qemu-e2k/hw/net/can/can_sja1000.c
Paolo Bonzini a62ed5d106 hw/net/can: interrupt cleanup
Define two functions to update the interrupt state, and call them
on loadvm.  This removes the need to migrate the state as part of
vmstate_kvaser_pci.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-02-13 11:44:13 +01:00

954 lines
29 KiB
C

/*
* CAN device - SJA1000 chip emulation for QEMU
*
* Copyright (c) 2013-2014 Jin Yang
* Copyright (c) 2014-2018 Pavel Pisa
*
* Initial development supported by Google GSoC 2013 from RTEMS project slot
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "chardev/char.h"
#include "hw/hw.h"
#include "net/can_emu.h"
#include "can_sja1000.h"
#ifndef DEBUG_FILTER
#define DEBUG_FILTER 0
#endif /*DEBUG_FILTER*/
#ifndef DEBUG_CAN
#define DEBUG_CAN 0
#endif /*DEBUG_CAN*/
#define DPRINTF(fmt, ...) \
do { \
if (DEBUG_CAN) { \
qemu_log("[cansja]: " fmt , ## __VA_ARGS__); \
} \
} while (0)
static void can_sja_software_reset(CanSJA1000State *s)
{
s->mode &= ~0x31;
s->mode |= 0x01;
s->status_pel &= ~0x37;
s->status_pel |= 0x34;
s->rxbuf_start = 0x00;
s->rxmsg_cnt = 0x00;
s->rx_cnt = 0x00;
}
void can_sja_hardware_reset(CanSJA1000State *s)
{
/* Reset by hardware, p10 */
s->mode = 0x01;
s->status_pel = 0x3c;
s->interrupt_pel = 0x00;
s->clock = 0x00;
s->rxbuf_start = 0x00;
s->rxmsg_cnt = 0x00;
s->rx_cnt = 0x00;
s->control = 0x01;
s->status_bas = 0x0c;
s->interrupt_bas = 0x00;
qemu_irq_lower(s->irq);
}
static
void can_sja_single_filter(struct qemu_can_filter *filter,
const uint8_t *acr, const uint8_t *amr, int extended)
{
if (extended) {
filter->can_id = (uint32_t)acr[0] << 21;
filter->can_id |= (uint32_t)acr[1] << 13;
filter->can_id |= (uint32_t)acr[2] << 5;
filter->can_id |= (uint32_t)acr[3] >> 3;
if (acr[3] & 4) {
filter->can_id |= QEMU_CAN_RTR_FLAG;
}
filter->can_mask = (uint32_t)amr[0] << 21;
filter->can_mask |= (uint32_t)amr[1] << 13;
filter->can_mask |= (uint32_t)amr[2] << 5;
filter->can_mask |= (uint32_t)amr[3] >> 3;
filter->can_mask = ~filter->can_mask & QEMU_CAN_EFF_MASK;
if (!(amr[3] & 4)) {
filter->can_mask |= QEMU_CAN_RTR_FLAG;
}
} else {
filter->can_id = (uint32_t)acr[0] << 3;
filter->can_id |= (uint32_t)acr[1] >> 5;
if (acr[1] & 0x10) {
filter->can_id |= QEMU_CAN_RTR_FLAG;
}
filter->can_mask = (uint32_t)amr[0] << 3;
filter->can_mask |= (uint32_t)amr[1] << 5;
filter->can_mask = ~filter->can_mask & QEMU_CAN_SFF_MASK;
if (!(amr[1] & 0x10)) {
filter->can_mask |= QEMU_CAN_RTR_FLAG;
}
}
}
static
void can_sja_dual_filter(struct qemu_can_filter *filter,
const uint8_t *acr, const uint8_t *amr, int extended)
{
if (extended) {
filter->can_id = (uint32_t)acr[0] << 21;
filter->can_id |= (uint32_t)acr[1] << 13;
filter->can_mask = (uint32_t)amr[0] << 21;
filter->can_mask |= (uint32_t)amr[1] << 13;
filter->can_mask = ~filter->can_mask & QEMU_CAN_EFF_MASK & ~0x1fff;
} else {
filter->can_id = (uint32_t)acr[0] << 3;
filter->can_id |= (uint32_t)acr[1] >> 5;
if (acr[1] & 0x10) {
filter->can_id |= QEMU_CAN_RTR_FLAG;
}
filter->can_mask = (uint32_t)amr[0] << 3;
filter->can_mask |= (uint32_t)amr[1] >> 5;
filter->can_mask = ~filter->can_mask & QEMU_CAN_SFF_MASK;
if (!(amr[1] & 0x10)) {
filter->can_mask |= QEMU_CAN_RTR_FLAG;
}
}
}
/* Details in DS-p22, what we need to do here is to test the data. */
static
int can_sja_accept_filter(CanSJA1000State *s,
const qemu_can_frame *frame)
{
struct qemu_can_filter filter;
if (s->clock & 0x80) { /* PeliCAN Mode */
if (s->mode & (1 << 3)) { /* Single mode. */
if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
can_sja_single_filter(&filter,
s->code_mask + 0, s->code_mask + 4, 1);
if (!can_bus_filter_match(&filter, frame->can_id)) {
return 0;
}
} else { /* SFF */
can_sja_single_filter(&filter,
s->code_mask + 0, s->code_mask + 4, 0);
if (!can_bus_filter_match(&filter, frame->can_id)) {
return 0;
}
if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
return 1;
}
if (frame->can_dlc == 0) {
return 1;
}
if ((frame->data[0] & ~(s->code_mask[6])) !=
(s->code_mask[2] & ~(s->code_mask[6]))) {
return 0;
}
if (frame->can_dlc < 2) {
return 1;
}
if ((frame->data[1] & ~(s->code_mask[7])) ==
(s->code_mask[3] & ~(s->code_mask[7]))) {
return 1;
}
return 0;
}
} else { /* Dual mode */
if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
can_sja_dual_filter(&filter,
s->code_mask + 0, s->code_mask + 4, 1);
if (can_bus_filter_match(&filter, frame->can_id)) {
return 1;
}
can_sja_dual_filter(&filter,
s->code_mask + 2, s->code_mask + 6, 1);
if (can_bus_filter_match(&filter, frame->can_id)) {
return 1;
}
return 0;
} else {
can_sja_dual_filter(&filter,
s->code_mask + 0, s->code_mask + 4, 0);
if (can_bus_filter_match(&filter, frame->can_id)) {
uint8_t expect;
uint8_t mask;
expect = s->code_mask[1] << 4;
expect |= s->code_mask[3] & 0x0f;
mask = s->code_mask[5] << 4;
mask |= s->code_mask[7] & 0x0f;
mask = ~mask & 0xff;
if ((frame->data[0] & mask) ==
(expect & mask)) {
return 1;
}
}
can_sja_dual_filter(&filter,
s->code_mask + 2, s->code_mask + 6, 0);
if (can_bus_filter_match(&filter, frame->can_id)) {
return 1;
}
return 0;
}
}
}
return 1;
}
static void can_display_msg(const char *prefix, const qemu_can_frame *msg)
{
int i;
qemu_log_lock();
qemu_log("%s%03X [%01d] %s %s",
prefix,
msg->can_id & QEMU_CAN_EFF_MASK,
msg->can_dlc,
msg->can_id & QEMU_CAN_EFF_FLAG ? "EFF" : "SFF",
msg->can_id & QEMU_CAN_RTR_FLAG ? "RTR" : "DAT");
for (i = 0; i < msg->can_dlc; i++) {
qemu_log(" %02X", msg->data[i]);
}
qemu_log("\n");
qemu_log_flush();
qemu_log_unlock();
}
static void buff2frame_pel(const uint8_t *buff, qemu_can_frame *frame)
{
uint8_t i;
frame->can_id = 0;
if (buff[0] & 0x40) { /* RTR */
frame->can_id = QEMU_CAN_RTR_FLAG;
}
frame->can_dlc = buff[0] & 0x0f;
if (buff[0] & 0x80) { /* Extended */
frame->can_id |= QEMU_CAN_EFF_FLAG;
frame->can_id |= buff[1] << 21; /* ID.28~ID.21 */
frame->can_id |= buff[2] << 13; /* ID.20~ID.13 */
frame->can_id |= buff[3] << 5;
frame->can_id |= buff[4] >> 3;
for (i = 0; i < frame->can_dlc; i++) {
frame->data[i] = buff[5 + i];
}
for (; i < 8; i++) {
frame->data[i] = 0;
}
} else {
frame->can_id |= buff[1] << 3;
frame->can_id |= buff[2] >> 5;
for (i = 0; i < frame->can_dlc; i++) {
frame->data[i] = buff[3 + i];
}
for (; i < 8; i++) {
frame->data[i] = 0;
}
}
}
static void buff2frame_bas(const uint8_t *buff, qemu_can_frame *frame)
{
uint8_t i;
frame->can_id = ((buff[0] << 3) & (0xff << 3)) + ((buff[1] >> 5) & 0x07);
if (buff[1] & 0x10) { /* RTR */
frame->can_id = QEMU_CAN_RTR_FLAG;
}
frame->can_dlc = buff[1] & 0x0f;
for (i = 0; i < frame->can_dlc; i++) {
frame->data[i] = buff[2 + i];
}
for (; i < 8; i++) {
frame->data[i] = 0;
}
}
static int frame2buff_pel(const qemu_can_frame *frame, uint8_t *buff)
{
int i;
if (frame->can_id & QEMU_CAN_ERR_FLAG) { /* error frame, NOT support now. */
return -1;
}
buff[0] = 0x0f & frame->can_dlc; /* DLC */
if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
buff[0] |= (1 << 6);
}
if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
buff[0] |= (1 << 7);
buff[1] = extract32(frame->can_id, 21, 8); /* ID.28~ID.21 */
buff[2] = extract32(frame->can_id, 13, 8); /* ID.20~ID.13 */
buff[3] = extract32(frame->can_id, 5, 8); /* ID.12~ID.05 */
buff[4] = extract32(frame->can_id, 0, 5) << 3; /* ID.04~ID.00,xxx */
for (i = 0; i < frame->can_dlc; i++) {
buff[5 + i] = frame->data[i];
}
return frame->can_dlc + 5;
} else { /* SFF */
buff[1] = extract32(frame->can_id, 3, 8); /* ID.10~ID.03 */
buff[2] = extract32(frame->can_id, 0, 3) << 5; /* ID.02~ID.00,xxxxx */
for (i = 0; i < frame->can_dlc; i++) {
buff[3 + i] = frame->data[i];
}
return frame->can_dlc + 3;
}
return -1;
}
static int frame2buff_bas(const qemu_can_frame *frame, uint8_t *buff)
{
int i;
/*
* EFF, no support for BasicMode
* No use for Error frames now,
* they could be used in future to update SJA1000 error state
*/
if ((frame->can_id & QEMU_CAN_EFF_FLAG) ||
(frame->can_id & QEMU_CAN_ERR_FLAG)) {
return -1;
}
buff[0] = extract32(frame->can_id, 3, 8); /* ID.10~ID.03 */
buff[1] = extract32(frame->can_id, 0, 3) << 5; /* ID.02~ID.00,xxxxx */
if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
buff[1] |= (1 << 4);
}
buff[1] |= frame->can_dlc & 0x0f;
for (i = 0; i < frame->can_dlc; i++) {
buff[2 + i] = frame->data[i];
}
return frame->can_dlc + 2;
}
static void can_sja_update_pel_irq(CanSJA1000State *s)
{
if (s->interrupt_en & s->interrupt_pel) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void can_sja_update_bas_irq(CanSJA1000State *s)
{
if ((s->control >> 1) & s->interrupt_bas) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
void can_sja_mem_write(CanSJA1000State *s, hwaddr addr, uint64_t val,
unsigned size)
{
qemu_can_frame frame;
uint32_t tmp;
uint8_t tmp8, count;
DPRINTF("write 0x%02llx addr 0x%02x\n",
(unsigned long long)val, (unsigned int)addr);
if (addr > CAN_SJA_MEM_SIZE) {
return ;
}
if (s->clock & 0x80) { /* PeliCAN Mode */
switch (addr) {
case SJA_MOD: /* Mode register */
s->mode = 0x1f & val;
if ((s->mode & 0x01) && ((val & 0x01) == 0)) {
/* Go to operation mode from reset mode. */
if (s->mode & (1 << 3)) { /* Single mode. */
/* For EFF */
can_sja_single_filter(&s->filter[0],
s->code_mask + 0, s->code_mask + 4, 1);
/* For SFF */
can_sja_single_filter(&s->filter[1],
s->code_mask + 0, s->code_mask + 4, 0);
can_bus_client_set_filters(&s->bus_client, s->filter, 2);
} else { /* Dual mode */
/* For EFF */
can_sja_dual_filter(&s->filter[0],
s->code_mask + 0, s->code_mask + 4, 1);
can_sja_dual_filter(&s->filter[1],
s->code_mask + 2, s->code_mask + 6, 1);
/* For SFF */
can_sja_dual_filter(&s->filter[2],
s->code_mask + 0, s->code_mask + 4, 0);
can_sja_dual_filter(&s->filter[3],
s->code_mask + 2, s->code_mask + 6, 0);
can_bus_client_set_filters(&s->bus_client, s->filter, 4);
}
s->rxmsg_cnt = 0;
s->rx_cnt = 0;
}
break;
case SJA_CMR: /* Command register. */
if (0x01 & val) { /* Send transmission request. */
buff2frame_pel(s->tx_buff, &frame);
if (DEBUG_FILTER) {
can_display_msg("[cansja]: Tx request " , &frame);
}
/*
* Clear transmission complete status,
* and Transmit Buffer Status.
* write to the backends.
*/
s->status_pel &= ~(3 << 2);
can_bus_client_send(&s->bus_client, &frame, 1);
/*
* Set transmission complete status
* and Transmit Buffer Status.
*/
s->status_pel |= (3 << 2);
/* Clear transmit status. */
s->status_pel &= ~(1 << 5);
s->interrupt_pel |= 0x02;
can_sja_update_pel_irq(s);
}
if (0x04 & val) { /* Release Receive Buffer */
if (s->rxmsg_cnt <= 0) {
break;
}
tmp8 = s->rx_buff[s->rxbuf_start]; count = 0;
if (tmp8 & (1 << 7)) { /* EFF */
count += 2;
}
count += 3;
if (!(tmp8 & (1 << 6))) { /* DATA */
count += (tmp8 & 0x0f);
}
if (DEBUG_FILTER) {
qemu_log("[cansja]: message released from "
"Rx FIFO cnt=%d, count=%d\n", s->rx_cnt, count);
}
s->rxbuf_start += count;
s->rxbuf_start %= SJA_RCV_BUF_LEN;
s->rx_cnt -= count;
s->rxmsg_cnt--;
if (s->rxmsg_cnt == 0) {
s->status_pel &= ~(1 << 0);
s->interrupt_pel &= ~(1 << 0);
can_sja_update_pel_irq(s);
}
}
if (0x08 & val) { /* Clear data overrun */
s->status_pel &= ~(1 << 1);
s->interrupt_pel &= ~(1 << 3);
can_sja_update_pel_irq(s);
}
break;
case SJA_SR: /* Status register */
case SJA_IR: /* Interrupt register */
break; /* Do nothing */
case SJA_IER: /* Interrupt enable register */
s->interrupt_en = val;
break;
case 16: /* RX frame information addr16-28. */
s->status_pel |= (1 << 5); /* Set transmit status. */
case 17 ... 28:
if (s->mode & 0x01) { /* Reset mode */
if (addr < 24) {
s->code_mask[addr - 16] = val;
}
} else { /* Operation mode */
s->tx_buff[addr - 16] = val; /* Store to TX buffer directly. */
}
break;
case SJA_CDR:
s->clock = val;
break;
}
} else { /* Basic Mode */
switch (addr) {
case SJA_BCAN_CTR: /* Control register, addr 0 */
if ((s->control & 0x01) && ((val & 0x01) == 0)) {
/* Go to operation mode from reset mode. */
s->filter[0].can_id = (s->code << 3) & (0xff << 3);
tmp = (~(s->mask << 3)) & (0xff << 3);
tmp |= QEMU_CAN_EFF_FLAG; /* Only Basic CAN Frame. */
s->filter[0].can_mask = tmp;
can_bus_client_set_filters(&s->bus_client, s->filter, 1);
s->rxmsg_cnt = 0;
s->rx_cnt = 0;
} else if (!(s->control & 0x01) && !(val & 0x01)) {
can_sja_software_reset(s);
}
s->control = 0x1f & val;
break;
case SJA_BCAN_CMR: /* Command register, addr 1 */
if (0x01 & val) { /* Send transmission request. */
buff2frame_bas(s->tx_buff, &frame);
if (DEBUG_FILTER) {
can_display_msg("[cansja]: Tx request " , &frame);
}
/*
* Clear transmission complete status,
* and Transmit Buffer Status.
*/
s->status_bas &= ~(3 << 2);
/* write to the backends. */
can_bus_client_send(&s->bus_client, &frame, 1);
/*
* Set transmission complete status,
* and Transmit Buffer Status.
*/
s->status_bas |= (3 << 2);
/* Clear transmit status. */
s->status_bas &= ~(1 << 5);
s->interrupt_bas |= 0x02;
can_sja_update_bas_irq(s);
}
if (0x04 & val) { /* Release Receive Buffer */
if (s->rxmsg_cnt <= 0) {
break;
}
tmp8 = s->rx_buff[(s->rxbuf_start + 1) % SJA_RCV_BUF_LEN];
count = 2 + (tmp8 & 0x0f);
if (DEBUG_FILTER) {
qemu_log("[cansja]: message released from "
"Rx FIFO cnt=%d, count=%d\n", s->rx_cnt, count);
}
s->rxbuf_start += count;
s->rxbuf_start %= SJA_RCV_BUF_LEN;
s->rx_cnt -= count;
s->rxmsg_cnt--;
if (s->rxmsg_cnt == 0) {
s->status_bas &= ~(1 << 0);
s->interrupt_bas &= ~(1 << 0);
can_sja_update_bas_irq(s);
}
}
if (0x08 & val) { /* Clear data overrun */
s->status_bas &= ~(1 << 1);
s->interrupt_bas &= ~(1 << 3);
can_sja_update_bas_irq(s);
}
break;
case 4:
s->code = val;
break;
case 5:
s->mask = val;
break;
case 10:
s->status_bas |= (1 << 5); /* Set transmit status. */
case 11 ... 19:
if ((s->control & 0x01) == 0) { /* Operation mode */
s->tx_buff[addr - 10] = val; /* Store to TX buffer directly. */
}
break;
case SJA_CDR:
s->clock = val;
break;
}
}
}
uint64_t can_sja_mem_read(CanSJA1000State *s, hwaddr addr, unsigned size)
{
uint64_t temp = 0;
DPRINTF("read addr 0x%02x ...\n", (unsigned int)addr);
if (addr > CAN_SJA_MEM_SIZE) {
return 0;
}
if (s->clock & 0x80) { /* PeliCAN Mode */
switch (addr) {
case SJA_MOD: /* Mode register, addr 0 */
temp = s->mode;
break;
case SJA_CMR: /* Command register, addr 1 */
temp = 0x00; /* Command register, cannot be read. */
break;
case SJA_SR: /* Status register, addr 2 */
temp = s->status_pel;
break;
case SJA_IR: /* Interrupt register, addr 3 */
temp = s->interrupt_pel;
s->interrupt_pel = 0;
if (s->rxmsg_cnt) {
s->interrupt_pel |= (1 << 0); /* Receive interrupt. */
}
can_sja_update_pel_irq(s);
break;
case SJA_IER: /* Interrupt enable register, addr 4 */
temp = s->interrupt_en;
break;
case 5: /* Reserved */
case 6: /* Bus timing 0, hardware related, not support now. */
case 7: /* Bus timing 1, hardware related, not support now. */
case 8: /*
* Output control register, hardware related,
* not supported for now.
*/
case 9: /* Test. */
case 10 ... 15: /* Reserved */
temp = 0x00;
break;
case 16 ... 28:
if (s->mode & 0x01) { /* Reset mode */
if (addr < 24) {
temp = s->code_mask[addr - 16];
} else {
temp = 0x00;
}
} else { /* Operation mode */
temp = s->rx_buff[(s->rxbuf_start + addr - 16) %
SJA_RCV_BUF_LEN];
}
break;
case SJA_CDR:
temp = s->clock;
break;
default:
temp = 0xff;
}
} else { /* Basic Mode */
switch (addr) {
case SJA_BCAN_CTR: /* Control register, addr 0 */
temp = s->control;
break;
case SJA_BCAN_SR: /* Status register, addr 2 */
temp = s->status_bas;
break;
case SJA_BCAN_IR: /* Interrupt register, addr 3 */
temp = s->interrupt_bas;
s->interrupt_bas = 0;
if (s->rxmsg_cnt) {
s->interrupt_bas |= (1 << 0); /* Receive interrupt. */
}
can_sja_update_bas_irq(s);
break;
case 4:
temp = s->code;
break;
case 5:
temp = s->mask;
break;
case 20 ... 29:
temp = s->rx_buff[(s->rxbuf_start + addr - 20) % SJA_RCV_BUF_LEN];
break;
case 31:
temp = s->clock;
break;
default:
temp = 0xff;
break;
}
}
DPRINTF("read addr 0x%02x, %d bytes, content 0x%02lx\n",
(int)addr, size, (long unsigned int)temp);
return temp;
}
int can_sja_can_receive(CanBusClientState *client)
{
CanSJA1000State *s = container_of(client, CanSJA1000State, bus_client);
if (s->clock & 0x80) { /* PeliCAN Mode */
if (s->mode & 0x01) { /* reset mode. */
return 0;
}
} else { /* BasicCAN mode */
if (s->control & 0x01) {
return 0;
}
}
return 1; /* always return 1, when operation mode */
}
ssize_t can_sja_receive(CanBusClientState *client, const qemu_can_frame *frames,
size_t frames_cnt)
{
CanSJA1000State *s = container_of(client, CanSJA1000State, bus_client);
static uint8_t rcv[SJA_MSG_MAX_LEN];
int i;
int ret = -1;
const qemu_can_frame *frame = frames;
if (frames_cnt <= 0) {
return 0;
}
if (DEBUG_FILTER) {
can_display_msg("[cansja]: receive ", frame);
}
if (s->clock & 0x80) { /* PeliCAN Mode */
/* the CAN controller is receiving a message */
s->status_pel |= (1 << 4);
if (can_sja_accept_filter(s, frame) == 0) {
s->status_pel &= ~(1 << 4);
if (DEBUG_FILTER) {
qemu_log("[cansja]: filter rejects message\n");
}
return ret;
}
ret = frame2buff_pel(frame, rcv);
if (ret < 0) {
s->status_pel &= ~(1 << 4);
if (DEBUG_FILTER) {
qemu_log("[cansja]: message store failed\n");
}
return ret; /* maybe not support now. */
}
if (s->rx_cnt + ret > SJA_RCV_BUF_LEN) { /* Data overrun. */
s->status_pel |= (1 << 1); /* Overrun status */
s->interrupt_pel |= (1 << 3);
s->status_pel &= ~(1 << 4);
if (DEBUG_FILTER) {
qemu_log("[cansja]: receive FIFO overrun\n");
}
can_sja_update_pel_irq(s);
return ret;
}
s->rx_cnt += ret;
s->rxmsg_cnt++;
if (DEBUG_FILTER) {
qemu_log("[cansja]: message stored in receive FIFO\n");
}
for (i = 0; i < ret; i++) {
s->rx_buff[(s->rx_ptr++) % SJA_RCV_BUF_LEN] = rcv[i];
}
s->rx_ptr %= SJA_RCV_BUF_LEN; /* update the pointer. */
s->status_pel |= 0x01; /* Set the Receive Buffer Status. DS-p23 */
s->interrupt_pel |= 0x01;
s->status_pel &= ~(1 << 4);
s->status_pel |= (1 << 0);
can_sja_update_pel_irq(s);
} else { /* BasicCAN mode */
/* the CAN controller is receiving a message */
s->status_bas |= (1 << 4);
ret = frame2buff_bas(frame, rcv);
if (ret < 0) {
s->status_bas &= ~(1 << 4);
if (DEBUG_FILTER) {
qemu_log("[cansja]: message store failed\n");
}
return ret; /* maybe not support now. */
}
if (s->rx_cnt + ret > SJA_RCV_BUF_LEN) { /* Data overrun. */
s->status_bas |= (1 << 1); /* Overrun status */
s->status_bas &= ~(1 << 4);
s->interrupt_bas |= (1 << 3);
can_sja_update_bas_irq(s);
if (DEBUG_FILTER) {
qemu_log("[cansja]: receive FIFO overrun\n");
}
return ret;
}
s->rx_cnt += ret;
s->rxmsg_cnt++;
if (DEBUG_FILTER) {
qemu_log("[cansja]: message stored\n");
}
for (i = 0; i < ret; i++) {
s->rx_buff[(s->rx_ptr++) % SJA_RCV_BUF_LEN] = rcv[i];
}
s->rx_ptr %= SJA_RCV_BUF_LEN; /* update the pointer. */
s->status_bas |= 0x01; /* Set the Receive Buffer Status. DS-p15 */
s->status_bas &= ~(1 << 4);
s->interrupt_bas |= (1 << 0);
can_sja_update_bas_irq(s);
}
return 1;
}
static CanBusClientInfo can_sja_bus_client_info = {
.can_receive = can_sja_can_receive,
.receive = can_sja_receive,
};
int can_sja_connect_to_bus(CanSJA1000State *s, CanBusState *bus)
{
s->bus_client.info = &can_sja_bus_client_info;
if (can_bus_insert_client(bus, &s->bus_client) < 0) {
return -1;
}
return 0;
}
void can_sja_disconnect(CanSJA1000State *s)
{
can_bus_remove_client(&s->bus_client);
}
int can_sja_init(CanSJA1000State *s, qemu_irq irq)
{
s->irq = irq;
qemu_irq_lower(s->irq);
can_sja_hardware_reset(s);
return 0;
}
const VMStateDescription vmstate_qemu_can_filter = {
.name = "qemu_can_filter",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(can_id, qemu_can_filter),
VMSTATE_UINT32(can_mask, qemu_can_filter),
VMSTATE_END_OF_LIST()
}
};
static int can_sja_post_load(void *opaque, int version_id)
{
CanSJA1000State *s = opaque;
if (s->clock & 0x80) { /* PeliCAN Mode */
can_sja_update_pel_irq(s);
} else {
can_sja_update_bas_irq(s);
}
return 0;
}
/* VMState is needed for live migration of QEMU images */
const VMStateDescription vmstate_can_sja = {
.name = "can_sja",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = can_sja_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(mode, CanSJA1000State),
VMSTATE_UINT8(status_pel, CanSJA1000State),
VMSTATE_UINT8(interrupt_pel, CanSJA1000State),
VMSTATE_UINT8(interrupt_en, CanSJA1000State),
VMSTATE_UINT8(rxmsg_cnt, CanSJA1000State),
VMSTATE_UINT8(rxbuf_start, CanSJA1000State),
VMSTATE_UINT8(clock, CanSJA1000State),
VMSTATE_BUFFER(code_mask, CanSJA1000State),
VMSTATE_BUFFER(tx_buff, CanSJA1000State),
VMSTATE_BUFFER(rx_buff, CanSJA1000State),
VMSTATE_UINT32(rx_ptr, CanSJA1000State),
VMSTATE_UINT32(rx_cnt, CanSJA1000State),
VMSTATE_UINT8(control, CanSJA1000State),
VMSTATE_UINT8(status_bas, CanSJA1000State),
VMSTATE_UINT8(interrupt_bas, CanSJA1000State),
VMSTATE_UINT8(code, CanSJA1000State),
VMSTATE_UINT8(mask, CanSJA1000State),
VMSTATE_STRUCT_ARRAY(filter, CanSJA1000State, 4, 0,
vmstate_qemu_can_filter, qemu_can_filter),
VMSTATE_END_OF_LIST()
}
};