This implements an NMI interface POWERPC SPAPR machine.
This enables an "nmi" HMP/QMP command supported on SPAPR.
This calls POWERPC_EXCP_RESET (vector 0x100) in the guest to deliver NMI
to every CPU. The expected result is XMON (in-kernel debugger) invocation.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Memory changes for QOMification and automatic tracking of MR lifetime.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJT8et9AAoJEBvWZb6bTYbyIJAQAI3AlLSe27xWoUGfQUgWH30z
Rt/pShHz3BJMfQpD79JfTH8u6uBpkQmKtflerNT7FhXN9ULDzNq+b/jRtke8nkuy
ctCt05FhhK00rfWpUoRue4XiCuvbizBU7MK0DI3yCyNdXQyYnFvgnvsJtlqox8Zh
J5HZcBJEmdCiWBxq7UPk0qBitp4PqNoy7jlD/Ex3m7fJN5WK2cyspQIT9zmhehVn
B8Nwp+RitDDbXbwm0r18col5rFr/6Nj6+dW1gr+7sVJDLNsmJEqC2l3Kgk0wbPkG
Uqwbih29me9PC9/L1VLGHY0ApKDQ8JGE0GrYgEg162hbhoxEHkjjoHMhDUfV6Pj8
NkqcjjWl11UUhgkNqrGafayXbBVnOiEglxy8uXCeq14y9Xd/gjK9Fz6MQvRSOjms
PFmaKknhdmpxh0DuZmTix7WBmKim8zOiCE0/vrAPvwx5L+d1bn5xh6yQvtVjBMpU
Sru3Mhdm9bL9dUDBgOM/G6WCxSTVLBlExOblcYkQh03MfabD7bfplcrKYPXt5ull
Y8YLjqkoIfoy5t0ErvtlpdBJjeEz99JXU+wLQ6NYHnzwzTV+oUtSaEph14mAFOcY
XkFKdoPDI9PnyEfvy4193du8z/dSbhu7sWgHWbTCQyrcaNnSaVhlH43NUC+p23YN
8vfEsVLd1X7MFkDBUmWp
=M+/m
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
SCSI changes that enable sending vendor-specific commands via virtio-scsi.
Memory changes for QOMification and automatic tracking of MR lifetime.
# gpg: Signature made Mon 18 Aug 2014 13:03:09 BST using RSA key ID 9B4D86F2
# gpg: Good signature from "Paolo Bonzini <pbonzini@redhat.com>"
# gpg: aka "Paolo Bonzini <bonzini@gnu.org>"
* remotes/bonzini/tags/for-upstream:
mtree: remove write-only field
memory: Use canonical path component as the name
memory: Use memory_region_name for name access
memory: constify memory_region_name
exec: Abstract away ref to memory region names
loader: Abstract away ref to memory region names
tpm_tis: remove instance_finalize callback
memory: remove memory_region_destroy
memory: convert memory_region_destroy to object_unparent
ioport: split deletion and destruction
nic: do not destroy memory regions in cleanup functions
vga: do not dynamically allocate chain4_alias
sysbus: remove unused function sysbus_del_io
qom: object: move unparenting to the child property's release callback
qom: object: delete properties before calling instance_finalize
virtio-scsi: implement parse_cdb
scsi-block, scsi-generic: implement parse_cdb
scsi-block: extract scsi_block_is_passthrough
scsi-bus: introduce parse_cdb in SCSIDeviceClass and SCSIBusInfo
scsi-bus: prepare scsi_req_new for introduction of parse_cdb
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Explicitly call object_unparent in the few places where we
will re-create the memory region. If the memory region is
simply being destroyed as part of device teardown, let QOM
handle it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To indicate the IRQs are initially disconnected.
Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
commit e938ba0c tried to enable -mem-path for ppc but breaked some ppc
boards.
The problems are:
1. it fails when allocating memory for rom, sram whose sizes are less
than huge page size:
./ppc-softmmu/qemu-system-ppc -m 512 -mem-path /hugepages/ \
-kernel /home/hutao/Downloads/vmlinux-ppc -initrd \
/home/hutao/Downloads/initrd-ppc.gz
qemu-system-ppc: /mnt/data/projects/qemu/exec.c:1184: qemu_ram_set_idstr: Assertion `new_block' failed.
2. if there is a numa node backed by memory backend object, qemu fails
with message:
./ppc-softmmu/qemu-system-ppc -m 512 \
-object memory-backend-file,size=512M,mem-path=/hugepages,id=f0 \
-numa node,nodeid=0,memdev=f0 \
-kernel /home/hutao/Downloads/vmlinux-ppc \
-initrd /home/hutao/Downloads/initrd-ppc.gz
qemu-system-ppc: memory backend f0 is used multiple times. Each -numa option must use a different memdev value.
This patch does following:
1. replaces memory_region_allocate_system_memory() with
memory_region_init_ram() for rom, sram. Then only system memory
is backed by hugepages when specifying mem-path.
2. for memory banks, allocates all ram with
one memory_region_allocate_system_memory(), and use
memory_region_init_alias() to initialize memory banks.
Tested machines: default(g3beige), mac99, taihu, bamboo, ref405ep.
Signed-off-by: Hu Tao <hutao@cn.fujitsu.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The permission of TCE entry should exclude physical base address.
Otherwise, unmapping TCE entry can be interpreted to mapping TCE
entry wrongly for VFIO devices.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
0b183fc87 "memory: move mem_path handling to
memory_region_allocate_system_memory" disabled -mempath use for all
machines that do not use memory_region_allocate_system_memory() to
register RAM. Since SPAPR uses memory_region_init_ram(), the huge pages
support was disabled for it.
This replaces memory_region_init_ram()+vmstate_register_ram_global() with
memory_region_allocate_system_memory() to get huge pages back.
This changes RAM size from (ram_limit - rma_alloc_size) to ram_limit as
the previous patch moved RMA memory region allocation after RAM allocation
and therefore this change does not have immediate effect but simplifies
the code.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
PPC970 does not support VRMA (virtual RMA) so real memory required
for SLOF to execute must be allocated by the KVM_ALLOCATE_RMA ioctl.
Later this memory is used as a part of the guest RAM area.
The RMA allocating code also registers a memory region for this piece
of RAM.
We are going to simplify memory regions layout: RMA memory region
will be a subregion in the RAM memory region, both starting from zero.
This way we will not have to take care of start address alignment for
the piece of RAM next to the RMA.
This moves memory region business closer to the RAM memory region
creation/allocation code.
As this is a mechanical patch, no change in behaviour is expected.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: fix compilation on non-kvm systems]
Signed-off-by: Alexander Graf <agraf@suse.de>
Commit 0b183fc871:"memory: move mem_path handling to
memory_region_allocate_system_memory" split memory_region_init_ram and
memory_region_init_ram_from_file. Also it moved mem-path handling a step
up from memory_region_init_ram to memory_region_allocate_system_memory.
Therefore for any board that uses memory_region_init_ram directly,
-mem-path is not supported.
Fix this by replacing memory_region_init_ram with
memory_region_allocate_system_memory.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
During KVMPPC_H_CAS processing, the cpu-version updated value is stored
without taking care of the current endianess. As a consequence, the guest
may not switch to the right CPU model, leading to unexpected results.
If needed, the value is now converted.
Fixes: 6d9412ea81 ("target-ppc: Implement "compat" CPU option")
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When the user specifies -nodefaults he can tell us that he doesn't want any
serial ports spawned by default. While we do honor that wish, we still create
device tree entries for those non-existent devices.
Make device tree generation depend on whether the device is actually available.
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently SPAPR PHB keeps track of all allocated MSI (here and below
MSI stands for both MSI and MSIX) interrupt because
XICS used to be unable to reuse interrupts. This is a problem for
dynamic MSI reconfiguration which happens when guest reloads a driver
or performs PCI hotplug. Another problem is that the existing
implementation can enable MSI on 32 devices maximum
(SPAPR_MSIX_MAX_DEVS=32) and there is no good reason for that.
This makes use of new XICS ability to reuse interrupts.
This reorganizes MSI information storage in sPAPRPHBState. Instead of
static array of 32 descriptors (one per a PCI function), this patch adds
a GHashTable when @config_addr is a key and (first_irq, num) pair is
a value. GHashTable can dynamically grow and shrink so the initial limit
of 32 devices is gone.
This changes migration stream as @msi_table was a static array while new
@msi_devs is a dynamic hash table. This adds temporary array which is
used for migration, it is populated in "spapr_pci"::pre_save() callback
and expanded into the hash table in post_load() callback. Since
the destination side does not know the number of MSI-enabled devices
in advance and cannot pre-allocate the temporary array to receive
migration state, this makes use of new VMSTATE_STRUCT_VARRAY_ALLOC macro
which allocates the array automatically.
This resets the MSI configuration space when interrupts are released by
the ibm,change-msi RTAS call.
This fixed traces to be more informative.
This changes vmstate_spapr_pci_msi name from "...lsi" to "...msi" which
was incorrect by accident. As the internal representation changed,
thus bumps migration version number.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: drop g_malloc_n usage]
Signed-off-by: Alexander Graf <agraf@suse.de>
This removes @next_irq from sPAPREnvironment which was used in old
IRQ allocator as XICS is now responsible for IRQs and keeps track of
allocated IRQs.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The current allocator returns IRQ numbers from a pool and does not
support IRQs reuse in any form as it did not keep track of what it
previously returned, it only keeps the last returned IRQ. Some use
cases such as PCI hot(un)plug may require IRQ release and reallocation.
This moves an allocator from SPAPR to XICS.
This switches IRQ users to use new API.
This uses LSI/MSI flags to know if interrupt is allocated.
The interrupt release function will be posted as a separate patch.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add support for the SPLPAR Characteristics parameter to the emulated
RTAS call ibm,get-system-parameter.
The support provides just enough information to allow "cat
/proc/powerpc/lparcfg" to succeed without generating a kernel error
message.
Without this patch the above command will produce the following kernel
message: arch/powerpc/platforms/pseries/lparcfg.c \
parse_system_parameter_string Error calling get-system-parameter \
(0xfffffffd)
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add support for the UUID parameter to the emulated RTAS call
ibm,get-system-parameter.
Return the guest's UUID as the value for the RTAS UUID system
parameter, or null (a zero length result) if it is not set.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This allows the ibm,get-system-parameter RTAS call to succeed for the
DIAGNOSTICS_RUN_MODE system parameter.
The problem can be seen with "ppc64_cpu --run-mode" from the
powerpc-utils package which fails before this patch with "Machine does
not support diagnostic run mode".
This is corrected by using the rtas_st_buffer() function to write to
the buffer.
The RTAS constants are also moved out into a header file, some new
constants added and the surrounding code slightly simplified.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[agraf: remove some commentary]
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds a v2.1 machine to support backward compatibility
for newer macines in the case if they ever be implemented.
This adds a "pseries-2.1" machine as a child of the "pseries"
machine and only changes visible machine name.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Every single sPAPR QOM object has small first "s".
Most (not all yet) QOM objects have "State" suffix.
This replaces SPAPRMachine with sPAPRMachineState to conform with QEMU
code style and removes redundant empty line.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Change the order of creating devices for New World Mac emulation so
that devices on the motherboard are added first and PCI cards (VGA and
NIC) come later. As a side effect, this also causes OpenBIOS to map
the motherboard devices into the MMIO space to the same addresses as
on real hardware and allow clients that hardcode these addresses (e.g.
MorphOS) to find and use them until OpenBIOS is tought to map devices
to specific addresses. (On real hardware the graphics and network
cards are really on separate buses but we don't model that yet.) This
brings the memory map closer to what is found on PowerMac3,1.
Signed-off-by: BALATON Zoltan <balaton@eik.bme.hu>
Signed-off-by: Alexander Graf <agraf@suse.de>
The patch adds a spapr-pci-vfio-host-bridge device type
which is a PCI Host Bridge with VFIO support. The new device
inherits from the spapr-pci-host-bridge device and adds an "iommu"
property which is an IOMMU id. This ID represents a minimal entity
for which IOMMU isolation can be guaranteed. In SPAPR architecture IOMMU
group is called a Partitionable Endpoint (PE).
Current implementation supports one IOMMU id per QEMU VFIO PHB. Since
SPAPR allows multiple PHB for no extra cost, this does not seem to
be a problem. This limitation may change in the future though.
Example of use:
Configure and Add 3 functions of a multifunctional device to QEMU:
(the NEC PCI USB card is used as an example here):
-device spapr-pci-vfio-host-bridge,id=USB,iommu=4,index=7 \
-device vfio-pci,host=4:0:1.0,addr=1.0,bus=USB,multifunction=true
-device vfio-pci,host=4:0:1.1,addr=1.1,bus=USB
-device vfio-pci,host=4:0:1.2,addr=1.2,bus=USB
where:
* index=7 is a QEMU PHB index (used as source for MMIO/MSI/IO windows
offset);
* iommu=4 is an IOMMU id which can be found in sysfs:
[aik@vpl2 ~]$ cd /sys/bus/pci/devices/0004:00:00.0/
[aik@vpl2 0004:00:00.0]$ ls -l iommu_group
lrwxrwxrwx 1 root root 0 Jun 5 12:49 iommu_group -> ../../../kernel/iommu_groups/4
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER KVM supports an KVM_CAP_SPAPR_TCE capability which allows allocating
TCE tables in the host kernel memory and handle H_PUT_TCE requests
targeted to specific LIOBN (logical bus number) right in the host without
switching to QEMU. At the moment this is used for emulated devices only
and the handler only puts TCE to the table. If the in-kernel H_PUT_TCE
handler finds a LIOBN and corresponding table, it will put a TCE to
the table and complete hypercall execution. The user space will not be
notified.
Upcoming VFIO support is going to use the same sPAPRTCETable device class
so KVM_CAP_SPAPR_TCE is going to be used as well. That means that TCE
tables for VFIO are going to be allocated in the host as well.
However VFIO operates with real IOMMU tables and simple copying of
a TCE to the real hardware TCE table will not work as guest physical
to host physical address translation is requited.
So until the host kernel gets VFIO support for H_PUT_TCE, we better not
to register VFIO's TCE in the host.
This adds a place holder for KVM_CAP_SPAPR_TCE_VFIO capability. It is not
in upstream yet and being discussed so now it is always false which means
that in-kernel VFIO acceleration is not supported.
This adds a bool @vfio_accel flag to the sPAPRTCETable device telling
that sPAPRTCETable should not try allocating TCE table in the host kernel
for VFIO. The flag is false now as at the moment there is no VFIO.
This adds an vfio_accel parameter to spapr_tce_new_table(), the semantic
is the same. Since there is only emulated PCI and VIO now, the flag is set
to false. Upcoming VFIO support will set it to true.
This is a preparation patch so no change in behaviour is expected
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment spapr_rtas_register() allocates a new token number for every
new RTAS callback so numbers are not fixed and depend on the number of
supported RTAS handlers and the exact order of spapr_rtas_register() calls.
These tokens are copied into the device tree and remain the same during
the guest lifetime.
When we start another guest to receive a migration, it calls
spapr_rtas_register() as well. If the number of RTAS handlers or their
order is different in QEMU on source and destination sides, the "/rtas"
node in the device tree will differ. Since migration overwrites the device
tree (as it overwrites the entire RAM), the actual RTAS config on
the destination side gets broken.
This defines global contant values for every RTAS token which QEMU
is using today.
This changes spapr_rtas_register() to accept a token number instead of
allocating one. This changes all users of spapr_rtas_register().
This changes XICS-KVM not to cache tokens registered with KVM as they
constant now.
This makes TOKEN_BASE global as RTAS_XXX use TOKEN_BASE as
a base. TOKEN_MAX is moved and renamed too and its value is changed
to the last token + 1. Boundary checks for token values are adjusted.
This reserves token numbers for "os-term" handlers and PCI hotplug
which we are working on.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This is required to enable boot menu display during booting
Signed-off-by: Avik Sil <aviksil@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch also eliminates build time warning caused by no caller
of monitor_qapi_event_throttle().
Signed-off-by: Wenchao Xia <wenchaoqemu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Add the numa_info structure to contain the numa nodes memory,
VCPUs information and the future added numa nodes host memory
policies.
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
[Fix hw/ppc/spapr.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Hu Tao <hutao@cn.fujitsu.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Hotplug of multiple disks fails due to MSI vector quota check.
Number of MSI vectors default to 8 allowing only 4 devices.
This happens on RHEL6.5 guest. RHEL7 and SLES11 guests fallback
to INTX.
One way to workaround the issue is to increase total MSIs,
so that MSI quota check allows us to hotplug multiple disks.
This sets the quota to the maximum number of interupts XICS has
which is 1024 now (XICS_IRQS). This moves XICS_IRQS from spapr.c
to xics.h for wider visibility.
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
[aik: put XICS_IRQS=1024 instead of 64i, fixed endianness and size]
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The kvm-type machine option was left out when MachineState was
introduced, preventing the kvm-type option from being used. Add the
missing property to the sPAPR machine class, so it can be used.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds handling of the RESOURCE_ADDR_TRANS_MODE resource from
the H_SET_MODE, for POWER8 (PowerISA 2.07) only.
This defines AIL flags for LPCR special register.
This changes @excp_prefix according to the mode, takes effect in TCG.
This turns support of a new capability PPC2_ISA207S flag for TCG.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This moves H_SET_MODE_RESOURCE_LE handler to a separate function
as there are other "resources" coming and this is going to become ugly.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
PR KVM supports an ePAPR compliant hypercall interface in parallel to the
normal sPAPR one. Expose the ePAPR /hypervisor node and properties to the
guest so it can use it.
This enables magic page sharing on PR KVM with -M pseries.
However we had a few nasty bugs in the magic page implementation on vcpus
newer than 970 (p7, p8) that KVM now has workarounds for. It indicates that
it does have these workarounds through the PPC_FIXUP_HCALL capability.
To not expose broken guest kernels to issues on host kernels that don't
have the fixups in place, we don't expose working hypercall instructions
when the fixups are not available so that the guest can never active the
magic page.
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds @bus_offset into sPAPRTCETable to tell where TCE table starts
from. It is set to 0 for emulated devices. Dynamic DMA windows will use
other offset.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment only 4K pages are supported by sPAPRTCETable. Since sPAPR
spec allows other page sizes and we are going to implement them, we need
page size to be configrable.
This adds @page_shift into sPAPRTCETable and replaces SPAPR_TCE_PAGE_SHIFT
with it where it is possible.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This removes window_size as it is basically a copy of nb_table
shifted by SPAPR_TCE_PAGE_SHIFT. As new dynamic DMA windows are
going to support windows as big as the entire RAM and this number
will be bigger that 32 capacity, we will have to do something
about @window_size anyway and removal seems to be the right way to go.
This removes dma_window_start/dma_window_size from sPAPRPHBState as
they are no longer used.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
qdev_init_nofail() was replaced by object_property_set_bool("realized")
all over the QEMU so do we.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment sPAPRPHBState contains a @tcet pointer to the only
TCE table. However sPAPR spec allows having more than one DMA window.
Since the TCE object is already a child of SPAPR PHB object, there is
no need to keep an additional pointer to it in sPAPRPHBState so remove it.
This changes the way sPAPRPHBState::reset performs reset of sPAPRTCETable
objects.
This changes the default DMA window properties calculation.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the default DMA window is represented by a single MemoryRegion.
However there can be more than just one window so we need
a "root" memory region to be separated from the actual DMA window(s).
This introduces a "root" IOMMU memory region and adds a subregion for
the default DMA 32bit window. Following patches will add other
subregion(s).
This initializes a default DMA window subregion size to the guest RAM
size as this window can be switched into "bypass" mode which implements
direct DMA mapping.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The spapr-pci PHB initializes IOMMU for emulated devices only.
The upcoming VFIO support will do it different. However both emulated
and VFIO PHB types share most of the initialization code.
For the type specific things a new finish_realize() callback is
introduced.
This introduces sPAPRPHBClass derived from PCIHostBridgeClass and
adds the callback pointer.
This implements finish_realize() for emulated devices.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: Fix compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently only single TCE entry per request is supported (H_PUT_TCE).
However PAPR+ specification allows multiple entry requests such as
H_PUT_TCE_INDIRECT and H_STUFF_TCE. Having less transitions to the host
kernel via ioctls, support of these calls can accelerate IOMMU operations.
This implements H_STUFF_TCE and H_PUT_TCE_INDIRECT.
This advertises "multi-tce" capability to the guest if the host kernel
supports it (KVM_CAP_SPAPR_MULTITCE) or guest is running in TCG mode.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment the "ibm,hypertas-functions" list is fixed. However some
calls should be listed there if they are supported by QEMU or the host
kernel.
This enables hyperrtas_prop to grow on stack by adding
a SPAPR_HYPERRTAS_ADD macro. "qemu,hypertas-functions" is converted as well.
The first user of this is going to be a "multi-tce" property.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
SPAPR IOMMU is a bus-less device and therefore its only ID in
migration stream is an instance id which is not reliable ID
as it depends on the command line parameters order. Since
libvirt may change the order, we need something better than that.
This removes VMSD descriptor from the class definitiion and
registers it with @liobn as an intance ID to let the destination
side find the right device to receive migration data.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Modern Linux kernels support last POWERPC CPUs so when a kernel boots,
in most cases it can find a matching cpu_spec in the kernel's cpu_specs
list. However if the kernel is quite old, it may be missing a definition
of the actual CPU. To provide an ability for old kernels to work on modern
hardware, a Processor Compatibility Mode has been introduced
by the PowerISA specification.
>From the hardware prospective, it is supported by the Processor
Compatibility Register (PCR) which is defined in PowerISA. The register
enables one of the compatibility modes (2.05/2.06/2.07).
Since PCR is a hypervisor privileged register and cannot be
directly accessed from the guest, the mode selection is done via
ibm,client-architecture-support (CAS) RTAS call using which the guest
specifies what "raw" and "architected" CPU versions it supports.
QEMU works out the best match, changes a "cpu-version" property of
every CPU and notifies the guest about the change by setting these
properties in the buffer passed as a response on a custom H_CAS hypercall.
This implements ibm,client-architecture-support parameters parsing
(now only for PVRs) and cooks the device tree diff with new values for
"cpu-version", "ibm,ppc-interrupt-server#s" and
"ibm,ppc-interrupt-server#s" properties.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This puts a limit to the number of threads per core based on the current
compatibility mode. Although PowerISA specs do not specify the maximum
threads per core number, the linux guest still expects that
PowerISA2.05-compatible CPU supports only 2 threads per core as this
is what POWER6 (2.05 compliant CPU) implements, the same is for
POWER7 (2.06, 4 threads) and POWER8 (2.07, 8 threads).
This calls spapr_fixup_cpu_smt_dt() with the maximum allowed number of
threads which affects ibm,ppc-interrupt-server#s and
ibm,ppc-interrupt-gserver#s properties.
The number of CPU nodesremains unchanged.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
In PPC code we usually use the "cs" name for a CPUState* variables
and "cpu" for PowerPCCPU. So let's change spapr_fixup_cpu_dt() to
use same rules as spapr_create_fdt_skel() does.
This adds missing nodes creation if they do not already exist in
the current device tree, this is going to be used from
the client-architecture-support handler.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The PAPR+ specification defines a ibm,client-architecture-support (CAS)
RTAS call which purpose is to provide a negotiation mechanism for
the guest and the hypervisor to work out the best compatibility parameters.
During the negotiation process, the guest provides an array of various
options and capabilities which it supports, the hypervisor adjusts
the device tree and (optionally) reboots the guest.
At the moment the Linux guest calls CAS method at early boot so SLOF
gets called. SLOF allocates a memory buffer for the device tree changes
and calls a custom KVMPPC_H_CAS hypercall. QEMU parses the options,
composes a diff for the device tree, copies it to the buffer provided
by SLOF and returns to SLOF. SLOF updates the device tree and returns
control to the guest kernel. Only then the Linux guest parses the device
tree so it is possible to avoid unnecessary reboot in most cases.
The device tree diff is a header with an update format version
(defined as 1 in this patch) followed by a device tree with the properties
which require update.
If QEMU detects that it has to reboot the guest, it silently does so
as the guest expects reboot to happen because this is usual pHyp firmware
behavior.
This defines custom KVMPPC_H_CAS hypercall. The current SLOF already
has support for it.
This implements stub which returns very basic tree (root node,
no properties) to the guest.
As the return buffer does not contain any change, no change in behavior is
expected.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds basic support for the "compat" CPU option. By specifying
the compat property, the user can manually switch guest CPU mode from
"raw" to "architected".
This defines feature disable bits which are not used yet as, for example,
PowerISA 2.07 says if 2.06 mode is selected, the TM bit does not matter -
transactional memory (TM) will be disabled because 2.06 does not define
it at all. The same is true for VSX and 2.05 mode. So just setting a mode
must be ok.
This does not change the existing behavior as the actual compatibility
mode support is coming in next patches.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: fix compilation on 32bit hosts]
Signed-off-by: Alexander Graf <agraf@suse.de>