* Refactor M-profile systick to use Clocks instead of system_clock_scale global

* clock: Provide builtin multiplier/divider
  * Add A64FX processor model
  * Enable MVE emulation in Cortex-M55
  * hw: Add compat machines for 6.2
  * hw/intc/arm_gicv3: Replace mis-used MEMTX_* constants by booleans
  * hw/arm/raspi: Remove deprecated raspi2/raspi3 aliases
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmEvV40ZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3gO9EACbRq2XN67/3n8icVlCA/R0
 c1NKdar5yngG7EUoKg8rIHWSG4nlvGQxEsInjqccWpXUBwhRbmjIoI7OWOTVcNKL
 IxZPDgS619CPpUrOPtOouYYl3RiKpNS6v1BAne1IsZrMtydrioRCZIh8Wiz1cAod
 Ok8ts1hZIyg+n5gpYjeXs57Afsms4SCnt0zJT/4/VZXZmi+ohHVOzFX/ZGKmZyMP
 2lUHX8DcBCPW6JPt4poIP9MVs+44v9RajSMHfHFkNkJb0Q8sh+fgKbAdnxOW/6d+
 B381tMPtT5D1FZ5UmIwJl6XzY3JLJyU2ySQOtXlnkGWniuihxIwG0qBxwMsbPFrl
 bcTuJK5C20DmjFNH9jk9LMzKD4rDrLcADfoo/AfPe/JqTpE1t6zXcOzAgVTrPNx/
 tSDAXHAsmnJ2Y5O7h5MRUSG6R4h7+PRoutXQyGRi39VMNkiPmqltQtM9N1UaguOe
 +X3w3yjtsCotN1cLWq0u/UuC7FoDoCge/uBSzYIKoeu/WyJFGjuocWGg7TmwOJyd
 TzqrSOqCsAx9DhVJ1trO82qb31zpyFf4B1C05PMaoudzlgMfWfvXVDrtcRmO+kjn
 DmUB4vqz5g2jGroJWAVuN+wz245KqkSaHA6RRI5wf9n57H56T0Rfxa2o73A9TLZy
 M4T9XiJxDByGODYTu8ejXQ==
 =D5pQ
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20210901' into staging

 * Refactor M-profile systick to use Clocks instead of system_clock_scale global
 * clock: Provide builtin multiplier/divider
 * Add A64FX processor model
 * Enable MVE emulation in Cortex-M55
 * hw: Add compat machines for 6.2
 * hw/intc/arm_gicv3: Replace mis-used MEMTX_* constants by booleans
 * hw/arm/raspi: Remove deprecated raspi2/raspi3 aliases

# gpg: Signature made Wed 01 Sep 2021 11:35:57 BST
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20210901: (51 commits)
  arm: Remove system_clock_scale global
  hw/timer/stellaris-gptm: Use Clock input instead of system_clock_scale
  hw/arm/stellaris: Split stellaris-gptm into its own file
  hw/arm/stellaris: Fix code style issues in GPTM code
  hw/timer/armv7m_systick: Use clock inputs instead of system_clock_scale
  hw/arm/msf2-soc: Wire up refclk
  hw/arm/msf2: Use Clock input to MSF2_SOC instead of m3clk property
  hw/arm/msf2_soc: Don't allocate separate MemoryRegions
  hw/arm/stellaris: Wire sysclk up to armv7m
  hw/arm/stellaris: split stellaris_sys_init()
  hw/arm/nrf51: Wire up sysclk
  hw/arm/stm32vldiscovery: Delete trailing blank line
  hw/arm/stm32f405: Wire up sysclk and refclk
  hw/arm/stm32f205: Wire up sysclk and refclk
  hw/arm/stm32f100: Wire up sysclk and refclk
  hw/arm: Don't allocate separate MemoryRegions in stm32 SoC realize
  clock: Provide builtin multiplier/divider
  hw/arm/mps2.c: Connect up armv7m clocks
  armsse: Wire up systick cpuclk clock
  hw/arm/armv7m: Create input clocks
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2021-09-01 17:45:38 +01:00
commit 079b1252e9
68 changed files with 2928 additions and 971 deletions

View File

@ -617,6 +617,7 @@ F: hw/intc/gic_internal.h
F: hw/misc/a9scu.c F: hw/misc/a9scu.c
F: hw/misc/arm11scu.c F: hw/misc/arm11scu.c
F: hw/misc/arm_l2x0.c F: hw/misc/arm_l2x0.c
F: hw/misc/armv7m_ras.c
F: hw/timer/a9gtimer* F: hw/timer/a9gtimer*
F: hw/timer/arm* F: hw/timer/arm*
F: include/hw/arm/arm*.h F: include/hw/arm/arm*.h
@ -626,6 +627,7 @@ F: include/hw/misc/arm11scu.h
F: include/hw/timer/a9gtimer.h F: include/hw/timer/a9gtimer.h
F: include/hw/timer/arm_mptimer.h F: include/hw/timer/arm_mptimer.h
F: include/hw/timer/armv7m_systick.h F: include/hw/timer/armv7m_systick.h
F: include/hw/misc/armv7m_ras.h
F: tests/qtest/test-arm-mptimer.c F: tests/qtest/test-arm-mptimer.c
Exynos Exynos

View File

@ -207,13 +207,6 @@ this CPU is also deprecated.
System emulator machines System emulator machines
------------------------ ------------------------
Raspberry Pi ``raspi2`` and ``raspi3`` machines (since 5.2)
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
The Raspberry Pi machines come in various models (A, A+, B, B+). To be able
to distinguish which model QEMU is implementing, the ``raspi2`` and ``raspi3``
machines have been renamed ``raspi2b`` and ``raspi3b``.
Aspeed ``swift-bmc`` machine (since 6.1) Aspeed ``swift-bmc`` machine (since 6.1)
'''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''''''''''''''''''''''''

View File

@ -574,6 +574,13 @@ This machine has been renamed ``fuloong2e``.
These machine types were very old and likely could not be used for live These machine types were very old and likely could not be used for live
migration from old QEMU versions anymore. Use a newer machine type instead. migration from old QEMU versions anymore. Use a newer machine type instead.
Raspberry Pi ``raspi2`` and ``raspi3`` machines (removed in 6.2)
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
The Raspberry Pi machines come in various models (A, A+, B, B+). To be able
to distinguish which model QEMU is implementing, the ``raspi2`` and ``raspi3``
machines have been renamed ``raspi2b`` and ``raspi3b``.
linux-user mode CPUs linux-user mode CPUs
-------------------- --------------------

View File

@ -260,6 +260,29 @@ clocks get the new clock period value: *Clock 2*, *Clock 3* and *Clock 4*.
It is not possible to disconnect a clock or to change the clock connection It is not possible to disconnect a clock or to change the clock connection
after it is connected. after it is connected.
Clock multiplier and divider settings
-------------------------------------
By default, when clocks are connected together, the child
clocks run with the same period as their source (parent) clock.
The Clock API supports a built-in period multiplier/divider
mechanism so you can configure a clock to make its children
run at a different period from its own. If you call the
``clock_set_mul_div()`` function you can specify the clock's
multiplier and divider values. The children of that clock
will all run with a period of ``parent_period * multiplier / divider``.
For instance, if the clock has a frequency of 8MHz and you set its
multiplier to 2 and its divider to 3, the child clocks will run
at 12MHz.
You can change the multiplier and divider of a clock at runtime,
so you can use this to model clock controller devices which
have guest-programmable frequency multipliers or dividers.
Note that ``clock_set_mul_div()`` does not automatically call
``clock_propagate()``. If you make a runtime change to the
multiplier or divider you must call clock_propagate() yourself.
Unconnected input clocks Unconnected input clocks
------------------------ ------------------------

View File

@ -41,7 +41,7 @@ Nodes
A node can be of four types: A node can be of four types:
- **QNODE_MACHINE**: for example ``arm/raspi2`` - **QNODE_MACHINE**: for example ``arm/raspi2b``
- **QNODE_DRIVER**: for example ``generic-sdhci`` - **QNODE_DRIVER**: for example ``generic-sdhci``
- **QNODE_INTERFACE**: for example ``sdhci`` (interface for all ``-sdhci`` - **QNODE_INTERFACE**: for example ``sdhci`` (interface for all ``-sdhci``
drivers). drivers).
@ -119,12 +119,12 @@ It is possible to troubleshoot unavailable tests by running::
# |-> dest='i440FX-pcihost' type=0 (node=0x5591421117f0) # |-> dest='i440FX-pcihost' type=0 (node=0x5591421117f0)
# src='' # src=''
# |-> dest='x86_64/pc' type=0 (node=0x559142111600) # |-> dest='x86_64/pc' type=0 (node=0x559142111600)
# |-> dest='arm/raspi2' type=0 (node=0x559142110740) # |-> dest='arm/raspi2b' type=0 (node=0x559142110740)
... ...
# } # }
# ALL QGRAPH NODES: { # ALL QGRAPH NODES: {
# name='virtio-net-tests/announce-self' type=3 cmd_line='(null)' [available] # name='virtio-net-tests/announce-self' type=3 cmd_line='(null)' [available]
# name='arm/raspi2' type=0 cmd_line='-M raspi2 ' [UNAVAILABLE] # name='arm/raspi2b' type=0 cmd_line='-M raspi2b ' [UNAVAILABLE]
... ...
# } # }
@ -135,8 +135,8 @@ qgraph path in the "ALL QGRAPH EDGES" output as follows: '' -> 'x86_64/pc' ->
'virtio-net'. The root of the qgraph is '' and the depth first search begins 'virtio-net'. The root of the qgraph is '' and the depth first search begins
there. there.
The ``arm/raspi`` machine node is listed as "UNAVAILABLE". Although it is The ``arm/raspi2b`` machine node is listed as "UNAVAILABLE". Although it is
reachable from the root via '' -> 'arm/raspi2' the node is unavailable because reachable from the root via '' -> 'arm/raspi2b' the node is unavailable because
the QEMU binary did not list it when queried by the framework. This is expected the QEMU binary did not list it when queried by the framework. This is expected
because we used the ``qemu-system-x86_64`` binary which does not support ARM because we used the ``qemu-system-x86_64`` binary which does not support ARM
machine types. machine types.
@ -158,7 +158,7 @@ Here we continue the ``sdhci`` use case, with the following scenario:
- ``sdhci-test`` aims to test the ``read[q,w], writeq`` functions - ``sdhci-test`` aims to test the ``read[q,w], writeq`` functions
offered by the ``sdhci`` drivers. offered by the ``sdhci`` drivers.
- The current ``sdhci`` device is supported by both ``x86_64/pc`` and ``ARM`` - The current ``sdhci`` device is supported by both ``x86_64/pc`` and ``ARM``
(in this example we focus on the ``arm-raspi2``) machines. (in this example we focus on the ``arm-raspi2b``) machines.
- QEMU offers 2 types of drivers: ``QSDHCI_MemoryMapped`` for ``ARM`` and - QEMU offers 2 types of drivers: ``QSDHCI_MemoryMapped`` for ``ARM`` and
``QSDHCI_PCI`` for ``x86_64/pc``. Both implement the ``QSDHCI_PCI`` for ``x86_64/pc``. Both implement the
``read[q,w], writeq`` functions. ``read[q,w], writeq`` functions.
@ -180,11 +180,11 @@ In order to implement such scenario in qgraph, the test developer needs to:
all the pci drivers available) all the pci drivers available)
``sdhci-pci --consumes--> pci-bus`` ``sdhci-pci --consumes--> pci-bus``
- Create an ``arm/raspi2`` machine node. This machine ``contains`` - Create an ``arm/raspi2b`` machine node. This machine ``contains``
a ``generic-sdhci`` memory mapped ``sdhci`` driver node, representing a ``generic-sdhci`` memory mapped ``sdhci`` driver node, representing
``QSDHCI_MemoryMapped``. ``QSDHCI_MemoryMapped``.
``arm/raspi2 --contains--> generic-sdhci`` ``arm/raspi2b --contains--> generic-sdhci``
- Create the ``sdhci`` interface node. This interface offers the - Create the ``sdhci`` interface node. This interface offers the
functions that are shared by all ``sdhci`` devices. functions that are shared by all ``sdhci`` devices.
The interface is produced by ``sdhci-pci`` and ``generic-sdhci``, The interface is produced by ``sdhci-pci`` and ``generic-sdhci``,
@ -199,7 +199,7 @@ In order to implement such scenario in qgraph, the test developer needs to:
``sdhci-test --consumes--> sdhci`` ``sdhci-test --consumes--> sdhci``
``arm-raspi2`` machine, simplified from ``arm-raspi2b`` machine, simplified from
``tests/qtest/libqos/arm-raspi2-machine.c``:: ``tests/qtest/libqos/arm-raspi2-machine.c``::
#include "qgraph.h" #include "qgraph.h"
@ -217,7 +217,7 @@ In order to implement such scenario in qgraph, the test developer needs to:
return &machine->alloc; return &machine->alloc;
} }
fprintf(stderr, "%s not present in arm/raspi2\n", interface); fprintf(stderr, "%s not present in arm/raspi2b\n", interface);
g_assert_not_reached(); g_assert_not_reached();
} }
@ -229,7 +229,7 @@ In order to implement such scenario in qgraph, the test developer needs to:
return &machine->sdhci.obj; return &machine->sdhci.obj;
} }
fprintf(stderr, "%s not present in arm/raspi2\n", device); fprintf(stderr, "%s not present in arm/raspi2b\n", device);
g_assert_not_reached(); g_assert_not_reached();
} }
@ -253,10 +253,10 @@ In order to implement such scenario in qgraph, the test developer needs to:
static void raspi2_register_nodes(void) static void raspi2_register_nodes(void)
{ {
/* arm/raspi2 --contains--> generic-sdhci */ /* arm/raspi2b --contains--> generic-sdhci */
qos_node_create_machine("arm/raspi2", qos_node_create_machine("arm/raspi2b",
qos_create_machine_arm_raspi2); qos_create_machine_arm_raspi2);
qos_node_contains("arm/raspi2", "generic-sdhci", NULL); qos_node_contains("arm/raspi2b", "generic-sdhci", NULL);
} }
libqos_init(raspi2_register_nodes); libqos_init(raspi2_register_nodes);
@ -470,7 +470,7 @@ In the above example, all possible types of relations are created::
| |
+--produces-- + +--produces-- +
| |
arm/raspi2 --contains--> generic-sdhci arm/raspi2b --contains--> generic-sdhci
or inverting the consumes edge in consumed_by:: or inverting the consumes edge in consumed_by::
@ -486,7 +486,7 @@ or inverting the consumes edge in consumed_by::
| |
+--produces-- + +--produces-- +
| |
arm/raspi2 --contains--> generic-sdhci arm/raspi2b --contains--> generic-sdhci
Adding a new test Adding a new test
""""""""""""""""" """""""""""""""""
@ -536,7 +536,7 @@ Final graph will be like this::
| |
+--produces-- + +--produces-- +
| |
arm/raspi2 --contains--> generic-sdhci arm/raspi2b --contains--> generic-sdhci
or inverting the consumes edge in consumed_by:: or inverting the consumes edge in consumed_by::
@ -552,7 +552,7 @@ or inverting the consumes edge in consumed_by::
| |
+--produces-- + +--produces-- +
| |
arm/raspi2 --contains--> generic-sdhci arm/raspi2b --contains--> generic-sdhci
Assuming there the binary is Assuming there the binary is
``QTEST_QEMU_BINARY=./qemu-system-x86_64`` ``QTEST_QEMU_BINARY=./qemu-system-x86_64``
@ -561,7 +561,7 @@ a valid test path will be:
and for the binary ``QTEST_QEMU_BINARY=./qemu-system-arm``: and for the binary ``QTEST_QEMU_BINARY=./qemu-system-arm``:
``/arm/raspi2/generic-sdhci/sdhci/sdhci-test`` ``/arm/raspi2b/generic-sdhci/sdhci/sdhci-test``
Additional examples are also in ``test-qgraph.c`` Additional examples are also in ``test-qgraph.c``

View File

@ -55,6 +55,7 @@ Supported guest CPU types:
- ``cortex-a53`` (64-bit) - ``cortex-a53`` (64-bit)
- ``cortex-a57`` (64-bit) - ``cortex-a57`` (64-bit)
- ``cortex-a72`` (64-bit) - ``cortex-a72`` (64-bit)
- ``a64fx`` (64-bit)
- ``host`` (with KVM only) - ``host`` (with KVM only)
- ``max`` (same as ``host`` for KVM; best possible emulation with TCG) - ``max`` (same as ``host`` for KVM; best possible emulation with TCG)

View File

@ -198,7 +198,6 @@ static void parts128_default_nan(FloatParts128 *p, float_status *status)
static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status) static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
{ {
g_assert(!no_signaling_nans(status)); g_assert(!no_signaling_nans(status));
g_assert(!status->default_nan_mode);
/* The only snan_bit_is_one target without default_nan_mode is HPPA. */ /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
if (snan_bit_is_one(status)) { if (snan_bit_is_one(status)) {

View File

@ -235,6 +235,7 @@ config STELLARIS
select SSI_SD select SSI_SD
select STELLARIS_INPUT select STELLARIS_INPUT
select STELLARIS_ENET # ethernet select STELLARIS_ENET # ethernet
select STELLARIS_GPTM # general purpose timer module
select UNIMP select UNIMP
config STM32VLDISCOVERY config STM32VLDISCOVERY

View File

@ -689,17 +689,6 @@ static void armsse_forward_sec_resp_cfg(ARMSSE *s)
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
} }
static void armsse_mainclk_update(void *opaque, ClockEvent event)
{
ARMSSE *s = ARM_SSE(opaque);
/*
* Set system_clock_scale from our Clock input; this is what
* controls the tick rate of the CPU SysTick timer.
*/
system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
}
static void armsse_init(Object *obj) static void armsse_init(Object *obj)
{ {
ARMSSE *s = ARM_SSE(obj); ARMSSE *s = ARM_SSE(obj);
@ -711,8 +700,7 @@ static void armsse_init(Object *obj)
assert(info->sram_banks <= MAX_SRAM_BANKS); assert(info->sram_banks <= MAX_SRAM_BANKS);
assert(info->num_cpus <= SSE_MAX_CPUS); assert(info->num_cpus <= SSE_MAX_CPUS);
s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0);
armsse_mainclk_update, s, ClockUpdate);
s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0); s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
@ -995,6 +983,9 @@ static void armsse_realize(DeviceState *dev, Error **errp)
int j; int j;
char *gpioname; char *gpioname;
qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk);
/* The SSE subsystems do not wire up a systick refclk */
qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS); qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
/* /*
* In real hardware the initial Secure VTOR is set from the INITSVTOR* * In real hardware the initial Secure VTOR is set from the INITSVTOR*
@ -1651,9 +1642,6 @@ static void armsse_realize(DeviceState *dev, Error **errp)
* devices in the ARMSSE. * devices in the ARMSSE.
*/ */
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
/* Set initial system_clock_scale from MAINCLK */
armsse_mainclk_update(s, ClockUpdate);
} }
static void armsse_idau_check(IDAUInterface *ii, uint32_t address, static void armsse_idau_check(IDAUInterface *ii, uint32_t address,

View File

@ -14,11 +14,14 @@
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
#include "hw/loader.h" #include "hw/loader.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "elf.h" #include "elf.h"
#include "sysemu/reset.h" #include "sysemu/reset.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "qemu/log.h"
#include "target/arm/idau.h" #include "target/arm/idau.h"
#include "migration/vmstate.h"
/* Bitbanded IO. Each word corresponds to a single bit. */ /* Bitbanded IO. Each word corresponds to a single bit. */
@ -124,6 +127,122 @@ static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
0x22000000, 0x42000000 0x22000000, 0x42000000
}; };
static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
}
static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_read(mr, addr, data,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
}
static const MemoryRegionOps v7m_sysreg_ns_ops = {
.read_with_attrs = v7m_sysreg_ns_read,
.write_with_attrs = v7m_sysreg_ns_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
}
static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
attrs);
}
static const MemoryRegionOps v7m_systick_ops = {
.read_with_attrs = v7m_systick_read,
.write_with_attrs = v7m_systick_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* Unassigned portions of the PPB space are RAZ/WI for privileged
* accesses, and fault for non-privileged accesses.
*/
static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
static const MemoryRegionOps ppb_default_ops = {
.read_with_attrs = ppb_default_read,
.write_with_attrs = ppb_default_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
};
static void armv7m_instance_init(Object *obj) static void armv7m_instance_init(Object *obj)
{ {
ARMv7MState *s = ARMV7M(obj); ARMv7MState *s = ARMV7M(obj);
@ -137,10 +256,20 @@ static void armv7m_instance_init(Object *obj)
object_property_add_alias(obj, "num-irq", object_property_add_alias(obj, "num-irq",
OBJECT(&s->nvic), "num-irq"); OBJECT(&s->nvic), "num-irq");
object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
TYPE_SYSTICK);
/*
* We can't initialize the secure systick here, as we don't know
* yet if we need it.
*/
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
object_initialize_child(obj, "bitband[*]", &s->bitband[i], object_initialize_child(obj, "bitband[*]", &s->bitband[i],
TYPE_BITBAND); TYPE_BITBAND);
} }
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
} }
static void armv7m_realize(DeviceState *dev, Error **errp) static void armv7m_realize(DeviceState *dev, Error **errp)
@ -223,13 +352,130 @@ static void armv7m_realize(DeviceState *dev, Error **errp)
qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ"); qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI"); qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
/*
* We map various devices into the container MR at their architected
* addresses. In particular, we map everything corresponding to the
* "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
* and includes the NVIC, the System Control Space (system registers),
* the systick timer, and for CPUs with the Security extension an NS
* banked version of all of these.
*
* The default behaviour for unimplemented registers/ranges
* (for instance the Data Watchpoint and Trace unit at 0xe0001000)
* is to RAZ/WI for privileged access and BusFault for non-privileged
* access.
*
* The NVIC and System Control Space (SCS) starts at 0xe000e000
* and looks like this:
* 0x004 - ICTR
* 0x010 - 0xff - systick
* 0x100..0x7ec - NVIC
* 0x7f0..0xcff - Reserved
* 0xd00..0xd3c - SCS registers
* 0xd40..0xeff - Reserved or Not implemented
* 0xf00 - STIR
*
* Some registers within this space are banked between security states.
* In v8M there is a second range 0xe002e000..0xe002efff which is the
* NonSecure alias SCS; secure accesses to this behave like NS accesses
* to the main SCS range, and non-secure accesses (including when
* the security extension is not implemented) are RAZ/WI.
* Note that both the main SCS range and the alias range are defined
* to be exempt from memory attribution (R_BLJT) and so the memory
* transaction attribute always matches the current CPU security
* state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
* wrappers we change attrs.secure to indicate the NS access; so
* generally code determining which banked register to use should
* use attrs.secure; code determining actual behaviour of the system
* should use env->v7m.secure.
*
* Within the PPB space, some MRs overlap, and the priority
* of overlapping regions is:
* - default region (for RAZ/WI and BusFault) : -1
* - system register regions (provided by the NVIC) : 0
* - systick : 1
* This is because the systick device is a small block of registers
* in the middle of the other system control registers.
*/
memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
"nvic-default", 0x100000);
memory_region_add_subregion_overlap(&s->container, 0xe0000000,
&s->defaultmem, -1);
/* Wire the NVIC up to the CPU */ /* Wire the NVIC up to the CPU */
sbd = SYS_BUS_DEVICE(&s->nvic); sbd = SYS_BUS_DEVICE(&s->nvic);
sysbus_connect_irq(sbd, 0, sysbus_connect_irq(sbd, 0,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
memory_region_add_subregion(&s->container, 0xe0000000, memory_region_add_subregion(&s->container, 0xe000e000,
sysbus_mmio_get_region(sbd, 0)); sysbus_mmio_get_region(sbd, 0));
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
/* Create the NS alias region for the NVIC sysregs */
memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops,
sysbus_mmio_get_region(sbd, 0),
"nvic_sysregs_ns", 0x1000);
memory_region_add_subregion(&s->container, 0xe002e000,
&s->sysreg_ns_mem);
}
/* Create and map the systick devices */
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", s->refclk);
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_NS));
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
/*
* We couldn't init the secure systick device in instance_init
* as we didn't know then if the CPU had the security extensions;
* so we have to do it here.
*/
object_initialize_child(OBJECT(dev), "systick-reg-s",
&s->systick[M_REG_S], TYPE_SYSTICK);
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
s->refclk);
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_S));
}
memory_region_init_io(&s->systickmem, OBJECT(s),
&v7m_systick_ops, s,
"v7m_systick", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe000e010,
&s->systickmem, 1);
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops, &s->systickmem,
"v7m_systick_ns", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe002e010,
&s->systick_ns_mem, 1);
}
/* If the CPU has RAS support, create the RAS register block */
if (cpu_isar_feature(aa32_ras, s->cpu)) {
object_initialize_child(OBJECT(dev), "armv7m-ras",
&s->ras, TYPE_ARMV7M_RAS);
sbd = SYS_BUS_DEVICE(&s->ras);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion_overlap(&s->container, 0xe0005000,
sysbus_mmio_get_region(sbd, 0), 1);
}
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
if (s->enable_bitband) { if (s->enable_bitband) {
@ -269,11 +515,23 @@ static Property armv7m_properties[] = {
DEFINE_PROP_END_OF_LIST(), DEFINE_PROP_END_OF_LIST(),
}; };
static const VMStateDescription vmstate_armv7m = {
.name = "armv7m",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(refclk, SysTickState),
VMSTATE_CLOCK(cpuclk, SysTickState),
VMSTATE_END_OF_LIST()
}
};
static void armv7m_class_init(ObjectClass *klass, void *data) static void armv7m_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = armv7m_realize; dc->realize = armv7m_realize;
dc->vmsd = &vmstate_armv7m;
device_class_set_props(dc, armv7m_properties); device_class_set_props(dc, armv7m_properties);
} }

View File

@ -86,6 +86,7 @@ struct MPS2MachineState {
CMSDKAPBWatchdog watchdog; CMSDKAPBWatchdog watchdog;
CMSDKAPBTimer timer[2]; CMSDKAPBTimer timer[2];
Clock *sysclk; Clock *sysclk;
Clock *refclk;
}; };
#define TYPE_MPS2_MACHINE "mps2" #define TYPE_MPS2_MACHINE "mps2"
@ -99,6 +100,15 @@ OBJECT_DECLARE_TYPE(MPS2MachineState, MPS2MachineClass, MPS2_MACHINE)
/* Main SYSCLK frequency in Hz */ /* Main SYSCLK frequency in Hz */
#define SYSCLK_FRQ 25000000 #define SYSCLK_FRQ 25000000
/*
* The Application Notes don't say anything about how the
* systick reference clock is configured. (Quite possibly
* they don't have one at all.) This 1MHz clock matches the
* pre-existing behaviour that used to be hardcoded in the
* armv7m_systick implementation.
*/
#define REFCLK_FRQ (1 * 1000 * 1000)
/* Initialize the auxiliary RAM region @mr and map it into /* Initialize the auxiliary RAM region @mr and map it into
* the memory map at @base. * the memory map at @base.
*/ */
@ -146,6 +156,9 @@ static void mps2_common_init(MachineState *machine)
mms->sysclk = clock_new(OBJECT(machine), "SYSCLK"); mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
clock_set_hz(mms->sysclk, SYSCLK_FRQ); clock_set_hz(mms->sysclk, SYSCLK_FRQ);
mms->refclk = clock_new(OBJECT(machine), "REFCLK");
clock_set_hz(mms->refclk, REFCLK_FRQ);
/* The FPGA images have an odd combination of different RAMs, /* The FPGA images have an odd combination of different RAMs,
* because in hardware they are different implementations and * because in hardware they are different implementations and
* connected to different buses, giving varying performance/size * connected to different buses, giving varying performance/size
@ -223,6 +236,8 @@ static void mps2_common_init(MachineState *machine)
default: default:
g_assert_not_reached(); g_assert_not_reached();
} }
qdev_connect_clock_in(armv7m, "cpuclk", mms->sysclk);
qdev_connect_clock_in(armv7m, "refclk", mms->refclk);
qdev_prop_set_string(armv7m, "cpu-type", machine->cpu_type); qdev_prop_set_string(armv7m, "cpu-type", machine->cpu_type);
qdev_prop_set_bit(armv7m, "enable-bitband", true); qdev_prop_set_bit(armv7m, "enable-bitband", true);
object_property_set_link(OBJECT(&mms->armv7m), "memory", object_property_set_link(OBJECT(&mms->armv7m), "memory",
@ -424,8 +439,6 @@ static void mps2_common_init(MachineState *machine)
qdev_get_gpio_in(armv7m, qdev_get_gpio_in(armv7m,
mmc->fpga_type == FPGA_AN511 ? 47 : 13)); mmc->fpga_type == FPGA_AN511 ? 47 : 13));
system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
0x400000); 0x400000);
} }

View File

@ -29,6 +29,7 @@
#include "hw/char/serial.h" #include "hw/char/serial.h"
#include "hw/arm/msf2-soc.h" #include "hw/arm/msf2-soc.h"
#include "hw/misc/unimp.h" #include "hw/misc/unimp.h"
#include "hw/qdev-clock.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
#define MSF2_TIMER_BASE 0x40004000 #define MSF2_TIMER_BASE 0x40004000
@ -73,6 +74,9 @@ static void m2sxxx_soc_initfn(Object *obj)
} }
object_initialize_child(obj, "emac", &s->emac, TYPE_MSS_EMAC); object_initialize_child(obj, "emac", &s->emac, TYPE_MSS_EMAC);
s->m3clk = qdev_init_clock_in(DEVICE(obj), "m3clk", NULL, NULL, 0);
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
} }
static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp) static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
@ -83,11 +87,34 @@ static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
int i; int i;
MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_memory = get_system_memory();
MemoryRegion *nvm = g_new(MemoryRegion, 1);
MemoryRegion *nvm_alias = g_new(MemoryRegion, 1);
MemoryRegion *sram = g_new(MemoryRegion, 1);
memory_region_init_rom(nvm, OBJECT(dev_soc), "MSF2.eNVM", s->envm_size, if (!clock_has_source(s->m3clk)) {
error_setg(errp, "m3clk must be wired up by the board code");
return;
}
/*
* We use s->refclk internally and only define it with qdev_init_clock_in()
* so it is correctly parented and not leaked on an init/deinit; it is not
* intended as an externally exposed clock.
*/
if (clock_has_source(s->refclk)) {
error_setg(errp, "refclk must not be wired up by the board code");
return;
}
/*
* TODO: ideally we should model the SoC SYSTICK_CR register at 0xe0042038,
* which allows the guest to program the divisor between the m3clk and
* the systick refclk to either /4, /8, /16 or /32, as well as setting
* the value the guest can read in the STCALIB register. Currently we
* implement the divisor as a fixed /32, which matches the reset value
* of SYSTICK_CR.
*/
clock_set_mul_div(s->refclk, 32, 1);
clock_set_source(s->refclk, s->m3clk);
memory_region_init_rom(&s->nvm, OBJECT(dev_soc), "MSF2.eNVM", s->envm_size,
&error_fatal); &error_fatal);
/* /*
* On power-on, the eNVM region 0x60000000 is automatically * On power-on, the eNVM region 0x60000000 is automatically
@ -95,34 +122,28 @@ static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
* start address (0x0). We do not support remapping other eNVM, * start address (0x0). We do not support remapping other eNVM,
* eSRAM and DDR regions by guest(via Sysreg) currently. * eSRAM and DDR regions by guest(via Sysreg) currently.
*/ */
memory_region_init_alias(nvm_alias, OBJECT(dev_soc), "MSF2.eNVM", nvm, 0, memory_region_init_alias(&s->nvm_alias, OBJECT(dev_soc), "MSF2.eNVM",
s->envm_size); &s->nvm, 0, s->envm_size);
memory_region_add_subregion(system_memory, ENVM_BASE_ADDRESS, nvm); memory_region_add_subregion(system_memory, ENVM_BASE_ADDRESS, &s->nvm);
memory_region_add_subregion(system_memory, 0, nvm_alias); memory_region_add_subregion(system_memory, 0, &s->nvm_alias);
memory_region_init_ram(sram, NULL, "MSF2.eSRAM", s->esram_size, memory_region_init_ram(&s->sram, NULL, "MSF2.eSRAM", s->esram_size,
&error_fatal); &error_fatal);
memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram); memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, &s->sram);
armv7m = DEVICE(&s->armv7m); armv7m = DEVICE(&s->armv7m);
qdev_prop_set_uint32(armv7m, "num-irq", 81); qdev_prop_set_uint32(armv7m, "num-irq", 81);
qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type);
qdev_prop_set_bit(armv7m, "enable-bitband", true); qdev_prop_set_bit(armv7m, "enable-bitband", true);
qdev_connect_clock_in(armv7m, "cpuclk", s->m3clk);
qdev_connect_clock_in(armv7m, "refclk", s->refclk);
object_property_set_link(OBJECT(&s->armv7m), "memory", object_property_set_link(OBJECT(&s->armv7m), "memory",
OBJECT(get_system_memory()), &error_abort); OBJECT(get_system_memory()), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) {
return; return;
} }
if (!s->m3clk) {
error_setg(errp, "Invalid m3clk value");
error_append_hint(errp, "m3clk can not be zero\n");
return;
}
system_clock_scale = NANOSECONDS_PER_SECOND / s->m3clk;
for (i = 0; i < MSF2_NUM_UARTS; i++) { for (i = 0; i < MSF2_NUM_UARTS; i++) {
if (serial_hd(i)) { if (serial_hd(i)) {
serial_mm_init(get_system_memory(), uart_addr[i], 2, serial_mm_init(get_system_memory(), uart_addr[i], 2,
@ -132,8 +153,13 @@ static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
} }
dev = DEVICE(&s->timer); dev = DEVICE(&s->timer);
/* APB0 clock is the timer input clock */ /*
qdev_prop_set_uint32(dev, "clock-frequency", s->m3clk / s->apb0div); * APB0 clock is the timer input clock.
* TODO: ideally the MSF2 timer device should use a Clock rather than a
* clock-frequency integer property.
*/
qdev_prop_set_uint32(dev, "clock-frequency",
clock_get_hz(s->m3clk) / s->apb0div);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer), errp)) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer), errp)) {
return; return;
} }
@ -210,8 +236,6 @@ static Property m2sxxx_soc_properties[] = {
DEFINE_PROP_UINT64("eNVM-size", MSF2State, envm_size, MSF2_ENVM_MAX_SIZE), DEFINE_PROP_UINT64("eNVM-size", MSF2State, envm_size, MSF2_ENVM_MAX_SIZE),
DEFINE_PROP_UINT64("eSRAM-size", MSF2State, esram_size, DEFINE_PROP_UINT64("eSRAM-size", MSF2State, esram_size,
MSF2_ESRAM_MAX_SIZE), MSF2_ESRAM_MAX_SIZE),
/* Libero GUI shows 100Mhz as default for clocks */
DEFINE_PROP_UINT32("m3clk", MSF2State, m3clk, 100 * 1000000),
/* default divisors in Libero GUI */ /* default divisors in Libero GUI */
DEFINE_PROP_UINT8("apb0div", MSF2State, apb0div, 2), DEFINE_PROP_UINT8("apb0div", MSF2State, apb0div, 2),
DEFINE_PROP_UINT8("apb1div", MSF2State, apb1div, 2), DEFINE_PROP_UINT8("apb1div", MSF2State, apb1div, 2),

View File

@ -29,6 +29,7 @@
#include "hw/boards.h" #include "hw/boards.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
#include "hw/qdev-clock.h"
#include "exec/address-spaces.h" #include "exec/address-spaces.h"
#include "hw/arm/msf2-soc.h" #include "hw/arm/msf2-soc.h"
@ -49,6 +50,7 @@ static void emcraft_sf2_s2s010_init(MachineState *machine)
BusState *spi_bus; BusState *spi_bus;
MemoryRegion *sysmem = get_system_memory(); MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ddr = g_new(MemoryRegion, 1); MemoryRegion *ddr = g_new(MemoryRegion, 1);
Clock *m3clk;
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
error_report("This board can only be used with CPU %s", error_report("This board can only be used with CPU %s",
@ -72,7 +74,10 @@ static void emcraft_sf2_s2s010_init(MachineState *machine)
* in Libero. CPU clock is divided by APB0 and APB1 divisors for * in Libero. CPU clock is divided by APB0 and APB1 divisors for
* peripherals. Emcraft's SoM kit comes with these settings by default. * peripherals. Emcraft's SoM kit comes with these settings by default.
*/ */
qdev_prop_set_uint32(dev, "m3clk", 142 * 1000000); /* This clock doesn't need migration because it is fixed-frequency */
m3clk = clock_new(OBJECT(machine), "m3clk");
clock_set_hz(m3clk, 142 * 1000000);
qdev_connect_clock_in(dev, "m3clk", m3clk);
qdev_prop_set_uint32(dev, "apb0div", 2); qdev_prop_set_uint32(dev, "apb0div", 2);
qdev_prop_set_uint32(dev, "apb1div", 2); qdev_prop_set_uint32(dev, "apb1div", 2);

View File

@ -26,6 +26,7 @@
#include "qapi/error.h" #include "qapi/error.h"
#include "hw/boards.h" #include "hw/boards.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "hw/arm/stm32f205_soc.h" #include "hw/arm/stm32f205_soc.h"
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
@ -36,16 +37,15 @@
static void netduino2_init(MachineState *machine) static void netduino2_init(MachineState *machine)
{ {
DeviceState *dev; DeviceState *dev;
Clock *sysclk;
/* /* This clock doesn't need migration because it is fixed-frequency */
* TODO: ideally we would model the SoC RCC and let it handle sysclk = clock_new(OBJECT(machine), "SYSCLK");
* system_clock_scale, including its ability to define different clock_set_hz(sysclk, SYSCLK_FRQ);
* possible SYSCLK sources.
*/
system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;
dev = qdev_new(TYPE_STM32F205_SOC); dev = qdev_new(TYPE_STM32F205_SOC);
qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3")); qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3"));
qdev_connect_clock_in(dev, "sysclk", sysclk);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,

View File

@ -26,6 +26,7 @@
#include "qapi/error.h" #include "qapi/error.h"
#include "hw/boards.h" #include "hw/boards.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "hw/arm/stm32f405_soc.h" #include "hw/arm/stm32f405_soc.h"
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
@ -36,16 +37,15 @@
static void netduinoplus2_init(MachineState *machine) static void netduinoplus2_init(MachineState *machine)
{ {
DeviceState *dev; DeviceState *dev;
Clock *sysclk;
/* /* This clock doesn't need migration because it is fixed-frequency */
* TODO: ideally we would model the SoC RCC and let it handle sysclk = clock_new(OBJECT(machine), "SYSCLK");
* system_clock_scale, including its ability to define different clock_set_hz(sysclk, SYSCLK_FRQ);
* possible SYSCLK sources.
*/
system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;
dev = qdev_new(TYPE_STM32F405_SOC); dev = qdev_new(TYPE_STM32F405_SOC);
qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m4")); qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m4"));
qdev_connect_clock_in(dev, "sysclk", sysclk);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
armv7m_load_kernel(ARM_CPU(first_cpu), armv7m_load_kernel(ARM_CPU(first_cpu),

View File

@ -12,6 +12,7 @@
#include "qapi/error.h" #include "qapi/error.h"
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
#include "hw/sysbus.h" #include "hw/sysbus.h"
#include "hw/qdev-clock.h"
#include "hw/misc/unimp.h" #include "hw/misc/unimp.h"
#include "qemu/log.h" #include "qemu/log.h"
@ -66,7 +67,22 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
return; return;
} }
system_clock_scale = NANOSECONDS_PER_SECOND / HCLK_FRQ; /*
* HCLK on this SoC is fixed, so we set up sysclk ourselves and
* the board shouldn't connect it.
*/
if (clock_has_source(s->sysclk)) {
error_setg(errp, "sysclk clock must not be wired up by the board code");
return;
}
/* This clock doesn't need migration because it is fixed-frequency */
clock_set_hz(s->sysclk, HCLK_FRQ);
qdev_connect_clock_in(DEVICE(&s->cpu), "cpuclk", s->sysclk);
/*
* This SoC has no systick device, so don't connect refclk.
* TODO: model the lack of systick (currently the armv7m object
* will always provide one).
*/
object_property_set_link(OBJECT(&s->cpu), "memory", OBJECT(&s->container), object_property_set_link(OBJECT(&s->cpu), "memory", OBJECT(&s->container),
&error_abort); &error_abort);
@ -191,6 +207,8 @@ static void nrf51_soc_init(Object *obj)
TYPE_NRF51_TIMER); TYPE_NRF51_TIMER);
} }
s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL, 0);
} }
static Property nrf51_soc_properties[] = { static Property nrf51_soc_properties[] = {

View File

@ -340,7 +340,6 @@ static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
MachineClass *mc = MACHINE_CLASS(oc); MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc); RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
mc->alias = "raspi2";
rmc->board_rev = 0xa21041; rmc->board_rev = 0xa21041;
raspi_machine_class_common_init(mc, rmc->board_rev); raspi_machine_class_common_init(mc, rmc->board_rev);
}; };
@ -360,7 +359,6 @@ static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
MachineClass *mc = MACHINE_CLASS(oc); MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc); RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
mc->alias = "raspi3";
rmc->board_rev = 0xa02082; rmc->board_rev = 0xa02082;
raspi_machine_class_common_init(mc, rmc->board_rev); raspi_machine_class_common_init(mc, rmc->board_rev);
}; };

View File

@ -26,6 +26,7 @@
#include "hw/watchdog/cmsdk-apb-watchdog.h" #include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "migration/vmstate.h" #include "migration/vmstate.h"
#include "hw/misc/unimp.h" #include "hw/misc/unimp.h"
#include "hw/timer/stellaris-gptm.h"
#include "hw/qdev-clock.h" #include "hw/qdev-clock.h"
#include "qom/object.h" #include "qom/object.h"
@ -55,306 +56,6 @@ typedef const struct {
uint32_t peripherals; uint32_t peripherals;
} stellaris_board_info; } stellaris_board_info;
/* General purpose timer module. */
#define TYPE_STELLARIS_GPTM "stellaris-gptm"
OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
struct gptm_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t config;
uint32_t mode[2];
uint32_t control;
uint32_t state;
uint32_t mask;
uint32_t load[2];
uint32_t match[2];
uint32_t prescale[2];
uint32_t match_prescale[2];
uint32_t rtc;
int64_t tick[2];
struct gptm_state *opaque[2];
QEMUTimer *timer[2];
/* The timers have an alternate output used to trigger the ADC. */
qemu_irq trigger;
qemu_irq irq;
};
static void gptm_update_irq(gptm_state *s)
{
int level;
level = (s->state & s->mask) != 0;
qemu_set_irq(s->irq, level);
}
static void gptm_stop(gptm_state *s, int n)
{
timer_del(s->timer[n]);
}
static void gptm_reload(gptm_state *s, int n, int reset)
{
int64_t tick;
if (reset)
tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
else
tick = s->tick[n];
if (s->config == 0) {
/* 32-bit CountDown. */
uint32_t count;
count = s->load[0] | (s->load[1] << 16);
tick += (int64_t)count * system_clock_scale;
} else if (s->config == 1) {
/* 32-bit RTC. 1Hz tick. */
tick += NANOSECONDS_PER_SECOND;
} else if (s->mode[n] == 0xa) {
/* PWM mode. Not implemented. */
} else {
qemu_log_mask(LOG_UNIMP,
"GPTM: 16-bit timer mode unimplemented: 0x%x\n",
s->mode[n]);
return;
}
s->tick[n] = tick;
timer_mod(s->timer[n], tick);
}
static void gptm_tick(void *opaque)
{
gptm_state **p = (gptm_state **)opaque;
gptm_state *s;
int n;
s = *p;
n = p - s->opaque;
if (s->config == 0) {
s->state |= 1;
if ((s->control & 0x20)) {
/* Output trigger. */
qemu_irq_pulse(s->trigger);
}
if (s->mode[0] & 1) {
/* One-shot. */
s->control &= ~1;
} else {
/* Periodic. */
gptm_reload(s, 0, 0);
}
} else if (s->config == 1) {
/* RTC. */
uint32_t match;
s->rtc++;
match = s->match[0] | (s->match[1] << 16);
if (s->rtc > match)
s->rtc = 0;
if (s->rtc == 0) {
s->state |= 8;
}
gptm_reload(s, 0, 0);
} else if (s->mode[n] == 0xa) {
/* PWM mode. Not implemented. */
} else {
qemu_log_mask(LOG_UNIMP,
"GPTM: 16-bit timer mode unimplemented: 0x%x\n",
s->mode[n]);
}
gptm_update_irq(s);
}
static uint64_t gptm_read(void *opaque, hwaddr offset,
unsigned size)
{
gptm_state *s = (gptm_state *)opaque;
switch (offset) {
case 0x00: /* CFG */
return s->config;
case 0x04: /* TAMR */
return s->mode[0];
case 0x08: /* TBMR */
return s->mode[1];
case 0x0c: /* CTL */
return s->control;
case 0x18: /* IMR */
return s->mask;
case 0x1c: /* RIS */
return s->state;
case 0x20: /* MIS */
return s->state & s->mask;
case 0x24: /* CR */
return 0;
case 0x28: /* TAILR */
return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
case 0x2c: /* TBILR */
return s->load[1];
case 0x30: /* TAMARCHR */
return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
case 0x34: /* TBMATCHR */
return s->match[1];
case 0x38: /* TAPR */
return s->prescale[0];
case 0x3c: /* TBPR */
return s->prescale[1];
case 0x40: /* TAPMR */
return s->match_prescale[0];
case 0x44: /* TBPMR */
return s->match_prescale[1];
case 0x48: /* TAR */
if (s->config == 1) {
return s->rtc;
}
qemu_log_mask(LOG_UNIMP,
"GPTM: read of TAR but timer read not supported\n");
return 0;
case 0x4c: /* TBR */
qemu_log_mask(LOG_UNIMP,
"GPTM: read of TBR but timer read not supported\n");
return 0;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
offset);
return 0;
}
}
static void gptm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
gptm_state *s = (gptm_state *)opaque;
uint32_t oldval;
/* The timers should be disabled before changing the configuration.
We take advantage of this and defer everything until the timer
is enabled. */
switch (offset) {
case 0x00: /* CFG */
s->config = value;
break;
case 0x04: /* TAMR */
s->mode[0] = value;
break;
case 0x08: /* TBMR */
s->mode[1] = value;
break;
case 0x0c: /* CTL */
oldval = s->control;
s->control = value;
/* TODO: Implement pause. */
if ((oldval ^ value) & 1) {
if (value & 1) {
gptm_reload(s, 0, 1);
} else {
gptm_stop(s, 0);
}
}
if (((oldval ^ value) & 0x100) && s->config >= 4) {
if (value & 0x100) {
gptm_reload(s, 1, 1);
} else {
gptm_stop(s, 1);
}
}
break;
case 0x18: /* IMR */
s->mask = value & 0x77;
gptm_update_irq(s);
break;
case 0x24: /* CR */
s->state &= ~value;
break;
case 0x28: /* TAILR */
s->load[0] = value & 0xffff;
if (s->config < 4) {
s->load[1] = value >> 16;
}
break;
case 0x2c: /* TBILR */
s->load[1] = value & 0xffff;
break;
case 0x30: /* TAMARCHR */
s->match[0] = value & 0xffff;
if (s->config < 4) {
s->match[1] = value >> 16;
}
break;
case 0x34: /* TBMATCHR */
s->match[1] = value >> 16;
break;
case 0x38: /* TAPR */
s->prescale[0] = value;
break;
case 0x3c: /* TBPR */
s->prescale[1] = value;
break;
case 0x40: /* TAPMR */
s->match_prescale[0] = value;
break;
case 0x44: /* TBPMR */
s->match_prescale[0] = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
offset);
}
gptm_update_irq(s);
}
static const MemoryRegionOps gptm_ops = {
.read = gptm_read,
.write = gptm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_stellaris_gptm = {
.name = "stellaris_gptm",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(config, gptm_state),
VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
VMSTATE_UINT32(control, gptm_state),
VMSTATE_UINT32(state, gptm_state),
VMSTATE_UINT32(mask, gptm_state),
VMSTATE_UNUSED(8),
VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
VMSTATE_UINT32(rtc, gptm_state),
VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
VMSTATE_END_OF_LIST()
}
};
static void stellaris_gptm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
gptm_state *s = STELLARIS_GPTM(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &s->irq);
qdev_init_gpio_out(dev, &s->trigger, 1);
memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
"gptm", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
s->opaque[0] = s->opaque[1] = s;
}
static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
{
gptm_state *s = STELLARIS_GPTM(dev);
s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
}
/* System controller. */ /* System controller. */
#define TYPE_STELLARIS_SYS "stellaris-sys" #define TYPE_STELLARIS_SYS "stellaris-sys"
@ -562,17 +263,18 @@ static bool ssys_use_rcc2(ssys_state *s)
*/ */
static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
{ {
int period_ns;
/* /*
* SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input
* clock is 200MHz, which is a period of 5 ns. Dividing the clock * clock is 200MHz, which is a period of 5 ns. Dividing the clock
* frequency by X is the same as multiplying the period by X. * frequency by X is the same as multiplying the period by X.
*/ */
if (ssys_use_rcc2(s)) { if (ssys_use_rcc2(s)) {
system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
} else { } else {
system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
} }
clock_set_ns(s->sysclk, system_clock_scale); clock_set_ns(s->sysclk, period_ns);
if (propagate_clock) { if (propagate_clock) {
clock_propagate(s->sysclk); clock_propagate(s->sysclk);
} }
@ -755,33 +457,6 @@ static void stellaris_sys_instance_init(Object *obj)
s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
} }
static DeviceState *stellaris_sys_init(uint32_t base, qemu_irq irq,
stellaris_board_info *board,
uint8_t *macaddr)
{
DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
/* Most devices come preprogrammed with a MAC address in the user data. */
qdev_prop_set_uint32(dev, "user0",
macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
qdev_prop_set_uint32(dev, "user1",
macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
qdev_prop_set_uint32(dev, "did0", board->did0);
qdev_prop_set_uint32(dev, "did1", board->did1);
qdev_prop_set_uint32(dev, "dc0", board->dc0);
qdev_prop_set_uint32(dev, "dc1", board->dc1);
qdev_prop_set_uint32(dev, "dc2", board->dc2);
qdev_prop_set_uint32(dev, "dc3", board->dc3);
qdev_prop_set_uint32(dev, "dc4", board->dc4);
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, base);
sysbus_connect_irq(sbd, 0, irq);
return dev;
}
/* I2C controller. */ /* I2C controller. */
#define TYPE_STELLARIS_I2C "stellaris-i2c" #define TYPE_STELLARIS_I2C "stellaris-i2c"
@ -1349,6 +1024,7 @@ static void stellaris_init(MachineState *ms, stellaris_board_info *board)
DeviceState *ssys_dev; DeviceState *ssys_dev;
int i; int i;
int j; int j;
const uint8_t *macaddr;
MemoryRegion *sram = g_new(MemoryRegion, 1); MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *flash = g_new(MemoryRegion, 1); MemoryRegion *flash = g_new(MemoryRegion, 1);
@ -1366,15 +1042,42 @@ static void stellaris_init(MachineState *ms, stellaris_board_info *board)
&error_fatal); &error_fatal);
memory_region_add_subregion(system_memory, 0x20000000, sram); memory_region_add_subregion(system_memory, 0x20000000, sram);
/*
* Create the system-registers object early, because we will
* need its sysclk output.
*/
ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
/* Most devices come preprogrammed with a MAC address in the user data. */
macaddr = nd_table[0].macaddr.a;
qdev_prop_set_uint32(ssys_dev, "user0",
macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
qdev_prop_set_uint32(ssys_dev, "user1",
macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
nvic = qdev_new(TYPE_ARMV7M); nvic = qdev_new(TYPE_ARMV7M);
qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
qdev_prop_set_bit(nvic, "enable-bitband", true); qdev_prop_set_bit(nvic, "enable-bitband", true);
qdev_connect_clock_in(nvic, "cpuclk",
qdev_get_clock_out(ssys_dev, "SYSCLK"));
/* This SoC does not connect the systick reference clock */
object_property_set_link(OBJECT(nvic), "memory", object_property_set_link(OBJECT(nvic), "memory",
OBJECT(get_system_memory()), &error_abort); OBJECT(get_system_memory()), &error_abort);
/* This will exit with an error if the user passed us a bad cpu_type */ /* This will exit with an error if the user passed us a bad cpu_type */
sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
/* Now we can wire up the IRQ and MMIO of the system registers */
sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
if (board->dc1 & (1 << 16)) { if (board->dc1 & (1 << 16)) {
dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
qdev_get_gpio_in(nvic, 14), qdev_get_gpio_in(nvic, 14),
@ -1388,19 +1091,21 @@ static void stellaris_init(MachineState *ms, stellaris_board_info *board)
} }
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
if (board->dc2 & (0x10000 << i)) { if (board->dc2 & (0x10000 << i)) {
dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, SysBusDevice *sbd;
0x40030000 + i * 0x1000,
qdev_get_gpio_in(nvic, timer_irq[i])); dev = qdev_new(TYPE_STELLARIS_GPTM);
sbd = SYS_BUS_DEVICE(dev);
qdev_connect_clock_in(dev, "clk",
qdev_get_clock_out(ssys_dev, "SYSCLK"));
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
/* TODO: This is incorrect, but we get away with it because /* TODO: This is incorrect, but we get away with it because
the ADC output is only ever pulsed. */ the ADC output is only ever pulsed. */
qdev_connect_gpio_out(dev, 0, adc); qdev_connect_gpio_out(dev, 0, adc);
} }
} }
ssys_dev = stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
board, nd_table[0].macaddr.a);
if (board->dc1 & (1 << 3)) { /* watchdog present */ if (board->dc1 & (1 << 3)) { /* watchdog present */
dev = qdev_new(TYPE_LUMINARY_WATCHDOG); dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
@ -1642,22 +1347,6 @@ static const TypeInfo stellaris_i2c_info = {
.class_init = stellaris_i2c_class_init, .class_init = stellaris_i2c_class_init,
}; };
static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_stellaris_gptm;
dc->realize = stellaris_gptm_realize;
}
static const TypeInfo stellaris_gptm_info = {
.name = TYPE_STELLARIS_GPTM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(gptm_state),
.instance_init = stellaris_gptm_init,
.class_init = stellaris_gptm_class_init,
};
static void stellaris_adc_class_init(ObjectClass *klass, void *data) static void stellaris_adc_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
@ -1696,7 +1385,6 @@ static const TypeInfo stellaris_sys_info = {
static void stellaris_register_types(void) static void stellaris_register_types(void)
{ {
type_register_static(&stellaris_i2c_info); type_register_static(&stellaris_i2c_info);
type_register_static(&stellaris_gptm_info);
type_register_static(&stellaris_adc_info); type_register_static(&stellaris_adc_info);
type_register_static(&stellaris_sys_info); type_register_static(&stellaris_sys_info);
} }

View File

@ -30,6 +30,7 @@
#include "exec/address-spaces.h" #include "exec/address-spaces.h"
#include "hw/arm/stm32f100_soc.h" #include "hw/arm/stm32f100_soc.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "hw/misc/unimp.h" #include "hw/misc/unimp.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
@ -57,6 +58,9 @@ static void stm32f100_soc_initfn(Object *obj)
for (i = 0; i < STM_NUM_SPIS; i++) { for (i = 0; i < STM_NUM_SPIS; i++) {
object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_STM32F2XX_SPI); object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_STM32F2XX_SPI);
} }
s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL, 0);
s->refclk = qdev_init_clock_in(DEVICE(s), "refclk", NULL, NULL, 0);
} }
static void stm32f100_soc_realize(DeviceState *dev_soc, Error **errp) static void stm32f100_soc_realize(DeviceState *dev_soc, Error **errp)
@ -67,31 +71,54 @@ static void stm32f100_soc_realize(DeviceState *dev_soc, Error **errp)
int i; int i;
MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_memory = get_system_memory();
MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *flash = g_new(MemoryRegion, 1); /*
MemoryRegion *flash_alias = g_new(MemoryRegion, 1); * We use s->refclk internally and only define it with qdev_init_clock_in()
* so it is correctly parented and not leaked on an init/deinit; it is not
* intended as an externally exposed clock.
*/
if (clock_has_source(s->refclk)) {
error_setg(errp, "refclk clock must not be wired up by the board code");
return;
}
if (!clock_has_source(s->sysclk)) {
error_setg(errp, "sysclk clock must be wired up by the board code");
return;
}
/*
* TODO: ideally we should model the SoC RCC and its ability to
* change the sysclk frequency and define different sysclk sources.
*/
/* The refclk always runs at frequency HCLK / 8 */
clock_set_mul_div(s->refclk, 8, 1);
clock_set_source(s->refclk, s->sysclk);
/* /*
* Init flash region * Init flash region
* Flash starts at 0x08000000 and then is aliased to boot memory at 0x0 * Flash starts at 0x08000000 and then is aliased to boot memory at 0x0
*/ */
memory_region_init_rom(flash, OBJECT(dev_soc), "STM32F100.flash", memory_region_init_rom(&s->flash, OBJECT(dev_soc), "STM32F100.flash",
FLASH_SIZE, &error_fatal); FLASH_SIZE, &error_fatal);
memory_region_init_alias(flash_alias, OBJECT(dev_soc), memory_region_init_alias(&s->flash_alias, OBJECT(dev_soc),
"STM32F100.flash.alias", flash, 0, FLASH_SIZE); "STM32F100.flash.alias", &s->flash, 0, FLASH_SIZE);
memory_region_add_subregion(system_memory, FLASH_BASE_ADDRESS, flash); memory_region_add_subregion(system_memory, FLASH_BASE_ADDRESS, &s->flash);
memory_region_add_subregion(system_memory, 0, flash_alias); memory_region_add_subregion(system_memory, 0, &s->flash_alias);
/* Init SRAM region */ /* Init SRAM region */
memory_region_init_ram(sram, NULL, "STM32F100.sram", SRAM_SIZE, memory_region_init_ram(&s->sram, NULL, "STM32F100.sram", SRAM_SIZE,
&error_fatal); &error_fatal);
memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram); memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, &s->sram);
/* Init ARMv7m */ /* Init ARMv7m */
armv7m = DEVICE(&s->armv7m); armv7m = DEVICE(&s->armv7m);
qdev_prop_set_uint32(armv7m, "num-irq", 61); qdev_prop_set_uint32(armv7m, "num-irq", 61);
qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type);
qdev_prop_set_bit(armv7m, "enable-bitband", true); qdev_prop_set_bit(armv7m, "enable-bitband", true);
qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
qdev_connect_clock_in(armv7m, "refclk", s->refclk);
object_property_set_link(OBJECT(&s->armv7m), "memory", object_property_set_link(OBJECT(&s->armv7m), "memory",
OBJECT(get_system_memory()), &error_abort); OBJECT(get_system_memory()), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) {

View File

@ -29,6 +29,7 @@
#include "exec/address-spaces.h" #include "exec/address-spaces.h"
#include "hw/arm/stm32f205_soc.h" #include "hw/arm/stm32f205_soc.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
/* At the moment only Timer 2 to 5 are modelled */ /* At the moment only Timer 2 to 5 are modelled */
@ -74,6 +75,9 @@ static void stm32f205_soc_initfn(Object *obj)
for (i = 0; i < STM_NUM_SPIS; i++) { for (i = 0; i < STM_NUM_SPIS; i++) {
object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_STM32F2XX_SPI); object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_STM32F2XX_SPI);
} }
s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL, 0);
s->refclk = qdev_init_clock_in(DEVICE(s), "refclk", NULL, NULL, 0);
} }
static void stm32f205_soc_realize(DeviceState *dev_soc, Error **errp) static void stm32f205_soc_realize(DeviceState *dev_soc, Error **errp)
@ -84,26 +88,49 @@ static void stm32f205_soc_realize(DeviceState *dev_soc, Error **errp)
int i; int i;
MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_memory = get_system_memory();
MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *flash = g_new(MemoryRegion, 1);
MemoryRegion *flash_alias = g_new(MemoryRegion, 1);
memory_region_init_rom(flash, OBJECT(dev_soc), "STM32F205.flash", /*
* We use s->refclk internally and only define it with qdev_init_clock_in()
* so it is correctly parented and not leaked on an init/deinit; it is not
* intended as an externally exposed clock.
*/
if (clock_has_source(s->refclk)) {
error_setg(errp, "refclk clock must not be wired up by the board code");
return;
}
if (!clock_has_source(s->sysclk)) {
error_setg(errp, "sysclk clock must be wired up by the board code");
return;
}
/*
* TODO: ideally we should model the SoC RCC and its ability to
* change the sysclk frequency and define different sysclk sources.
*/
/* The refclk always runs at frequency HCLK / 8 */
clock_set_mul_div(s->refclk, 8, 1);
clock_set_source(s->refclk, s->sysclk);
memory_region_init_rom(&s->flash, OBJECT(dev_soc), "STM32F205.flash",
FLASH_SIZE, &error_fatal); FLASH_SIZE, &error_fatal);
memory_region_init_alias(flash_alias, OBJECT(dev_soc), memory_region_init_alias(&s->flash_alias, OBJECT(dev_soc),
"STM32F205.flash.alias", flash, 0, FLASH_SIZE); "STM32F205.flash.alias", &s->flash, 0, FLASH_SIZE);
memory_region_add_subregion(system_memory, FLASH_BASE_ADDRESS, flash); memory_region_add_subregion(system_memory, FLASH_BASE_ADDRESS, &s->flash);
memory_region_add_subregion(system_memory, 0, flash_alias); memory_region_add_subregion(system_memory, 0, &s->flash_alias);
memory_region_init_ram(sram, NULL, "STM32F205.sram", SRAM_SIZE, memory_region_init_ram(&s->sram, NULL, "STM32F205.sram", SRAM_SIZE,
&error_fatal); &error_fatal);
memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram); memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, &s->sram);
armv7m = DEVICE(&s->armv7m); armv7m = DEVICE(&s->armv7m);
qdev_prop_set_uint32(armv7m, "num-irq", 96); qdev_prop_set_uint32(armv7m, "num-irq", 96);
qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type);
qdev_prop_set_bit(armv7m, "enable-bitband", true); qdev_prop_set_bit(armv7m, "enable-bitband", true);
qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
qdev_connect_clock_in(armv7m, "refclk", s->refclk);
object_property_set_link(OBJECT(&s->armv7m), "memory", object_property_set_link(OBJECT(&s->armv7m), "memory",
OBJECT(get_system_memory()), &error_abort); OBJECT(get_system_memory()), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) {

View File

@ -28,6 +28,7 @@
#include "exec/address-spaces.h" #include "exec/address-spaces.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
#include "hw/arm/stm32f405_soc.h" #include "hw/arm/stm32f405_soc.h"
#include "hw/qdev-clock.h"
#include "hw/misc/unimp.h" #include "hw/misc/unimp.h"
#define SYSCFG_ADD 0x40013800 #define SYSCFG_ADD 0x40013800
@ -80,6 +81,9 @@ static void stm32f405_soc_initfn(Object *obj)
} }
object_initialize_child(obj, "exti", &s->exti, TYPE_STM32F4XX_EXTI); object_initialize_child(obj, "exti", &s->exti, TYPE_STM32F4XX_EXTI);
s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL, 0);
s->refclk = qdev_init_clock_in(DEVICE(s), "refclk", NULL, NULL, 0);
} }
static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp) static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp)
@ -91,6 +95,30 @@ static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp)
Error *err = NULL; Error *err = NULL;
int i; int i;
/*
* We use s->refclk internally and only define it with qdev_init_clock_in()
* so it is correctly parented and not leaked on an init/deinit; it is not
* intended as an externally exposed clock.
*/
if (clock_has_source(s->refclk)) {
error_setg(errp, "refclk clock must not be wired up by the board code");
return;
}
if (!clock_has_source(s->sysclk)) {
error_setg(errp, "sysclk clock must be wired up by the board code");
return;
}
/*
* TODO: ideally we should model the SoC RCC and its ability to
* change the sysclk frequency and define different sysclk sources.
*/
/* The refclk always runs at frequency HCLK / 8 */
clock_set_mul_div(s->refclk, 8, 1);
clock_set_source(s->refclk, s->sysclk);
memory_region_init_rom(&s->flash, OBJECT(dev_soc), "STM32F405.flash", memory_region_init_rom(&s->flash, OBJECT(dev_soc), "STM32F405.flash",
FLASH_SIZE, &err); FLASH_SIZE, &err);
if (err != NULL) { if (err != NULL) {
@ -116,6 +144,8 @@ static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp)
qdev_prop_set_uint32(armv7m, "num-irq", 96); qdev_prop_set_uint32(armv7m, "num-irq", 96);
qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type);
qdev_prop_set_bit(armv7m, "enable-bitband", true); qdev_prop_set_bit(armv7m, "enable-bitband", true);
qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
qdev_connect_clock_in(armv7m, "refclk", s->refclk);
object_property_set_link(OBJECT(&s->armv7m), "memory", object_property_set_link(OBJECT(&s->armv7m), "memory",
OBJECT(system_memory), &error_abort); OBJECT(system_memory), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) {

View File

@ -27,6 +27,7 @@
#include "qapi/error.h" #include "qapi/error.h"
#include "hw/boards.h" #include "hw/boards.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "hw/arm/stm32f100_soc.h" #include "hw/arm/stm32f100_soc.h"
#include "hw/arm/boot.h" #include "hw/arm/boot.h"
@ -39,16 +40,15 @@
static void stm32vldiscovery_init(MachineState *machine) static void stm32vldiscovery_init(MachineState *machine)
{ {
DeviceState *dev; DeviceState *dev;
Clock *sysclk;
/* /* This clock doesn't need migration because it is fixed-frequency */
* TODO: ideally we would model the SoC RCC and let it handle sysclk = clock_new(OBJECT(machine), "SYSCLK");
* system_clock_scale, including its ability to define different clock_set_hz(sysclk, SYSCLK_FRQ);
* possible SYSCLK sources.
*/
system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;
dev = qdev_new(TYPE_STM32F100_SOC); dev = qdev_new(TYPE_STM32F100_SOC);
qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3")); qdev_prop_set_string(dev, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3"));
qdev_connect_clock_in(dev, "sysclk", sysclk);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
armv7m_load_kernel(ARM_CPU(first_cpu), armv7m_load_kernel(ARM_CPU(first_cpu),
@ -63,4 +63,3 @@ static void stm32vldiscovery_machine_init(MachineClass *mc)
} }
DEFINE_MACHINE("stm32vldiscovery", stm32vldiscovery_machine_init) DEFINE_MACHINE("stm32vldiscovery", stm32vldiscovery_machine_init)

View File

@ -200,6 +200,7 @@ static const char *valid_cpus[] = {
ARM_CPU_TYPE_NAME("cortex-a53"), ARM_CPU_TYPE_NAME("cortex-a53"),
ARM_CPU_TYPE_NAME("cortex-a57"), ARM_CPU_TYPE_NAME("cortex-a57"),
ARM_CPU_TYPE_NAME("cortex-a72"), ARM_CPU_TYPE_NAME("cortex-a72"),
ARM_CPU_TYPE_NAME("a64fx"),
ARM_CPU_TYPE_NAME("host"), ARM_CPU_TYPE_NAME("host"),
ARM_CPU_TYPE_NAME("max"), ARM_CPU_TYPE_NAME("max"),
}; };
@ -2783,10 +2784,17 @@ static void machvirt_machine_init(void)
} }
type_init(machvirt_machine_init); type_init(machvirt_machine_init);
static void virt_machine_6_1_options(MachineClass *mc) static void virt_machine_6_2_options(MachineClass *mc)
{ {
} }
DEFINE_VIRT_MACHINE_AS_LATEST(6, 1) DEFINE_VIRT_MACHINE_AS_LATEST(6, 2)
static void virt_machine_6_1_options(MachineClass *mc)
{
virt_machine_6_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
}
DEFINE_VIRT_MACHINE(6, 1)
static void virt_machine_6_0_options(MachineClass *mc) static void virt_machine_6_0_options(MachineClass *mc)
{ {

View File

@ -14,12 +14,50 @@
#include "migration/vmstate.h" #include "migration/vmstate.h"
#include "hw/clock.h" #include "hw/clock.h"
static bool muldiv_needed(void *opaque)
{
Clock *clk = opaque;
return clk->multiplier != 1 || clk->divider != 1;
}
static int clock_pre_load(void *opaque)
{
Clock *clk = opaque;
/*
* The initial out-of-reset settings of the Clock might have been
* configured by the device to be different from what we set
* in clock_initfn(), so we must here set the default values to
* be used if they are not in the inbound migration state.
*/
clk->multiplier = 1;
clk->divider = 1;
return 0;
}
const VMStateDescription vmstate_muldiv = {
.name = "clock/muldiv",
.version_id = 1,
.minimum_version_id = 1,
.needed = muldiv_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(multiplier, Clock),
VMSTATE_UINT32(divider, Clock),
},
};
const VMStateDescription vmstate_clock = { const VMStateDescription vmstate_clock = {
.name = "clock", .name = "clock",
.version_id = 0, .version_id = 0,
.minimum_version_id = 0, .minimum_version_id = 0,
.pre_load = clock_pre_load,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT64(period, Clock), VMSTATE_UINT64(period, Clock),
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
} },
.subsections = (const VMStateDescription*[]) {
&vmstate_muldiv,
NULL
},
}; };

View File

@ -64,6 +64,15 @@ bool clock_set(Clock *clk, uint64_t period)
return true; return true;
} }
static uint64_t clock_get_child_period(Clock *clk)
{
/*
* Return the period to be used for child clocks, which is the parent
* clock period adjusted for for multiplier and divider effects.
*/
return muldiv64(clk->period, clk->multiplier, clk->divider);
}
static void clock_call_callback(Clock *clk, ClockEvent event) static void clock_call_callback(Clock *clk, ClockEvent event)
{ {
/* /*
@ -78,15 +87,16 @@ static void clock_call_callback(Clock *clk, ClockEvent event)
static void clock_propagate_period(Clock *clk, bool call_callbacks) static void clock_propagate_period(Clock *clk, bool call_callbacks)
{ {
Clock *child; Clock *child;
uint64_t child_period = clock_get_child_period(clk);
QLIST_FOREACH(child, &clk->children, sibling) { QLIST_FOREACH(child, &clk->children, sibling) {
if (child->period != clk->period) { if (child->period != child_period) {
if (call_callbacks) { if (call_callbacks) {
clock_call_callback(child, ClockPreUpdate); clock_call_callback(child, ClockPreUpdate);
} }
child->period = clk->period; child->period = child_period;
trace_clock_update(CLOCK_PATH(child), CLOCK_PATH(clk), trace_clock_update(CLOCK_PATH(child), CLOCK_PATH(clk),
CLOCK_PERIOD_TO_HZ(clk->period), CLOCK_PERIOD_TO_HZ(child->period),
call_callbacks); call_callbacks);
if (call_callbacks) { if (call_callbacks) {
clock_call_callback(child, ClockUpdate); clock_call_callback(child, ClockUpdate);
@ -110,7 +120,7 @@ void clock_set_source(Clock *clk, Clock *src)
trace_clock_set_source(CLOCK_PATH(clk), CLOCK_PATH(src)); trace_clock_set_source(CLOCK_PATH(clk), CLOCK_PATH(src));
clk->period = src->period; clk->period = clock_get_child_period(src);
QLIST_INSERT_HEAD(&src->children, clk, sibling); QLIST_INSERT_HEAD(&src->children, clk, sibling);
clk->source = src; clk->source = src;
clock_propagate_period(clk, false); clock_propagate_period(clk, false);
@ -133,10 +143,23 @@ char *clock_display_freq(Clock *clk)
return freq_to_str(clock_get_hz(clk)); return freq_to_str(clock_get_hz(clk));
} }
void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider)
{
assert(divider != 0);
trace_clock_set_mul_div(CLOCK_PATH(clk), clk->multiplier, multiplier,
clk->divider, divider);
clk->multiplier = multiplier;
clk->divider = divider;
}
static void clock_initfn(Object *obj) static void clock_initfn(Object *obj)
{ {
Clock *clk = CLOCK(obj); Clock *clk = CLOCK(obj);
clk->multiplier = 1;
clk->divider = 1;
QLIST_INIT(&clk->children); QLIST_INIT(&clk->children);
} }

View File

@ -37,6 +37,9 @@
#include "hw/virtio/virtio.h" #include "hw/virtio/virtio.h"
#include "hw/virtio/virtio-pci.h" #include "hw/virtio/virtio-pci.h"
GlobalProperty hw_compat_6_1[] = {};
const size_t hw_compat_6_1_len = G_N_ELEMENTS(hw_compat_6_1);
GlobalProperty hw_compat_6_0[] = { GlobalProperty hw_compat_6_0[] = {
{ "gpex-pcihost", "allow-unmapped-accesses", "false" }, { "gpex-pcihost", "allow-unmapped-accesses", "false" },
{ "i8042", "extended-state", "false"}, { "i8042", "extended-state", "false"},

View File

@ -34,3 +34,4 @@ clock_disconnect(const char *clk) "'%s'"
clock_set(const char *clk, uint64_t old, uint64_t new) "'%s', %"PRIu64"Hz->%"PRIu64"Hz" clock_set(const char *clk, uint64_t old, uint64_t new) "'%s', %"PRIu64"Hz->%"PRIu64"Hz"
clock_propagate(const char *clk) "'%s'" clock_propagate(const char *clk) "'%s'"
clock_update(const char *clk, const char *src, uint64_t hz, int cb) "'%s', src='%s', val=%"PRIu64"Hz cb=%d" clock_update(const char *clk, const char *src, uint64_t hz, int cb) "'%s', src='%s', val=%"PRIu64"Hz cb=%d"
clock_set_mul_div(const char *clk, uint32_t oldmul, uint32_t mul, uint32_t olddiv, uint32_t div) "'%s', mul: %u -> %u, div: %u -> %u"

View File

@ -93,6 +93,9 @@
#include "trace.h" #include "trace.h"
#include CONFIG_DEVICES #include CONFIG_DEVICES
GlobalProperty pc_compat_6_1[] = {};
const size_t pc_compat_6_1_len = G_N_ELEMENTS(pc_compat_6_1);
GlobalProperty pc_compat_6_0[] = { GlobalProperty pc_compat_6_0[] = {
{ "qemu64" "-" TYPE_X86_CPU, "family", "6" }, { "qemu64" "-" TYPE_X86_CPU, "family", "6" },
{ "qemu64" "-" TYPE_X86_CPU, "model", "6" }, { "qemu64" "-" TYPE_X86_CPU, "model", "6" },

View File

@ -412,7 +412,7 @@ static void pc_i440fx_machine_options(MachineClass *m)
machine_class_allow_dynamic_sysbus_dev(m, TYPE_VMBUS_BRIDGE); machine_class_allow_dynamic_sysbus_dev(m, TYPE_VMBUS_BRIDGE);
} }
static void pc_i440fx_6_1_machine_options(MachineClass *m) static void pc_i440fx_6_2_machine_options(MachineClass *m)
{ {
PCMachineClass *pcmc = PC_MACHINE_CLASS(m); PCMachineClass *pcmc = PC_MACHINE_CLASS(m);
pc_i440fx_machine_options(m); pc_i440fx_machine_options(m);
@ -421,6 +421,18 @@ static void pc_i440fx_6_1_machine_options(MachineClass *m)
pcmc->default_cpu_version = 1; pcmc->default_cpu_version = 1;
} }
DEFINE_I440FX_MACHINE(v6_2, "pc-i440fx-6.2", NULL,
pc_i440fx_6_2_machine_options);
static void pc_i440fx_6_1_machine_options(MachineClass *m)
{
pc_i440fx_6_2_machine_options(m);
m->alias = NULL;
m->is_default = false;
compat_props_add(m->compat_props, hw_compat_6_1, hw_compat_6_1_len);
compat_props_add(m->compat_props, pc_compat_6_1, pc_compat_6_1_len);
}
DEFINE_I440FX_MACHINE(v6_1, "pc-i440fx-6.1", NULL, DEFINE_I440FX_MACHINE(v6_1, "pc-i440fx-6.1", NULL,
pc_i440fx_6_1_machine_options); pc_i440fx_6_1_machine_options);

View File

@ -354,7 +354,7 @@ static void pc_q35_machine_options(MachineClass *m)
m->max_cpus = 288; m->max_cpus = 288;
} }
static void pc_q35_6_1_machine_options(MachineClass *m) static void pc_q35_6_2_machine_options(MachineClass *m)
{ {
PCMachineClass *pcmc = PC_MACHINE_CLASS(m); PCMachineClass *pcmc = PC_MACHINE_CLASS(m);
pc_q35_machine_options(m); pc_q35_machine_options(m);
@ -362,6 +362,17 @@ static void pc_q35_6_1_machine_options(MachineClass *m)
pcmc->default_cpu_version = 1; pcmc->default_cpu_version = 1;
} }
DEFINE_Q35_MACHINE(v6_2, "pc-q35-6.2", NULL,
pc_q35_6_2_machine_options);
static void pc_q35_6_1_machine_options(MachineClass *m)
{
pc_q35_6_2_machine_options(m);
m->alias = NULL;
compat_props_add(m->compat_props, hw_compat_6_1, hw_compat_6_1_len);
compat_props_add(m->compat_props, pc_compat_6_1, pc_compat_6_1_len);
}
DEFINE_Q35_MACHINE(v6_1, "pc-q35-6.1", NULL, DEFINE_Q35_MACHINE(v6_1, "pc-q35-6.1", NULL,
pc_q35_6_1_machine_options); pc_q35_6_1_machine_options);

View File

@ -262,8 +262,21 @@ static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
gicv3_update(s, irq, 1); gicv3_update(s, irq, 1);
} }
static MemTxResult gicd_readb(GICv3State *s, hwaddr offset, /**
uint64_t *data, MemTxAttrs attrs) * gicd_readb
* gicd_readw
* gicd_readl
* gicd_readq
* gicd_writeb
* gicd_writew
* gicd_writel
* gicd_writeq
*
* Return %true if the operation succeeded, %false otherwise.
*/
static bool gicd_readb(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{ {
/* Most GICv3 distributor registers do not support byte accesses. */ /* Most GICv3 distributor registers do not support byte accesses. */
switch (offset) { switch (offset) {
@ -273,17 +286,17 @@ static MemTxResult gicd_readb(GICv3State *s, hwaddr offset,
/* This GIC implementation always has affinity routing enabled, /* This GIC implementation always has affinity routing enabled,
* so these registers are all RAZ/WI. * so these registers are all RAZ/WI.
*/ */
return MEMTX_OK; return true;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
*data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR); *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
return MEMTX_OK; return true;
default: default:
return MEMTX_ERROR; return false;
} }
} }
static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset, static bool gicd_writeb(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs) uint64_t value, MemTxAttrs attrs)
{ {
/* Most GICv3 distributor registers do not support byte accesses. */ /* Most GICv3 distributor registers do not support byte accesses. */
switch (offset) { switch (offset) {
@ -293,25 +306,25 @@ static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset,
/* This GIC implementation always has affinity routing enabled, /* This GIC implementation always has affinity routing enabled,
* so these registers are all RAZ/WI. * so these registers are all RAZ/WI.
*/ */
return MEMTX_OK; return true;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{ {
int irq = offset - GICD_IPRIORITYR; int irq = offset - GICD_IPRIORITYR;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
gicd_write_ipriorityr(s, attrs, irq, value); gicd_write_ipriorityr(s, attrs, irq, value);
gicv3_update(s, irq, 1); gicv3_update(s, irq, 1);
return MEMTX_OK; return true;
} }
default: default:
return MEMTX_ERROR; return false;
} }
} }
static MemTxResult gicd_readw(GICv3State *s, hwaddr offset, static bool gicd_readw(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs) uint64_t *data, MemTxAttrs attrs)
{ {
/* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
* support 16 bit accesses, and those registers are all part of the * support 16 bit accesses, and those registers are all part of the
@ -319,11 +332,11 @@ static MemTxResult gicd_readw(GICv3State *s, hwaddr offset,
* implement (ie for us GICD_TYPER.MBIS == 0), so for us they are * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
* reserved. * reserved.
*/ */
return MEMTX_ERROR; return false;
} }
static MemTxResult gicd_writew(GICv3State *s, hwaddr offset, static bool gicd_writew(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs) uint64_t value, MemTxAttrs attrs)
{ {
/* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
* support 16 bit accesses, and those registers are all part of the * support 16 bit accesses, and those registers are all part of the
@ -331,11 +344,11 @@ static MemTxResult gicd_writew(GICv3State *s, hwaddr offset,
* implement (ie for us GICD_TYPER.MBIS == 0), so for us they are * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
* reserved. * reserved.
*/ */
return MEMTX_ERROR; return false;
} }
static MemTxResult gicd_readl(GICv3State *s, hwaddr offset, static bool gicd_readl(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs) uint64_t *data, MemTxAttrs attrs)
{ {
/* Almost all GICv3 distributor registers are 32-bit. /* Almost all GICv3 distributor registers are 32-bit.
* Note that WO registers must return an UNKNOWN value on reads, * Note that WO registers must return an UNKNOWN value on reads,
@ -363,7 +376,7 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
} else { } else {
*data = s->gicd_ctlr; *data = s->gicd_ctlr;
} }
return MEMTX_OK; return true;
case GICD_TYPER: case GICD_TYPER:
{ {
/* For this implementation: /* For this implementation:
@ -387,61 +400,61 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
*data = (1 << 25) | (1 << 24) | (sec_extn << 10) | *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
(0xf << 19) | itlinesnumber; (0xf << 19) | itlinesnumber;
return MEMTX_OK; return true;
} }
case GICD_IIDR: case GICD_IIDR:
/* We claim to be an ARM r0p0 with a zero ProductID. /* We claim to be an ARM r0p0 with a zero ProductID.
* This is the same as an r0p0 GIC-500. * This is the same as an r0p0 GIC-500.
*/ */
*data = gicv3_iidr(); *data = gicv3_iidr();
return MEMTX_OK; return true;
case GICD_STATUSR: case GICD_STATUSR:
/* RAZ/WI for us (this is an optional register and our implementation /* RAZ/WI for us (this is an optional register and our implementation
* does not track RO/WO/reserved violations to report them to the guest) * does not track RO/WO/reserved violations to report them to the guest)
*/ */
*data = 0; *data = 0;
return MEMTX_OK; return true;
case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
{ {
int irq; int irq;
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */ /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGROUPR) * 8; irq = (offset - GICD_IGROUPR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
*data = *gic_bmp_ptr32(s->group, irq); *data = *gic_bmp_ptr32(s->group, irq);
return MEMTX_OK; return true;
} }
case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ISENABLER); offset - GICD_ISENABLER);
return MEMTX_OK; return true;
case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ICENABLER); offset - GICD_ICENABLER);
return MEMTX_OK; return true;
case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
offset - GICD_ISPENDR); offset - GICD_ISPENDR);
return MEMTX_OK; return true;
case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
offset - GICD_ICPENDR); offset - GICD_ICPENDR);
return MEMTX_OK; return true;
case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
offset - GICD_ISACTIVER); offset - GICD_ISACTIVER);
return MEMTX_OK; return true;
case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
offset - GICD_ICACTIVER); offset - GICD_ICACTIVER);
return MEMTX_OK; return true;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{ {
int i, irq = offset - GICD_IPRIORITYR; int i, irq = offset - GICD_IPRIORITYR;
@ -452,12 +465,12 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
value |= gicd_read_ipriorityr(s, attrs, i); value |= gicd_read_ipriorityr(s, attrs, i);
} }
*data = value; *data = value;
return MEMTX_OK; return true;
} }
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* RAZ/WI since affinity routing is always enabled */ /* RAZ/WI since affinity routing is always enabled */
*data = 0; *data = 0;
return MEMTX_OK; return true;
case GICD_ICFGR ... GICD_ICFGR + 0xff: case GICD_ICFGR ... GICD_ICFGR + 0xff:
{ {
/* Here only the even bits are used; odd bits are RES0 */ /* Here only the even bits are used; odd bits are RES0 */
@ -466,7 +479,7 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
/* Since our edge_trigger bitmap is one bit per irq, we only need /* Since our edge_trigger bitmap is one bit per irq, we only need
@ -478,7 +491,7 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
value = extract32(value, (irq & 0x1f) ? 16 : 0, 16); value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
value = half_shuffle32(value) << 1; value = half_shuffle32(value) << 1;
*data = value; *data = value;
return MEMTX_OK; return true;
} }
case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
{ {
@ -489,16 +502,16 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
* security enabled and this is an NS access * security enabled and this is an NS access
*/ */
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */ /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGRPMODR) * 8; irq = (offset - GICD_IGRPMODR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
*data = *gic_bmp_ptr32(s->grpmod, irq); *data = *gic_bmp_ptr32(s->grpmod, irq);
return MEMTX_OK; return true;
} }
case GICD_NSACR ... GICD_NSACR + 0xff: case GICD_NSACR ... GICD_NSACR + 0xff:
{ {
@ -507,7 +520,7 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
@ -515,17 +528,17 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
* security enabled and this is an NS access * security enabled and this is an NS access
*/ */
*data = 0; *data = 0;
return MEMTX_OK; return true;
} }
*data = s->gicd_nsacr[irq / 16]; *data = s->gicd_nsacr[irq / 16];
return MEMTX_OK; return true;
} }
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
/* RAZ/WI since affinity routing is always enabled */ /* RAZ/WI since affinity routing is always enabled */
*data = 0; *data = 0;
return MEMTX_OK; return true;
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
{ {
uint64_t r; uint64_t r;
@ -537,26 +550,26 @@ static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
} else { } else {
*data = (uint32_t)r; *data = (uint32_t)r;
} }
return MEMTX_OK; return true;
} }
case GICD_IDREGS ... GICD_IDREGS + 0x2f: case GICD_IDREGS ... GICD_IDREGS + 0x2f:
/* ID registers */ /* ID registers */
*data = gicv3_idreg(offset - GICD_IDREGS); *data = gicv3_idreg(offset - GICD_IDREGS);
return MEMTX_OK; return true;
case GICD_SGIR: case GICD_SGIR:
/* WO registers, return unknown value */ /* WO registers, return unknown value */
qemu_log_mask(LOG_GUEST_ERROR, qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read from WO register at offset " "%s: invalid guest read from WO register at offset "
TARGET_FMT_plx "\n", __func__, offset); TARGET_FMT_plx "\n", __func__, offset);
*data = 0; *data = 0;
return MEMTX_OK; return true;
default: default:
return MEMTX_ERROR; return false;
} }
} }
static MemTxResult gicd_writel(GICv3State *s, hwaddr offset, static bool gicd_writel(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs) uint64_t value, MemTxAttrs attrs)
{ {
/* Almost all GICv3 distributor registers are 32-bit. Note that /* Almost all GICv3 distributor registers are 32-bit. Note that
* RO registers must ignore writes, not abort. * RO registers must ignore writes, not abort.
@ -600,68 +613,68 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS); s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
} }
gicv3_full_update(s); gicv3_full_update(s);
return MEMTX_OK; return true;
} }
case GICD_STATUSR: case GICD_STATUSR:
/* RAZ/WI for our implementation */ /* RAZ/WI for our implementation */
return MEMTX_OK; return true;
case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
{ {
int irq; int irq;
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
return MEMTX_OK; return true;
} }
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */ /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGROUPR) * 8; irq = (offset - GICD_IGROUPR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
*gic_bmp_ptr32(s->group, irq) = value; *gic_bmp_ptr32(s->group, irq) = value;
gicv3_update(s, irq, 32); gicv3_update(s, irq, 32);
return MEMTX_OK; return true;
} }
case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL, gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ISENABLER, value); offset - GICD_ISENABLER, value);
return MEMTX_OK; return true;
case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL, gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ICENABLER, value); offset - GICD_ICENABLER, value);
return MEMTX_OK; return true;
case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
offset - GICD_ISPENDR, value); offset - GICD_ISPENDR, value);
return MEMTX_OK; return true;
case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
offset - GICD_ICPENDR, value); offset - GICD_ICPENDR, value);
return MEMTX_OK; return true;
case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->active, NULL, gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
offset - GICD_ISACTIVER, value); offset - GICD_ISACTIVER, value);
return MEMTX_OK; return true;
case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL, gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
offset - GICD_ICACTIVER, value); offset - GICD_ICACTIVER, value);
return MEMTX_OK; return true;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{ {
int i, irq = offset - GICD_IPRIORITYR; int i, irq = offset - GICD_IPRIORITYR;
if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) { if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
return MEMTX_OK; return true;
} }
for (i = irq; i < irq + 4; i++, value >>= 8) { for (i = irq; i < irq + 4; i++, value >>= 8) {
gicd_write_ipriorityr(s, attrs, i, value); gicd_write_ipriorityr(s, attrs, i, value);
} }
gicv3_update(s, irq, 4); gicv3_update(s, irq, 4);
return MEMTX_OK; return true;
} }
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* RAZ/WI since affinity routing is always enabled */ /* RAZ/WI since affinity routing is always enabled */
return MEMTX_OK; return true;
case GICD_ICFGR ... GICD_ICFGR + 0xff: case GICD_ICFGR ... GICD_ICFGR + 0xff:
{ {
/* Here only the odd bits are used; even bits are RES0 */ /* Here only the odd bits are used; even bits are RES0 */
@ -669,7 +682,7 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
uint32_t mask, oldval; uint32_t mask, oldval;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
/* Since our edge_trigger bitmap is one bit per irq, our input /* Since our edge_trigger bitmap is one bit per irq, our input
@ -687,7 +700,7 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f)); oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
value = (oldval & ~mask) | (value & mask); value = (oldval & ~mask) | (value & mask);
*gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value; *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
return MEMTX_OK; return true;
} }
case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
{ {
@ -697,16 +710,16 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
/* RAZ/WI if security disabled, or if /* RAZ/WI if security disabled, or if
* security enabled and this is an NS access * security enabled and this is an NS access
*/ */
return MEMTX_OK; return true;
} }
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */ /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGRPMODR) * 8; irq = (offset - GICD_IGRPMODR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
*gic_bmp_ptr32(s->grpmod, irq) = value; *gic_bmp_ptr32(s->grpmod, irq) = value;
gicv3_update(s, irq, 32); gicv3_update(s, irq, 32);
return MEMTX_OK; return true;
} }
case GICD_NSACR ... GICD_NSACR + 0xff: case GICD_NSACR ... GICD_NSACR + 0xff:
{ {
@ -714,41 +727,41 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
int irq = (offset - GICD_NSACR) * 4; int irq = (offset - GICD_NSACR) * 4;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if /* RAZ/WI if security disabled, or if
* security enabled and this is an NS access * security enabled and this is an NS access
*/ */
return MEMTX_OK; return true;
} }
s->gicd_nsacr[irq / 16] = value; s->gicd_nsacr[irq / 16] = value;
/* No update required as this only affects access permission checks */ /* No update required as this only affects access permission checks */
return MEMTX_OK; return true;
} }
case GICD_SGIR: case GICD_SGIR:
/* RES0 if affinity routing is enabled */ /* RES0 if affinity routing is enabled */
return MEMTX_OK; return true;
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
/* RAZ/WI since affinity routing is always enabled */ /* RAZ/WI since affinity routing is always enabled */
return MEMTX_OK; return true;
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
{ {
uint64_t r; uint64_t r;
int irq = (offset - GICD_IROUTER) / 8; int irq = (offset - GICD_IROUTER) / 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) { if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK; return true;
} }
/* Write half of the 64-bit register */ /* Write half of the 64-bit register */
r = gicd_read_irouter(s, attrs, irq); r = gicd_read_irouter(s, attrs, irq);
r = deposit64(r, (offset & 7) ? 32 : 0, 32, value); r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
gicd_write_irouter(s, attrs, irq, r); gicd_write_irouter(s, attrs, irq, r);
return MEMTX_OK; return true;
} }
case GICD_IDREGS ... GICD_IDREGS + 0x2f: case GICD_IDREGS ... GICD_IDREGS + 0x2f:
case GICD_TYPER: case GICD_TYPER:
@ -757,14 +770,14 @@ static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
qemu_log_mask(LOG_GUEST_ERROR, qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset " "%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset); TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK; return true;
default: default:
return MEMTX_ERROR; return false;
} }
} }
static MemTxResult gicd_writell(GICv3State *s, hwaddr offset, static bool gicd_writeq(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs) uint64_t value, MemTxAttrs attrs)
{ {
/* Our only 64-bit registers are GICD_IROUTER<n> */ /* Our only 64-bit registers are GICD_IROUTER<n> */
int irq; int irq;
@ -773,14 +786,14 @@ static MemTxResult gicd_writell(GICv3State *s, hwaddr offset,
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
irq = (offset - GICD_IROUTER) / 8; irq = (offset - GICD_IROUTER) / 8;
gicd_write_irouter(s, attrs, irq, value); gicd_write_irouter(s, attrs, irq, value);
return MEMTX_OK; return true;
default: default:
return MEMTX_ERROR; return false;
} }
} }
static MemTxResult gicd_readll(GICv3State *s, hwaddr offset, static bool gicd_readq(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs) uint64_t *data, MemTxAttrs attrs)
{ {
/* Our only 64-bit registers are GICD_IROUTER<n> */ /* Our only 64-bit registers are GICD_IROUTER<n> */
int irq; int irq;
@ -789,9 +802,9 @@ static MemTxResult gicd_readll(GICv3State *s, hwaddr offset,
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
irq = (offset - GICD_IROUTER) / 8; irq = (offset - GICD_IROUTER) / 8;
*data = gicd_read_irouter(s, attrs, irq); *data = gicd_read_irouter(s, attrs, irq);
return MEMTX_OK; return true;
default: default:
return MEMTX_ERROR; return false;
} }
} }
@ -799,7 +812,7 @@ MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs) unsigned size, MemTxAttrs attrs)
{ {
GICv3State *s = (GICv3State *)opaque; GICv3State *s = (GICv3State *)opaque;
MemTxResult r; bool r;
switch (size) { switch (size) {
case 1: case 1:
@ -812,14 +825,14 @@ MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
r = gicd_readl(s, offset, data, attrs); r = gicd_readl(s, offset, data, attrs);
break; break;
case 8: case 8:
r = gicd_readll(s, offset, data, attrs); r = gicd_readq(s, offset, data, attrs);
break; break;
default: default:
r = MEMTX_ERROR; r = false;
break; break;
} }
if (r == MEMTX_ERROR) { if (!r) {
qemu_log_mask(LOG_GUEST_ERROR, qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " TARGET_FMT_plx "%s: invalid guest read at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size); "size %u\n", __func__, offset, size);
@ -829,19 +842,18 @@ MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
* trigger the guest-error logging but don't return it to * trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort. * the caller, or we'll cause a spurious guest data abort.
*/ */
r = MEMTX_OK;
*data = 0; *data = 0;
} else { } else {
trace_gicv3_dist_read(offset, *data, size, attrs.secure); trace_gicv3_dist_read(offset, *data, size, attrs.secure);
} }
return r; return MEMTX_OK;
} }
MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data, MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs) unsigned size, MemTxAttrs attrs)
{ {
GICv3State *s = (GICv3State *)opaque; GICv3State *s = (GICv3State *)opaque;
MemTxResult r; bool r;
switch (size) { switch (size) {
case 1: case 1:
@ -854,14 +866,14 @@ MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
r = gicd_writel(s, offset, data, attrs); r = gicd_writel(s, offset, data, attrs);
break; break;
case 8: case 8:
r = gicd_writell(s, offset, data, attrs); r = gicd_writeq(s, offset, data, attrs);
break; break;
default: default:
r = MEMTX_ERROR; r = false;
break; break;
} }
if (r == MEMTX_ERROR) { if (!r) {
qemu_log_mask(LOG_GUEST_ERROR, qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " TARGET_FMT_plx "%s: invalid guest write at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size); "size %u\n", __func__, offset, size);
@ -871,11 +883,10 @@ MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
* trigger the guest-error logging but don't return it to * trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort. * the caller, or we'll cause a spurious guest data abort.
*/ */
r = MEMTX_OK;
} else { } else {
trace_gicv3_dist_write(offset, data, size, attrs.secure); trace_gicv3_dist_write(offset, data, size, attrs.secure);
} }
return r; return MEMTX_OK;
} }
void gicv3_dist_set_irq(GICv3State *s, int irq, int level) void gicv3_dist_set_irq(GICv3State *s, int irq, int level)

View File

@ -2470,172 +2470,6 @@ static const MemoryRegionOps nvic_sysreg_ops = {
.endianness = DEVICE_NATIVE_ENDIAN, .endianness = DEVICE_NATIVE_ENDIAN,
}; };
static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
}
static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_read(mr, addr, data,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
}
static const MemoryRegionOps nvic_sysreg_ns_ops = {
.read_with_attrs = nvic_sysreg_ns_read,
.write_with_attrs = nvic_sysreg_ns_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
NVICState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
}
static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
NVICState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
attrs);
}
static const MemoryRegionOps nvic_systick_ops = {
.read_with_attrs = nvic_systick_read,
.write_with_attrs = nvic_systick_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemTxResult ras_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
if (attrs.user) {
return MEMTX_ERROR;
}
switch (addr) {
case 0xe10: /* ERRIIDR */
/* architect field = Arm; product/variant/revision 0 */
*data = 0x43b;
break;
case 0xfc8: /* ERRDEVID */
/* Minimal RAS: we implement 0 error record indexes */
*data = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n",
(uint32_t)addr);
*data = 0;
break;
}
return MEMTX_OK;
}
static MemTxResult ras_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
if (attrs.user) {
return MEMTX_ERROR;
}
switch (addr) {
default:
qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n",
(uint32_t)addr);
break;
}
return MEMTX_OK;
}
static const MemoryRegionOps ras_ops = {
.read_with_attrs = ras_read,
.write_with_attrs = ras_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* Unassigned portions of the PPB space are RAZ/WI for privileged
* accesses, and fault for non-privileged accesses.
*/
static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
static const MemoryRegionOps ppb_default_ops = {
.read_with_attrs = ppb_default_read,
.write_with_attrs = ppb_default_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
};
static int nvic_post_load(void *opaque, int version_id) static int nvic_post_load(void *opaque, int version_id)
{ {
NVICState *s = opaque; NVICState *s = opaque;
@ -2851,108 +2685,14 @@ static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
qdev_get_gpio_in_named(dev, "systick-trigger",
M_REG_NS));
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
/* We couldn't init the secure systick device in instance_init
* as we didn't know then if the CPU had the security extensions;
* so we have to do it here.
*/
object_initialize_child(OBJECT(dev), "systick-reg-s",
&s->systick[M_REG_S], TYPE_SYSTICK);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
qdev_get_gpio_in_named(dev, "systick-trigger",
M_REG_S));
}
/* /*
* This device provides a single sysbus memory region which * This device provides a single memory region which covers the
* represents the whole of the "System PPB" space. This is the * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
* range from 0xe0000000 to 0xe00fffff and includes the NVIC, * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
* the System Control Space (system registers), the systick timer,
* and for CPUs with the Security extension an NS banked version
* of all of these.
*
* The default behaviour for unimplemented registers/ranges
* (for instance the Data Watchpoint and Trace unit at 0xe0001000)
* is to RAZ/WI for privileged access and BusFault for non-privileged
* access.
*
* The NVIC and System Control Space (SCS) starts at 0xe000e000
* and looks like this:
* 0x004 - ICTR
* 0x010 - 0xff - systick
* 0x100..0x7ec - NVIC
* 0x7f0..0xcff - Reserved
* 0xd00..0xd3c - SCS registers
* 0xd40..0xeff - Reserved or Not implemented
* 0xf00 - STIR
*
* Some registers within this space are banked between security states.
* In v8M there is a second range 0xe002e000..0xe002efff which is the
* NonSecure alias SCS; secure accesses to this behave like NS accesses
* to the main SCS range, and non-secure accesses (including when
* the security extension is not implemented) are RAZ/WI.
* Note that both the main SCS range and the alias range are defined
* to be exempt from memory attribution (R_BLJT) and so the memory
* transaction attribute always matches the current CPU security
* state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
* wrappers we change attrs.secure to indicate the NS access; so
* generally code determining which banked register to use should
* use attrs.secure; code determining actual behaviour of the system
* should use env->v7m.secure.
*
* The container covers the whole PPB space. Within it the priority
* of overlapping regions is:
* - default region (for RAZ/WI and BusFault) : -1
* - system register regions : 0
* - systick : 1
* This is because the systick device is a small block of registers
* in the middle of the other system control registers.
*/ */
memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
"nvic-default", 0x100000);
memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
"nvic_sysregs", 0x1000); "nvic_sysregs", 0x1000);
memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
memory_region_init_io(&s->systickmem, OBJECT(s),
&nvic_systick_ops, s,
"nvic_systick", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe010,
&s->systickmem, 1);
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
&nvic_sysreg_ns_ops, &s->sysregmem,
"nvic_sysregs_ns", 0x1000);
memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
&nvic_sysreg_ns_ops, &s->systickmem,
"nvic_systick_ns", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0x2e010,
&s->systick_ns_mem, 1);
}
if (cpu_isar_feature(aa32_ras, s->cpu)) {
memory_region_init_io(&s->ras_mem, OBJECT(s),
&ras_ops, s, "nvic_ras", 0x1000);
memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem);
}
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
} }
static void armv7m_nvic_instance_init(Object *obj) static void armv7m_nvic_instance_init(Object *obj)
@ -2961,12 +2701,6 @@ static void armv7m_nvic_instance_init(Object *obj)
NVICState *nvic = NVIC(obj); NVICState *nvic = NVIC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
TYPE_SYSTICK);
/* We can't initialize the secure systick here, as we don't know
* yet if we need it.
*/
sysbus_init_irq(sbd, &nvic->excpout); sysbus_init_irq(sbd, &nvic->excpout);
qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",

93
hw/misc/armv7m_ras.c Normal file
View File

@ -0,0 +1,93 @@
/*
* Arm M-profile RAS (Reliability, Availability and Serviceability) block
*
* Copyright (c) 2021 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "hw/misc/armv7m_ras.h"
#include "qemu/log.h"
static MemTxResult ras_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
if (attrs.user) {
return MEMTX_ERROR;
}
switch (addr) {
case 0xe10: /* ERRIIDR */
/* architect field = Arm; product/variant/revision 0 */
*data = 0x43b;
break;
case 0xfc8: /* ERRDEVID */
/* Minimal RAS: we implement 0 error record indexes */
*data = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n",
(uint32_t)addr);
*data = 0;
break;
}
return MEMTX_OK;
}
static MemTxResult ras_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
if (attrs.user) {
return MEMTX_ERROR;
}
switch (addr) {
default:
qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n",
(uint32_t)addr);
break;
}
return MEMTX_OK;
}
static const MemoryRegionOps ras_ops = {
.read_with_attrs = ras_read,
.write_with_attrs = ras_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void armv7m_ras_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
ARMv7MRAS *s = ARMV7M_RAS(obj);
memory_region_init_io(&s->iomem, obj, &ras_ops,
s, "armv7m-ras", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void armv7m_ras_class_init(ObjectClass *klass, void *data)
{
/* This device has no state: no need for vmstate or reset */
}
static const TypeInfo armv7m_ras_info = {
.name = TYPE_ARMV7M_RAS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMv7MRAS),
.instance_init = armv7m_ras_init,
.class_init = armv7m_ras_class_init,
};
static void armv7m_ras_register_types(void)
{
type_register_static(&armv7m_ras_info);
}
type_init(armv7m_ras_register_types);

View File

@ -17,6 +17,8 @@ softmmu_ss.add(when: 'CONFIG_INTEGRATOR_DEBUG', if_true: files('arm_integrator_d
softmmu_ss.add(when: 'CONFIG_A9SCU', if_true: files('a9scu.c')) softmmu_ss.add(when: 'CONFIG_A9SCU', if_true: files('a9scu.c'))
softmmu_ss.add(when: 'CONFIG_ARM11SCU', if_true: files('arm11scu.c')) softmmu_ss.add(when: 'CONFIG_ARM11SCU', if_true: files('arm11scu.c'))
softmmu_ss.add(when: 'CONFIG_ARM_V7M', if_true: files('armv7m_ras.c'))
# Mac devices # Mac devices
softmmu_ss.add(when: 'CONFIG_MOS6522', if_true: files('mos6522.c')) softmmu_ss.add(when: 'CONFIG_MOS6522', if_true: files('mos6522.c'))

View File

@ -4686,14 +4686,25 @@ static void spapr_machine_latest_class_options(MachineClass *mc)
type_init(spapr_machine_register_##suffix) type_init(spapr_machine_register_##suffix)
/* /*
* pseries-6.1 * pseries-6.2
*/ */
static void spapr_machine_6_1_class_options(MachineClass *mc) static void spapr_machine_6_2_class_options(MachineClass *mc)
{ {
/* Defaults for the latest behaviour inherited from the base class */ /* Defaults for the latest behaviour inherited from the base class */
} }
DEFINE_SPAPR_MACHINE(6_1, "6.1", true); DEFINE_SPAPR_MACHINE(6_2, "6.2", true);
/*
* pseries-6.1
*/
static void spapr_machine_6_1_class_options(MachineClass *mc)
{
spapr_machine_6_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
}
DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
/* /*
* pseries-6.0 * pseries-6.0

View File

@ -791,14 +791,26 @@ bool css_migration_enabled(void)
} \ } \
type_init(ccw_machine_register_##suffix) type_init(ccw_machine_register_##suffix)
static void ccw_machine_6_2_instance_options(MachineState *machine)
{
}
static void ccw_machine_6_2_class_options(MachineClass *mc)
{
}
DEFINE_CCW_MACHINE(6_2, "6.2", true);
static void ccw_machine_6_1_instance_options(MachineState *machine) static void ccw_machine_6_1_instance_options(MachineState *machine)
{ {
ccw_machine_6_2_instance_options(machine);
} }
static void ccw_machine_6_1_class_options(MachineClass *mc) static void ccw_machine_6_1_class_options(MachineClass *mc)
{ {
ccw_machine_6_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
} }
DEFINE_CCW_MACHINE(6_1, "6.1", true); DEFINE_CCW_MACHINE(6_1, "6.1", false);
static void ccw_machine_6_0_instance_options(MachineState *machine) static void ccw_machine_6_0_instance_options(MachineState *machine)
{ {

View File

@ -52,5 +52,8 @@ config SSE_COUNTER
config SSE_TIMER config SSE_TIMER
bool bool
config STELLARIS_GPTM
bool
config AVR_TIMER16 config AVR_TIMER16
bool bool

View File

@ -14,28 +14,32 @@
#include "migration/vmstate.h" #include "migration/vmstate.h"
#include "hw/irq.h" #include "hw/irq.h"
#include "hw/sysbus.h" #include "hw/sysbus.h"
#include "hw/qdev-clock.h"
#include "qemu/timer.h" #include "qemu/timer.h"
#include "qemu/log.h" #include "qemu/log.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h" #include "trace.h"
/* qemu timers run at 1GHz. We want something closer to 1MHz. */
#define SYSTICK_SCALE 1000ULL
#define SYSTICK_ENABLE (1 << 0) #define SYSTICK_ENABLE (1 << 0)
#define SYSTICK_TICKINT (1 << 1) #define SYSTICK_TICKINT (1 << 1)
#define SYSTICK_CLKSOURCE (1 << 2) #define SYSTICK_CLKSOURCE (1 << 2)
#define SYSTICK_COUNTFLAG (1 << 16) #define SYSTICK_COUNTFLAG (1 << 16)
int system_clock_scale; #define SYSCALIB_NOREF (1U << 31)
#define SYSCALIB_SKEW (1U << 30)
#define SYSCALIB_TENMS ((1U << 24) - 1)
/* Conversion factor from qemu timer to SysTick frequencies. */ static void systick_set_period_from_clock(SysTickState *s)
static inline int64_t systick_scale(SysTickState *s)
{ {
/*
* Set the ptimer period from whichever clock is selected.
* Must be called from within a ptimer transaction block.
*/
if (s->control & SYSTICK_CLKSOURCE) { if (s->control & SYSTICK_CLKSOURCE) {
return system_clock_scale; ptimer_set_period_from_clock(s->ptimer, s->cpuclk, 1);
} else { } else {
return 1000; ptimer_set_period_from_clock(s->ptimer, s->refclk, 1);
} }
} }
@ -82,7 +86,28 @@ static MemTxResult systick_read(void *opaque, hwaddr addr, uint64_t *data,
val = ptimer_get_count(s->ptimer); val = ptimer_get_count(s->ptimer);
break; break;
case 0xc: /* SysTick Calibration Value. */ case 0xc: /* SysTick Calibration Value. */
val = 10000; /*
* In real hardware it is possible to make this register report
* a different value from what the reference clock is actually
* running at. We don't model that (which usually happens due
* to integration errors in the real hardware) and instead always
* report the theoretical correct value as described in the
* knowledgebase article at
* https://developer.arm.com/documentation/ka001325/latest
* If necessary, we could implement an extra QOM property on this
* device to force the STCALIB value to something different from
* the "correct" value.
*/
if (!clock_has_source(s->refclk)) {
val = SYSCALIB_NOREF;
break;
}
val = clock_ns_to_ticks(s->refclk, 10 * SCALE_MS) - 1;
val &= SYSCALIB_TENMS;
if (clock_ticks_to_ns(s->refclk, val + 1) != 10 * SCALE_MS) {
/* report that tick count does not yield exactly 10ms */
val |= SYSCALIB_SKEW;
}
break; break;
default: default:
val = 0; val = 0;
@ -114,6 +139,11 @@ static MemTxResult systick_write(void *opaque, hwaddr addr,
{ {
uint32_t oldval; uint32_t oldval;
if (!clock_has_source(s->refclk)) {
/* This bit is always 1 if there is no external refclk */
value |= SYSTICK_CLKSOURCE;
}
ptimer_transaction_begin(s->ptimer); ptimer_transaction_begin(s->ptimer);
oldval = s->control; oldval = s->control;
s->control &= 0xfffffff8; s->control &= 0xfffffff8;
@ -121,19 +151,14 @@ static MemTxResult systick_write(void *opaque, hwaddr addr,
if ((oldval ^ value) & SYSTICK_ENABLE) { if ((oldval ^ value) & SYSTICK_ENABLE) {
if (value & SYSTICK_ENABLE) { if (value & SYSTICK_ENABLE) {
/*
* Always reload the period in case board code has
* changed system_clock_scale. If we ever replace that
* global with a more sensible API then we might be able
* to set the period only when it actually changes.
*/
ptimer_set_period(s->ptimer, systick_scale(s));
ptimer_run(s->ptimer, 0); ptimer_run(s->ptimer, 0);
} else { } else {
ptimer_stop(s->ptimer); ptimer_stop(s->ptimer);
} }
} else if ((oldval ^ value) & SYSTICK_CLKSOURCE) { }
ptimer_set_period(s->ptimer, systick_scale(s));
if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
systick_set_period_from_clock(s);
} }
ptimer_transaction_commit(s->ptimer); ptimer_transaction_commit(s->ptimer);
break; break;
@ -176,20 +201,42 @@ static void systick_reset(DeviceState *dev)
{ {
SysTickState *s = SYSTICK(dev); SysTickState *s = SYSTICK(dev);
/*
* Forgetting to set system_clock_scale is always a board code
* bug. We can't check this earlier because for some boards
* (like stellaris) it is not yet configured at the point where
* the systick device is realized.
*/
assert(system_clock_scale != 0);
ptimer_transaction_begin(s->ptimer); ptimer_transaction_begin(s->ptimer);
s->control = 0; s->control = 0;
if (!clock_has_source(s->refclk)) {
/* This bit is always 1 if there is no external refclk */
s->control |= SYSTICK_CLKSOURCE;
}
ptimer_stop(s->ptimer); ptimer_stop(s->ptimer);
ptimer_set_count(s->ptimer, 0); ptimer_set_count(s->ptimer, 0);
ptimer_set_limit(s->ptimer, 0, 0); ptimer_set_limit(s->ptimer, 0, 0);
ptimer_set_period(s->ptimer, systick_scale(s)); systick_set_period_from_clock(s);
ptimer_transaction_commit(s->ptimer);
}
static void systick_cpuclk_update(void *opaque, ClockEvent event)
{
SysTickState *s = SYSTICK(opaque);
if (!(s->control & SYSTICK_CLKSOURCE)) {
/* currently using refclk, we can ignore cpuclk changes */
}
ptimer_transaction_begin(s->ptimer);
ptimer_set_period_from_clock(s->ptimer, s->cpuclk, 1);
ptimer_transaction_commit(s->ptimer);
}
static void systick_refclk_update(void *opaque, ClockEvent event)
{
SysTickState *s = SYSTICK(opaque);
if (s->control & SYSTICK_CLKSOURCE) {
/* currently using cpuclk, we can ignore refclk changes */
}
ptimer_transaction_begin(s->ptimer);
ptimer_set_period_from_clock(s->ptimer, s->refclk, 1);
ptimer_transaction_commit(s->ptimer); ptimer_transaction_commit(s->ptimer);
} }
@ -201,6 +248,11 @@ static void systick_instance_init(Object *obj)
memory_region_init_io(&s->iomem, obj, &systick_ops, s, "systick", 0xe0); memory_region_init_io(&s->iomem, obj, &systick_ops, s, "systick", 0xe0);
sysbus_init_mmio(sbd, &s->iomem); sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq); sysbus_init_irq(sbd, &s->irq);
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
systick_refclk_update, s, ClockUpdate);
s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk",
systick_cpuclk_update, s, ClockUpdate);
} }
static void systick_realize(DeviceState *dev, Error **errp) static void systick_realize(DeviceState *dev, Error **errp)
@ -211,13 +263,21 @@ static void systick_realize(DeviceState *dev, Error **errp)
PTIMER_POLICY_NO_COUNTER_ROUND_DOWN | PTIMER_POLICY_NO_COUNTER_ROUND_DOWN |
PTIMER_POLICY_NO_IMMEDIATE_RELOAD | PTIMER_POLICY_NO_IMMEDIATE_RELOAD |
PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT); PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT);
if (!clock_has_source(s->cpuclk)) {
error_setg(errp, "systick: cpuclk must be connected");
return;
}
/* It's OK not to connect the refclk */
} }
static const VMStateDescription vmstate_systick = { static const VMStateDescription vmstate_systick = {
.name = "armv7m_systick", .name = "armv7m_systick",
.version_id = 2, .version_id = 3,
.minimum_version_id = 2, .minimum_version_id = 3,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_CLOCK(refclk, SysTickState),
VMSTATE_CLOCK(cpuclk, SysTickState),
VMSTATE_UINT32(control, SysTickState), VMSTATE_UINT32(control, SysTickState),
VMSTATE_INT64(tick, SysTickState), VMSTATE_INT64(tick, SysTickState),
VMSTATE_PTIMER(ptimer, SysTickState), VMSTATE_PTIMER(ptimer, SysTickState),

View File

@ -31,6 +31,7 @@ softmmu_ss.add(when: 'CONFIG_SH_TIMER', if_true: files('sh_timer.c'))
softmmu_ss.add(when: 'CONFIG_SLAVIO', if_true: files('slavio_timer.c')) softmmu_ss.add(when: 'CONFIG_SLAVIO', if_true: files('slavio_timer.c'))
softmmu_ss.add(when: 'CONFIG_SSE_COUNTER', if_true: files('sse-counter.c')) softmmu_ss.add(when: 'CONFIG_SSE_COUNTER', if_true: files('sse-counter.c'))
softmmu_ss.add(when: 'CONFIG_SSE_TIMER', if_true: files('sse-timer.c')) softmmu_ss.add(when: 'CONFIG_SSE_TIMER', if_true: files('sse-timer.c'))
softmmu_ss.add(when: 'CONFIG_STELLARIS_GPTM', if_true: files('stellaris-gptm.c'))
softmmu_ss.add(when: 'CONFIG_STM32F2XX_TIMER', if_true: files('stm32f2xx_timer.c')) softmmu_ss.add(when: 'CONFIG_STM32F2XX_TIMER', if_true: files('stm32f2xx_timer.c'))
softmmu_ss.add(when: 'CONFIG_XILINX', if_true: files('xilinx_timer.c')) softmmu_ss.add(when: 'CONFIG_XILINX', if_true: files('xilinx_timer.c'))
specific_ss.add(when: 'CONFIG_IBEX', if_true: files('ibex_timer.c')) specific_ss.add(when: 'CONFIG_IBEX', if_true: files('ibex_timer.c'))

332
hw/timer/stellaris-gptm.c Normal file
View File

@ -0,0 +1,332 @@
/*
* Luminary Micro Stellaris General Purpose Timer Module
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "hw/qdev-clock.h"
#include "hw/timer/stellaris-gptm.h"
static void gptm_update_irq(gptm_state *s)
{
int level;
level = (s->state & s->mask) != 0;
qemu_set_irq(s->irq, level);
}
static void gptm_stop(gptm_state *s, int n)
{
timer_del(s->timer[n]);
}
static void gptm_reload(gptm_state *s, int n, int reset)
{
int64_t tick;
if (reset) {
tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
} else {
tick = s->tick[n];
}
if (s->config == 0) {
/* 32-bit CountDown. */
uint32_t count;
count = s->load[0] | (s->load[1] << 16);
tick += clock_ticks_to_ns(s->clk, count);
} else if (s->config == 1) {
/* 32-bit RTC. 1Hz tick. */
tick += NANOSECONDS_PER_SECOND;
} else if (s->mode[n] == 0xa) {
/* PWM mode. Not implemented. */
} else {
qemu_log_mask(LOG_UNIMP,
"GPTM: 16-bit timer mode unimplemented: 0x%x\n",
s->mode[n]);
return;
}
s->tick[n] = tick;
timer_mod(s->timer[n], tick);
}
static void gptm_tick(void *opaque)
{
gptm_state **p = (gptm_state **)opaque;
gptm_state *s;
int n;
s = *p;
n = p - s->opaque;
if (s->config == 0) {
s->state |= 1;
if ((s->control & 0x20)) {
/* Output trigger. */
qemu_irq_pulse(s->trigger);
}
if (s->mode[0] & 1) {
/* One-shot. */
s->control &= ~1;
} else {
/* Periodic. */
gptm_reload(s, 0, 0);
}
} else if (s->config == 1) {
/* RTC. */
uint32_t match;
s->rtc++;
match = s->match[0] | (s->match[1] << 16);
if (s->rtc > match)
s->rtc = 0;
if (s->rtc == 0) {
s->state |= 8;
}
gptm_reload(s, 0, 0);
} else if (s->mode[n] == 0xa) {
/* PWM mode. Not implemented. */
} else {
qemu_log_mask(LOG_UNIMP,
"GPTM: 16-bit timer mode unimplemented: 0x%x\n",
s->mode[n]);
}
gptm_update_irq(s);
}
static uint64_t gptm_read(void *opaque, hwaddr offset,
unsigned size)
{
gptm_state *s = (gptm_state *)opaque;
switch (offset) {
case 0x00: /* CFG */
return s->config;
case 0x04: /* TAMR */
return s->mode[0];
case 0x08: /* TBMR */
return s->mode[1];
case 0x0c: /* CTL */
return s->control;
case 0x18: /* IMR */
return s->mask;
case 0x1c: /* RIS */
return s->state;
case 0x20: /* MIS */
return s->state & s->mask;
case 0x24: /* CR */
return 0;
case 0x28: /* TAILR */
return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
case 0x2c: /* TBILR */
return s->load[1];
case 0x30: /* TAMARCHR */
return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
case 0x34: /* TBMATCHR */
return s->match[1];
case 0x38: /* TAPR */
return s->prescale[0];
case 0x3c: /* TBPR */
return s->prescale[1];
case 0x40: /* TAPMR */
return s->match_prescale[0];
case 0x44: /* TBPMR */
return s->match_prescale[1];
case 0x48: /* TAR */
if (s->config == 1) {
return s->rtc;
}
qemu_log_mask(LOG_UNIMP,
"GPTM: read of TAR but timer read not supported\n");
return 0;
case 0x4c: /* TBR */
qemu_log_mask(LOG_UNIMP,
"GPTM: read of TBR but timer read not supported\n");
return 0;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
offset);
return 0;
}
}
static void gptm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
gptm_state *s = (gptm_state *)opaque;
uint32_t oldval;
/*
* The timers should be disabled before changing the configuration.
* We take advantage of this and defer everything until the timer
* is enabled.
*/
switch (offset) {
case 0x00: /* CFG */
s->config = value;
break;
case 0x04: /* TAMR */
s->mode[0] = value;
break;
case 0x08: /* TBMR */
s->mode[1] = value;
break;
case 0x0c: /* CTL */
oldval = s->control;
s->control = value;
/* TODO: Implement pause. */
if ((oldval ^ value) & 1) {
if (value & 1) {
gptm_reload(s, 0, 1);
} else {
gptm_stop(s, 0);
}
}
if (((oldval ^ value) & 0x100) && s->config >= 4) {
if (value & 0x100) {
gptm_reload(s, 1, 1);
} else {
gptm_stop(s, 1);
}
}
break;
case 0x18: /* IMR */
s->mask = value & 0x77;
gptm_update_irq(s);
break;
case 0x24: /* CR */
s->state &= ~value;
break;
case 0x28: /* TAILR */
s->load[0] = value & 0xffff;
if (s->config < 4) {
s->load[1] = value >> 16;
}
break;
case 0x2c: /* TBILR */
s->load[1] = value & 0xffff;
break;
case 0x30: /* TAMARCHR */
s->match[0] = value & 0xffff;
if (s->config < 4) {
s->match[1] = value >> 16;
}
break;
case 0x34: /* TBMATCHR */
s->match[1] = value >> 16;
break;
case 0x38: /* TAPR */
s->prescale[0] = value;
break;
case 0x3c: /* TBPR */
s->prescale[1] = value;
break;
case 0x40: /* TAPMR */
s->match_prescale[0] = value;
break;
case 0x44: /* TBPMR */
s->match_prescale[0] = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
offset);
}
gptm_update_irq(s);
}
static const MemoryRegionOps gptm_ops = {
.read = gptm_read,
.write = gptm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_stellaris_gptm = {
.name = "stellaris_gptm",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32(config, gptm_state),
VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
VMSTATE_UINT32(control, gptm_state),
VMSTATE_UINT32(state, gptm_state),
VMSTATE_UINT32(mask, gptm_state),
VMSTATE_UNUSED(8),
VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
VMSTATE_UINT32(rtc, gptm_state),
VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
VMSTATE_CLOCK(clk, gptm_state),
VMSTATE_END_OF_LIST()
}
};
static void stellaris_gptm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
gptm_state *s = STELLARIS_GPTM(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &s->irq);
qdev_init_gpio_out(dev, &s->trigger, 1);
memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
"gptm", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
s->opaque[0] = s->opaque[1] = s;
/*
* TODO: in an ideal world we would model the effects of changing
* the input clock frequency while the countdown timer is active.
* The best way to do this would be to convert the device to use
* ptimer instead of hand-rolling its own timer. This would also
* make it easy to implement reading the current count from the
* TAR and TBR registers.
*/
s->clk = qdev_init_clock_in(dev, "clk", NULL, NULL, 0);
}
static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
{
gptm_state *s = STELLARIS_GPTM(dev);
if (!clock_has_source(s->clk)) {
error_setg(errp, "stellaris-gptm: clk must be connected");
return;
}
s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
}
static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_stellaris_gptm;
dc->realize = stellaris_gptm_realize;
}
static const TypeInfo stellaris_gptm_info = {
.name = TYPE_STELLARIS_GPTM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(gptm_state),
.instance_init = stellaris_gptm_init,
.class_init = stellaris_gptm_class_init,
};
static void stellaris_gptm_register_types(void)
{
type_register_static(&stellaris_gptm_info);
}
type_init(stellaris_gptm_register_types)

View File

@ -12,8 +12,10 @@
#include "hw/sysbus.h" #include "hw/sysbus.h"
#include "hw/intc/armv7m_nvic.h" #include "hw/intc/armv7m_nvic.h"
#include "hw/misc/armv7m_ras.h"
#include "target/arm/idau.h" #include "target/arm/idau.h"
#include "qom/object.h" #include "qom/object.h"
#include "hw/clock.h"
#define TYPE_BITBAND "ARM-bitband-memory" #define TYPE_BITBAND "ARM-bitband-memory"
OBJECT_DECLARE_SIMPLE_TYPE(BitBandState, BITBAND) OBJECT_DECLARE_SIMPLE_TYPE(BitBandState, BITBAND)
@ -50,6 +52,8 @@ OBJECT_DECLARE_SIMPLE_TYPE(ARMv7MState, ARMV7M)
* + Property "vfp": enable VFP (forwarded to CPU object) * + Property "vfp": enable VFP (forwarded to CPU object)
* + Property "dsp": enable DSP (forwarded to CPU object) * + Property "dsp": enable DSP (forwarded to CPU object)
* + Property "enable-bitband": expose bitbanded IO * + Property "enable-bitband": expose bitbanded IO
* + Clock input "refclk" is the external reference clock for the systick timers
* + Clock input "cpuclk" is the main CPU clock
*/ */
struct ARMv7MState { struct ARMv7MState {
/*< private >*/ /*< private >*/
@ -58,11 +62,31 @@ struct ARMv7MState {
NVICState nvic; NVICState nvic;
BitBandState bitband[ARMV7M_NUM_BITBANDS]; BitBandState bitband[ARMV7M_NUM_BITBANDS];
ARMCPU *cpu; ARMCPU *cpu;
ARMv7MRAS ras;
SysTickState systick[M_REG_NUM_BANKS];
/* MemoryRegion we pass to the CPU, with our devices layered on /* MemoryRegion we pass to the CPU, with our devices layered on
* top of the ones the board provides in board_memory. * top of the ones the board provides in board_memory.
*/ */
MemoryRegion container; MemoryRegion container;
/*
* MemoryRegion which passes the transaction to either the S or the
* NS systick device depending on the transaction attributes
*/
MemoryRegion systickmem;
/*
* MemoryRegion which enforces the S/NS handling of the systick
* device NS alias region and passes the transaction to the
* NS systick device if appropriate.
*/
MemoryRegion systick_ns_mem;
/* Ditto, for the sysregs region provided by the NVIC */
MemoryRegion sysreg_ns_mem;
/* MR providing default PPB behaviour */
MemoryRegion defaultmem;
Clock *refclk;
Clock *cpuclk;
/* Properties */ /* Properties */
char *cpu_type; char *cpu_type;

View File

@ -30,6 +30,7 @@
#include "hw/misc/msf2-sysreg.h" #include "hw/misc/msf2-sysreg.h"
#include "hw/ssi/mss-spi.h" #include "hw/ssi/mss-spi.h"
#include "hw/net/msf2-emac.h" #include "hw/net/msf2-emac.h"
#include "hw/clock.h"
#include "qom/object.h" #include "qom/object.h"
#define TYPE_MSF2_SOC "msf2-soc" #define TYPE_MSF2_SOC "msf2-soc"
@ -57,7 +58,8 @@ struct MSF2State {
uint64_t envm_size; uint64_t envm_size;
uint64_t esram_size; uint64_t esram_size;
uint32_t m3clk; Clock *m3clk;
Clock *refclk;
uint8_t apb0div; uint8_t apb0div;
uint8_t apb1div; uint8_t apb1div;
@ -65,6 +67,10 @@ struct MSF2State {
MSSTimerState timer; MSSTimerState timer;
MSSSpiState spi[MSF2_NUM_SPIS]; MSSSpiState spi[MSF2_NUM_SPIS];
MSF2EmacState emac; MSF2EmacState emac;
MemoryRegion nvm;
MemoryRegion nvm_alias;
MemoryRegion sram;
}; };
#endif #endif

View File

@ -17,6 +17,7 @@
#include "hw/gpio/nrf51_gpio.h" #include "hw/gpio/nrf51_gpio.h"
#include "hw/nvram/nrf51_nvm.h" #include "hw/nvram/nrf51_nvm.h"
#include "hw/timer/nrf51_timer.h" #include "hw/timer/nrf51_timer.h"
#include "hw/clock.h"
#include "qom/object.h" #include "qom/object.h"
#define TYPE_NRF51_SOC "nrf51-soc" #define TYPE_NRF51_SOC "nrf51-soc"
@ -50,6 +51,7 @@ struct NRF51State {
MemoryRegion container; MemoryRegion container;
Clock *sysclk;
}; };
#endif #endif

View File

@ -29,6 +29,7 @@
#include "hw/ssi/stm32f2xx_spi.h" #include "hw/ssi/stm32f2xx_spi.h"
#include "hw/arm/armv7m.h" #include "hw/arm/armv7m.h"
#include "qom/object.h" #include "qom/object.h"
#include "hw/clock.h"
#define TYPE_STM32F100_SOC "stm32f100-soc" #define TYPE_STM32F100_SOC "stm32f100-soc"
OBJECT_DECLARE_SIMPLE_TYPE(STM32F100State, STM32F100_SOC) OBJECT_DECLARE_SIMPLE_TYPE(STM32F100State, STM32F100_SOC)
@ -52,6 +53,13 @@ struct STM32F100State {
STM32F2XXUsartState usart[STM_NUM_USARTS]; STM32F2XXUsartState usart[STM_NUM_USARTS];
STM32F2XXSPIState spi[STM_NUM_SPIS]; STM32F2XXSPIState spi[STM_NUM_SPIS];
MemoryRegion sram;
MemoryRegion flash;
MemoryRegion flash_alias;
Clock *sysclk;
Clock *refclk;
}; };
#endif #endif

View File

@ -32,6 +32,7 @@
#include "hw/or-irq.h" #include "hw/or-irq.h"
#include "hw/ssi/stm32f2xx_spi.h" #include "hw/ssi/stm32f2xx_spi.h"
#include "hw/arm/armv7m.h" #include "hw/arm/armv7m.h"
#include "hw/clock.h"
#include "qom/object.h" #include "qom/object.h"
#define TYPE_STM32F205_SOC "stm32f205-soc" #define TYPE_STM32F205_SOC "stm32f205-soc"
@ -63,6 +64,13 @@ struct STM32F205State {
STM32F2XXSPIState spi[STM_NUM_SPIS]; STM32F2XXSPIState spi[STM_NUM_SPIS];
qemu_or_irq *adc_irqs; qemu_or_irq *adc_irqs;
MemoryRegion sram;
MemoryRegion flash;
MemoryRegion flash_alias;
Clock *sysclk;
Clock *refclk;
}; };
#endif #endif

View File

@ -68,6 +68,9 @@ struct STM32F405State {
MemoryRegion sram; MemoryRegion sram;
MemoryRegion flash; MemoryRegion flash;
MemoryRegion flash_alias; MemoryRegion flash_alias;
Clock *sysclk;
Clock *refclk;
}; };
#endif #endif

View File

@ -353,6 +353,9 @@ struct MachineState {
} \ } \
type_init(machine_initfn##_register_types) type_init(machine_initfn##_register_types)
extern GlobalProperty hw_compat_6_1[];
extern const size_t hw_compat_6_1_len;
extern GlobalProperty hw_compat_6_0[]; extern GlobalProperty hw_compat_6_0[];
extern const size_t hw_compat_6_0_len; extern const size_t hw_compat_6_0_len;

View File

@ -81,6 +81,10 @@ struct Clock {
void *callback_opaque; void *callback_opaque;
unsigned int callback_events; unsigned int callback_events;
/* Ratio of the parent clock to run the child clocks at */
uint32_t multiplier;
uint32_t divider;
/* Clocks are organized in a clock tree */ /* Clocks are organized in a clock tree */
Clock *source; Clock *source;
QLIST_HEAD(, Clock) children; QLIST_HEAD(, Clock) children;
@ -350,4 +354,29 @@ static inline bool clock_is_enabled(const Clock *clk)
*/ */
char *clock_display_freq(Clock *clk); char *clock_display_freq(Clock *clk);
/**
* clock_set_mul_div: set multiplier/divider for child clocks
* @clk: clock
* @multiplier: multiplier value
* @divider: divider value
*
* By default, a Clock's children will all run with the same period
* as their parent. This function allows you to adjust the multiplier
* and divider used to derive the child clock frequency.
* For example, setting a multiplier of 2 and a divider of 3
* will run child clocks with a period 2/3 of the parent clock,
* so if the parent clock is an 8MHz clock the children will
* be 12MHz.
*
* Setting the multiplier to 0 will stop the child clocks.
* Setting the divider to 0 is a programming error (diagnosed with
* an assertion failure).
* Setting a multiplier value that results in the child period
* overflowing is not diagnosed.
*
* Note that this function does not call clock_propagate(); the
* caller should do that if necessary.
*/
void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider);
#endif /* QEMU_HW_CLOCK_H */ #endif /* QEMU_HW_CLOCK_H */

View File

@ -196,6 +196,9 @@ void pc_system_parse_ovmf_flash(uint8_t *flash_ptr, size_t flash_size);
void pc_madt_cpu_entry(AcpiDeviceIf *adev, int uid, void pc_madt_cpu_entry(AcpiDeviceIf *adev, int uid,
const CPUArchIdList *apic_ids, GArray *entry); const CPUArchIdList *apic_ids, GArray *entry);
extern GlobalProperty pc_compat_6_1[];
extern const size_t pc_compat_6_1_len;
extern GlobalProperty pc_compat_6_0[]; extern GlobalProperty pc_compat_6_0[];
extern const size_t pc_compat_6_0_len; extern const size_t pc_compat_6_0_len;

View File

@ -80,18 +80,10 @@ struct NVICState {
int vectpending_prio; /* group prio of the exeception in vectpending */ int vectpending_prio; /* group prio of the exeception in vectpending */
MemoryRegion sysregmem; MemoryRegion sysregmem;
MemoryRegion sysreg_ns_mem;
MemoryRegion systickmem;
MemoryRegion systick_ns_mem;
MemoryRegion ras_mem;
MemoryRegion container;
MemoryRegion defaultmem;
uint32_t num_irq; uint32_t num_irq;
qemu_irq excpout; qemu_irq excpout;
qemu_irq sysresetreq; qemu_irq sysresetreq;
SysTickState systick[M_REG_NUM_BANKS];
}; };
#endif #endif

View File

@ -0,0 +1,37 @@
/*
* Arm M-profile RAS (Reliability, Availability and Serviceability) block
*
* Copyright (c) 2021 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the RAS register block of an M-profile CPU
* (the registers starting at 0xE0005000 with ERRFRn).
*
* QEMU interface:
* + sysbus MMIO region 0: the register bank
*
* The QEMU implementation currently provides "minimal RAS" only.
*/
#ifndef HW_MISC_ARMV7M_RAS_H
#define HW_MISC_ARMV7M_RAS_H
#include "hw/sysbus.h"
#define TYPE_ARMV7M_RAS "armv7m-ras"
OBJECT_DECLARE_SIMPLE_TYPE(ARMv7MRAS, ARMV7M_RAS)
struct ARMv7MRAS {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion iomem;
};
#endif

View File

@ -15,11 +15,23 @@
#include "hw/sysbus.h" #include "hw/sysbus.h"
#include "qom/object.h" #include "qom/object.h"
#include "hw/ptimer.h" #include "hw/ptimer.h"
#include "hw/clock.h"
#define TYPE_SYSTICK "armv7m_systick" #define TYPE_SYSTICK "armv7m_systick"
OBJECT_DECLARE_SIMPLE_TYPE(SysTickState, SYSTICK) OBJECT_DECLARE_SIMPLE_TYPE(SysTickState, SYSTICK)
/*
* QEMU interface:
* + sysbus MMIO region 0 is the register interface (covering
* the registers which are mapped at address 0xE000E010)
* + sysbus IRQ 0 is the interrupt line to the NVIC
* + Clock input "refclk" is the external reference clock
* (used when SYST_CSR.CLKSOURCE == 0)
* + Clock input "cpuclk" is the main CPU clock
* (used when SYST_CSR.CLKSOURCE == 1)
*/
struct SysTickState { struct SysTickState {
/*< private >*/ /*< private >*/
SysBusDevice parent_obj; SysBusDevice parent_obj;
@ -31,28 +43,8 @@ struct SysTickState {
ptimer_state *ptimer; ptimer_state *ptimer;
MemoryRegion iomem; MemoryRegion iomem;
qemu_irq irq; qemu_irq irq;
Clock *refclk;
Clock *cpuclk;
}; };
/*
* Multiplication factor to convert from system clock ticks to qemu timer
* ticks. This should be set (by board code, usually) to a value
* equal to NANOSECONDS_PER_SECOND / frq, where frq is the clock frequency
* in Hz of the CPU.
*
* This value is used by the systick device when it is running in
* its "use the CPU clock" mode (ie when SYST_CSR.CLKSOURCE == 1) to
* set how fast the timer should tick.
*
* TODO: we should refactor this so that rather than using a global
* we use a device property or something similar. This is complicated
* because (a) the property would need to be plumbed through from the
* board code down through various layers to the systick device
* and (b) the property needs to be modifiable after realize, because
* the stellaris board uses this to implement the behaviour where the
* guest can reprogram the PLL registers to downclock the CPU, and the
* systick device needs to react accordingly. Possibly this should
* be deferred until we have a good API for modelling clock trees.
*/
extern int system_clock_scale;
#endif #endif

View File

@ -0,0 +1,51 @@
/*
* Luminary Micro Stellaris General Purpose Timer Module
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#ifndef HW_TIMER_STELLARIS_GPTM_H
#define HW_TIMER_STELLARIS_GPTM_H
#include "qom/object.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "hw/clock.h"
#define TYPE_STELLARIS_GPTM "stellaris-gptm"
OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
/*
* QEMU interface:
* + sysbus MMIO region 0: register bank
* + sysbus IRQ 0: timer interrupt
* + unnamed GPIO output 0: trigger output for the ADC
* + Clock input "clk": the 32-bit countdown timer runs at this speed
*/
struct gptm_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t config;
uint32_t mode[2];
uint32_t control;
uint32_t state;
uint32_t mask;
uint32_t load[2];
uint32_t match[2];
uint32_t prescale[2];
uint32_t match_prescale[2];
uint32_t rtc;
int64_t tick[2];
struct gptm_state *opaque[2];
QEMUTimer *timer[2];
/* The timers have an alternate output used to trigger the ADC. */
qemu_irq trigger;
qemu_irq irq;
Clock *clk;
};
#endif

View File

@ -841,10 +841,58 @@ static void aarch64_max_initfn(Object *obj)
cpu_max_set_sve_max_vq, NULL, NULL); cpu_max_set_sve_max_vq, NULL, NULL);
} }
static void aarch64_a64fx_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,a64fx";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x461f0010;
cpu->revidr = 0x00000000;
cpu->ctr = 0x86668006;
cpu->reset_sctlr = 0x30000180;
cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
cpu->isar.id_aa64pfr1 = 0x0000000000000000;
cpu->isar.id_aa64dfr0 = 0x0000000010305408;
cpu->isar.id_aa64dfr1 = 0x0000000000000000;
cpu->id_aa64afr0 = 0x0000000000000000;
cpu->id_aa64afr1 = 0x0000000000000000;
cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
cpu->isar.id_aa64isar0 = 0x0000000010211120;
cpu->isar.id_aa64isar1 = 0x0000000000010001;
cpu->isar.id_aa64zfr0 = 0x0000000000000000;
cpu->clidr = 0x0000000080000023;
cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
cpu->dcz_blocksize = 6; /* 256 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
/* Suppport of A64FX's vector length are 128,256 and 512bit only */
aarch64_add_sve_properties(obj);
bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
set_bit(0, cpu->sve_vq_supported); /* 128bit */
set_bit(1, cpu->sve_vq_supported); /* 256bit */
set_bit(3, cpu->sve_vq_supported); /* 512bit */
/* TODO: Add A64FX specific HPC extension registers */
}
static const ARMCPUInfo aarch64_cpus[] = { static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn }, { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
{ .name = "cortex-a53", .initfn = aarch64_a53_initfn }, { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
{ .name = "cortex-a72", .initfn = aarch64_a72_initfn }, { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
{ .name = "a64fx", .initfn = aarch64_a64fx_initfn },
{ .name = "max", .initfn = aarch64_max_initfn }, { .name = "max", .initfn = aarch64_max_initfn },
}; };

View File

@ -654,12 +654,9 @@ static void cortex_m55_initfn(Object *obj)
cpu->revidr = 0; cpu->revidr = 0;
cpu->pmsav7_dregion = 16; cpu->pmsav7_dregion = 16;
cpu->sau_sregion = 8; cpu->sau_sregion = 8;
/* /* These are the MVFR* values for the FPU + full MVE configuration */
* These are the MVFR* values for the FPU, no MVE configuration;
* we will update them later when we implement MVE
*/
cpu->isar.mvfr0 = 0x10110221; cpu->isar.mvfr0 = 0x10110221;
cpu->isar.mvfr1 = 0x12100011; cpu->isar.mvfr1 = 0x12100211;
cpu->isar.mvfr2 = 0x00000040; cpu->isar.mvfr2 = 0x00000040;
cpu->isar.id_pfr0 = 0x20000030; cpu->isar.id_pfr0 = 0x20000030;
cpu->isar.id_pfr1 = 0x00000230; cpu->isar.id_pfr1 = 0x00000230;

View File

@ -177,6 +177,16 @@ DEF_HELPER_FLAGS_3(mve_vminab, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vminah, TCG_CALL_NO_WG, void, env, ptr, ptr) DEF_HELPER_FLAGS_3(mve_vminah, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vminaw, TCG_CALL_NO_WG, void, env, ptr, ptr) DEF_HELPER_FLAGS_3(mve_vminaw, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcvt_rm_sh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_rm_uh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_rm_ss, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_rm_us, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vcvtb_sh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vcvtt_sh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vcvtb_hs, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vcvtt_hs, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vmovnbb, TCG_CALL_NO_WG, void, env, ptr, ptr) DEF_HELPER_FLAGS_3(mve_vmovnbb, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vmovnbh, TCG_CALL_NO_WG, void, env, ptr, ptr) DEF_HELPER_FLAGS_3(mve_vmovnbh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vmovntb, TCG_CALL_NO_WG, void, env, ptr, ptr) DEF_HELPER_FLAGS_3(mve_vmovntb, TCG_CALL_NO_WG, void, env, ptr, ptr)
@ -410,6 +420,60 @@ DEF_HELPER_FLAGS_4(mve_vhcadd270b, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vhcadd270h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr) DEF_HELPER_FLAGS_4(mve_vhcadd270h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vhcadd270w, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr) DEF_HELPER_FLAGS_4(mve_vhcadd270w, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfaddh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfadds, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfsubh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfsubs, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmulh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmuls, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfabdh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfabds, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vmaxnmh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vmaxnms, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vminnmh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vminnms, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vmaxnmah, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vmaxnmas, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vminnmah, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vminnmas, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfcadd90h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfcadd90s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfcadd270h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfcadd270s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmah, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmas, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmsh, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vfmss, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul0h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul0s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul90h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul90s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul180h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul180s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul270h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmul270s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla0h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla0s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla90h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla90s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla180h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla180s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla270h, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vcmla270s, TCG_CALL_NO_WG, void, env, ptr, ptr, ptr)
DEF_HELPER_FLAGS_4(mve_vadd_scalarb, TCG_CALL_NO_WG, void, env, ptr, ptr, i32) DEF_HELPER_FLAGS_4(mve_vadd_scalarb, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vadd_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32) DEF_HELPER_FLAGS_4(mve_vadd_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vadd_scalarw, TCG_CALL_NO_WG, void, env, ptr, ptr, i32) DEF_HELPER_FLAGS_4(mve_vadd_scalarw, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
@ -560,6 +624,18 @@ DEF_HELPER_FLAGS_3(mve_vminavb, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminavh, TCG_CALL_NO_WG, i32, env, ptr, i32) DEF_HELPER_FLAGS_3(mve_vminavh, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminavw, TCG_CALL_NO_WG, i32, env, ptr, i32) DEF_HELPER_FLAGS_3(mve_vminavw, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vmaxnmvh, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vmaxnmvs, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminnmvh, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminnmvs, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vmaxnmavh, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vmaxnmavs, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminnmavh, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vminnmavs, TCG_CALL_NO_WG, i32, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vaddlv_s, TCG_CALL_NO_WG, i64, env, ptr, i64) DEF_HELPER_FLAGS_3(mve_vaddlv_s, TCG_CALL_NO_WG, i64, env, ptr, i64)
DEF_HELPER_FLAGS_3(mve_vaddlv_u, TCG_CALL_NO_WG, i64, env, ptr, i64) DEF_HELPER_FLAGS_3(mve_vaddlv_u, TCG_CALL_NO_WG, i64, env, ptr, i64)
@ -746,3 +822,69 @@ DEF_HELPER_FLAGS_3(mve_vcmpgt_scalarw, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vcmple_scalarb, TCG_CALL_NO_WG, void, env, ptr, i32) DEF_HELPER_FLAGS_3(mve_vcmple_scalarb, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vcmple_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32) DEF_HELPER_FLAGS_3(mve_vcmple_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vcmple_scalarw, TCG_CALL_NO_WG, void, env, ptr, i32) DEF_HELPER_FLAGS_3(mve_vcmple_scalarw, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpeqh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpeqs, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpneh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpnes, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpgeh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpges, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmplth, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmplts, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpgth, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpgts, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpleh, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmples, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vfcmpeq_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpeq_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpne_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpne_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpge_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpge_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmplt_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmplt_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpgt_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmpgt_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmple_scalarh, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vfcmple_scalars, TCG_CALL_NO_WG, void, env, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfadd_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfadd_scalars, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfsub_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfsub_scalars, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfmul_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfmul_scalars, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfma_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfma_scalars, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfmas_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vfmas_scalars, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_sh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_uh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_hs, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_hu, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_sf, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_uf, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_fs, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vcvt_fu, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vrint_rm_h, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vrint_rm_s, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(mve_vrintx_h, TCG_CALL_NO_WG, void, env, ptr, ptr)
DEF_HELPER_FLAGS_3(mve_vrintx_s, TCG_CALL_NO_WG, void, env, ptr, ptr)

View File

@ -26,6 +26,14 @@
# VQDMULL has size in bit 28: 0 for 16 bit, 1 for 32 bit # VQDMULL has size in bit 28: 0 for 16 bit, 1 for 32 bit
%size_28 28:1 !function=plus_1 %size_28 28:1 !function=plus_1
# 2 operand fp insns have size in bit 20: 1 for 16 bit, 0 for 32 bit,
# like Neon FP insns.
%2op_fp_size 20:1 !function=neon_3same_fp_size
# VCADD is an exception, where bit 20 is 0 for 16 bit and 1 for 32 bit
%2op_fp_size_rev 20:1 !function=plus_1
# FP scalars have size in bit 28, 1 for 16 bit, 0 for 32 bit
%2op_fp_scalar_size 28:1 !function=neon_3same_fp_size
# 1imm format immediate # 1imm format immediate
%imm_28_16_0 28:1 16:3 0:4 %imm_28_16_0 28:1 16:3 0:4
@ -116,8 +124,34 @@
@vcmp_scalar .... .... .. size:2 qn:3 . .... .... .... rm:4 &vcmp_scalar \ @vcmp_scalar .... .... .. size:2 qn:3 . .... .... .... rm:4 &vcmp_scalar \
mask=%mask_22_13 mask=%mask_22_13
@vcmp_fp .... .... .... qn:3 . .... .... .... .... &vcmp \
qm=%qm size=%2op_fp_scalar_size mask=%mask_22_13
# Bit 28 is a 2op_fp_scalar_size bit, but we do not decode it in this
# format to avoid complicated overlapping-instruction-groups
@vcmp_fp_scalar .... .... .... qn:3 . .... .... .... rm:4 &vcmp_scalar \
mask=%mask_22_13
@vmaxv .... .... .... size:2 .. rda:4 .... .... .... &vmaxv qm=%qm @vmaxv .... .... .... size:2 .. rda:4 .... .... .... &vmaxv qm=%qm
@2op_fp .... .... .... .... .... .... .... .... &2op \
qd=%qd qn=%qn qm=%qm size=%2op_fp_size
@2op_fp_size_rev .... .... .... .... .... .... .... .... &2op \
qd=%qd qn=%qn qm=%qm size=%2op_fp_size_rev
# 2-operand, but Qd and Qn share a field. Size is in bit 28, but we
# don't decode it in this format
@vmaxnma .... .... .... .... .... .... .... .... &2op \
qd=%qd qn=%qd qm=%qm
# Here also we don't decode the bit 28 size in the format to avoid
# awkward nested overlap groups
@vmaxnmv .... .... .... .... rda:4 .... .... .... &vmaxv qm=%qm
@2op_fp_scalar .... .... .... .... .... .... .... rm:4 &2scalar \
qd=%qd qn=%qn size=%2op_fp_scalar_size
# Vector loads and stores # Vector loads and stores
# Widening loads and narrowing stores: # Widening loads and narrowing stores:
@ -187,6 +221,10 @@ VMUL 1110 1111 0 . .. ... 0 ... 0 1001 . 1 . 1 ... 0 @2op
# The VSHLL T2 encoding is not a @2op pattern, but is here because it # The VSHLL T2 encoding is not a @2op pattern, but is here because it
# overlaps what would be size=0b11 VMULH/VRMULH # overlaps what would be size=0b11 VMULH/VRMULH
{ {
VCVTB_SH 111 0 1110 0 . 11 1111 ... 0 1110 0 0 . 0 ... 1 @1op_nosz
VMAXNMA 111 0 1110 0 . 11 1111 ... 0 1110 1 0 . 0 ... 1 @vmaxnma size=2
VSHLL_BS 111 0 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_b VSHLL_BS 111 0 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_b
VSHLL_BS 111 0 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_h VSHLL_BS 111 0 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_h
@ -199,6 +237,10 @@ VMUL 1110 1111 0 . .. ... 0 ... 0 1001 . 1 . 1 ... 0 @2op
} }
{ {
VCVTB_HS 111 1 1110 0 . 11 1111 ... 0 1110 0 0 . 0 ... 1 @1op_nosz
VMAXNMA 111 1 1110 0 . 11 1111 ... 0 1110 1 0 . 0 ... 1 @vmaxnma size=1
VSHLL_BU 111 1 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_b VSHLL_BU 111 1 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_b
VSHLL_BU 111 1 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_h VSHLL_BU 111 1 1110 0 . 11 .. 01 ... 0 1110 0 0 . 0 ... 1 @2_shll_esize_h
@ -209,6 +251,9 @@ VMUL 1110 1111 0 . .. ... 0 ... 0 1001 . 1 . 1 ... 0 @2op
} }
{ {
VCVTT_SH 111 0 1110 0 . 11 1111 ... 1 1110 0 0 . 0 ... 1 @1op_nosz
VMINNMA 111 0 1110 0 . 11 1111 ... 1 1110 1 0 . 0 ... 1 @vmaxnma size=2
VSHLL_TS 111 0 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_b VSHLL_TS 111 0 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_b
VSHLL_TS 111 0 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_h VSHLL_TS 111 0 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_h
@ -221,6 +266,9 @@ VMUL 1110 1111 0 . .. ... 0 ... 0 1001 . 1 . 1 ... 0 @2op
} }
{ {
VCVTT_HS 111 1 1110 0 . 11 1111 ... 1 1110 0 0 . 0 ... 1 @1op_nosz
VMINNMA 111 1 1110 0 . 11 1111 ... 1 1110 1 0 . 0 ... 1 @vmaxnma size=1
VSHLL_TU 111 1 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_b VSHLL_TU 111 1 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_b
VSHLL_TU 111 1 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_h VSHLL_TU 111 1 1110 0 . 11 .. 01 ... 1 1110 0 0 . 0 ... 1 @2_shll_esize_h
@ -274,15 +322,29 @@ VQSHL_U 111 1 1111 0 . .. ... 0 ... 0 0100 . 1 . 1 ... 0 @2op_rev
VQRSHL_S 111 0 1111 0 . .. ... 0 ... 0 0101 . 1 . 1 ... 0 @2op_rev VQRSHL_S 111 0 1111 0 . .. ... 0 ... 0 0101 . 1 . 1 ... 0 @2op_rev
VQRSHL_U 111 1 1111 0 . .. ... 0 ... 0 0101 . 1 . 1 ... 0 @2op_rev VQRSHL_U 111 1 1111 0 . .. ... 0 ... 0 0101 . 1 . 1 ... 0 @2op_rev
VQDMLADH 1110 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 0 @2op {
VQDMLADHX 1110 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 0 @2op VCMUL0 111 . 1110 0 . 11 ... 0 ... 0 1110 . 0 . 0 ... 0 @2op_sz28
VQRDMLADH 1110 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 1 @2op VQDMLADH 1110 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 0 @2op
VQRDMLADHX 1110 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 1 @2op VQDMLSDH 1111 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 0 @2op
}
VQDMLSDH 1111 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 0 @2op {
VQDMLSDHX 1111 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 0 @2op VCMUL180 111 . 1110 0 . 11 ... 0 ... 1 1110 . 0 . 0 ... 0 @2op_sz28
VQRDMLSDH 1111 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 1 @2op VQDMLADHX 111 0 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 0 @2op
VQRDMLSDHX 1111 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 1 @2op VQDMLSDHX 111 1 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 0 @2op
}
{
VCMUL90 111 . 1110 0 . 11 ... 0 ... 0 1110 . 0 . 0 ... 1 @2op_sz28
VQRDMLADH 111 0 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 1 @2op
VQRDMLSDH 111 1 1110 0 . .. ... 0 ... 0 1110 . 0 . 0 ... 1 @2op
}
{
VCMUL270 111 . 1110 0 . 11 ... 0 ... 1 1110 . 0 . 0 ... 1 @2op_sz28
VQRDMLADHX 111 0 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 1 @2op
VQRDMLSDHX 111 1 1110 0 . .. ... 0 ... 1 1110 . 0 . 0 ... 1 @2op
}
VQDMULLB 111 . 1110 0 . 11 ... 0 ... 0 1111 . 0 . 0 ... 1 @2op_sz28 VQDMULLB 111 . 1110 0 . 11 ... 0 ... 0 1111 . 0 . 0 ... 1 @2op_sz28
VQDMULLT 111 . 1110 0 . 11 ... 0 ... 1 1111 . 0 . 0 ... 1 @2op_sz28 VQDMULLT 111 . 1110 0 . 11 ... 0 ... 1 1111 . 0 . 0 ... 1 @2op_sz28
@ -351,8 +413,10 @@ VDUP 1110 1110 1 0 10 ... 0 .... 1011 . 0 0 1 0000 @vdup size=2
VIWDUP 1110 1110 0 . .. ... 1 ... 0 1111 . 110 ... . @viwdup VIWDUP 1110 1110 0 . .. ... 1 ... 0 1111 . 110 ... . @viwdup
} }
{ {
VDDUP 1110 1110 0 . .. ... 1 ... 1 1111 . 110 111 . @vidup VCMPGT_fp_scalar 1110 1110 0 . 11 ... 1 ... 1 1111 0110 .... @vcmp_fp_scalar size=2
VDWDUP 1110 1110 0 . .. ... 1 ... 1 1111 . 110 ... . @viwdup VCMPLE_fp_scalar 1110 1110 0 . 11 ... 1 ... 1 1111 1110 .... @vcmp_fp_scalar size=2
VDDUP 1110 1110 0 . .. ... 1 ... 1 1111 . 110 111 . @vidup
VDWDUP 1110 1110 0 . .. ... 1 ... 1 1111 . 110 ... . @viwdup
} }
# multiply-add long dual accumulate # multiply-add long dual accumulate
@ -398,25 +462,50 @@ VMLADAV_S 1110 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 1 @vmladav_nosz
VMLADAV_U 1111 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 1 @vmladav_nosz VMLADAV_U 1111 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 1 @vmladav_nosz
{ {
VMAXV_S 1110 1110 1110 .. 10 .... 1111 0 0 . 0 ... 0 @vmaxv [
VMINV_S 1110 1110 1110 .. 10 .... 1111 1 0 . 0 ... 0 @vmaxv VMAXNMAV 1110 1110 1110 11 00 .... 1111 0 0 . 0 ... 0 @vmaxnmv size=2
VMAXAV 1110 1110 1110 .. 00 .... 1111 0 0 . 0 ... 0 @vmaxv VMINNMAV 1110 1110 1110 11 00 .... 1111 1 0 . 0 ... 0 @vmaxnmv size=2
VMINAV 1110 1110 1110 .. 00 .... 1111 1 0 . 0 ... 0 @vmaxv VMAXNMV 1110 1110 1110 11 10 .... 1111 0 0 . 0 ... 0 @vmaxnmv size=2
VMINNMV 1110 1110 1110 11 10 .... 1111 1 0 . 0 ... 0 @vmaxnmv size=2
]
[
VMAXV_S 1110 1110 1110 .. 10 .... 1111 0 0 . 0 ... 0 @vmaxv
VMINV_S 1110 1110 1110 .. 10 .... 1111 1 0 . 0 ... 0 @vmaxv
VMAXAV 1110 1110 1110 .. 00 .... 1111 0 0 . 0 ... 0 @vmaxv
VMINAV 1110 1110 1110 .. 00 .... 1111 1 0 . 0 ... 0 @vmaxv
]
VMLADAV_S 1110 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 0 @vmladav_nosz VMLADAV_S 1110 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 0 @vmladav_nosz
VRMLALDAVH_S 1110 1110 1 ... ... 0 ... . 1111 . 0 . 0 ... 0 @vmlaldav_nosz VRMLALDAVH_S 1110 1110 1 ... ... 0 ... . 1111 . 0 . 0 ... 0 @vmlaldav_nosz
} }
{ {
VMAXV_U 1111 1110 1110 .. 10 .... 1111 0 0 . 0 ... 0 @vmaxv [
VMINV_U 1111 1110 1110 .. 10 .... 1111 1 0 . 0 ... 0 @vmaxv VMAXNMAV 1111 1110 1110 11 00 .... 1111 0 0 . 0 ... 0 @vmaxnmv size=1
VMINNMAV 1111 1110 1110 11 00 .... 1111 1 0 . 0 ... 0 @vmaxnmv size=1
VMAXNMV 1111 1110 1110 11 10 .... 1111 0 0 . 0 ... 0 @vmaxnmv size=1
VMINNMV 1111 1110 1110 11 10 .... 1111 1 0 . 0 ... 0 @vmaxnmv size=1
]
[
VMAXV_U 1111 1110 1110 .. 10 .... 1111 0 0 . 0 ... 0 @vmaxv
VMINV_U 1111 1110 1110 .. 10 .... 1111 1 0 . 0 ... 0 @vmaxv
]
VMLADAV_U 1111 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 0 @vmladav_nosz VMLADAV_U 1111 1110 1111 ... 0 ... . 1111 . 0 . 0 ... 0 @vmladav_nosz
VRMLALDAVH_U 1111 1110 1 ... ... 0 ... . 1111 . 0 . 0 ... 0 @vmlaldav_nosz VRMLALDAVH_U 1111 1110 1 ... ... 0 ... . 1111 . 0 . 0 ... 0 @vmlaldav_nosz
} }
# Scalar operations # Scalar operations
VADD_scalar 1110 1110 0 . .. ... 1 ... 0 1111 . 100 .... @2scalar {
VSUB_scalar 1110 1110 0 . .. ... 1 ... 1 1111 . 100 .... @2scalar VCMPEQ_fp_scalar 1110 1110 0 . 11 ... 1 ... 0 1111 0100 .... @vcmp_fp_scalar size=2
VCMPNE_fp_scalar 1110 1110 0 . 11 ... 1 ... 0 1111 1100 .... @vcmp_fp_scalar size=2
VADD_scalar 1110 1110 0 . .. ... 1 ... 0 1111 . 100 .... @2scalar
}
{
VCMPLT_fp_scalar 1110 1110 0 . 11 ... 1 ... 1 1111 1100 .... @vcmp_fp_scalar size=2
VCMPGE_fp_scalar 1110 1110 0 . 11 ... 1 ... 1 1111 0100 .... @vcmp_fp_scalar size=2
VSUB_scalar 1110 1110 0 . .. ... 1 ... 1 1111 . 100 .... @2scalar
}
{ {
VSHL_S_scalar 1110 1110 0 . 11 .. 01 ... 1 1110 0110 .... @shl_scalar VSHL_S_scalar 1110 1110 0 . 11 .. 01 ... 1 1110 0110 .... @shl_scalar
@ -434,10 +523,17 @@ VSUB_scalar 1110 1110 0 . .. ... 1 ... 1 1111 . 100 .... @2scalar
VBRSR 1111 1110 0 . .. ... 1 ... 1 1110 . 110 .... @2scalar VBRSR 1111 1110 0 . .. ... 1 ... 1 1110 . 110 .... @2scalar
} }
VHADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 100 .... @2scalar {
VHADD_U_scalar 1111 1110 0 . .. ... 0 ... 0 1111 . 100 .... @2scalar VADD_fp_scalar 111 . 1110 0 . 11 ... 0 ... 0 1111 . 100 .... @2op_fp_scalar
VHSUB_S_scalar 1110 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar VHADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 100 .... @2scalar
VHSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar VHADD_U_scalar 1111 1110 0 . .. ... 0 ... 0 1111 . 100 .... @2scalar
}
{
VSUB_fp_scalar 111 . 1110 0 . 11 ... 0 ... 1 1111 . 100 .... @2op_fp_scalar
VHSUB_S_scalar 1110 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar
VHSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar
}
{ {
VQADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar VQADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar
@ -453,12 +549,23 @@ VHSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar
size=%size_28 size=%size_28
} }
VQDMULH_scalar 1110 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar {
VQRDMULH_scalar 1111 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar VMUL_fp_scalar 111 . 1110 0 . 11 ... 1 ... 0 1110 . 110 .... @2op_fp_scalar
VQDMULH_scalar 1110 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar
VQRDMULH_scalar 1111 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar
}
# The U bit (28) is don't-care because it does not affect the result {
VMLA 111- 1110 0 . .. ... 1 ... 0 1110 . 100 .... @2scalar VFMA_scalar 111 . 1110 0 . 11 ... 1 ... 0 1110 . 100 .... @2op_fp_scalar
VMLAS 111- 1110 0 . .. ... 1 ... 1 1110 . 100 .... @2scalar # The U bit (28) is don't-care because it does not affect the result
VMLA 111 - 1110 0 . .. ... 1 ... 0 1110 . 100 .... @2scalar
}
{
VFMAS_scalar 111 . 1110 0 . 11 ... 1 ... 1 1110 . 100 .... @2op_fp_scalar
# The U bit (28) is don't-care because it does not affect the result
VMLAS 111 - 1110 0 . .. ... 1 ... 1 1110 . 100 .... @2scalar
}
VQRDMLAH 1110 1110 0 . .. ... 0 ... 0 1110 . 100 .... @2scalar VQRDMLAH 1110 1110 0 . .. ... 0 ... 0 1110 . 100 .... @2scalar
VQRDMLASH 1110 1110 0 . .. ... 0 ... 1 1110 . 100 .... @2scalar VQRDMLASH 1110 1110 0 . .. ... 0 ... 1 1110 . 100 .... @2scalar
@ -591,27 +698,135 @@ VSHLC 111 0 1110 1 . 1 imm:5 ... 0 1111 1100 rdm:4 qd=%qd
# Comparisons. We expand out the conditions which are split across # Comparisons. We expand out the conditions which are split across
# encodings T1, T2, T3 and the fc bits. These include VPT, which is # encodings T1, T2, T3 and the fc bits. These include VPT, which is
# effectively "VCMP then VPST". A plain "VCMP" has a mask field of zero. # effectively "VCMP then VPST". A plain "VCMP" has a mask field of zero.
VCMPEQ 1111 1110 0 . .. ... 1 ... 0 1111 0 0 . 0 ... 0 @vcmp {
VCMPNE 1111 1110 0 . .. ... 1 ... 0 1111 1 0 . 0 ... 0 @vcmp VCMPEQ_fp 111 . 1110 0 . 11 ... 1 ... 0 1111 0 0 . 0 ... 0 @vcmp_fp
VCMPEQ 111 1 1110 0 . .. ... 1 ... 0 1111 0 0 . 0 ... 0 @vcmp
}
{
VCMPNE_fp 111 . 1110 0 . 11 ... 1 ... 0 1111 1 0 . 0 ... 0 @vcmp_fp
VCMPNE 111 1 1110 0 . .. ... 1 ... 0 1111 1 0 . 0 ... 0 @vcmp
}
{
VCMPGE_fp 111 . 1110 0 . 11 ... 1 ... 1 1111 0 0 . 0 ... 0 @vcmp_fp
VCMPGE 111 1 1110 0 . .. ... 1 ... 1 1111 0 0 . 0 ... 0 @vcmp
}
{
VCMPLT_fp 111 . 1110 0 . 11 ... 1 ... 1 1111 1 0 . 0 ... 0 @vcmp_fp
VCMPLT 111 1 1110 0 . .. ... 1 ... 1 1111 1 0 . 0 ... 0 @vcmp
}
{
VCMPGT_fp 111 . 1110 0 . 11 ... 1 ... 1 1111 0 0 . 0 ... 1 @vcmp_fp
VCMPGT 111 1 1110 0 . .. ... 1 ... 1 1111 0 0 . 0 ... 1 @vcmp
}
{
VCMPLE_fp 111 . 1110 0 . 11 ... 1 ... 1 1111 1 0 . 0 ... 1 @vcmp_fp
VCMPLE 1111 1110 0 . .. ... 1 ... 1 1111 1 0 . 0 ... 1 @vcmp
}
{ {
VPSEL 1111 1110 0 . 11 ... 1 ... 0 1111 . 0 . 0 ... 1 @2op_nosz VPSEL 1111 1110 0 . 11 ... 1 ... 0 1111 . 0 . 0 ... 1 @2op_nosz
VCMPCS 1111 1110 0 . .. ... 1 ... 0 1111 0 0 . 0 ... 1 @vcmp VCMPCS 1111 1110 0 . .. ... 1 ... 0 1111 0 0 . 0 ... 1 @vcmp
VCMPHI 1111 1110 0 . .. ... 1 ... 0 1111 1 0 . 0 ... 1 @vcmp VCMPHI 1111 1110 0 . .. ... 1 ... 0 1111 1 0 . 0 ... 1 @vcmp
} }
VCMPGE 1111 1110 0 . .. ... 1 ... 1 1111 0 0 . 0 ... 0 @vcmp
VCMPLT 1111 1110 0 . .. ... 1 ... 1 1111 1 0 . 0 ... 0 @vcmp
VCMPGT 1111 1110 0 . .. ... 1 ... 1 1111 0 0 . 0 ... 1 @vcmp
VCMPLE 1111 1110 0 . .. ... 1 ... 1 1111 1 0 . 0 ... 1 @vcmp
{ {
VPNOT 1111 1110 0 0 11 000 1 000 0 1111 0100 1101 VPNOT 1111 1110 0 0 11 000 1 000 0 1111 0100 1101
VPST 1111 1110 0 . 11 000 1 ... 0 1111 0100 1101 mask=%mask_22_13 VPST 1111 1110 0 . 11 000 1 ... 0 1111 0100 1101 mask=%mask_22_13
VCMPEQ_scalar 1111 1110 0 . .. ... 1 ... 0 1111 0 1 0 0 .... @vcmp_scalar VCMPEQ_fp_scalar 1111 1110 0 . 11 ... 1 ... 0 1111 0100 .... @vcmp_fp_scalar size=1
VCMPEQ_scalar 1111 1110 0 . .. ... 1 ... 0 1111 0100 .... @vcmp_scalar
} }
VCMPNE_scalar 1111 1110 0 . .. ... 1 ... 0 1111 1 1 0 0 .... @vcmp_scalar
{
VCMPNE_fp_scalar 1111 1110 0 . 11 ... 1 ... 0 1111 1100 .... @vcmp_fp_scalar size=1
VCMPNE_scalar 1111 1110 0 . .. ... 1 ... 0 1111 1100 .... @vcmp_scalar
}
{
VCMPGT_fp_scalar 1111 1110 0 . 11 ... 1 ... 1 1111 0110 .... @vcmp_fp_scalar size=1
VCMPGT_scalar 1111 1110 0 . .. ... 1 ... 1 1111 0110 .... @vcmp_scalar
}
{
VCMPLE_fp_scalar 1111 1110 0 . 11 ... 1 ... 1 1111 1110 .... @vcmp_fp_scalar size=1
VCMPLE_scalar 1111 1110 0 . .. ... 1 ... 1 1111 1110 .... @vcmp_scalar
}
{
VCMPGE_fp_scalar 1111 1110 0 . 11 ... 1 ... 1 1111 0100 .... @vcmp_fp_scalar size=1
VCMPGE_scalar 1111 1110 0 . .. ... 1 ... 1 1111 0100 .... @vcmp_scalar
}
{
VCMPLT_fp_scalar 1111 1110 0 . 11 ... 1 ... 1 1111 1100 .... @vcmp_fp_scalar size=1
VCMPLT_scalar 1111 1110 0 . .. ... 1 ... 1 1111 1100 .... @vcmp_scalar
}
VCMPCS_scalar 1111 1110 0 . .. ... 1 ... 0 1111 0 1 1 0 .... @vcmp_scalar VCMPCS_scalar 1111 1110 0 . .. ... 1 ... 0 1111 0 1 1 0 .... @vcmp_scalar
VCMPHI_scalar 1111 1110 0 . .. ... 1 ... 0 1111 1 1 1 0 .... @vcmp_scalar VCMPHI_scalar 1111 1110 0 . .. ... 1 ... 0 1111 1 1 1 0 .... @vcmp_scalar
VCMPGE_scalar 1111 1110 0 . .. ... 1 ... 1 1111 0 1 0 0 .... @vcmp_scalar
VCMPLT_scalar 1111 1110 0 . .. ... 1 ... 1 1111 1 1 0 0 .... @vcmp_scalar # 2-operand FP
VCMPGT_scalar 1111 1110 0 . .. ... 1 ... 1 1111 0 1 1 0 .... @vcmp_scalar VADD_fp 1110 1111 0 . 0 . ... 0 ... 0 1101 . 1 . 0 ... 0 @2op_fp
VCMPLE_scalar 1111 1110 0 . .. ... 1 ... 1 1111 1 1 1 0 .... @vcmp_scalar VSUB_fp 1110 1111 0 . 1 . ... 0 ... 0 1101 . 1 . 0 ... 0 @2op_fp
VMUL_fp 1111 1111 0 . 0 . ... 0 ... 0 1101 . 1 . 1 ... 0 @2op_fp
VABD_fp 1111 1111 0 . 1 . ... 0 ... 0 1101 . 1 . 0 ... 0 @2op_fp
VMAXNM 1111 1111 0 . 0 . ... 0 ... 0 1111 . 1 . 1 ... 0 @2op_fp
VMINNM 1111 1111 0 . 1 . ... 0 ... 0 1111 . 1 . 1 ... 0 @2op_fp
VCADD90_fp 1111 1100 1 . 0 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
VCADD270_fp 1111 1101 1 . 0 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
VFMA 1110 1111 0 . 0 . ... 0 ... 0 1100 . 1 . 1 ... 0 @2op_fp
VFMS 1110 1111 0 . 1 . ... 0 ... 0 1100 . 1 . 1 ... 0 @2op_fp
VCMLA0 1111 110 00 . 1 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
VCMLA90 1111 110 01 . 1 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
VCMLA180 1111 110 10 . 1 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
VCMLA270 1111 110 11 . 1 . ... 0 ... 0 1000 . 1 . 0 ... 0 @2op_fp_size_rev
# floating-point <-> fixed-point conversions. Naming convention:
# VCVT_<from><to>, S = signed int, U = unsigned int, H = halfprec, F = singleprec
@vcvt .... .... .. 1 ..... .... .. 1 . .... .... &2shift \
qd=%qd qm=%qm shift=%rshift_i5 size=2
@vcvt_f16 .... .... .. 11 .... .... .. 0 . .... .... &2shift \
qd=%qd qm=%qm shift=%rshift_i4 size=1
VCVT_SH_fixed 1110 1111 1 . ...... ... 0 11 . 0 01 . 1 ... 0 @vcvt_f16
VCVT_UH_fixed 1111 1111 1 . ...... ... 0 11 . 0 01 . 1 ... 0 @vcvt_f16
VCVT_HS_fixed 1110 1111 1 . ...... ... 0 11 . 1 01 . 1 ... 0 @vcvt_f16
VCVT_HU_fixed 1111 1111 1 . ...... ... 0 11 . 1 01 . 1 ... 0 @vcvt_f16
VCVT_SF_fixed 1110 1111 1 . ...... ... 0 11 . 0 01 . 1 ... 0 @vcvt
VCVT_UF_fixed 1111 1111 1 . ...... ... 0 11 . 0 01 . 1 ... 0 @vcvt
VCVT_FS_fixed 1110 1111 1 . ...... ... 0 11 . 1 01 . 1 ... 0 @vcvt
VCVT_FU_fixed 1111 1111 1 . ...... ... 0 11 . 1 01 . 1 ... 0 @vcvt
# VCVT between floating point and integer (halfprec and single);
# VCVT_<from><to>, S = signed int, U = unsigned int, F = float
VCVT_SF 1111 1111 1 . 11 .. 11 ... 0 011 00 1 . 0 ... 0 @1op
VCVT_UF 1111 1111 1 . 11 .. 11 ... 0 011 01 1 . 0 ... 0 @1op
VCVT_FS 1111 1111 1 . 11 .. 11 ... 0 011 10 1 . 0 ... 0 @1op
VCVT_FU 1111 1111 1 . 11 .. 11 ... 0 011 11 1 . 0 ... 0 @1op
# VCVT from floating point to integer with specified rounding mode
VCVTAS 1111 1111 1 . 11 .. 11 ... 000 00 0 1 . 0 ... 0 @1op
VCVTAU 1111 1111 1 . 11 .. 11 ... 000 00 1 1 . 0 ... 0 @1op
VCVTNS 1111 1111 1 . 11 .. 11 ... 000 01 0 1 . 0 ... 0 @1op
VCVTNU 1111 1111 1 . 11 .. 11 ... 000 01 1 1 . 0 ... 0 @1op
VCVTPS 1111 1111 1 . 11 .. 11 ... 000 10 0 1 . 0 ... 0 @1op
VCVTPU 1111 1111 1 . 11 .. 11 ... 000 10 1 1 . 0 ... 0 @1op
VCVTMS 1111 1111 1 . 11 .. 11 ... 000 11 0 1 . 0 ... 0 @1op
VCVTMU 1111 1111 1 . 11 .. 11 ... 000 11 1 1 . 0 ... 0 @1op
VRINTN 1111 1111 1 . 11 .. 10 ... 001 000 1 . 0 ... 0 @1op
VRINTX 1111 1111 1 . 11 .. 10 ... 001 001 1 . 0 ... 0 @1op
VRINTA 1111 1111 1 . 11 .. 10 ... 001 010 1 . 0 ... 0 @1op
VRINTZ 1111 1111 1 . 11 .. 10 ... 001 011 1 . 0 ... 0 @1op
VRINTM 1111 1111 1 . 11 .. 10 ... 001 101 1 . 0 ... 0 @1op
VRINTP 1111 1111 1 . 11 .. 10 ... 001 111 1 . 0 ... 0 @1op

View File

@ -25,6 +25,7 @@
#include "exec/cpu_ldst.h" #include "exec/cpu_ldst.h"
#include "exec/exec-all.h" #include "exec/exec-all.h"
#include "tcg/tcg.h" #include "tcg/tcg.h"
#include "fpu/softfloat.h"
static uint16_t mve_eci_mask(CPUARMState *env) static uint16_t mve_eci_mask(CPUARMState *env)
{ {
@ -2798,3 +2799,652 @@ DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN) DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN) DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN) DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
/*
* 2-operand floating point. Note that if an element is partially
* predicated we must do the FP operation to update the non-predicated
* bytes, but we must be careful to avoid updating the FP exception
* state unless byte 0 of the element was unpredicated.
*/
#define DO_2OP_FP(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
TYPE r; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_FP_ALL(OP, FN) \
DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
DO_2OP_FP(OP##s, 4, float32, float32_##FN)
DO_2OP_FP_ALL(vfadd, add)
DO_2OP_FP_ALL(vfsub, sub)
DO_2OP_FP_ALL(vfmul, mul)
static inline float16 float16_abd(float16 a, float16 b, float_status *s)
{
return float16_abs(float16_sub(a, b, s));
}
static inline float32 float32_abd(float32 a, float32 b, float_status *s)
{
return float32_abs(float32_sub(a, b, s));
}
DO_2OP_FP_ALL(vfabd, abd)
DO_2OP_FP_ALL(vmaxnm, maxnum)
DO_2OP_FP_ALL(vminnm, minnum)
static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
{
return float16_maxnum(float16_abs(a), float16_abs(b), s);
}
static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
{
return float32_maxnum(float32_abs(a), float32_abs(b), s);
}
static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
{
return float16_minnum(float16_abs(a), float16_abs(b), s);
}
static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
{
return float32_minnum(float32_abs(a), float32_abs(b), s);
}
DO_2OP_FP_ALL(vmaxnma, maxnuma)
DO_2OP_FP_ALL(vminnma, minnuma)
#define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
TYPE r[16 / ESIZE]; \
uint16_t tm, mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
/* Calculate all results first to avoid overwriting inputs */ \
for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) { \
if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
r[e] = 0; \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(tm & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
if (!(e & 1)) { \
r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst); \
} else { \
r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst); \
} \
} \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], r[e], mask); \
} \
mve_advance_vpt(env); \
}
DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
#define DO_VFMA(OP, ESIZE, TYPE, CHS) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
TYPE r; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = n[H##ESIZE(e)]; \
if (CHS) { \
r = TYPE##_chs(r); \
} \
r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)], \
0, fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
DO_VFMA(vfmah, 2, float16, false)
DO_VFMA(vfmas, 4, float32, false)
DO_VFMA(vfmsh, 2, float16, true)
DO_VFMA(vfmss, 4, float32, true)
#define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
TYPE r0, r1, e1, e2, e3, e4; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst0, *fpst1; \
float_status scratch_fpst; \
/* We loop through pairs of elements at a time */ \
for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) { \
continue; \
} \
fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
fpst1 = fpst0; \
if (!(mask & 1)) { \
scratch_fpst = *fpst0; \
fpst0 = &scratch_fpst; \
} \
if (!(mask & (1 << ESIZE))) { \
scratch_fpst = *fpst1; \
fpst1 = &scratch_fpst; \
} \
switch (ROT) { \
case 0: \
e1 = m[H##ESIZE(e)]; \
e2 = n[H##ESIZE(e)]; \
e3 = m[H##ESIZE(e + 1)]; \
e4 = n[H##ESIZE(e)]; \
break; \
case 1: \
e1 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
e2 = n[H##ESIZE(e + 1)]; \
e3 = m[H##ESIZE(e)]; \
e4 = n[H##ESIZE(e + 1)]; \
break; \
case 2: \
e1 = TYPE##_chs(m[H##ESIZE(e)]); \
e2 = n[H##ESIZE(e)]; \
e3 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
e4 = n[H##ESIZE(e)]; \
break; \
case 3: \
e1 = m[H##ESIZE(e + 1)]; \
e2 = n[H##ESIZE(e + 1)]; \
e3 = TYPE##_chs(m[H##ESIZE(e)]); \
e4 = n[H##ESIZE(e + 1)]; \
break; \
default: \
g_assert_not_reached(); \
} \
r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0); \
r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1); \
mergemask(&d[H##ESIZE(e)], r0, mask); \
mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE); \
} \
mve_advance_vpt(env); \
}
#define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
#define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
#define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
#define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
#define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE r, m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(n[H##ESIZE(e)], m, fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_FP_SCALAR_ALL(OP, FN) \
DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN) \
DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
#define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE r, m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
/* VFMAS is vector * vector + scalar, so swap op2 and op3 */
#define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
#define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
/* VFMA is vector * scalar + vector */
DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
/* Floating point max/min across vector. */
#define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN) \
uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
uint32_t ra_in) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *m = vm; \
TYPE ra = (TYPE)ra_in; \
float_status *fpst = (ESIZE == 2) ? \
&env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if (mask & 1) { \
TYPE v = m[H##ESIZE(e)]; \
if (TYPE##_is_signaling_nan(ra, fpst)) { \
ra = TYPE##_silence_nan(ra, fpst); \
float_raise(float_flag_invalid, fpst); \
} \
if (TYPE##_is_signaling_nan(v, fpst)) { \
v = TYPE##_silence_nan(v, fpst); \
float_raise(float_flag_invalid, fpst); \
} \
if (ABS) { \
v = TYPE##_abs(v); \
} \
ra = FN(ra, v, fpst); \
} \
} \
mve_advance_vpt(env); \
return ra; \
} \
#define NOP(X) (X)
DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
/* FP compares; note that all comparisons signal InvalidOp for QNaNs */
#define DO_VCMP_FP(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \
{ \
TYPE *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
uint16_t eci_mask = mve_eci_mask(env); \
uint16_t beatpred = 0; \
uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
bool r; \
for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
if ((mask & emask) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & (1 << (e * ESIZE)))) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
/* Comparison sets 0/1 bits for each byte in the element */ \
beatpred |= r * emask; \
} \
beatpred &= mask; \
env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
(beatpred & eci_mask); \
mve_advance_vpt(env); \
}
#define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
uint32_t rm) \
{ \
TYPE *n = vn; \
uint16_t mask = mve_element_mask(env); \
uint16_t eci_mask = mve_eci_mask(env); \
uint16_t beatpred = 0; \
uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
bool r; \
for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
if ((mask & emask) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & (1 << (e * ESIZE)))) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst); \
/* Comparison sets 0/1 bits for each byte in the element */ \
beatpred |= r * emask; \
} \
beatpred &= mask; \
env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
(beatpred & eci_mask); \
mve_advance_vpt(env); \
}
#define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN) \
DO_VCMP_FP(VOP, ESIZE, TYPE, FN) \
DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
/*
* Some care is needed here to get the correct result for the unordered case.
* Architecturally EQ, GE and GT are defined to be false for unordered, but
* the NE, LT and LE comparisons are defined as simple logical inverses of
* EQ, GE and GT and so they must return true for unordered. The softfloat
* comparison functions float*_{eq,le,lt} all return false for unordered.
*/
#define DO_GE16(X, Y, S) float16_le(Y, X, S)
#define DO_GE32(X, Y, S) float32_le(Y, X, S)
#define DO_GT16(X, Y, S) float16_lt(Y, X, S)
#define DO_GT32(X, Y, S) float32_lt(Y, X, S)
DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
#define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm, \
uint32_t shift) \
{ \
TYPE *d = vd, *m = vm; \
TYPE r; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(m[H##ESIZE(e)], shift, fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
/* VCVT with specified rmode */
#define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vm, uint32_t rmode) \
{ \
TYPE *d = vd, *m = vm; \
TYPE r; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
float_status *base_fpst = (ESIZE == 2) ? \
&env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
uint32_t prev_rmode = get_float_rounding_mode(base_fpst); \
set_float_rounding_mode(rmode, base_fpst); \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = base_fpst; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(m[H##ESIZE(e)], 0, fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
set_float_rounding_mode(prev_rmode, base_fpst); \
mve_advance_vpt(env); \
}
DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
#define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
#define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
/*
* VCVT between halfprec and singleprec. As usual for halfprec
* conversions, FZ16 is ignored and AHP is observed.
*/
static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
{
uint16_t *d = vd;
uint32_t *m = vm;
uint16_t r;
uint16_t mask = mve_element_mask(env);
bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
unsigned e;
float_status *fpst;
float_status scratch_fpst;
float_status *base_fpst = &env->vfp.standard_fp_status;
bool old_fz = get_flush_to_zero(base_fpst);
set_flush_to_zero(false, base_fpst);
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
continue;
}
fpst = base_fpst;
if (!(mask & 1)) {
/* We need the result but without updating flags */
scratch_fpst = *fpst;
fpst = &scratch_fpst;
}
r = float32_to_float16(m[H4(e)], ieee, fpst);
mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
}
set_flush_to_zero(old_fz, base_fpst);
mve_advance_vpt(env);
}
static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
{
uint32_t *d = vd;
uint16_t *m = vm;
uint32_t r;
uint16_t mask = mve_element_mask(env);
bool ieee = !(env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_AHP);
unsigned e;
float_status *fpst;
float_status scratch_fpst;
float_status *base_fpst = &env->vfp.standard_fp_status;
bool old_fiz = get_flush_inputs_to_zero(base_fpst);
set_flush_inputs_to_zero(false, base_fpst);
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
continue;
}
fpst = base_fpst;
if (!(mask & (1 << (top * 2)))) {
/* We need the result but without updating flags */
scratch_fpst = *fpst;
fpst = &scratch_fpst;
}
r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
mergemask(&d[H4(e)], r, mask);
}
set_flush_inputs_to_zero(old_fiz, base_fpst);
mve_advance_vpt(env);
}
void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
{
do_vcvt_sh(env, vd, vm, 0);
}
void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
{
do_vcvt_sh(env, vd, vm, 1);
}
void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
{
do_vcvt_hs(env, vd, vm, 0);
}
void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
{
do_vcvt_hs(env, vd, vm, 1);
}
#define DO_1OP_FP(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm) \
{ \
TYPE *d = vd, *m = vm; \
TYPE r; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
float_status *fpst; \
float_status scratch_fpst; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
continue; \
} \
fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
&env->vfp.standard_fp_status; \
if (!(mask & 1)) { \
/* We need the result but without updating flags */ \
scratch_fpst = *fpst; \
fpst = &scratch_fpst; \
} \
r = FN(m[H##ESIZE(e)], fpst); \
mergemask(&d[H##ESIZE(e)], r, mask); \
} \
mve_advance_vpt(env); \
}
DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)

View File

@ -49,6 +49,7 @@ typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
/* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */ /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
static inline long mve_qreg_offset(unsigned reg) static inline long mve_qreg_offset(unsigned reg)
@ -543,6 +544,148 @@ DO_1OP(VQNEG, vqneg)
DO_1OP(VMAXA, vmaxa) DO_1OP(VMAXA, vmaxa)
DO_1OP(VMINA, vmina) DO_1OP(VMINA, vmina)
/*
* For simple float/int conversions we use the fixed-point
* conversion helpers with a zero shift count
*/
#define DO_VCVT(INSN, HFN, SFN) \
static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
{ \
gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0)); \
} \
static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
{ \
gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0)); \
} \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \
{ \
static MVEGenOneOpFn * const fns[] = { \
NULL, \
gen_##INSN##h, \
gen_##INSN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_1op(s, a, fns[a->size]); \
}
DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf)
DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf)
DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs)
DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu)
static bool do_vcvt_rmode(DisasContext *s, arg_1op *a,
enum arm_fprounding rmode, bool u)
{
/*
* Handle VCVT fp to int with specified rounding mode.
* This is a 1op fn but we must pass the rounding mode as
* an immediate to the helper.
*/
TCGv_ptr qd, qm;
static MVEGenVCVTRmodeFn * const fns[4][2] = {
{ NULL, NULL },
{ gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh },
{ gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us },
{ NULL, NULL },
};
MVEGenVCVTRmodeFn *fn = fns[a->size][u];
if (!dc_isar_feature(aa32_mve_fp, s) ||
!mve_check_qreg_bank(s, a->qd | a->qm) ||
!fn) {
return false;
}
if (!mve_eci_check(s) || !vfp_access_check(s)) {
return true;
}
qd = mve_qreg_ptr(a->qd);
qm = mve_qreg_ptr(a->qm);
fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode)));
tcg_temp_free_ptr(qd);
tcg_temp_free_ptr(qm);
mve_update_eci(s);
return true;
}
#define DO_VCVT_RMODE(INSN, RMODE, U) \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \
{ \
return do_vcvt_rmode(s, a, RMODE, U); \
} \
DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false)
DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true)
DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false)
DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true)
DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false)
DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true)
DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false)
DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true)
#define DO_VCVT_SH(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \
{ \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_1op(s, a, gen_helper_mve_##FN); \
} \
DO_VCVT_SH(VCVTB_SH, vcvtb_sh)
DO_VCVT_SH(VCVTT_SH, vcvtt_sh)
DO_VCVT_SH(VCVTB_HS, vcvtb_hs)
DO_VCVT_SH(VCVTT_HS, vcvtt_hs)
#define DO_VRINT(INSN, RMODE) \
static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
{ \
gen_helper_mve_vrint_rm_h(env, qd, qm, \
tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
} \
static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \
{ \
gen_helper_mve_vrint_rm_s(env, qd, qm, \
tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
} \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \
{ \
static MVEGenOneOpFn * const fns[] = { \
NULL, \
gen_##INSN##h, \
gen_##INSN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_1op(s, a, fns[a->size]); \
}
DO_VRINT(VRINTN, FPROUNDING_TIEEVEN)
DO_VRINT(VRINTA, FPROUNDING_TIEAWAY)
DO_VRINT(VRINTZ, FPROUNDING_ZERO)
DO_VRINT(VRINTM, FPROUNDING_NEGINF)
DO_VRINT(VRINTP, FPROUNDING_POSINF)
static bool trans_VRINTX(DisasContext *s, arg_1op *a)
{
static MVEGenOneOpFn * const fns[] = {
NULL,
gen_helper_mve_vrintx_h,
gen_helper_mve_vrintx_s,
NULL,
};
if (!dc_isar_feature(aa32_mve_fp, s)) {
return false;
}
return do_1op(s, a, fns[a->size]);
}
/* Narrowing moves: only size 0 and 1 are valid */ /* Narrowing moves: only size 0 and 1 are valid */
#define DO_VMOVN(INSN, FN) \ #define DO_VMOVN(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_1op *a) \ static bool trans_##INSN(DisasContext *s, arg_1op *a) \
@ -831,6 +974,42 @@ static bool trans_VSBCI(DisasContext *s, arg_2op *a)
return do_2op(s, a, gen_helper_mve_vsbci); return do_2op(s, a, gen_helper_mve_vsbci);
} }
#define DO_2OP_FP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2op *a) \
{ \
static MVEGenTwoOpFn * const fns[] = { \
NULL, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_2op(s, a, fns[a->size]); \
}
DO_2OP_FP(VADD_fp, vfadd)
DO_2OP_FP(VSUB_fp, vfsub)
DO_2OP_FP(VMUL_fp, vfmul)
DO_2OP_FP(VABD_fp, vfabd)
DO_2OP_FP(VMAXNM, vmaxnm)
DO_2OP_FP(VMINNM, vminnm)
DO_2OP_FP(VCADD90_fp, vfcadd90)
DO_2OP_FP(VCADD270_fp, vfcadd270)
DO_2OP_FP(VFMA, vfma)
DO_2OP_FP(VFMS, vfms)
DO_2OP_FP(VCMUL0, vcmul0)
DO_2OP_FP(VCMUL90, vcmul90)
DO_2OP_FP(VCMUL180, vcmul180)
DO_2OP_FP(VCMUL270, vcmul270)
DO_2OP_FP(VCMLA0, vcmla0)
DO_2OP_FP(VCMLA90, vcmla90)
DO_2OP_FP(VCMLA180, vcmla180)
DO_2OP_FP(VCMLA270, vcmla270)
DO_2OP_FP(VMAXNMA, vmaxnma)
DO_2OP_FP(VMINNMA, vminnma)
static bool do_2op_scalar(DisasContext *s, arg_2scalar *a, static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
MVEGenTwoOpScalarFn fn) MVEGenTwoOpScalarFn fn)
{ {
@ -861,7 +1040,7 @@ static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
return true; return true;
} }
#define DO_2OP_SCALAR(INSN, FN) \ #define DO_2OP_SCALAR(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \
{ \ { \
static MVEGenTwoOpScalarFn * const fns[] = { \ static MVEGenTwoOpScalarFn * const fns[] = { \
@ -924,6 +1103,28 @@ static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
return do_2op_scalar(s, a, fns[a->size]); return do_2op_scalar(s, a, fns[a->size]);
} }
#define DO_2OP_FP_SCALAR(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \
{ \
static MVEGenTwoOpScalarFn * const fns[] = { \
NULL, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_2op_scalar(s, a, fns[a->size]); \
}
DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar)
DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar)
DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar)
DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar)
DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar)
static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a, static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
MVEGenLongDualAccOpFn *fn) MVEGenLongDualAccOpFn *fn)
{ {
@ -1381,6 +1582,24 @@ DO_2SHIFT(VRSHRI_U, vrshli_u, true)
DO_2SHIFT(VSRI, vsri, false) DO_2SHIFT(VSRI, vsri, false)
DO_2SHIFT(VSLI, vsli, false) DO_2SHIFT(VSLI, vsli, false)
#define DO_2SHIFT_FP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_2shift *a) \
{ \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_2shift(s, a, gen_helper_mve_##FN, false); \
}
DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh)
DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh)
DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs)
DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu)
DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf)
DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf)
DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs)
DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu)
static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a, static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
MVEGenTwoOpShiftFn *fn) MVEGenTwoOpShiftFn *fn)
{ {
@ -1700,6 +1919,42 @@ DO_VCMP(VCMPLT, vcmplt)
DO_VCMP(VCMPGT, vcmpgt) DO_VCMP(VCMPGT, vcmpgt)
DO_VCMP(VCMPLE, vcmple) DO_VCMP(VCMPLE, vcmple)
#define DO_VCMP_FP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \
{ \
static MVEGenCmpFn * const fns[] = { \
NULL, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_vcmp(s, a, fns[a->size]); \
} \
static bool trans_##INSN##_scalar(DisasContext *s, \
arg_vcmp_scalar *a) \
{ \
static MVEGenScalarCmpFn * const fns[] = { \
NULL, \
gen_helper_mve_##FN##_scalarh, \
gen_helper_mve_##FN##_scalars, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_vcmp_scalar(s, a, fns[a->size]); \
}
DO_VCMP_FP(VCMPEQ_fp, vfcmpeq)
DO_VCMP_FP(VCMPNE_fp, vfcmpne)
DO_VCMP_FP(VCMPGE_fp, vfcmpge)
DO_VCMP_FP(VCMPLT_fp, vfcmplt)
DO_VCMP_FP(VCMPGT_fp, vfcmpgt)
DO_VCMP_FP(VCMPLE_fp, vfcmple)
static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn) static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
{ {
/* /*
@ -1748,6 +2003,26 @@ DO_VMAXV(VMINV_S, vminvs)
DO_VMAXV(VMINV_U, vminvu) DO_VMAXV(VMINV_U, vminvu)
DO_VMAXV(VMINAV, vminav) DO_VMAXV(VMINAV, vminav)
#define DO_VMAXV_FP(INSN, FN) \
static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \
{ \
static MVEGenVADDVFn * const fns[] = { \
NULL, \
gen_helper_mve_##FN##h, \
gen_helper_mve_##FN##s, \
NULL, \
}; \
if (!dc_isar_feature(aa32_mve_fp, s)) { \
return false; \
} \
return do_vmaxv(s, a, fns[a->size]); \
}
DO_VMAXV_FP(VMAXNMV, vmaxnmv)
DO_VMAXV_FP(VMINNMV, vminnmv)
DO_VMAXV_FP(VMAXNMAV, vmaxnmav)
DO_VMAXV_FP(VMINNMAV, vminnmav)
static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn) static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
{ {
/* Absolute difference accumulated across vector */ /* Absolute difference accumulated across vector */

View File

@ -28,12 +28,6 @@
#include "translate.h" #include "translate.h"
#include "translate-a32.h" #include "translate-a32.h"
static inline int neon_3same_fp_size(DisasContext *s, int x)
{
/* Convert 0==fp32, 1==fp16 into a MO_* value */
return MO_32 - x;
}
/* Include the generated Neon decoder */ /* Include the generated Neon decoder */
#include "decode-neon-dp.c.inc" #include "decode-neon-dp.c.inc"
#include "decode-neon-ls.c.inc" #include "decode-neon-ls.c.inc"

View File

@ -181,6 +181,12 @@ static inline int rsub_8(DisasContext *s, int x)
return 8 - x; return 8 - x;
} }
static inline int neon_3same_fp_size(DisasContext *s, int x)
{
/* Convert 0==fp32, 1==fp16 into a MO_* value */
return MO_32 - x;
}
static inline int arm_dc_feature(DisasContext *dc, int feature) static inline int arm_dc_feature(DisasContext *dc, int feature)
{ {
return (dc->features & (1ULL << feature)) != 0; return (dc->features & (1ULL << feature)) != 0;

View File

@ -475,7 +475,7 @@ class BootLinuxConsole(LinuxKernelTest):
def test_arm_raspi2_uart0(self): def test_arm_raspi2_uart0(self):
""" """
:avocado: tags=arch:arm :avocado: tags=arch:arm
:avocado: tags=machine:raspi2 :avocado: tags=machine:raspi2b
:avocado: tags=device:pl011 :avocado: tags=device:pl011
:avocado: tags=accel:tcg :avocado: tags=accel:tcg
""" """
@ -484,7 +484,7 @@ class BootLinuxConsole(LinuxKernelTest):
def test_arm_raspi2_initrd(self): def test_arm_raspi2_initrd(self):
""" """
:avocado: tags=arch:arm :avocado: tags=arch:arm
:avocado: tags=machine:raspi2 :avocado: tags=machine:raspi2b
""" """
deb_url = ('http://archive.raspberrypi.org/debian/' deb_url = ('http://archive.raspberrypi.org/debian/'
'pool/main/r/raspberrypi-firmware/' 'pool/main/r/raspberrypi-firmware/'
@ -971,7 +971,7 @@ class BootLinuxConsole(LinuxKernelTest):
def test_aarch64_raspi3_atf(self): def test_aarch64_raspi3_atf(self):
""" """
:avocado: tags=arch:aarch64 :avocado: tags=arch:aarch64
:avocado: tags=machine:raspi3 :avocado: tags=machine:raspi3b
:avocado: tags=cpu:cortex-a53 :avocado: tags=cpu:cortex-a53
:avocado: tags=device:pl011 :avocado: tags=device:pl011
:avocado: tags=atf :avocado: tags=atf

View File

@ -473,6 +473,19 @@ static void test_query_cpu_model_expansion(const void *data)
assert_has_feature_enabled(qts, "cortex-a57", "pmu"); assert_has_feature_enabled(qts, "cortex-a57", "pmu");
assert_has_feature_enabled(qts, "cortex-a57", "aarch64"); assert_has_feature_enabled(qts, "cortex-a57", "aarch64");
assert_has_feature_enabled(qts, "a64fx", "pmu");
assert_has_feature_enabled(qts, "a64fx", "aarch64");
/*
* A64FX does not support any other vector lengths besides those
* that are enabled by default(128bit, 256bits, 512bit).
*/
assert_has_feature_enabled(qts, "a64fx", "sve");
assert_sve_vls(qts, "a64fx", 0xb, NULL);
assert_error(qts, "a64fx", "cannot enable sve384",
"{ 'sve384': true }");
assert_error(qts, "a64fx", "cannot enable sve640",
"{ 'sve640': true }");
sve_tests_default(qts, "max"); sve_tests_default(qts, "max");
pauth_tests_default(qts, "max"); pauth_tests_default(qts, "max");

View File

@ -173,7 +173,7 @@ static testdef_t tests[] = {
sizeof(kernel_pls3adsp1800), kernel_pls3adsp1800 }, sizeof(kernel_pls3adsp1800), kernel_pls3adsp1800 },
{ "microblazeel", "petalogix-ml605", "", "TT", { "microblazeel", "petalogix-ml605", "", "TT",
sizeof(kernel_plml605), kernel_plml605 }, sizeof(kernel_plml605), kernel_plml605 },
{ "arm", "raspi2", "", "TT", sizeof(bios_raspi2), 0, bios_raspi2 }, { "arm", "raspi2b", "", "TT", sizeof(bios_raspi2), 0, bios_raspi2 },
/* For hppa, force bios to output to serial by disabling graphics. */ /* For hppa, force bios to output to serial by disabling graphics. */
{ "hppa", "hppa", "-vga none", "SeaBIOS wants SYSTEM HALT" }, { "hppa", "hppa", "-vga none", "SeaBIOS wants SYSTEM HALT" },
{ "aarch64", "virt", "-cpu max", "TT", sizeof(kernel_aarch64), { "aarch64", "virt", "-cpu max", "TT", sizeof(kernel_aarch64),

View File

@ -42,7 +42,7 @@ static void *raspi2_get_driver(void *object, const char *interface)
return &machine->alloc; return &machine->alloc;
} }
fprintf(stderr, "%s not present in arm/raspi2\n", interface); fprintf(stderr, "%s not present in arm/raspi2b\n", interface);
g_assert_not_reached(); g_assert_not_reached();
} }
@ -53,7 +53,7 @@ static QOSGraphObject *raspi2_get_device(void *obj, const char *device)
return &machine->sdhci.obj; return &machine->sdhci.obj;
} }
fprintf(stderr, "%s not present in arm/raspi2\n", device); fprintf(stderr, "%s not present in arm/raspi2b\n", device);
g_assert_not_reached(); g_assert_not_reached();
} }
@ -85,8 +85,8 @@ static void *qos_create_machine_arm_raspi2(QTestState *qts)
static void raspi2_register_nodes(void) static void raspi2_register_nodes(void)
{ {
qos_node_create_machine("arm/raspi2", qos_create_machine_arm_raspi2); qos_node_create_machine("arm/raspi2b", qos_create_machine_arm_raspi2);
qos_node_contains("arm/raspi2", "generic-sdhci", NULL); qos_node_contains("arm/raspi2b", "generic-sdhci", NULL);
} }
libqos_init(raspi2_register_nodes); libqos_init(raspi2_register_nodes);

View File

@ -252,17 +252,17 @@ void qos_node_create_driver_named(const char *name, const char *qemu_name,
* This function can be useful when there are multiple devices * This function can be useful when there are multiple devices
* with the same node name contained in a machine/other node * with the same node name contained in a machine/other node
* *
* For example, if ``arm/raspi2`` contains 2 ``generic-sdhci`` * For example, if ``arm/raspi2b`` contains 2 ``generic-sdhci``
* devices, the right commands will be: * devices, the right commands will be:
* *
* .. code:: * .. code::
* *
* qos_node_create_machine("arm/raspi2"); * qos_node_create_machine("arm/raspi2b");
* qos_node_create_driver("generic-sdhci", constructor); * qos_node_create_driver("generic-sdhci", constructor);
* // assume rest of the fields are set NULL * // assume rest of the fields are set NULL
* QOSGraphEdgeOptions op1 = { .edge_name = "emmc" }; * QOSGraphEdgeOptions op1 = { .edge_name = "emmc" };
* QOSGraphEdgeOptions op2 = { .edge_name = "sdcard" }; * QOSGraphEdgeOptions op2 = { .edge_name = "sdcard" };
* qos_node_contains("arm/raspi2", "generic-sdhci", &op1, &op2, NULL); * qos_node_contains("arm/raspi2b", "generic-sdhci", &op1, &op2, NULL);
* *
* Of course this also requires that the @container's get_device function * Of course this also requires that the @container's get_device function
* should implement a case for "emmc" and "sdcard". * should implement a case for "emmc" and "sdcard".

View File

@ -230,7 +230,7 @@ void qos_graph_foreach_test_path(QOSTestCallback fn);
/** /**
* qos_get_machine_type(): return QEMU machine type for a machine node. * qos_get_machine_type(): return QEMU machine type for a machine node.
* This function requires every machine @name to be in the form * This function requires every machine @name to be in the form
* <arch>/<machine_name>, like "arm/raspi2" or "x86_64/pc". * <arch>/<machine_name>, like "arm/raspi2b" or "x86_64/pc".
* *
* The function will validate the format and return a pointer to * The function will validate the format and return a pointer to
* @machine to <machine_name>. For example, when passed "x86_64/pc" * @machine to <machine_name>. For example, when passed "x86_64/pc"

View File

@ -21,7 +21,7 @@
#include "../qtest/libqos/qgraph_internal.h" #include "../qtest/libqos/qgraph_internal.h"
#define MACHINE_PC "x86_64/pc" #define MACHINE_PC "x86_64/pc"
#define MACHINE_RASPI2 "arm/raspi2" #define MACHINE_RASPI2 "arm/raspi2b"
#define I440FX "i440FX-pcihost" #define I440FX "i440FX-pcihost"
#define PCIBUS_PC "pcibus-pc" #define PCIBUS_PC "pcibus-pc"
#define SDHCI "sdhci" #define SDHCI "sdhci"