_error();
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_DEVICENOTRESPONDING);
break;
case USB_RET_NAK:
trace_usb_ohci_td_nak();
return 1;
case USB_RET_STALL:
trace_usb_ohci_td_stall();
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_STALL);
break;
case USB_RET_BABBLE:
trace_usb_ohci_td_babble();
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_DATAOVERRUN);
break;
default:
trace_usb_ohci_td_bad_device_response(ret);
OHCI_SET_BM(td.flags, TD_CC, OHCI_CC_UNDEXPETEDPID);
OHCI_SET_BM(td.flags, TD_EC, 3);
break;
}
/* An error occured so we have to clear the interrupt counter. See
* spec at 6.4.4 on page 104 */
ohci->done_count = 0;
}
ed->head |= OHCI_ED_H;
}
/* Retire this TD */
ed->head &= ~OHCI_DPTR_MASK;
ed->head |= td.next & OHCI_DPTR_MASK;
td.next = ohci->done;
ohci->done = addr;
i = OHCI_BM(td.flags, TD_DI);
if (i < ohci->done_count)
ohci->done_count = i;
exit_no_retire:
if (ohci_put_td(ohci, addr, &td)) {
ohci_die(ohci);
return 1;
}
return OHCI_BM(td.flags, TD_CC) != OHCI_CC_NOERROR;
}
/* Service an endpoint list. Returns nonzero if active TD were found. */
static int ohci_service_ed_list(OHCIState *ohci, uint32_t head, int completion)
{
struct ohci_ed ed;
uint32_t next_ed;
uint32_t cur;
int active;
uint32_t link_cnt = 0;
active = 0;
if (head == 0)
return 0;
for (cur = head; cur && link_cnt++ < ED_LINK_LIMIT; cur = next_ed) {
if (ohci_read_ed(ohci, cur, &ed)) {
trace_usb_ohci_ed_read_error(cur);
ohci_die(ohci);
return 0;
}
next_ed = ed.next & OHCI_DPTR_MASK;
if ((ed.head & OHCI_ED_H) || (ed.flags & OHCI_ED_K)) {
uint32_t addr;
/* Cancel pending packets for ED that have been paused. */
addr = ed.head & OHCI_DPTR_MASK;
if (ohci->async_td && addr == ohci->async_td) {
usb_cancel_packet(&ohci->usb_packet);
ohci->async_td = 0;
usb_device_ep_stopped(ohci->usb_packet.ep->dev,
ohci->usb_packet.ep);
}
continue;
}
while ((ed.head & OHCI_DPTR_MASK) != ed.tail) {
trace_usb_ohci_ed_pkt(cur, (ed.head & OHCI_ED_H) != 0,
(ed.head & OHCI_ED_C) != 0, ed.head & OHCI_DPTR_MASK,
ed.tail & OHCI_DPTR_MASK, ed.next & OHCI_DPTR_MASK);
trace_usb_ohci_ed_pkt_flags(
OHCI_BM(ed.flags, ED_FA), OHCI_BM(ed.flags, ED_EN),
OHCI_BM(ed.flags, ED_D), (ed.flags & OHCI_ED_S)!= 0,
(ed.flags & OHCI_ED_K) != 0, (ed.flags & OHCI_ED_F) != 0,
OHCI_BM(ed.flags, ED_MPS));
active = 1;
if ((ed.flags & OHCI_ED_F) == 0) {
if (ohci_service_td(ohci, &ed))
break;
} else {
/* Handle isochronous endpoints */
if (ohci_service_iso_td(ohci, &ed, completion))
break;
}
}
if (ohci_put_ed(ohci, cur, &ed)) {
ohci_die(ohci);
return 0;
}
}
return active;
}
/* set a timer for EOF */
static void ohci_eof_timer(OHCIState *ohci)
{
timer_mod(ohci->eof_timer, ohci->sof_time + usb_frame_time);
}
/* Set a timer for EOF and generate a SOF event */
static void ohci_sof(OHCIState *ohci)
{
ohci->sof_time += usb_frame_time;
ohci_eof_timer(ohci);
ohci_set_interrupt(ohci, OHCI_INTR_SF);
}
/* Process Control and Bulk lists. */
static void ohci_process_lists(OHCIState *ohci, int completion)
{
if ((ohci->ctl & OHCI_CTL_CLE) && (ohci->status & OHCI_STATUS_CLF)) {
if (ohci->ctrl_cur && ohci->ctrl_cur != ohci->ctrl_head) {
trace_usb_ohci_process_lists(ohci->ctrl_head, ohci->ctrl_cur);
}
if (!ohci_service_ed_list(ohci, ohci->ctrl_head, completion)) {
ohci->ctrl_cur = 0;
ohci->status &= ~OHCI_STATUS_CLF;
}
}
if ((ohci->ctl & OHCI_CTL_BLE) && (ohci->status & OHCI_STATUS_BLF)) {
if (!ohci_service_ed_list(ohci, ohci->bulk_head, completion)) {
ohci->bulk_cur = 0;
ohci->status &= ~OHCI_STATUS_BLF;
}
}
}
/* Do frame processing on frame boundary */
static void ohci_frame_boundary(void *opaque)
{
OHCIState *ohci = opaque;
struct ohci_hcca hcca;
if (ohci_read_hcca(ohci, ohci->hcca, &hcca)) {
trace_usb_ohci_hcca_read_error(ohci->hcca);
ohci_die(ohci);
return;
}
/* Process all the lists at the end of the frame */
if (ohci->ctl & OHCI_CTL_PLE) {
int n;
n = ohci->frame_number & 0x1f;
ohci_service_ed_list(ohci, le32_to_cpu(hcca.intr[n]), 0);
}
/* Cancel all pending packets if either of the lists has been disabled. */
if (ohci->old_ctl & (~ohci->ctl) & (OHCI_CTL_BLE | OHCI_CTL_CLE)) {
if (ohci->async_td) {
usb_cancel_packet(&ohci->usb_packet);
ohci->async_td = 0;
}
ohci_stop_endpoints(ohci);
}
ohci->old_ctl = ohci->ctl;
ohci_process_lists(ohci, 0);
/* Stop if UnrecoverableError happened or ohci_sof will crash */
if (ohci->intr_status & OHCI_INTR_UE) {
return;
}
/* Frame boundary, so do EOF stuf here */
ohci->frt = ohci->fit;
/* Increment frame number and take care of endianness. */
ohci->frame_number = (ohci->frame_number + 1) & 0xffff;
hcca.frame = cpu_to_le16(ohci->frame_number);
if (ohci->done_count == 0 && !(ohci->intr_status & OHCI_INTR_WD)) {
if (!ohci->done)
abort();
if (ohci->intr & ohci->intr_status)
ohci->done |= 1;
hcca.done = cpu_to_le32(ohci->done);
ohci->done = 0;
ohci->done_count = 7;
ohci_set_interrupt(ohci, OHCI_INTR_WD);
}
if (ohci->done_count != 7 && ohci->done_count != 0)
ohci->done_count--;
/* Do SOF stuff here */
ohci_sof(ohci);
/* Writeback HCCA */
if (ohci_put_hcca(ohci, ohci->hcca, &hcca)) {
ohci_die(ohci);
}
}
/* Start sending SOF tokens across the USB bus, lists are processed in
* next frame
*/
static int ohci_bus_start(OHCIState *ohci)
{
trace_usb_ohci_start(ohci->name);
/* Delay the first SOF event by one frame time as
* linux driver is not ready to receive it and
* can meet some race conditions
*/
ohci->sof_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ohci_eof_timer(ohci);
return 1;
}
/* Stop sending SOF tokens on the bus */
void ohci_bus_stop(OHCIState *ohci)
{
trace_usb_ohci_stop(ohci->name);
timer_del(ohci->eof_timer);
}
/* Sets a flag in a port status register but only set it if the port is
* connected, if not set ConnectStatusChange flag. If flag is enabled
* return 1.
*/
static int ohci_port_set_if_connected(OHCIState *ohci, int i, uint32_t val)
{
int ret = 1;
/* writing a 0 has no effect */
if (val == 0)
return 0;
/* If CurrentConnectStatus is cleared we set
* ConnectStatusChange
*/
if (!(ohci->rhport[i].ctrl & OHCI_PORT_CCS)) {
ohci->rhport[i].ctrl |= OHCI_PORT_CSC;
if (ohci->rhstatus & OHCI_RHS_DRWE) {
/* TODO: CSC is a wakeup event */
}
return 0;
}
if (ohci->rhport[i].ctrl & val)
ret = 0;
/* set the bit */
ohci->rhport[i].ctrl |= val;
return ret;
}
/* Set the frame interval - frame interval toggle is manipulated by the hcd only */
static void ohci_set_frame_interval(OHCIState *ohci, uint16_t val)
{
val &= OHCI_FMI_FI;
if (val != ohci->fi) {
trace_usb_ohci_set_frame_interval(ohci->name, ohci->fi, ohci->fi);
}
ohci->fi = val;
}
static void ohci_port_power(OHCIState *ohci, int i, int p)
{
if (p) {
ohci->rhport[i].ctrl |= OHCI_PORT_PPS;
} else {
ohci->rhport[i].ctrl &= ~(OHCI_PORT_PPS|
OHCI_PORT_CCS|
OHCI_PORT_PSS|
OHCI_PORT_PRS);
}
}
/* Set HcControlRegister */
static void ohci_set_ctl(OHCIState *ohci, uint32_t val)
{
uint32_t old_state;
uint32_t new_state;
old_state = ohci->ctl & OHCI_CTL_HCFS;
ohci->ctl = val;
new_state = ohci->ctl & OHCI_CTL_HCFS;
/* no state change */
if (old_state == new_state)
return;
trace_usb_ohci_set_ctl(ohci->name, new_state);
switch (new_state) {
case OHCI_USB_OPERATIONAL:
ohci_bus_start(ohci);
break;
case OHCI_USB_SUSPEND:
ohci_bus_stop(ohci);
/* clear pending SF otherwise linux driver loops in ohci_irq() */
ohci->intr_status &= ~OHCI_INTR_SF;
ohci_intr_update(ohci);
break;
case OHCI_USB_RESUME:
trace_usb_ohci_resume(ohci->name);
break;
case OHCI_USB_RESET:
ohci_roothub_reset(ohci);
break;
}
}
static uint32_t ohci_get_frame_remaining(OHCIState *ohci)
{
uint16_t fr;
int64_t tks;
if ((ohci->ctl & OHCI_CTL_HCFS) != OHCI_USB_OPERATIONAL)
return (ohci->frt << 31);
/* Being in USB operational state guarnatees sof_time was
* set already.
*/
tks = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ohci->sof_time;
if (tks < 0) {
tks = 0;
}
/* avoid muldiv if possible */
if (tks >= usb_frame_time)
return (ohci->frt << 31);
tks = tks / usb_bit_time;
fr = (uint16_t)(ohci->fi - tks);
return (ohci->frt << 31) | fr;
}
/* Set root hub status */
static void ohci_set_hub_status(OHCIState *ohci, uint32_t val)
{
uint32_t old_state;
old_state = ohci->rhstatus;
/* write 1 to clear OCIC */
if (val & OHCI_RHS_OCIC)
ohci->rhstatus &= ~OHCI_RHS_OCIC;
if (val & OHCI_RHS_LPS) {
int i;
for (i = 0; i < ohci->num_ports; i++)
ohci_port_power(ohci, i, 0);
trace_usb_ohci_hub_power_down();
}
if (val & OHCI_RHS_LPSC) {
int i;
for (i = 0; i < ohci->num_ports; i++)
ohci_port_power(ohci, i, 1);
trace_usb_ohci_hub_power_up();
}
if (val & OHCI_RHS_DRWE)
ohci->rhstatus |= OHCI_RHS_DRWE;
if (val & OHCI_RHS_CRWE)
ohci->rhstatus &= ~OHCI_RHS_DRWE;
if (old_state != ohci->rhstatus)
ohci_set_interrupt(ohci, OHCI_INTR_RHSC);
}
/* Set root hub port status */
static void ohci_port_set_status(OHCIState *ohci, int portnum, uint32_t val)
{
uint32_t old_state;
OHCIPort *port;
port = &ohci->rhport[portnum];
old_state = port->ctrl;
/* Write to clear CSC, PESC, PSSC, OCIC, PRSC */
if (val & OHCI_PORT_WTC)
port->ctrl &= ~(val & OHCI_PORT_WTC);
if (val & OHCI_PORT_CCS)
port->ctrl &= ~OHCI_PORT_PES;
ohci_port_set_if_connected(ohci, portnum, val & OHCI_PORT_PES);
if (ohci_port_set_if_connected(ohci, portnum, val & OHCI_PORT_PSS)) {
trace_usb_ohci_port_suspend(portnum);
}
if (ohci_port_set_if_connected(ohci, portnum, val & OHCI_PORT_PRS)) {
trace_usb_ohci_port_reset(portnum);
usb_device_reset(port->port.dev);
port->ctrl &= ~OHCI_PORT_PRS;
/* ??? Should this also set OHCI_PORT_PESC. */
port->ctrl |= OHCI_PORT_PES | OHCI_PORT_PRSC;
}
/* Invert order here to ensure in ambiguous case, device is
* powered up...
*/
if (val & OHCI_PORT_LSDA)
ohci_port_power(ohci, portnum, 0);
if (val & OHCI_PORT_PPS)
ohci_port_power(ohci, portnum, 1);
if (old_state != port->ctrl)
ohci_set_interrupt(ohci, OHCI_INTR_RHSC);
}
static uint64_t ohci_mem_read(void *opaque,
hwaddr addr,
unsigned size)
{
OHCIState *ohci = opaque;
uint32_t retval;
/* Only aligned reads are allowed on OHCI */
if (addr & 3) {
trace_usb_ohci_mem_read_unaligned(addr);
return 0xffffffff;
} else if (addr >= 0x54 && addr < 0x54 + ohci->num_ports * 4) {
/* HcRhPortStatus */
retval = ohci->rhport[(addr - 0x54) >> 2].ctrl | OHCI_PORT_PPS;
} else {
switch (addr >> 2) {
case 0: /* HcRevision */
retval = 0x10;
break;
case 1: /* HcControl */
retval = ohci->ctl;
break;
case 2: /* HcCommandStatus */
retval = ohci->status;
break;
case 3: /* HcInterruptStatus */
retval = ohci->intr_status;
break;
case 4: /* HcInterruptEnable */
case 5: /* HcInterruptDisable */
retval = ohci->intr;
break;
case 6: /* HcHCCA */
retval = ohci->hcca;
break;
case 7: /* HcPeriodCurrentED */
retval = ohci->per_cur;
break;
case 8: /* HcControlHeadED */
retval = ohci->ctrl_head;
break;
case 9: /* HcControlCurrentED */
retval = ohci->ctrl_cur;
break;
case 10: /* HcBulkHeadED */
retval = ohci->bulk_head;
break;
case 11: /* HcBulkCurrentED */
retval = ohci->bulk_cur;
break;
case 12: /* HcDoneHead */
retval = ohci->done;
break;
case 13: /* HcFmInterretval */
retval = (ohci->fit << 31) | (ohci->fsmps << 16) | (ohci->fi);
break;
case 14: /* HcFmRemaining */
retval = ohci_get_frame_remaining(ohci);
break;
case 15: /* HcFmNumber */
retval = ohci->frame_number;
break;
case 16: /* HcPeriodicStart */
retval = ohci->pstart;
break;
case 17: /* HcLSThreshold */
retval = ohci->lst;
break;
case 18: /* HcRhDescriptorA */
retval = ohci->rhdesc_a;
break;
case 19: /* HcRhDescriptorB */
retval = ohci->rhdesc_b;
break;
case 20: /* HcRhStatus */
retval = ohci->rhstatus;
break;
/* PXA27x specific registers */
case 24: /* HcStatus */
retval = ohci->hstatus & ohci->hmask;
break;
case 25: /* HcHReset */
retval = ohci->hreset;
break;
case 26: /* HcHInterruptEnable */
retval = ohci->hmask;
break;
case 27: /* HcHInterruptTest */
retval = ohci->htest;
break;
default:
trace_usb_ohci_mem_read_bad_offset(addr);
retval = 0xffffffff;
}
}
return retval;
}
static void ohci_mem_write(void *opaque,
hwaddr addr,
uint64_t val,
unsigned size)
{
OHCIState *ohci = opaque;
/* Only aligned reads are allowed on OHCI */
if (addr & 3) {
trace_usb_ohci_mem_write_unaligned(addr);
return;
}
if (addr >= 0x54 && addr < 0x54 + ohci->num_ports * 4) {
/* HcRhPortStatus */
ohci_port_set_status(ohci, (addr - 0x54) >> 2, val);
return;
}
switch (addr >> 2) {
case 1: /* HcControl */
ohci_set_ctl(ohci, val);
break;
case 2: /* HcCommandStatus */
/* SOC is read-only */
val = (val & ~OHCI_STATUS_SOC);
/* Bits written as '0' remain unchanged in the register */
ohci->status |= val;
if (ohci->status & OHCI_STATUS_HCR)
ohci_soft_reset(ohci);
break;
case 3: /* HcInterruptStatus */
ohci->intr_status &= ~val;
ohci_intr_update(ohci);
break;
case 4: /* HcInterruptEnable */
ohci->intr |= val;
ohci_intr_update(ohci);
break;
case 5: /* HcInterruptDisable */
ohci->intr &= ~val;
ohci_intr_update(ohci);
break;
case 6: /* HcHCCA */
ohci->hcca = val & OHCI_HCCA_MASK;
break;
case 7: /* HcPeriodCurrentED */
/* Ignore writes to this read-only register, Linux does them */
break;
case 8: /* HcControlHeadED */
ohci->ctrl_head = val & OHCI_EDPTR_MASK;
break;
case 9: /* HcControlCurrentED */
ohci->ctrl_cur = val & OHCI_EDPTR_MASK;
break;
case 10: /* HcBulkHeadED */
ohci->bulk_head = val & OHCI_EDPTR_MASK;
break;
case 11: /* HcBulkCurrentED */
ohci->bulk_cur = val & OHCI_EDPTR_MASK;
break;
case 13: /* HcFmInterval */
ohci->fsmps = (val & OHCI_FMI_FSMPS) >> 16;
ohci->fit = (val & OHCI_FMI_FIT) >> 31;
ohci_set_frame_interval(ohci, val);
break;
case 15: /* HcFmNumber */
break;
case 16: /* HcPeriodicStart */
ohci->pstart = val & 0xffff;
break;
case 17: /* HcLSThreshold */
ohci->lst = val & 0xffff;
break;
case 18: /* HcRhDescriptorA */
ohci->rhdesc_a &= ~OHCI_RHA_RW_MASK;
ohci->rhdesc_a |= val & OHCI_RHA_RW_MASK;
break;
case 19: /* HcRhDescriptorB */
break;
case 20: /* HcRhStatus */
ohci_set_hub_status(ohci, val);
break;
/* PXA27x specific registers */
case 24: /* HcStatus */
ohci->hstatus &= ~(val & ohci->hmask);
break;
case 25: /* HcHReset */
ohci->hreset = val & ~OHCI_HRESET_FSBIR;
if (val & OHCI_HRESET_FSBIR)
ohci_hard_reset(ohci);
break;
case 26: /* HcHInterruptEnable */
ohci->hmask = val;
break;
case 27: /* HcHInterruptTest */
ohci->htest = val;
break;
default:
trace_usb_ohci_mem_write_bad_offset(addr);
break;
}
}
static void ohci_async_cancel_device(OHCIState *ohci, USBDevice *dev)
{
if (ohci->async_td &&
usb_packet_is_inflight(&ohci->usb_packet) &&
ohci->usb_packet.ep->dev == dev) {
usb_cancel_packet(&ohci->usb_packet);
ohci->async_td = 0;
}
}
static const MemoryRegionOps ohci_mem_ops = {
.read = ohci_mem_read,
.write = ohci_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static USBPortOps ohci_port_ops = {
.attach = ohci_attach,
.detach = ohci_detach,
.child_detach = ohci_child_detach,
.wakeup = ohci_wakeup,
.complete = ohci_async_complete_packet,
};
static USBBusOps ohci_bus_ops = {
};
void usb_ohci_init(OHCIState *ohci, DeviceState *dev, uint32_t num_ports,
dma_addr_t localmem_base, char *masterbus,
uint32_t firstport, AddressSpace *as,
void (*ohci_die_fn)(struct OHCIState *), Error **errp)
{
Error *err = NULL;
int i;
ohci->as = as;
ohci->ohci_die = ohci_die_fn;
if (num_ports > OHCI_MAX_PORTS) {
error_setg(errp, "OHCI num-ports=%u is too big (limit is %u ports)",
num_ports, OHCI_MAX_PORTS);
return;
}
if (usb_frame_time == 0) {
#ifdef OHCI_TIME_WARP
usb_frame_time = NANOSECONDS_PER_SECOND;
usb_bit_time = NANOSECONDS_PER_SECOND / (USB_HZ / 1000);
#else
usb_frame_time = NANOSECONDS_PER_SECOND / 1000;
if (NANOSECONDS_PER_SECOND >= USB_HZ) {
usb_bit_time = NANOSECONDS_PER_SECOND / USB_HZ;
} else {
usb_bit_time = 1;
}
#endif
trace_usb_ohci_init_time(usb_frame_time, usb_bit_time);
}
ohci->num_ports = num_ports;
if (masterbus) {
USBPort *ports[OHCI_MAX_PORTS];
for(i = 0; i < num_ports; i++) {
ports[i] = &ohci->rhport[i].port;
}
usb_register_companion(masterbus, ports, num_ports,
firstport, ohci, &ohci_port_ops,
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL,
&err);
if (err) {
error_propagate(errp, err);
return;
}
} else {
usb_bus_new(&ohci->bus, sizeof(ohci->bus), &ohci_bus_ops, dev);
for (i = 0; i < num_ports; i++) {
usb_register_port(&ohci->bus, &ohci->rhport[i].port,
ohci, i, &ohci_port_ops,
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
}
}
memory_region_init_io(&ohci->mem, OBJECT(dev), &ohci_mem_ops,
ohci, "ohci", 256);
ohci->localmem_base = localmem_base;
ohci->name = object_get_typename(OBJECT(dev));
usb_packet_init(&ohci->usb_packet);
ohci->async_td = 0;
ohci->eof_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
ohci_frame_boundary, ohci);
}
/**
* A typical OHCI will stop operating and set itself into error state
* (which can be queried by MMIO) to signal that it got an error.
*/
void ohci_sysbus_die(struct OHCIState *ohci)
{
trace_usb_ohci_die();
ohci_set_interrupt(ohci, OHCI_INTR_UE);
ohci_bus_stop(ohci);
}
static void ohci_realize_pxa(DeviceState *dev, Error **errp)
{
OHCISysBusState *s = SYSBUS_OHCI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
Error *err = NULL;
usb_ohci_init(&s->ohci, dev, s->num_ports, s->dma_offset,
s->masterbus, s->firstport,
&address_space_memory, ohci_sysbus_die, &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_init_irq(sbd, &s->ohci.irq);
sysbus_init_mmio(sbd, &s->ohci.mem);
}
static void usb_ohci_reset_sysbus(DeviceState *dev)
{
OHCISysBusState *s = SYSBUS_OHCI(dev);
OHCIState *ohci = &s->ohci;
ohci_hard_reset(ohci);
}
static const VMStateDescription vmstate_ohci_state_port = {
.name = "ohci-core/port",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ctrl, OHCIPort),
VMSTATE_END_OF_LIST()
},
};
static bool ohci_eof_timer_needed(void *opaque)
{
OHCIState *ohci = opaque;
return timer_pending(ohci->eof_timer);
}
static const VMStateDescription vmstate_ohci_eof_timer = {
.name = "ohci-core/eof-timer",
.version_id = 1,
.minimum_version_id = 1,
.needed = ohci_eof_timer_needed,
.fields = (VMStateField[]) {
VMSTATE_TIMER_PTR(eof_timer, OHCIState),
VMSTATE_END_OF_LIST()
},
};
const VMStateDescription vmstate_ohci_state = {
.name = "ohci-core",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_INT64(sof_time, OHCIState),
VMSTATE_UINT32(ctl, OHCIState),
VMSTATE_UINT32(status, OHCIState),
VMSTATE_UINT32(intr_status, OHCIState),
VMSTATE_UINT32(intr, OHCIState),
VMSTATE_UINT32(hcca, OHCIState),
VMSTATE_UINT32(ctrl_head, OHCIState),
VMSTATE_UINT32(ctrl_cur, OHCIState),
VMSTATE_UINT32(bulk_head, OHCIState),
VMSTATE_UINT32(bulk_cur, OHCIState),
VMSTATE_UINT32(per_cur, OHCIState),
VMSTATE_UINT32(done, OHCIState),
VMSTATE_INT32(done_count, OHCIState),
VMSTATE_UINT16(fsmps, OHCIState),
VMSTATE_UINT8(fit, OHCIState),
VMSTATE_UINT16(fi, OHCIState),
VMSTATE_UINT8(frt, OHCIState),
VMSTATE_UINT16(frame_number, OHCIState),
VMSTATE_UINT16(padding, OHCIState),
VMSTATE_UINT32(pstart, OHCIState),
VMSTATE_UINT32(lst, OHCIState),
VMSTATE_UINT32(rhdesc_a, OHCIState),
VMSTATE_UINT32(rhdesc_b, OHCIState),
VMSTATE_UINT32(rhstatus, OHCIState),
VMSTATE_STRUCT_ARRAY(rhport, OHCIState, OHCI_MAX_PORTS, 0,
vmstate_ohci_state_port, OHCIPort),
VMSTATE_UINT32(hstatus, OHCIState),
VMSTATE_UINT32(hmask, OHCIState),
VMSTATE_UINT32(hreset, OHCIState),
VMSTATE_UINT32(htest, OHCIState),
VMSTATE_UINT32(old_ctl, OHCIState),
VMSTATE_UINT8_ARRAY(usb_buf, OHCIState, 8192),
VMSTATE_UINT32(async_td, OHCIState),
VMSTATE_BOOL(async_complete, OHCIState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_ohci_eof_timer,
NULL
}
};
static Property ohci_sysbus_properties[] = {
DEFINE_PROP_STRING("masterbus", OHCISysBusState, masterbus),
DEFINE_PROP_UINT32("num-ports", OHCISysBusState, num_ports, 3),
DEFINE_PROP_UINT32("firstport", OHCISysBusState, firstport, 0),
DEFINE_PROP_DMAADDR("dma-offset", OHCISysBusState, dma_offset, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void ohci_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = ohci_realize_pxa;
set_bit(DEVICE_CATEGORY_USB, dc->categories);
dc->desc = "OHCI USB Controller";
device_class_set_props(dc, ohci_sysbus_properties);
dc->reset = usb_ohci_reset_sysbus;
}
static const TypeInfo ohci_sysbus_info = {
.name = TYPE_SYSBUS_OHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(OHCISysBusState),
.class_init = ohci_sysbus_class_init,
};
static void ohci_register_types(void)
{
type_register_static(&ohci_sysbus_info);
}
type_init(ohci_register_types)