Merge remote-tracking branch 'pmaydell/arm-devs.for-upstream' into staging
# By Peter Crosthwaite (3) and others # Via Peter Maydell * pmaydell/arm-devs.for-upstream: nand: Don't inherit from Sysbus block/nand: Convert Sysbus::init to Device::realize block/nand: QOM casting sweep i.MX31: Fix PRCS bit test arm/boot: Free dtb blob memory after use i.MX: Rework functions/types name and use new style initialization i.MX: Implement a more complete version of the GPT timer. ARM: Allow dumping of device tree Message-id: 1372184516-32397-1-git-send-email-peter.maydell@linaro.org Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
commit
3e50873294
@ -237,14 +237,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
|
||||
if (!filename) {
|
||||
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
|
||||
return -1;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
fdt = load_device_tree(filename, &size);
|
||||
if (!fdt) {
|
||||
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
|
||||
g_free(filename);
|
||||
return -1;
|
||||
goto fail;
|
||||
}
|
||||
g_free(filename);
|
||||
|
||||
@ -252,7 +252,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells");
|
||||
if (acells == 0 || scells == 0) {
|
||||
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
|
||||
return -1;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
mem_reg_propsize = acells + scells;
|
||||
@ -264,7 +264,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
} else if (hival != 0) {
|
||||
fprintf(stderr, "qemu: dtb file not compatible with "
|
||||
"RAM start address > 4GB\n");
|
||||
exit(1);
|
||||
goto fail;
|
||||
}
|
||||
mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size);
|
||||
hival = cpu_to_be32(binfo->ram_size >> 32);
|
||||
@ -273,13 +273,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
} else if (hival != 0) {
|
||||
fprintf(stderr, "qemu: dtb file not compatible with "
|
||||
"RAM size > 4GB\n");
|
||||
exit(1);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
|
||||
mem_reg_propsize * sizeof(uint32_t));
|
||||
if (rc < 0) {
|
||||
fprintf(stderr, "couldn't set /memory/reg\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
|
||||
@ -287,6 +288,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
binfo->kernel_cmdline);
|
||||
if (rc < 0) {
|
||||
fprintf(stderr, "couldn't set /chosen/bootargs\n");
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
|
||||
@ -295,18 +297,27 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
|
||||
binfo->initrd_start);
|
||||
if (rc < 0) {
|
||||
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
|
||||
binfo->initrd_start + binfo->initrd_size);
|
||||
if (rc < 0) {
|
||||
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
qemu_devtree_dumpdtb(fdt, size);
|
||||
|
||||
cpu_physical_memory_write(addr, fdt, size);
|
||||
|
||||
g_free(fdt);
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
g_free(fdt);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void do_cpu_reset(void *opaque)
|
||||
|
@ -21,7 +21,7 @@
|
||||
# include "hw/hw.h"
|
||||
# include "hw/block/flash.h"
|
||||
# include "sysemu/blockdev.h"
|
||||
# include "hw/sysbus.h"
|
||||
#include "hw/qdev.h"
|
||||
#include "qemu/error-report.h"
|
||||
|
||||
# define NAND_CMD_READ0 0x00
|
||||
@ -54,7 +54,8 @@
|
||||
|
||||
typedef struct NANDFlashState NANDFlashState;
|
||||
struct NANDFlashState {
|
||||
SysBusDevice busdev;
|
||||
DeviceState parent_obj;
|
||||
|
||||
uint8_t manf_id, chip_id;
|
||||
uint8_t buswidth; /* in BYTES */
|
||||
int size, pages;
|
||||
@ -82,6 +83,11 @@ struct NANDFlashState {
|
||||
uint32_t ioaddr_vmstate;
|
||||
};
|
||||
|
||||
#define TYPE_NAND "nand"
|
||||
|
||||
#define NAND(obj) \
|
||||
OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
|
||||
|
||||
static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
|
||||
{
|
||||
/* Like memcpy() but we logical-AND the data into the destination */
|
||||
@ -224,7 +230,7 @@ static const struct {
|
||||
|
||||
static void nand_reset(DeviceState *dev)
|
||||
{
|
||||
NANDFlashState *s = FROM_SYSBUS(NANDFlashState, SYS_BUS_DEVICE(dev));
|
||||
NANDFlashState *s = NAND(dev);
|
||||
s->cmd = NAND_CMD_READ0;
|
||||
s->addr = 0;
|
||||
s->addrlen = 0;
|
||||
@ -279,7 +285,7 @@ static void nand_command(NANDFlashState *s)
|
||||
break;
|
||||
|
||||
case NAND_CMD_RESET:
|
||||
nand_reset(&s->busdev.qdev);
|
||||
nand_reset(DEVICE(s));
|
||||
break;
|
||||
|
||||
case NAND_CMD_PAGEPROGRAM1:
|
||||
@ -319,14 +325,14 @@ static void nand_command(NANDFlashState *s)
|
||||
|
||||
static void nand_pre_save(void *opaque)
|
||||
{
|
||||
NANDFlashState *s = opaque;
|
||||
NANDFlashState *s = NAND(opaque);
|
||||
|
||||
s->ioaddr_vmstate = s->ioaddr - s->io;
|
||||
}
|
||||
|
||||
static int nand_post_load(void *opaque, int version_id)
|
||||
{
|
||||
NANDFlashState *s = opaque;
|
||||
NANDFlashState *s = NAND(opaque);
|
||||
|
||||
if (s->ioaddr_vmstate > sizeof(s->io)) {
|
||||
return -EINVAL;
|
||||
@ -362,10 +368,10 @@ static const VMStateDescription vmstate_nand = {
|
||||
}
|
||||
};
|
||||
|
||||
static int nand_device_init(SysBusDevice *dev)
|
||||
static void nand_realize(DeviceState *dev, Error **errp)
|
||||
{
|
||||
int pagesize;
|
||||
NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
|
||||
NANDFlashState *s = NAND(dev);
|
||||
|
||||
s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
|
||||
s->size = nand_flash_ids[s->chip_id].size << 20;
|
||||
@ -388,16 +394,17 @@ static int nand_device_init(SysBusDevice *dev)
|
||||
nand_init_2048(s);
|
||||
break;
|
||||
default:
|
||||
error_report("Unsupported NAND block size");
|
||||
return -1;
|
||||
error_setg(errp, "Unsupported NAND block size %#x\n",
|
||||
1 << s->page_shift);
|
||||
return;
|
||||
}
|
||||
|
||||
pagesize = 1 << s->oob_shift;
|
||||
s->mem_oob = 1;
|
||||
if (s->bdrv) {
|
||||
if (bdrv_is_read_only(s->bdrv)) {
|
||||
error_report("Can't use a read-only drive");
|
||||
return -1;
|
||||
error_setg(errp, "Can't use a read-only drive");
|
||||
return;
|
||||
}
|
||||
if (bdrv_getlength(s->bdrv) >=
|
||||
(s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
|
||||
@ -413,8 +420,6 @@ static int nand_device_init(SysBusDevice *dev)
|
||||
}
|
||||
/* Give s->ioaddr a sane value in case we save state before it is used. */
|
||||
s->ioaddr = s->io;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static Property nand_properties[] = {
|
||||
@ -427,17 +432,16 @@ static Property nand_properties[] = {
|
||||
static void nand_class_init(ObjectClass *klass, void *data)
|
||||
{
|
||||
DeviceClass *dc = DEVICE_CLASS(klass);
|
||||
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
|
||||
|
||||
k->init = nand_device_init;
|
||||
dc->realize = nand_realize;
|
||||
dc->reset = nand_reset;
|
||||
dc->vmsd = &vmstate_nand;
|
||||
dc->props = nand_properties;
|
||||
}
|
||||
|
||||
static const TypeInfo nand_info = {
|
||||
.name = "nand",
|
||||
.parent = TYPE_SYS_BUS_DEVICE,
|
||||
.name = TYPE_NAND,
|
||||
.parent = TYPE_DEVICE,
|
||||
.instance_size = sizeof(NANDFlashState),
|
||||
.class_init = nand_class_init,
|
||||
};
|
||||
@ -456,7 +460,8 @@ static void nand_register_types(void)
|
||||
void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
|
||||
uint8_t ce, uint8_t wp, uint8_t gnd)
|
||||
{
|
||||
NANDFlashState *s = (NANDFlashState *) dev;
|
||||
NANDFlashState *s = NAND(dev);
|
||||
|
||||
s->cle = cle;
|
||||
s->ale = ale;
|
||||
s->ce = ce;
|
||||
@ -477,7 +482,8 @@ void nand_getpins(DeviceState *dev, int *rb)
|
||||
void nand_setio(DeviceState *dev, uint32_t value)
|
||||
{
|
||||
int i;
|
||||
NANDFlashState *s = (NANDFlashState *) dev;
|
||||
NANDFlashState *s = NAND(dev);
|
||||
|
||||
if (!s->ce && s->cle) {
|
||||
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
|
||||
if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
|
||||
@ -581,7 +587,7 @@ uint32_t nand_getio(DeviceState *dev)
|
||||
{
|
||||
int offset;
|
||||
uint32_t x = 0;
|
||||
NANDFlashState *s = (NANDFlashState *) dev;
|
||||
NANDFlashState *s = NAND(dev);
|
||||
|
||||
/* Allow sequential reading */
|
||||
if (!s->iolen && s->cmd == NAND_CMD_READ0) {
|
||||
|
@ -153,7 +153,7 @@ static void update_clocks(IMXCCMState *s)
|
||||
* approach
|
||||
*/
|
||||
|
||||
if ((s->ccmr & CCMR_PRCS) == 1) {
|
||||
if ((s->ccmr & CCMR_PRCS) == 2) {
|
||||
s->pll_refclk_freq = CKIL_FREQ * 1024;
|
||||
} else {
|
||||
s->pll_refclk_freq = CKIH_FREQ;
|
||||
|
@ -5,6 +5,7 @@
|
||||
* Copyright (c) 2011 NICTA Pty Ltd
|
||||
* Originally written by Hans Jiang
|
||||
* Updated by Peter Chubb
|
||||
* Updated by Jean-Christophe Dubois
|
||||
*
|
||||
* This code is licensed under GPL version 2 or later. See
|
||||
* the COPYING file in the top-level directory.
|
||||
@ -18,10 +19,44 @@
|
||||
#include "hw/sysbus.h"
|
||||
#include "hw/arm/imx.h"
|
||||
|
||||
//#define DEBUG_TIMER 1
|
||||
#ifdef DEBUG_TIMER
|
||||
#define TYPE_IMX_GPT "imx.gpt"
|
||||
|
||||
/*
|
||||
* Define to 1 for debug messages
|
||||
*/
|
||||
#define DEBUG_TIMER 0
|
||||
#if DEBUG_TIMER
|
||||
|
||||
static char const *imx_gpt_reg_name(uint32_t reg)
|
||||
{
|
||||
switch (reg) {
|
||||
case 0:
|
||||
return "CR";
|
||||
case 1:
|
||||
return "PR";
|
||||
case 2:
|
||||
return "SR";
|
||||
case 3:
|
||||
return "IR";
|
||||
case 4:
|
||||
return "OCR1";
|
||||
case 5:
|
||||
return "OCR2";
|
||||
case 6:
|
||||
return "OCR3";
|
||||
case 7:
|
||||
return "ICR1";
|
||||
case 8:
|
||||
return "ICR2";
|
||||
case 9:
|
||||
return "CNT";
|
||||
default:
|
||||
return "[?]";
|
||||
}
|
||||
}
|
||||
|
||||
# define DPRINTF(fmt, args...) \
|
||||
do { printf("imx_timer: " fmt , ##args); } while (0)
|
||||
do { printf("%s: " fmt , __func__, ##args); } while (0)
|
||||
#else
|
||||
# define DPRINTF(fmt, args...) do {} while (0)
|
||||
#endif
|
||||
@ -32,27 +67,20 @@
|
||||
*/
|
||||
#define DEBUG_IMPLEMENTATION 1
|
||||
#if DEBUG_IMPLEMENTATION
|
||||
# define IPRINTF(fmt, args...) \
|
||||
do { fprintf(stderr, "imx_timer: " fmt, ##args); } while (0)
|
||||
# define IPRINTF(fmt, args...) \
|
||||
do { fprintf(stderr, "%s: " fmt, __func__, ##args); } while (0)
|
||||
#else
|
||||
# define IPRINTF(fmt, args...) do {} while (0)
|
||||
#endif
|
||||
|
||||
#define IMX_GPT(obj) \
|
||||
OBJECT_CHECK(IMXGPTState, (obj), TYPE_IMX_GPT)
|
||||
/*
|
||||
* GPT : General purpose timer
|
||||
*
|
||||
* This timer counts up continuously while it is enabled, resetting itself
|
||||
* to 0 when it reaches TIMER_MAX (in freerun mode) or when it
|
||||
* reaches the value of ocr1 (in periodic mode). WE simulate this using a
|
||||
* QEMU ptimer counting down from ocr1 and reloading from ocr1 in
|
||||
* periodic mode, or counting from ocr1 to zero, then TIMER_MAX - ocr1.
|
||||
* waiting_rov is set when counting from TIMER_MAX.
|
||||
*
|
||||
* In the real hardware, there are three comparison registers that can
|
||||
* trigger interrupts, and compare channel 1 can be used to
|
||||
* force-reset the timer. However, this is a `bare-bones'
|
||||
* implementation: only what Linux 3.x uses has been implemented
|
||||
* (free-running timer from 0 to OCR1 or TIMER_MAX) .
|
||||
* reaches the value of one of the ocrX (in periodic mode).
|
||||
*/
|
||||
|
||||
#define TIMER_MAX 0XFFFFFFFFUL
|
||||
@ -79,9 +107,13 @@
|
||||
#define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */
|
||||
|
||||
#define GPT_SR_OF1 (1 << 0)
|
||||
#define GPT_SR_OF2 (1 << 1)
|
||||
#define GPT_SR_OF3 (1 << 2)
|
||||
#define GPT_SR_ROV (1 << 5)
|
||||
|
||||
#define GPT_IR_OF1IE (1 << 0)
|
||||
#define GPT_IR_OF2IE (1 << 1)
|
||||
#define GPT_IR_OF3IE (1 << 2)
|
||||
#define GPT_IR_ROVIE (1 << 5)
|
||||
|
||||
typedef struct {
|
||||
@ -101,33 +133,39 @@ typedef struct {
|
||||
uint32_t icr2;
|
||||
uint32_t cnt;
|
||||
|
||||
uint32_t waiting_rov;
|
||||
qemu_irq irq;
|
||||
} IMXTimerGState;
|
||||
uint32_t next_timeout;
|
||||
uint32_t next_int;
|
||||
|
||||
static const VMStateDescription vmstate_imx_timerg = {
|
||||
.name = "imx-timerg",
|
||||
.version_id = 2,
|
||||
.minimum_version_id = 2,
|
||||
.minimum_version_id_old = 2,
|
||||
uint32_t freq;
|
||||
|
||||
qemu_irq irq;
|
||||
} IMXGPTState;
|
||||
|
||||
static const VMStateDescription vmstate_imx_timer_gpt = {
|
||||
.name = TYPE_IMX_GPT,
|
||||
.version_id = 3,
|
||||
.minimum_version_id = 3,
|
||||
.minimum_version_id_old = 3,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_UINT32(cr, IMXTimerGState),
|
||||
VMSTATE_UINT32(pr, IMXTimerGState),
|
||||
VMSTATE_UINT32(sr, IMXTimerGState),
|
||||
VMSTATE_UINT32(ir, IMXTimerGState),
|
||||
VMSTATE_UINT32(ocr1, IMXTimerGState),
|
||||
VMSTATE_UINT32(ocr2, IMXTimerGState),
|
||||
VMSTATE_UINT32(ocr3, IMXTimerGState),
|
||||
VMSTATE_UINT32(icr1, IMXTimerGState),
|
||||
VMSTATE_UINT32(icr2, IMXTimerGState),
|
||||
VMSTATE_UINT32(cnt, IMXTimerGState),
|
||||
VMSTATE_UINT32(waiting_rov, IMXTimerGState),
|
||||
VMSTATE_PTIMER(timer, IMXTimerGState),
|
||||
VMSTATE_UINT32(cr, IMXGPTState),
|
||||
VMSTATE_UINT32(pr, IMXGPTState),
|
||||
VMSTATE_UINT32(sr, IMXGPTState),
|
||||
VMSTATE_UINT32(ir, IMXGPTState),
|
||||
VMSTATE_UINT32(ocr1, IMXGPTState),
|
||||
VMSTATE_UINT32(ocr2, IMXGPTState),
|
||||
VMSTATE_UINT32(ocr3, IMXGPTState),
|
||||
VMSTATE_UINT32(icr1, IMXGPTState),
|
||||
VMSTATE_UINT32(icr2, IMXGPTState),
|
||||
VMSTATE_UINT32(cnt, IMXGPTState),
|
||||
VMSTATE_UINT32(next_timeout, IMXGPTState),
|
||||
VMSTATE_UINT32(next_int, IMXGPTState),
|
||||
VMSTATE_UINT32(freq, IMXGPTState),
|
||||
VMSTATE_PTIMER(timer, IMXGPTState),
|
||||
VMSTATE_END_OF_LIST()
|
||||
}
|
||||
};
|
||||
|
||||
static const IMXClk imx_timerg_clocks[] = {
|
||||
static const IMXClk imx_gpt_clocks[] = {
|
||||
NOCLK, /* 000 No clock source */
|
||||
IPG, /* 001 ipg_clk, 532MHz*/
|
||||
IPG, /* 010 ipg_clk_highfreq */
|
||||
@ -138,128 +176,190 @@ static const IMXClk imx_timerg_clocks[] = {
|
||||
NOCLK, /* 111 not defined */
|
||||
};
|
||||
|
||||
|
||||
static void imx_timerg_set_freq(IMXTimerGState *s)
|
||||
static void imx_gpt_set_freq(IMXGPTState *s)
|
||||
{
|
||||
int clksrc;
|
||||
uint32_t freq;
|
||||
uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
|
||||
uint32_t freq = imx_clock_frequency(s->ccm, imx_gpt_clocks[clksrc])
|
||||
/ (1 + s->pr);
|
||||
s->freq = freq;
|
||||
|
||||
clksrc = (s->cr >> GPT_CR_CLKSRC_SHIFT) & GPT_CR_CLKSRC_MASK;
|
||||
freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr);
|
||||
|
||||
DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq);
|
||||
DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, freq);
|
||||
|
||||
if (freq) {
|
||||
ptimer_set_freq(s->timer, freq);
|
||||
}
|
||||
}
|
||||
|
||||
static void imx_timerg_update(IMXTimerGState *s)
|
||||
static void imx_gpt_update_int(IMXGPTState *s)
|
||||
{
|
||||
uint32_t flags = s->sr & s->ir & (GPT_SR_OF1 | GPT_SR_ROV);
|
||||
|
||||
DPRINTF("g-timer SR: %s %s IR=%s %s, %s\n",
|
||||
s->sr & GPT_SR_OF1 ? "OF1" : "",
|
||||
s->sr & GPT_SR_ROV ? "ROV" : "",
|
||||
s->ir & GPT_SR_OF1 ? "OF1" : "",
|
||||
s->ir & GPT_SR_ROV ? "ROV" : "",
|
||||
s->cr & GPT_CR_EN ? "CR_EN" : "Not Enabled");
|
||||
|
||||
qemu_set_irq(s->irq, (s->cr & GPT_CR_EN) && flags);
|
||||
if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
|
||||
qemu_irq_raise(s->irq);
|
||||
} else {
|
||||
qemu_irq_lower(s->irq);
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t imx_timerg_update_counts(IMXTimerGState *s)
|
||||
static uint32_t imx_gpt_update_count(IMXGPTState *s)
|
||||
{
|
||||
uint64_t target = s->waiting_rov ? TIMER_MAX : s->ocr1;
|
||||
uint64_t cnt = ptimer_get_count(s->timer);
|
||||
s->cnt = target - cnt;
|
||||
s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
|
||||
|
||||
return s->cnt;
|
||||
}
|
||||
|
||||
static void imx_timerg_reload(IMXTimerGState *s, uint32_t timeout)
|
||||
static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
|
||||
uint32_t timeout)
|
||||
{
|
||||
uint64_t diff_cnt;
|
||||
if ((count < reg) && (timeout > reg)) {
|
||||
timeout = reg;
|
||||
}
|
||||
|
||||
if (!(s->cr & GPT_CR_FRR)) {
|
||||
IPRINTF("IMX_timerg_reload --- called in reset-mode\n");
|
||||
return timeout;
|
||||
}
|
||||
|
||||
static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
|
||||
{
|
||||
uint32_t timeout = TIMER_MAX;
|
||||
uint32_t count = 0;
|
||||
long long limit;
|
||||
|
||||
if (!(s->cr & GPT_CR_EN)) {
|
||||
/* if not enabled just return */
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* For small timeouts, qemu sometimes runs too slow.
|
||||
* Better deliver a late interrupt than none.
|
||||
*
|
||||
* In Reset mode (FRR bit clear)
|
||||
* the ptimer reloads itself from OCR1;
|
||||
* in free-running mode we need to fake
|
||||
* running from 0 to ocr1 to TIMER_MAX
|
||||
*/
|
||||
if (timeout > s->cnt) {
|
||||
diff_cnt = timeout - s->cnt;
|
||||
if (event) {
|
||||
/* This is a timer event */
|
||||
|
||||
if ((s->cr & GPT_CR_FRR) && (s->next_timeout != TIMER_MAX)) {
|
||||
/*
|
||||
* if we are in free running mode and we have not reached
|
||||
* the TIMER_MAX limit, then update the count
|
||||
*/
|
||||
count = imx_gpt_update_count(s);
|
||||
}
|
||||
} else {
|
||||
diff_cnt = 0;
|
||||
/* not a timer event, then just update the count */
|
||||
|
||||
count = imx_gpt_update_count(s);
|
||||
}
|
||||
|
||||
/* now, find the next timeout related to count */
|
||||
|
||||
if (s->ir & GPT_IR_OF1IE) {
|
||||
timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
|
||||
}
|
||||
if (s->ir & GPT_IR_OF2IE) {
|
||||
timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
|
||||
}
|
||||
if (s->ir & GPT_IR_OF3IE) {
|
||||
timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
|
||||
}
|
||||
|
||||
/* find the next set of interrupts to raise for next timer event */
|
||||
|
||||
s->next_int = 0;
|
||||
if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
|
||||
s->next_int |= GPT_SR_OF1;
|
||||
}
|
||||
if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
|
||||
s->next_int |= GPT_SR_OF2;
|
||||
}
|
||||
if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
|
||||
s->next_int |= GPT_SR_OF3;
|
||||
}
|
||||
if ((s->ir & GPT_IR_ROVIE) && (timeout == TIMER_MAX)) {
|
||||
s->next_int |= GPT_SR_ROV;
|
||||
}
|
||||
|
||||
/* the new range to count down from */
|
||||
limit = timeout - imx_gpt_update_count(s);
|
||||
|
||||
if (limit < 0) {
|
||||
/*
|
||||
* if we reach here, then QEMU is running too slow and we pass the
|
||||
* timeout limit while computing it. Let's deliver the interrupt
|
||||
* and compute a new limit.
|
||||
*/
|
||||
s->sr |= s->next_int;
|
||||
|
||||
imx_gpt_compute_next_timeout(s, event);
|
||||
|
||||
imx_gpt_update_int(s);
|
||||
} else {
|
||||
/* New timeout value */
|
||||
s->next_timeout = timeout;
|
||||
|
||||
/* reset the limit to the computed range */
|
||||
ptimer_set_limit(s->timer, limit, 1);
|
||||
}
|
||||
ptimer_set_count(s->timer, diff_cnt);
|
||||
}
|
||||
|
||||
static uint64_t imx_timerg_read(void *opaque, hwaddr offset,
|
||||
unsigned size)
|
||||
static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
|
||||
{
|
||||
IMXTimerGState *s = (IMXTimerGState *)opaque;
|
||||
IMXGPTState *s = IMX_GPT(opaque);
|
||||
uint32_t reg_value = 0;
|
||||
uint32_t reg = offset >> 2;
|
||||
|
||||
DPRINTF("g-read(offset=%x)", (unsigned int)(offset >> 2));
|
||||
switch (offset >> 2) {
|
||||
switch (reg) {
|
||||
case 0: /* Control Register */
|
||||
DPRINTF(" cr = %x\n", s->cr);
|
||||
return s->cr;
|
||||
reg_value = s->cr;
|
||||
break;
|
||||
|
||||
case 1: /* prescaler */
|
||||
DPRINTF(" pr = %x\n", s->pr);
|
||||
return s->pr;
|
||||
reg_value = s->pr;
|
||||
break;
|
||||
|
||||
case 2: /* Status Register */
|
||||
DPRINTF(" sr = %x\n", s->sr);
|
||||
return s->sr;
|
||||
reg_value = s->sr;
|
||||
break;
|
||||
|
||||
case 3: /* Interrupt Register */
|
||||
DPRINTF(" ir = %x\n", s->ir);
|
||||
return s->ir;
|
||||
reg_value = s->ir;
|
||||
break;
|
||||
|
||||
case 4: /* Output Compare Register 1 */
|
||||
DPRINTF(" ocr1 = %x\n", s->ocr1);
|
||||
return s->ocr1;
|
||||
reg_value = s->ocr1;
|
||||
break;
|
||||
|
||||
case 5: /* Output Compare Register 2 */
|
||||
DPRINTF(" ocr2 = %x\n", s->ocr2);
|
||||
return s->ocr2;
|
||||
reg_value = s->ocr2;
|
||||
break;
|
||||
|
||||
case 6: /* Output Compare Register 3 */
|
||||
DPRINTF(" ocr3 = %x\n", s->ocr3);
|
||||
return s->ocr3;
|
||||
reg_value = s->ocr3;
|
||||
break;
|
||||
|
||||
case 7: /* input Capture Register 1 */
|
||||
DPRINTF(" icr1 = %x\n", s->icr1);
|
||||
return s->icr1;
|
||||
qemu_log_mask(LOG_UNIMP, "icr1 feature is not implemented\n");
|
||||
reg_value = s->icr1;
|
||||
break;
|
||||
|
||||
case 8: /* input Capture Register 2 */
|
||||
DPRINTF(" icr2 = %x\n", s->icr2);
|
||||
return s->icr2;
|
||||
qemu_log_mask(LOG_UNIMP, "icr2 feature is not implemented\n");
|
||||
reg_value = s->icr2;
|
||||
break;
|
||||
|
||||
case 9: /* cnt */
|
||||
imx_timerg_update_counts(s);
|
||||
DPRINTF(" cnt = %x\n", s->cnt);
|
||||
return s->cnt;
|
||||
imx_gpt_update_count(s);
|
||||
reg_value = s->cnt;
|
||||
break;
|
||||
|
||||
default:
|
||||
IPRINTF("Bad offset %x\n", reg);
|
||||
break;
|
||||
}
|
||||
|
||||
IPRINTF("imx_timerg_read: Bad offset %x\n",
|
||||
(int)offset >> 2);
|
||||
DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(reg), reg_value);
|
||||
|
||||
return 0;
|
||||
return reg_value;
|
||||
}
|
||||
|
||||
static void imx_timerg_reset(DeviceState *dev)
|
||||
static void imx_gpt_reset(DeviceState *dev)
|
||||
{
|
||||
IMXTimerGState *s = container_of(dev, IMXTimerGState, busdev.qdev);
|
||||
IMXGPTState *s = IMX_GPT(dev);
|
||||
|
||||
/* stop timer */
|
||||
ptimer_stop(s->timer);
|
||||
|
||||
/*
|
||||
* Soft reset doesn't touch some bits; hard reset clears them
|
||||
@ -275,191 +375,183 @@ static void imx_timerg_reset(DeviceState *dev)
|
||||
s->ocr3 = TIMER_MAX;
|
||||
s->icr1 = 0;
|
||||
s->icr2 = 0;
|
||||
ptimer_stop(s->timer);
|
||||
|
||||
s->next_timeout = TIMER_MAX;
|
||||
s->next_int = 0;
|
||||
|
||||
/* compute new freq */
|
||||
imx_gpt_set_freq(s);
|
||||
|
||||
/* reset the limit to TIMER_MAX */
|
||||
ptimer_set_limit(s->timer, TIMER_MAX, 1);
|
||||
ptimer_set_count(s->timer, TIMER_MAX);
|
||||
imx_timerg_set_freq(s);
|
||||
|
||||
/* if the timer is still enabled, restart it */
|
||||
if (s->freq && (s->cr & GPT_CR_EN)) {
|
||||
ptimer_run(s->timer, 1);
|
||||
}
|
||||
}
|
||||
|
||||
static void imx_timerg_write(void *opaque, hwaddr offset,
|
||||
uint64_t value, unsigned size)
|
||||
static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
|
||||
unsigned size)
|
||||
{
|
||||
IMXTimerGState *s = (IMXTimerGState *)opaque;
|
||||
DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2,
|
||||
(unsigned int)value);
|
||||
IMXGPTState *s = IMX_GPT(opaque);
|
||||
uint32_t oldreg;
|
||||
uint32_t reg = offset >> 2;
|
||||
|
||||
switch (offset >> 2) {
|
||||
case 0: {
|
||||
uint32_t oldcr = s->cr;
|
||||
/* CR */
|
||||
if (value & GPT_CR_SWR) { /* force reset */
|
||||
value &= ~GPT_CR_SWR;
|
||||
imx_timerg_reset(&s->busdev.qdev);
|
||||
imx_timerg_update(s);
|
||||
}
|
||||
DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(reg),
|
||||
(uint32_t)value);
|
||||
|
||||
s->cr = value & ~0x7c00;
|
||||
imx_timerg_set_freq(s);
|
||||
if ((oldcr ^ value) & GPT_CR_EN) {
|
||||
if (value & GPT_CR_EN) {
|
||||
if (value & GPT_CR_ENMOD) {
|
||||
ptimer_set_count(s->timer, s->ocr1);
|
||||
s->cnt = 0;
|
||||
switch (reg) {
|
||||
case 0:
|
||||
oldreg = s->cr;
|
||||
s->cr = value & ~0x7c14;
|
||||
if (s->cr & GPT_CR_SWR) { /* force reset */
|
||||
/* handle the reset */
|
||||
imx_gpt_reset(DEVICE(s));
|
||||
} else {
|
||||
/* set our freq, as the source might have changed */
|
||||
imx_gpt_set_freq(s);
|
||||
|
||||
if ((oldreg ^ s->cr) & GPT_CR_EN) {
|
||||
if (s->cr & GPT_CR_EN) {
|
||||
if (s->cr & GPT_CR_ENMOD) {
|
||||
s->next_timeout = TIMER_MAX;
|
||||
ptimer_set_count(s->timer, TIMER_MAX);
|
||||
imx_gpt_compute_next_timeout(s, false);
|
||||
}
|
||||
ptimer_run(s->timer, 1);
|
||||
} else {
|
||||
/* stop timer */
|
||||
ptimer_stop(s->timer);
|
||||
}
|
||||
ptimer_run(s->timer,
|
||||
(value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX));
|
||||
} else {
|
||||
ptimer_stop(s->timer);
|
||||
};
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 1: /* Prescaler */
|
||||
s->pr = value & 0xfff;
|
||||
imx_timerg_set_freq(s);
|
||||
return;
|
||||
imx_gpt_set_freq(s);
|
||||
break;
|
||||
|
||||
case 2: /* SR */
|
||||
/*
|
||||
* No point in implementing the status register bits to do with
|
||||
* external interrupt sources.
|
||||
*/
|
||||
value &= GPT_SR_OF1 | GPT_SR_ROV;
|
||||
s->sr &= ~value;
|
||||
imx_timerg_update(s);
|
||||
return;
|
||||
s->sr &= ~(value & 0x3f);
|
||||
imx_gpt_update_int(s);
|
||||
break;
|
||||
|
||||
case 3: /* IR -- interrupt register */
|
||||
s->ir = value & 0x3f;
|
||||
imx_timerg_update(s);
|
||||
return;
|
||||
imx_gpt_update_int(s);
|
||||
|
||||
imx_gpt_compute_next_timeout(s, false);
|
||||
|
||||
break;
|
||||
|
||||
case 4: /* OCR1 -- output compare register */
|
||||
s->ocr1 = value;
|
||||
|
||||
/* In non-freerun mode, reset count when this register is written */
|
||||
if (!(s->cr & GPT_CR_FRR)) {
|
||||
s->waiting_rov = 0;
|
||||
ptimer_set_limit(s->timer, value, 1);
|
||||
} else {
|
||||
imx_timerg_update_counts(s);
|
||||
if (value > s->cnt) {
|
||||
s->waiting_rov = 0;
|
||||
imx_timerg_reload(s, value);
|
||||
} else {
|
||||
s->waiting_rov = 1;
|
||||
imx_timerg_reload(s, TIMER_MAX - s->cnt);
|
||||
}
|
||||
s->next_timeout = TIMER_MAX;
|
||||
ptimer_set_limit(s->timer, TIMER_MAX, 1);
|
||||
}
|
||||
s->ocr1 = value;
|
||||
return;
|
||||
|
||||
/* compute the new timeout */
|
||||
imx_gpt_compute_next_timeout(s, false);
|
||||
|
||||
break;
|
||||
|
||||
case 5: /* OCR2 -- output compare register */
|
||||
s->ocr2 = value;
|
||||
|
||||
/* compute the new timeout */
|
||||
imx_gpt_compute_next_timeout(s, false);
|
||||
|
||||
break;
|
||||
|
||||
case 6: /* OCR3 -- output compare register */
|
||||
s->ocr3 = value;
|
||||
|
||||
/* compute the new timeout */
|
||||
imx_gpt_compute_next_timeout(s, false);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
IPRINTF("imx_timerg_write: Bad offset %x\n",
|
||||
(int)offset >> 2);
|
||||
IPRINTF("Bad offset %x\n", reg);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void imx_timerg_timeout(void *opaque)
|
||||
static void imx_gpt_timeout(void *opaque)
|
||||
{
|
||||
IMXTimerGState *s = (IMXTimerGState *)opaque;
|
||||
IMXGPTState *s = IMX_GPT(opaque);
|
||||
|
||||
DPRINTF("imx_timerg_timeout, waiting rov=%d\n", s->waiting_rov);
|
||||
if (s->cr & GPT_CR_FRR) {
|
||||
/*
|
||||
* Free running timer from 0 -> TIMERMAX
|
||||
* Generates interrupt at TIMER_MAX and at cnt==ocr1
|
||||
* If ocr1 == TIMER_MAX, then no need to reload timer.
|
||||
*/
|
||||
if (s->ocr1 == TIMER_MAX) {
|
||||
DPRINTF("s->ocr1 == TIMER_MAX, FRR\n");
|
||||
s->sr |= GPT_SR_OF1 | GPT_SR_ROV;
|
||||
imx_timerg_update(s);
|
||||
return;
|
||||
}
|
||||
DPRINTF("\n");
|
||||
|
||||
if (s->waiting_rov) {
|
||||
/*
|
||||
* We were waiting for cnt==TIMER_MAX
|
||||
*/
|
||||
s->sr |= GPT_SR_ROV;
|
||||
s->waiting_rov = 0;
|
||||
s->cnt = 0;
|
||||
imx_timerg_reload(s, s->ocr1);
|
||||
} else {
|
||||
/* Must have got a cnt==ocr1 timeout. */
|
||||
s->sr |= GPT_SR_OF1;
|
||||
s->cnt = s->ocr1;
|
||||
s->waiting_rov = 1;
|
||||
imx_timerg_reload(s, TIMER_MAX);
|
||||
}
|
||||
imx_timerg_update(s);
|
||||
return;
|
||||
s->sr |= s->next_int;
|
||||
s->next_int = 0;
|
||||
|
||||
imx_gpt_compute_next_timeout(s, true);
|
||||
|
||||
imx_gpt_update_int(s);
|
||||
|
||||
if (s->freq && (s->cr & GPT_CR_EN)) {
|
||||
ptimer_run(s->timer, 1);
|
||||
}
|
||||
|
||||
s->sr |= GPT_SR_OF1;
|
||||
imx_timerg_update(s);
|
||||
}
|
||||
|
||||
static const MemoryRegionOps imx_timerg_ops = {
|
||||
.read = imx_timerg_read,
|
||||
.write = imx_timerg_write,
|
||||
static const MemoryRegionOps imx_gpt_ops = {
|
||||
.read = imx_gpt_read,
|
||||
.write = imx_gpt_write,
|
||||
.endianness = DEVICE_NATIVE_ENDIAN,
|
||||
};
|
||||
|
||||
|
||||
static int imx_timerg_init(SysBusDevice *dev)
|
||||
static void imx_gpt_realize(DeviceState *dev, Error **errp)
|
||||
{
|
||||
IMXTimerGState *s = FROM_SYSBUS(IMXTimerGState, dev);
|
||||
IMXGPTState *s = IMX_GPT(dev);
|
||||
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
||||
QEMUBH *bh;
|
||||
|
||||
sysbus_init_irq(dev, &s->irq);
|
||||
memory_region_init_io(&s->iomem, &imx_timerg_ops,
|
||||
s, "imxg-timer",
|
||||
sysbus_init_irq(sbd, &s->irq);
|
||||
memory_region_init_io(&s->iomem, &imx_gpt_ops, s, TYPE_IMX_GPT,
|
||||
0x00001000);
|
||||
sysbus_init_mmio(dev, &s->iomem);
|
||||
sysbus_init_mmio(sbd, &s->iomem);
|
||||
|
||||
bh = qemu_bh_new(imx_timerg_timeout, s);
|
||||
bh = qemu_bh_new(imx_gpt_timeout, s);
|
||||
s->timer = ptimer_init(bh);
|
||||
|
||||
/* Hard reset resets extra bits in CR */
|
||||
s->cr = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void imx_timerg_create(const hwaddr addr,
|
||||
qemu_irq irq,
|
||||
DeviceState *ccm)
|
||||
void imx_timerg_create(const hwaddr addr, qemu_irq irq, DeviceState *ccm)
|
||||
{
|
||||
IMXTimerGState *pp;
|
||||
IMXGPTState *pp;
|
||||
DeviceState *dev;
|
||||
|
||||
dev = sysbus_create_simple("imx_timerg", addr, irq);
|
||||
pp = container_of(dev, IMXTimerGState, busdev.qdev);
|
||||
dev = sysbus_create_simple(TYPE_IMX_GPT, addr, irq);
|
||||
pp = IMX_GPT(dev);
|
||||
pp->ccm = ccm;
|
||||
}
|
||||
|
||||
static void imx_timerg_class_init(ObjectClass *klass, void *data)
|
||||
static void imx_gpt_class_init(ObjectClass *klass, void *data)
|
||||
{
|
||||
DeviceClass *dc = DEVICE_CLASS(klass);
|
||||
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
|
||||
k->init = imx_timerg_init;
|
||||
dc->vmsd = &vmstate_imx_timerg;
|
||||
dc->reset = imx_timerg_reset;
|
||||
DeviceClass *dc = DEVICE_CLASS(klass);
|
||||
|
||||
dc->realize = imx_gpt_realize;
|
||||
dc->reset = imx_gpt_reset;
|
||||
dc->vmsd = &vmstate_imx_timer_gpt;
|
||||
dc->desc = "i.MX general timer";
|
||||
}
|
||||
|
||||
static const TypeInfo imx_timerg_info = {
|
||||
.name = "imx_timerg",
|
||||
static const TypeInfo imx_gpt_info = {
|
||||
.name = TYPE_IMX_GPT,
|
||||
.parent = TYPE_SYS_BUS_DEVICE,
|
||||
.instance_size = sizeof(IMXTimerGState),
|
||||
.class_init = imx_timerg_class_init,
|
||||
.instance_size = sizeof(IMXGPTState),
|
||||
.class_init = imx_gpt_class_init,
|
||||
};
|
||||
|
||||
static void imx_timer_register_types(void)
|
||||
static void imx_gpt_register_types(void)
|
||||
{
|
||||
type_register_static(&imx_timerg_info);
|
||||
type_register_static(&imx_gpt_info);
|
||||
}
|
||||
|
||||
type_init(imx_timer_register_types)
|
||||
type_init(imx_gpt_register_types)
|
||||
|
Loading…
x
Reference in New Issue
Block a user