tests/tcg/i386: add memory test to exercise softmmu

This is a simple test to check various access patterns to memory
including unaligned access.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
This commit is contained in:
Alex Bennée 2019-03-04 19:32:41 +00:00
parent 40d6ee9450
commit 8a2af7a70c
1 changed files with 243 additions and 0 deletions

View File

@ -0,0 +1,243 @@
/*
* Memory Test
*
* This is intended to test the softmmu code and ensure we properly
* behave across normal and unaligned accesses across several pages.
* We are not replicating memory tests for stuck bits and other
* hardware level failures but looking for issues with different size
* accesses when:
*
*/
#include <inttypes.h>
#include <minilib.h>
#define TEST_SIZE (4096 * 4) /* 4 pages */
static uint8_t test_data[TEST_SIZE];
static void pdot(int count)
{
if (count % 128 == 0) {
ml_printf(".");
}
}
/*
* Fill the data with ascending value bytes. As x86 is a LE machine we
* write in ascending order and then read and high byte should either
* be zero or higher than the lower bytes.
*/
static void init_test_data_u8(void)
{
uint8_t count = 0, *ptr = &test_data[0];
int i;
ml_printf("Filling test area with u8:");
for (i = 0; i < TEST_SIZE; i++) {
*ptr++ = count++;
pdot(i);
}
ml_printf("done\n");
}
static void init_test_data_u16(int offset)
{
uint8_t count = 0;
uint16_t word, *ptr = (uint16_t *) &test_data[0];
const int max = (TEST_SIZE - offset) / sizeof(word);
int i;
ml_printf("Filling test area with u16 (offset %d):", offset);
/* Leading zeros */
for (i = 0; i < offset; i++) {
*ptr = 0;
}
ptr = (uint16_t *) &test_data[offset];
for (i = 0; i < max; i++) {
uint8_t high, low;
low = count++;
high = count++;
word = (high << 8) | low;
*ptr++ = word;
pdot(i);
}
ml_printf("done\n");
}
static void init_test_data_u32(int offset)
{
uint8_t count = 0;
uint32_t word, *ptr = (uint32_t *) &test_data[0];
const int max = (TEST_SIZE - offset) / sizeof(word);
int i;
ml_printf("Filling test area with u32 (offset %d):", offset);
/* Leading zeros */
for (i = 0; i < offset; i++) {
*ptr = 0;
}
ptr = (uint32_t *) &test_data[offset];
for (i = 0; i < max; i++) {
uint8_t b1, b2, b3, b4;
b4 = count++;
b3 = count++;
b2 = count++;
b1 = count++;
word = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
*ptr++ = word;
pdot(i);
}
ml_printf("done\n");
}
static int read_test_data_u16(int offset)
{
uint16_t word, *ptr = (uint16_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / sizeof(word);
ml_printf("Reading u16 from %#lx (offset %d):", ptr, offset);
for (i = 0; i < max; i++) {
uint8_t high, low;
word = *ptr++;
high = (word >> 8) & 0xff;
low = word & 0xff;
if (high < low && high != 0) {
ml_printf("Error %d < %d\n", high, low);
return 1;
} else {
pdot(i);
}
}
ml_printf("done\n");
return 0;
}
static int read_test_data_u32(int offset)
{
uint32_t word, *ptr = (uint32_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / sizeof(word);
ml_printf("Reading u32 from %#lx (offset %d):", ptr, offset);
for (i = 0; i < max; i++) {
uint8_t b1, b2, b3, b4;
word = *ptr++;
b1 = word >> 24 & 0xff;
b2 = word >> 16 & 0xff;
b3 = word >> 8 & 0xff;
b4 = word & 0xff;
if ((b1 < b2 && b1 != 0) ||
(b2 < b3 && b2 != 0) ||
(b3 < b4 && b3 != 0)) {
ml_printf("Error %d, %d, %d, %d", b1, b2, b3, b4);
return 2;
} else {
pdot(i);
}
}
ml_printf("done\n");
return 0;
}
static int read_test_data_u64(int offset)
{
uint64_t word, *ptr = (uint64_t *)&test_data[offset];
int i;
const int max = (TEST_SIZE - offset) / sizeof(word);
ml_printf("Reading u64 from %#lx (offset %d):", ptr, offset);
for (i = 0; i < max; i++) {
uint8_t b1, b2, b3, b4, b5, b6, b7, b8;
word = *ptr++;
b1 = ((uint64_t) (word >> 56)) & 0xff;
b2 = ((uint64_t) (word >> 48)) & 0xff;
b3 = ((uint64_t) (word >> 40)) & 0xff;
b4 = (word >> 32) & 0xff;
b5 = (word >> 24) & 0xff;
b6 = (word >> 16) & 0xff;
b7 = (word >> 8) & 0xff;
b8 = (word >> 0) & 0xff;
if ((b1 < b2 && b1 != 0) ||
(b2 < b3 && b2 != 0) ||
(b3 < b4 && b3 != 0) ||
(b4 < b5 && b4 != 0) ||
(b5 < b6 && b5 != 0) ||
(b6 < b7 && b6 != 0) ||
(b7 < b8 && b7 != 0)) {
ml_printf("Error %d, %d, %d, %d, %d, %d, %d, %d",
b1, b2, b3, b4, b5, b6, b7, b8);
return 2;
} else {
pdot(i);
}
}
ml_printf("done\n");
return 0;
}
/* Read the test data and verify at various offsets */
int do_reads(void)
{
int r = 0;
int off = 0;
while (r == 0 && off < 8) {
r = read_test_data_u16(off);
r |= read_test_data_u32(off);
r |= read_test_data_u64(off);
off++;
}
return r;
}
int main(void)
{
int i, r = 0;
init_test_data_u8();
r = do_reads();
if (r) {
return r;
}
for (i = 0; i < 8; i++) {
init_test_data_u16(i);
r = do_reads();
if (r) {
return r;
}
}
for (i = 0; i < 8; i++) {
init_test_data_u32(i);
r = do_reads();
if (r) {
return r;
}
}
ml_printf("Test complete: %s\n", r == 0 ? "PASSED" : "FAILED");
return r;
}