qemu-e2k/target/arm/translate.c
Emilio G. Cota 8a6b28c7b5 target/arm: optimize indirect branches
Speed up indirect branches by jumping to the target if it is valid.

Softmmu measurements (see later commit for user-mode results):

Note: baseline (i.e. speedup == 1x) is QEMU v2.9.0.

- Impact on Boot time

| setup  | ARM debian jessie boot+shutdown time | stddev |
|--------+--------------------------------------+--------|
| v2.9.0 |                                 8.84 |   0.07 |
| +cross |                                 8.85 |   0.03 |
| +jr    |                                 8.83 |   0.06 |

-                            NBench, arm-softmmu (debian jessie guest). Host: Intel i7-4790K @ 4.00GHz

  1.3x +-+-------------------------------------------------------------------------------------------------------------+-+
       |                                                                                                                 |
       |   cross                                                          ####                                           |
 1.25x +cross+jr..........................................................#++#.........................................+-+
       |                                                        ####      #  #                                           |
       |                                                     +++#  #      #  #                                           |
       |                                      +++            ****  #      #  #                                           |
  1.2x +-+...................................####............*..*..#......#..#.........................................+-+
       |                                  ****  #            *  *  #      #  #     ####                                  |
       |                                  *  *  #            *  *  #      #  #     #  #                                  |
 1.15x +-+................................*..*..#............*..*..#......#..#.....#..#................................+-+
       |                                  *  *  #            *  *  #      #  #     #  #                                  |
       |                                  *  *  #      ####  *  *  #      #  #     #  #                                  |
       |                                  *  *  #      #  #  *  *  #      #  #     #  #                         ####     |
  1.1x +-+................................*..*..#......#..#..*..*..#......#..#.....#..#.........................#..#...+-+
       |                                  *  *  #      #  #  *  *  #      #  #     #  #                         #  #     |
       |                                  *  *  #      #  #  *  *  #      #  #     #  #                         #  #     |
 1.05x +-+..........................####..*..*..#......#..#..*..*..#......#..#.....#..#......+++............*****..#...+-+
       |                        *****  #  *  *  #      #  #  *  *  #  *****  #     #  #   +++ |    ****###  *   *  #     |
       |                        *+++*  #  *  *  #      #  #  *  *  #  *+++*  #  ****  #  *****###  *  *  #  *   *  #     |
       |     *****###  +++####  *   *  #  *  *  #  *****  #  *  *  #  *   *  #  *  *  #  * | *++#  *  *  #  *   *  #     |
    1x +-++-+*+++*-+#++****++#++*+-+*++#+-*++*++#-+*+++*-+#++*++*++#++*+-+*++#+-*++*++#-+*+++*-+#++*++*++#++*+-+*++#+-++-+
       |     *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #     |
       |     *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #  *  *  #  *   *  #     |
 0.95x +-+---*****###--****###--*****###--****###--*****###--****###--*****###--****###--*****###--****###--*****###---+-+
       ASSIGNMENT BITFIELD   FOURFP EMULATION   HUFFMAN   LU DECOMPOSITIONEURAL NNUMERIC SOSTRING SORT     hmean
  png: http://imgur.com/eOLmZNR

NB. 'cross' represents the previous commit.

Signed-off-by: Emilio G. Cota <cota@braap.org>
Message-Id: <1493263764-18657-8-git-send-email-cota@braap.org>
[rth: Replace gen_jr global variable with DISAS_EXIT state.]
Signed-off-by: Richard Henderson <rth@twiddle.net>
2017-06-05 09:25:42 -07:00

12246 lines
428 KiB
C

/*
* ARM translation
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "qemu/log.h"
#include "qemu/bitops.h"
#include "arm_ldst.h"
#include "exec/semihost.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "trace-tcg.h"
#include "exec/log.h"
#define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T)
#define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5)
/* currently all emulated v5 cores are also v5TE, so don't bother */
#define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5)
#define ENABLE_ARCH_5J 0
#define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6)
#define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K)
#define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2)
#define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7)
#define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8)
#define ARCH(x) do { if (!ENABLE_ARCH_##x) goto illegal_op; } while(0)
#include "translate.h"
#if defined(CONFIG_USER_ONLY)
#define IS_USER(s) 1
#else
#define IS_USER(s) (s->user)
#endif
TCGv_env cpu_env;
/* We reuse the same 64-bit temporaries for efficiency. */
static TCGv_i64 cpu_V0, cpu_V1, cpu_M0;
static TCGv_i32 cpu_R[16];
TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF;
TCGv_i64 cpu_exclusive_addr;
TCGv_i64 cpu_exclusive_val;
/* FIXME: These should be removed. */
static TCGv_i32 cpu_F0s, cpu_F1s;
static TCGv_i64 cpu_F0d, cpu_F1d;
#include "exec/gen-icount.h"
static const char *regnames[] =
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" };
/* initialize TCG globals. */
void arm_translate_init(void)
{
int i;
cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
tcg_ctx.tcg_env = cpu_env;
for (i = 0; i < 16; i++) {
cpu_R[i] = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUARMState, regs[i]),
regnames[i]);
}
cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF");
cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF");
cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF");
cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF");
cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUARMState, exclusive_val), "exclusive_val");
a64_translate_init();
}
/* Flags for the disas_set_da_iss info argument:
* lower bits hold the Rt register number, higher bits are flags.
*/
typedef enum ISSInfo {
ISSNone = 0,
ISSRegMask = 0x1f,
ISSInvalid = (1 << 5),
ISSIsAcqRel = (1 << 6),
ISSIsWrite = (1 << 7),
ISSIs16Bit = (1 << 8),
} ISSInfo;
/* Save the syndrome information for a Data Abort */
static void disas_set_da_iss(DisasContext *s, TCGMemOp memop, ISSInfo issinfo)
{
uint32_t syn;
int sas = memop & MO_SIZE;
bool sse = memop & MO_SIGN;
bool is_acqrel = issinfo & ISSIsAcqRel;
bool is_write = issinfo & ISSIsWrite;
bool is_16bit = issinfo & ISSIs16Bit;
int srt = issinfo & ISSRegMask;
if (issinfo & ISSInvalid) {
/* Some callsites want to conditionally provide ISS info,
* eg "only if this was not a writeback"
*/
return;
}
if (srt == 15) {
/* For AArch32, insns where the src/dest is R15 never generate
* ISS information. Catching that here saves checking at all
* the call sites.
*/
return;
}
syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel,
0, 0, 0, is_write, 0, is_16bit);
disas_set_insn_syndrome(s, syn);
}
static inline int get_a32_user_mem_index(DisasContext *s)
{
/* Return the core mmu_idx to use for A32/T32 "unprivileged load/store"
* insns:
* if PL2, UNPREDICTABLE (we choose to implement as if PL0)
* otherwise, access as if at PL0.
*/
switch (s->mmu_idx) {
case ARMMMUIdx_S1E2: /* this one is UNPREDICTABLE */
case ARMMMUIdx_S12NSE0:
case ARMMMUIdx_S12NSE1:
return arm_to_core_mmu_idx(ARMMMUIdx_S12NSE0);
case ARMMMUIdx_S1E3:
case ARMMMUIdx_S1SE0:
case ARMMMUIdx_S1SE1:
return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0);
case ARMMMUIdx_MUser:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MNegPri:
return arm_to_core_mmu_idx(ARMMMUIdx_MUser);
case ARMMMUIdx_S2NS:
default:
g_assert_not_reached();
}
}
static inline TCGv_i32 load_cpu_offset(int offset)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp, cpu_env, offset);
return tmp;
}
#define load_cpu_field(name) load_cpu_offset(offsetof(CPUARMState, name))
static inline void store_cpu_offset(TCGv_i32 var, int offset)
{
tcg_gen_st_i32(var, cpu_env, offset);
tcg_temp_free_i32(var);
}
#define store_cpu_field(var, name) \
store_cpu_offset(var, offsetof(CPUARMState, name))
/* Set a variable to the value of a CPU register. */
static void load_reg_var(DisasContext *s, TCGv_i32 var, int reg)
{
if (reg == 15) {
uint32_t addr;
/* normally, since we updated PC, we need only to add one insn */
if (s->thumb)
addr = (long)s->pc + 2;
else
addr = (long)s->pc + 4;
tcg_gen_movi_i32(var, addr);
} else {
tcg_gen_mov_i32(var, cpu_R[reg]);
}
}
/* Create a new temporary and set it to the value of a CPU register. */
static inline TCGv_i32 load_reg(DisasContext *s, int reg)
{
TCGv_i32 tmp = tcg_temp_new_i32();
load_reg_var(s, tmp, reg);
return tmp;
}
/* Set a CPU register. The source must be a temporary and will be
marked as dead. */
static void store_reg(DisasContext *s, int reg, TCGv_i32 var)
{
if (reg == 15) {
/* In Thumb mode, we must ignore bit 0.
* In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0]
* are not 0b00, but for ARMv6 and above, we must ignore bits [1:0].
* We choose to ignore [1:0] in ARM mode for all architecture versions.
*/
tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3);
s->is_jmp = DISAS_JUMP;
}
tcg_gen_mov_i32(cpu_R[reg], var);
tcg_temp_free_i32(var);
}
/* Value extensions. */
#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
#define gen_sxtb16(var) gen_helper_sxtb16(var, var)
#define gen_uxtb16(var) gen_helper_uxtb16(var, var)
static inline void gen_set_cpsr(TCGv_i32 var, uint32_t mask)
{
TCGv_i32 tmp_mask = tcg_const_i32(mask);
gen_helper_cpsr_write(cpu_env, var, tmp_mask);
tcg_temp_free_i32(tmp_mask);
}
/* Set NZCV flags from the high 4 bits of var. */
#define gen_set_nzcv(var) gen_set_cpsr(var, CPSR_NZCV)
static void gen_exception_internal(int excp)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
assert(excp_is_internal(excp));
gen_helper_exception_internal(cpu_env, tcg_excp);
tcg_temp_free_i32(tcg_excp);
}
static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
TCGv_i32 tcg_el = tcg_const_i32(target_el);
gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
tcg_syn, tcg_el);
tcg_temp_free_i32(tcg_el);
tcg_temp_free_i32(tcg_syn);
tcg_temp_free_i32(tcg_excp);
}
static void gen_ss_advance(DisasContext *s)
{
/* If the singlestep state is Active-not-pending, advance to
* Active-pending.
*/
if (s->ss_active) {
s->pstate_ss = 0;
gen_helper_clear_pstate_ss(cpu_env);
}
}
static void gen_step_complete_exception(DisasContext *s)
{
/* We just completed step of an insn. Move from Active-not-pending
* to Active-pending, and then also take the swstep exception.
* This corresponds to making the (IMPDEF) choice to prioritize
* swstep exceptions over asynchronous exceptions taken to an exception
* level where debug is disabled. This choice has the advantage that
* we do not need to maintain internal state corresponding to the
* ISV/EX syndrome bits between completion of the step and generation
* of the exception, and our syndrome information is always correct.
*/
gen_ss_advance(s);
gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
default_exception_el(s));
s->is_jmp = DISAS_EXC;
}
static void gen_singlestep_exception(DisasContext *s)
{
/* Generate the right kind of exception for singlestep, which is
* either the architectural singlestep or EXCP_DEBUG for QEMU's
* gdb singlestepping.
*/
if (s->ss_active) {
gen_step_complete_exception(s);
} else {
gen_exception_internal(EXCP_DEBUG);
}
}
static inline bool is_singlestepping(DisasContext *s)
{
/* Return true if we are singlestepping either because of
* architectural singlestep or QEMU gdbstub singlestep. This does
* not include the command line '-singlestep' mode which is rather
* misnamed as it only means "one instruction per TB" and doesn't
* affect the code we generate.
*/
return s->singlestep_enabled || s->ss_active;
}
static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 tmp1 = tcg_temp_new_i32();
TCGv_i32 tmp2 = tcg_temp_new_i32();
tcg_gen_ext16s_i32(tmp1, a);
tcg_gen_ext16s_i32(tmp2, b);
tcg_gen_mul_i32(tmp1, tmp1, tmp2);
tcg_temp_free_i32(tmp2);
tcg_gen_sari_i32(a, a, 16);
tcg_gen_sari_i32(b, b, 16);
tcg_gen_mul_i32(b, b, a);
tcg_gen_mov_i32(a, tmp1);
tcg_temp_free_i32(tmp1);
}
/* Byteswap each halfword. */
static void gen_rev16(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp, var, 8);
tcg_gen_andi_i32(tmp, tmp, 0x00ff00ff);
tcg_gen_shli_i32(var, var, 8);
tcg_gen_andi_i32(var, var, 0xff00ff00);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
/* Byteswap low halfword and sign extend. */
static void gen_revsh(TCGv_i32 var)
{
tcg_gen_ext16u_i32(var, var);
tcg_gen_bswap16_i32(var, var);
tcg_gen_ext16s_i32(var, var);
}
/* Return (b << 32) + a. Mark inputs as dead */
static TCGv_i64 gen_addq_msw(TCGv_i64 a, TCGv_i32 b)
{
TCGv_i64 tmp64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp64, b);
tcg_temp_free_i32(b);
tcg_gen_shli_i64(tmp64, tmp64, 32);
tcg_gen_add_i64(a, tmp64, a);
tcg_temp_free_i64(tmp64);
return a;
}
/* Return (b << 32) - a. Mark inputs as dead. */
static TCGv_i64 gen_subq_msw(TCGv_i64 a, TCGv_i32 b)
{
TCGv_i64 tmp64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp64, b);
tcg_temp_free_i32(b);
tcg_gen_shli_i64(tmp64, tmp64, 32);
tcg_gen_sub_i64(a, tmp64, a);
tcg_temp_free_i64(tmp64);
return a;
}
/* 32x32->64 multiply. Marks inputs as dead. */
static TCGv_i64 gen_mulu_i64_i32(TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 lo = tcg_temp_new_i32();
TCGv_i32 hi = tcg_temp_new_i32();
TCGv_i64 ret;
tcg_gen_mulu2_i32(lo, hi, a, b);
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
ret = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(ret, lo, hi);
tcg_temp_free_i32(lo);
tcg_temp_free_i32(hi);
return ret;
}
static TCGv_i64 gen_muls_i64_i32(TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 lo = tcg_temp_new_i32();
TCGv_i32 hi = tcg_temp_new_i32();
TCGv_i64 ret;
tcg_gen_muls2_i32(lo, hi, a, b);
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
ret = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(ret, lo, hi);
tcg_temp_free_i32(lo);
tcg_temp_free_i32(hi);
return ret;
}
/* Swap low and high halfwords. */
static void gen_swap_half(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp, var, 16);
tcg_gen_shli_i32(var, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead.
tmp = (t0 ^ t1) & 0x8000;
t0 &= ~0x8000;
t1 &= ~0x8000;
t0 = (t0 + t1) ^ tmp;
*/
static void gen_add16(TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, t0, t1);
tcg_gen_andi_i32(tmp, tmp, 0x8000);
tcg_gen_andi_i32(t0, t0, ~0x8000);
tcg_gen_andi_i32(t1, t1, ~0x8000);
tcg_gen_add_i32(t0, t0, t1);
tcg_gen_xor_i32(t0, t0, tmp);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(t1);
}
/* Set CF to the top bit of var. */
static void gen_set_CF_bit31(TCGv_i32 var)
{
tcg_gen_shri_i32(cpu_CF, var, 31);
}
/* Set N and Z flags from var. */
static inline void gen_logic_CC(TCGv_i32 var)
{
tcg_gen_mov_i32(cpu_NF, var);
tcg_gen_mov_i32(cpu_ZF, var);
}
/* T0 += T1 + CF. */
static void gen_adc(TCGv_i32 t0, TCGv_i32 t1)
{
tcg_gen_add_i32(t0, t0, t1);
tcg_gen_add_i32(t0, t0, cpu_CF);
}
/* dest = T0 + T1 + CF. */
static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
tcg_gen_add_i32(dest, t0, t1);
tcg_gen_add_i32(dest, dest, cpu_CF);
}
/* dest = T0 - T1 + CF - 1. */
static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
tcg_gen_sub_i32(dest, t0, t1);
tcg_gen_add_i32(dest, dest, cpu_CF);
tcg_gen_subi_i32(dest, dest, 1);
}
/* dest = T0 + T1. Compute C, N, V and Z flags */
static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
tcg_gen_xor_i32(tmp, t0, t1);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_temp_free_i32(tmp);
tcg_gen_mov_i32(dest, cpu_NF);
}
/* dest = T0 + T1 + CF. Compute C, N, V and Z flags */
static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp = tcg_temp_new_i32();
if (TCG_TARGET_HAS_add2_i32) {
tcg_gen_movi_i32(tmp, 0);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp);
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp);
} else {
TCGv_i64 q0 = tcg_temp_new_i64();
TCGv_i64 q1 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(q0, t0);
tcg_gen_extu_i32_i64(q1, t1);
tcg_gen_add_i64(q0, q0, q1);
tcg_gen_extu_i32_i64(q1, cpu_CF);
tcg_gen_add_i64(q0, q0, q1);
tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0);
tcg_temp_free_i64(q0);
tcg_temp_free_i64(q1);
}
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
tcg_gen_xor_i32(tmp, t0, t1);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_temp_free_i32(tmp);
tcg_gen_mov_i32(dest, cpu_NF);
}
/* dest = T0 - T1. Compute C, N, V and Z flags */
static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp;
tcg_gen_sub_i32(cpu_NF, t0, t1);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, t0, t1);
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
tcg_temp_free_i32(tmp);
tcg_gen_mov_i32(dest, cpu_NF);
}
/* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */
static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_not_i32(tmp, t1);
gen_adc_CC(dest, t0, tmp);
tcg_temp_free_i32(tmp);
}
#define GEN_SHIFT(name) \
static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \
{ \
TCGv_i32 tmp1, tmp2, tmp3; \
tmp1 = tcg_temp_new_i32(); \
tcg_gen_andi_i32(tmp1, t1, 0xff); \
tmp2 = tcg_const_i32(0); \
tmp3 = tcg_const_i32(0x1f); \
tcg_gen_movcond_i32(TCG_COND_GTU, tmp2, tmp1, tmp3, tmp2, t0); \
tcg_temp_free_i32(tmp3); \
tcg_gen_andi_i32(tmp1, tmp1, 0x1f); \
tcg_gen_##name##_i32(dest, tmp2, tmp1); \
tcg_temp_free_i32(tmp2); \
tcg_temp_free_i32(tmp1); \
}
GEN_SHIFT(shl)
GEN_SHIFT(shr)
#undef GEN_SHIFT
static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 tmp1, tmp2;
tmp1 = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp1, t1, 0xff);
tmp2 = tcg_const_i32(0x1f);
tcg_gen_movcond_i32(TCG_COND_GTU, tmp1, tmp1, tmp2, tmp2, tmp1);
tcg_temp_free_i32(tmp2);
tcg_gen_sar_i32(dest, t0, tmp1);
tcg_temp_free_i32(tmp1);
}
static void tcg_gen_abs_i32(TCGv_i32 dest, TCGv_i32 src)
{
TCGv_i32 c0 = tcg_const_i32(0);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_neg_i32(tmp, src);
tcg_gen_movcond_i32(TCG_COND_GT, dest, src, c0, src, tmp);
tcg_temp_free_i32(c0);
tcg_temp_free_i32(tmp);
}
static void shifter_out_im(TCGv_i32 var, int shift)
{
if (shift == 0) {
tcg_gen_andi_i32(cpu_CF, var, 1);
} else {
tcg_gen_shri_i32(cpu_CF, var, shift);
if (shift != 31) {
tcg_gen_andi_i32(cpu_CF, cpu_CF, 1);
}
}
}
/* Shift by immediate. Includes special handling for shift == 0. */
static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop,
int shift, int flags)
{
switch (shiftop) {
case 0: /* LSL */
if (shift != 0) {
if (flags)
shifter_out_im(var, 32 - shift);
tcg_gen_shli_i32(var, var, shift);
}
break;
case 1: /* LSR */
if (shift == 0) {
if (flags) {
tcg_gen_shri_i32(cpu_CF, var, 31);
}
tcg_gen_movi_i32(var, 0);
} else {
if (flags)
shifter_out_im(var, shift - 1);
tcg_gen_shri_i32(var, var, shift);
}
break;
case 2: /* ASR */
if (shift == 0)
shift = 32;
if (flags)
shifter_out_im(var, shift - 1);
if (shift == 32)
shift = 31;
tcg_gen_sari_i32(var, var, shift);
break;
case 3: /* ROR/RRX */
if (shift != 0) {
if (flags)
shifter_out_im(var, shift - 1);
tcg_gen_rotri_i32(var, var, shift); break;
} else {
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shli_i32(tmp, cpu_CF, 31);
if (flags)
shifter_out_im(var, 0);
tcg_gen_shri_i32(var, var, 1);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
}
};
static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop,
TCGv_i32 shift, int flags)
{
if (flags) {
switch (shiftop) {
case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break;
case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break;
case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break;
case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break;
}
} else {
switch (shiftop) {
case 0:
gen_shl(var, var, shift);
break;
case 1:
gen_shr(var, var, shift);
break;
case 2:
gen_sar(var, var, shift);
break;
case 3: tcg_gen_andi_i32(shift, shift, 0x1f);
tcg_gen_rotr_i32(var, var, shift); break;
}
}
tcg_temp_free_i32(shift);
}
#define PAS_OP(pfx) \
switch (op2) { \
case 0: gen_pas_helper(glue(pfx,add16)); break; \
case 1: gen_pas_helper(glue(pfx,addsubx)); break; \
case 2: gen_pas_helper(glue(pfx,subaddx)); break; \
case 3: gen_pas_helper(glue(pfx,sub16)); break; \
case 4: gen_pas_helper(glue(pfx,add8)); break; \
case 7: gen_pas_helper(glue(pfx,sub8)); break; \
}
static void gen_arm_parallel_addsub(int op1, int op2, TCGv_i32 a, TCGv_i32 b)
{
TCGv_ptr tmp;
switch (op1) {
#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b, tmp)
case 1:
tmp = tcg_temp_new_ptr();
tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
PAS_OP(s)
tcg_temp_free_ptr(tmp);
break;
case 5:
tmp = tcg_temp_new_ptr();
tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
PAS_OP(u)
tcg_temp_free_ptr(tmp);
break;
#undef gen_pas_helper
#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b)
case 2:
PAS_OP(q);
break;
case 3:
PAS_OP(sh);
break;
case 6:
PAS_OP(uq);
break;
case 7:
PAS_OP(uh);
break;
#undef gen_pas_helper
}
}
#undef PAS_OP
/* For unknown reasons Arm and Thumb-2 use arbitrarily different encodings. */
#define PAS_OP(pfx) \
switch (op1) { \
case 0: gen_pas_helper(glue(pfx,add8)); break; \
case 1: gen_pas_helper(glue(pfx,add16)); break; \
case 2: gen_pas_helper(glue(pfx,addsubx)); break; \
case 4: gen_pas_helper(glue(pfx,sub8)); break; \
case 5: gen_pas_helper(glue(pfx,sub16)); break; \
case 6: gen_pas_helper(glue(pfx,subaddx)); break; \
}
static void gen_thumb2_parallel_addsub(int op1, int op2, TCGv_i32 a, TCGv_i32 b)
{
TCGv_ptr tmp;
switch (op2) {
#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b, tmp)
case 0:
tmp = tcg_temp_new_ptr();
tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
PAS_OP(s)
tcg_temp_free_ptr(tmp);
break;
case 4:
tmp = tcg_temp_new_ptr();
tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
PAS_OP(u)
tcg_temp_free_ptr(tmp);
break;
#undef gen_pas_helper
#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b)
case 1:
PAS_OP(q);
break;
case 2:
PAS_OP(sh);
break;
case 5:
PAS_OP(uq);
break;
case 6:
PAS_OP(uh);
break;
#undef gen_pas_helper
}
}
#undef PAS_OP
/*
* Generate a conditional based on ARM condition code cc.
* This is common between ARM and Aarch64 targets.
*/
void arm_test_cc(DisasCompare *cmp, int cc)
{
TCGv_i32 value;
TCGCond cond;
bool global = true;
switch (cc) {
case 0: /* eq: Z */
case 1: /* ne: !Z */
cond = TCG_COND_EQ;
value = cpu_ZF;
break;
case 2: /* cs: C */
case 3: /* cc: !C */
cond = TCG_COND_NE;
value = cpu_CF;
break;
case 4: /* mi: N */
case 5: /* pl: !N */
cond = TCG_COND_LT;
value = cpu_NF;
break;
case 6: /* vs: V */
case 7: /* vc: !V */
cond = TCG_COND_LT;
value = cpu_VF;
break;
case 8: /* hi: C && !Z */
case 9: /* ls: !C || Z -> !(C && !Z) */
cond = TCG_COND_NE;
value = tcg_temp_new_i32();
global = false;
/* CF is 1 for C, so -CF is an all-bits-set mask for C;
ZF is non-zero for !Z; so AND the two subexpressions. */
tcg_gen_neg_i32(value, cpu_CF);
tcg_gen_and_i32(value, value, cpu_ZF);
break;
case 10: /* ge: N == V -> N ^ V == 0 */
case 11: /* lt: N != V -> N ^ V != 0 */
/* Since we're only interested in the sign bit, == 0 is >= 0. */
cond = TCG_COND_GE;
value = tcg_temp_new_i32();
global = false;
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
break;
case 12: /* gt: !Z && N == V */
case 13: /* le: Z || N != V */
cond = TCG_COND_NE;
value = tcg_temp_new_i32();
global = false;
/* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate
* the sign bit then AND with ZF to yield the result. */
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
tcg_gen_sari_i32(value, value, 31);
tcg_gen_andc_i32(value, cpu_ZF, value);
break;
case 14: /* always */
case 15: /* always */
/* Use the ALWAYS condition, which will fold early.
* It doesn't matter what we use for the value. */
cond = TCG_COND_ALWAYS;
value = cpu_ZF;
goto no_invert;
default:
fprintf(stderr, "Bad condition code 0x%x\n", cc);
abort();
}
if (cc & 1) {
cond = tcg_invert_cond(cond);
}
no_invert:
cmp->cond = cond;
cmp->value = value;
cmp->value_global = global;
}
void arm_free_cc(DisasCompare *cmp)
{
if (!cmp->value_global) {
tcg_temp_free_i32(cmp->value);
}
}
void arm_jump_cc(DisasCompare *cmp, TCGLabel *label)
{
tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label);
}
void arm_gen_test_cc(int cc, TCGLabel *label)
{
DisasCompare cmp;
arm_test_cc(&cmp, cc);
arm_jump_cc(&cmp, label);
arm_free_cc(&cmp);
}
static const uint8_t table_logic_cc[16] = {
1, /* and */
1, /* xor */
0, /* sub */
0, /* rsb */
0, /* add */
0, /* adc */
0, /* sbc */
0, /* rsc */
1, /* andl */
1, /* xorl */
0, /* cmp */
0, /* cmn */
1, /* orr */
1, /* mov */
1, /* bic */
1, /* mvn */
};
static inline void gen_set_condexec(DisasContext *s)
{
if (s->condexec_mask) {
uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
store_cpu_field(tmp, condexec_bits);
}
}
static inline void gen_set_pc_im(DisasContext *s, target_ulong val)
{
tcg_gen_movi_i32(cpu_R[15], val);
}
/* Set PC and Thumb state from an immediate address. */
static inline void gen_bx_im(DisasContext *s, uint32_t addr)
{
TCGv_i32 tmp;
s->is_jmp = DISAS_JUMP;
if (s->thumb != (addr & 1)) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, addr & 1);
tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUARMState, thumb));
tcg_temp_free_i32(tmp);
}
tcg_gen_movi_i32(cpu_R[15], addr & ~1);
}
/* Set PC and Thumb state from var. var is marked as dead. */
static inline void gen_bx(DisasContext *s, TCGv_i32 var)
{
s->is_jmp = DISAS_JUMP;
tcg_gen_andi_i32(cpu_R[15], var, ~1);
tcg_gen_andi_i32(var, var, 1);
store_cpu_field(var, thumb);
}
/* Set PC and Thumb state from var. var is marked as dead.
* For M-profile CPUs, include logic to detect exception-return
* branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC,
* and BX reg, and no others, and happens only for code in Handler mode.
*/
static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var)
{
/* Generate the same code here as for a simple bx, but flag via
* s->is_jmp that we need to do the rest of the work later.
*/
gen_bx(s, var);
if (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M)) {
s->is_jmp = DISAS_BX_EXCRET;
}
}
static inline void gen_bx_excret_final_code(DisasContext *s)
{
/* Generate the code to finish possible exception return and end the TB */
TCGLabel *excret_label = gen_new_label();
/* Is the new PC value in the magic range indicating exception return? */
tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], 0xff000000, excret_label);
/* No: end the TB as we would for a DISAS_JMP */
if (is_singlestepping(s)) {
gen_singlestep_exception(s);
} else {
tcg_gen_exit_tb(0);
}
gen_set_label(excret_label);
/* Yes: this is an exception return.
* At this point in runtime env->regs[15] and env->thumb will hold
* the exception-return magic number, which do_v7m_exception_exit()
* will read. Nothing else will be able to see those values because
* the cpu-exec main loop guarantees that we will always go straight
* from raising the exception to the exception-handling code.
*
* gen_ss_advance(s) does nothing on M profile currently but
* calling it is conceptually the right thing as we have executed
* this instruction (compare SWI, HVC, SMC handling).
*/
gen_ss_advance(s);
gen_exception_internal(EXCP_EXCEPTION_EXIT);
}
/* Variant of store_reg which uses branch&exchange logic when storing
to r15 in ARM architecture v7 and above. The source must be a temporary
and will be marked as dead. */
static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var)
{
if (reg == 15 && ENABLE_ARCH_7) {
gen_bx(s, var);
} else {
store_reg(s, reg, var);
}
}
/* Variant of store_reg which uses branch&exchange logic when storing
* to r15 in ARM architecture v5T and above. This is used for storing
* the results of a LDR/LDM/POP into r15, and corresponds to the cases
* in the ARM ARM which use the LoadWritePC() pseudocode function. */
static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var)
{
if (reg == 15 && ENABLE_ARCH_5) {
gen_bx_excret(s, var);
} else {
store_reg(s, reg, var);
}
}
#ifdef CONFIG_USER_ONLY
#define IS_USER_ONLY 1
#else
#define IS_USER_ONLY 0
#endif
/* Abstractions of "generate code to do a guest load/store for
* AArch32", where a vaddr is always 32 bits (and is zero
* extended if we're a 64 bit core) and data is also
* 32 bits unless specifically doing a 64 bit access.
* These functions work like tcg_gen_qemu_{ld,st}* except
* that the address argument is TCGv_i32 rather than TCGv.
*/
static inline TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, TCGMemOp op)
{
TCGv addr = tcg_temp_new();
tcg_gen_extu_i32_tl(addr, a32);
/* Not needed for user-mode BE32, where we use MO_BE instead. */
if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) {
tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE)));
}
return addr;
}
static void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
int index, TCGMemOp opc)
{
TCGv addr = gen_aa32_addr(s, a32, opc);
tcg_gen_qemu_ld_i32(val, addr, index, opc);
tcg_temp_free(addr);
}
static void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
int index, TCGMemOp opc)
{
TCGv addr = gen_aa32_addr(s, a32, opc);
tcg_gen_qemu_st_i32(val, addr, index, opc);
tcg_temp_free(addr);
}
#define DO_GEN_LD(SUFF, OPC) \
static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \
TCGv_i32 a32, int index) \
{ \
gen_aa32_ld_i32(s, val, a32, index, OPC | s->be_data); \
} \
static inline void gen_aa32_ld##SUFF##_iss(DisasContext *s, \
TCGv_i32 val, \
TCGv_i32 a32, int index, \
ISSInfo issinfo) \
{ \
gen_aa32_ld##SUFF(s, val, a32, index); \
disas_set_da_iss(s, OPC, issinfo); \
}
#define DO_GEN_ST(SUFF, OPC) \
static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \
TCGv_i32 a32, int index) \
{ \
gen_aa32_st_i32(s, val, a32, index, OPC | s->be_data); \
} \
static inline void gen_aa32_st##SUFF##_iss(DisasContext *s, \
TCGv_i32 val, \
TCGv_i32 a32, int index, \
ISSInfo issinfo) \
{ \
gen_aa32_st##SUFF(s, val, a32, index); \
disas_set_da_iss(s, OPC, issinfo | ISSIsWrite); \
}
static inline void gen_aa32_frob64(DisasContext *s, TCGv_i64 val)
{
/* Not needed for user-mode BE32, where we use MO_BE instead. */
if (!IS_USER_ONLY && s->sctlr_b) {
tcg_gen_rotri_i64(val, val, 32);
}
}
static void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
int index, TCGMemOp opc)
{
TCGv addr = gen_aa32_addr(s, a32, opc);
tcg_gen_qemu_ld_i64(val, addr, index, opc);
gen_aa32_frob64(s, val);
tcg_temp_free(addr);
}
static inline void gen_aa32_ld64(DisasContext *s, TCGv_i64 val,
TCGv_i32 a32, int index)
{
gen_aa32_ld_i64(s, val, a32, index, MO_Q | s->be_data);
}
static void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
int index, TCGMemOp opc)
{
TCGv addr = gen_aa32_addr(s, a32, opc);
/* Not needed for user-mode BE32, where we use MO_BE instead. */
if (!IS_USER_ONLY && s->sctlr_b) {
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_rotri_i64(tmp, val, 32);
tcg_gen_qemu_st_i64(tmp, addr, index, opc);
tcg_temp_free_i64(tmp);
} else {
tcg_gen_qemu_st_i64(val, addr, index, opc);
}
tcg_temp_free(addr);
}
static inline void gen_aa32_st64(DisasContext *s, TCGv_i64 val,
TCGv_i32 a32, int index)
{
gen_aa32_st_i64(s, val, a32, index, MO_Q | s->be_data);
}
DO_GEN_LD(8s, MO_SB)
DO_GEN_LD(8u, MO_UB)
DO_GEN_LD(16s, MO_SW)
DO_GEN_LD(16u, MO_UW)
DO_GEN_LD(32u, MO_UL)
DO_GEN_ST(8, MO_UB)
DO_GEN_ST(16, MO_UW)
DO_GEN_ST(32, MO_UL)
static inline void gen_hvc(DisasContext *s, int imm16)
{
/* The pre HVC helper handles cases when HVC gets trapped
* as an undefined insn by runtime configuration (ie before
* the insn really executes).
*/
gen_set_pc_im(s, s->pc - 4);
gen_helper_pre_hvc(cpu_env);
/* Otherwise we will treat this as a real exception which
* happens after execution of the insn. (The distinction matters
* for the PC value reported to the exception handler and also
* for single stepping.)
*/
s->svc_imm = imm16;
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_HVC;
}
static inline void gen_smc(DisasContext *s)
{
/* As with HVC, we may take an exception either before or after
* the insn executes.
*/
TCGv_i32 tmp;
gen_set_pc_im(s, s->pc - 4);
tmp = tcg_const_i32(syn_aa32_smc());
gen_helper_pre_smc(cpu_env, tmp);
tcg_temp_free_i32(tmp);
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_SMC;
}
static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
{
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - offset);
gen_exception_internal(excp);
s->is_jmp = DISAS_EXC;
}
static void gen_exception_insn(DisasContext *s, int offset, int excp,
int syn, uint32_t target_el)
{
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - offset);
gen_exception(excp, syn, target_el);
s->is_jmp = DISAS_EXC;
}
/* Force a TB lookup after an instruction that changes the CPU state. */
static inline void gen_lookup_tb(DisasContext *s)
{
tcg_gen_movi_i32(cpu_R[15], s->pc & ~1);
s->is_jmp = DISAS_EXIT;
}
static inline void gen_hlt(DisasContext *s, int imm)
{
/* HLT. This has two purposes.
* Architecturally, it is an external halting debug instruction.
* Since QEMU doesn't implement external debug, we treat this as
* it is required for halting debug disabled: it will UNDEF.
* Secondly, "HLT 0x3C" is a T32 semihosting trap instruction,
* and "HLT 0xF000" is an A32 semihosting syscall. These traps
* must trigger semihosting even for ARMv7 and earlier, where
* HLT was an undefined encoding.
* In system mode, we don't allow userspace access to
* semihosting, to provide some semblance of security
* (and for consistency with our 32-bit semihosting).
*/
if (semihosting_enabled() &&
#ifndef CONFIG_USER_ONLY
s->current_el != 0 &&
#endif
(imm == (s->thumb ? 0x3c : 0xf000))) {
gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
return;
}
gen_exception_insn(s, s->thumb ? 2 : 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
}
static inline void gen_add_data_offset(DisasContext *s, unsigned int insn,
TCGv_i32 var)
{
int val, rm, shift, shiftop;
TCGv_i32 offset;
if (!(insn & (1 << 25))) {
/* immediate */
val = insn & 0xfff;
if (!(insn & (1 << 23)))
val = -val;
if (val != 0)
tcg_gen_addi_i32(var, var, val);
} else {
/* shift/register */
rm = (insn) & 0xf;
shift = (insn >> 7) & 0x1f;
shiftop = (insn >> 5) & 3;
offset = load_reg(s, rm);
gen_arm_shift_im(offset, shiftop, shift, 0);
if (!(insn & (1 << 23)))
tcg_gen_sub_i32(var, var, offset);
else
tcg_gen_add_i32(var, var, offset);
tcg_temp_free_i32(offset);
}
}
static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
int extra, TCGv_i32 var)
{
int val, rm;
TCGv_i32 offset;
if (insn & (1 << 22)) {
/* immediate */
val = (insn & 0xf) | ((insn >> 4) & 0xf0);
if (!(insn & (1 << 23)))
val = -val;
val += extra;
if (val != 0)
tcg_gen_addi_i32(var, var, val);
} else {
/* register */
if (extra)
tcg_gen_addi_i32(var, var, extra);
rm = (insn) & 0xf;
offset = load_reg(s, rm);
if (!(insn & (1 << 23)))
tcg_gen_sub_i32(var, var, offset);
else
tcg_gen_add_i32(var, var, offset);
tcg_temp_free_i32(offset);
}
}
static TCGv_ptr get_fpstatus_ptr(int neon)
{
TCGv_ptr statusptr = tcg_temp_new_ptr();
int offset;
if (neon) {
offset = offsetof(CPUARMState, vfp.standard_fp_status);
} else {
offset = offsetof(CPUARMState, vfp.fp_status);
}
tcg_gen_addi_ptr(statusptr, cpu_env, offset);
return statusptr;
}
#define VFP_OP2(name) \
static inline void gen_vfp_##name(int dp) \
{ \
TCGv_ptr fpst = get_fpstatus_ptr(0); \
if (dp) { \
gen_helper_vfp_##name##d(cpu_F0d, cpu_F0d, cpu_F1d, fpst); \
} else { \
gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, cpu_F1s, fpst); \
} \
tcg_temp_free_ptr(fpst); \
}
VFP_OP2(add)
VFP_OP2(sub)
VFP_OP2(mul)
VFP_OP2(div)
#undef VFP_OP2
static inline void gen_vfp_F1_mul(int dp)
{
/* Like gen_vfp_mul() but put result in F1 */
TCGv_ptr fpst = get_fpstatus_ptr(0);
if (dp) {
gen_helper_vfp_muld(cpu_F1d, cpu_F0d, cpu_F1d, fpst);
} else {
gen_helper_vfp_muls(cpu_F1s, cpu_F0s, cpu_F1s, fpst);
}
tcg_temp_free_ptr(fpst);
}
static inline void gen_vfp_F1_neg(int dp)
{
/* Like gen_vfp_neg() but put result in F1 */
if (dp) {
gen_helper_vfp_negd(cpu_F1d, cpu_F0d);
} else {
gen_helper_vfp_negs(cpu_F1s, cpu_F0s);
}
}
static inline void gen_vfp_abs(int dp)
{
if (dp)
gen_helper_vfp_absd(cpu_F0d, cpu_F0d);
else
gen_helper_vfp_abss(cpu_F0s, cpu_F0s);
}
static inline void gen_vfp_neg(int dp)
{
if (dp)
gen_helper_vfp_negd(cpu_F0d, cpu_F0d);
else
gen_helper_vfp_negs(cpu_F0s, cpu_F0s);
}
static inline void gen_vfp_sqrt(int dp)
{
if (dp)
gen_helper_vfp_sqrtd(cpu_F0d, cpu_F0d, cpu_env);
else
gen_helper_vfp_sqrts(cpu_F0s, cpu_F0s, cpu_env);
}
static inline void gen_vfp_cmp(int dp)
{
if (dp)
gen_helper_vfp_cmpd(cpu_F0d, cpu_F1d, cpu_env);
else
gen_helper_vfp_cmps(cpu_F0s, cpu_F1s, cpu_env);
}
static inline void gen_vfp_cmpe(int dp)
{
if (dp)
gen_helper_vfp_cmped(cpu_F0d, cpu_F1d, cpu_env);
else
gen_helper_vfp_cmpes(cpu_F0s, cpu_F1s, cpu_env);
}
static inline void gen_vfp_F1_ld0(int dp)
{
if (dp)
tcg_gen_movi_i64(cpu_F1d, 0);
else
tcg_gen_movi_i32(cpu_F1s, 0);
}
#define VFP_GEN_ITOF(name) \
static inline void gen_vfp_##name(int dp, int neon) \
{ \
TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
if (dp) { \
gen_helper_vfp_##name##d(cpu_F0d, cpu_F0s, statusptr); \
} else { \
gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \
} \
tcg_temp_free_ptr(statusptr); \
}
VFP_GEN_ITOF(uito)
VFP_GEN_ITOF(sito)
#undef VFP_GEN_ITOF
#define VFP_GEN_FTOI(name) \
static inline void gen_vfp_##name(int dp, int neon) \
{ \
TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
if (dp) { \
gen_helper_vfp_##name##d(cpu_F0s, cpu_F0d, statusptr); \
} else { \
gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \
} \
tcg_temp_free_ptr(statusptr); \
}
VFP_GEN_FTOI(toui)
VFP_GEN_FTOI(touiz)
VFP_GEN_FTOI(tosi)
VFP_GEN_FTOI(tosiz)
#undef VFP_GEN_FTOI
#define VFP_GEN_FIX(name, round) \
static inline void gen_vfp_##name(int dp, int shift, int neon) \
{ \
TCGv_i32 tmp_shift = tcg_const_i32(shift); \
TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
if (dp) { \
gen_helper_vfp_##name##d##round(cpu_F0d, cpu_F0d, tmp_shift, \
statusptr); \
} else { \
gen_helper_vfp_##name##s##round(cpu_F0s, cpu_F0s, tmp_shift, \
statusptr); \
} \
tcg_temp_free_i32(tmp_shift); \
tcg_temp_free_ptr(statusptr); \
}
VFP_GEN_FIX(tosh, _round_to_zero)
VFP_GEN_FIX(tosl, _round_to_zero)
VFP_GEN_FIX(touh, _round_to_zero)
VFP_GEN_FIX(toul, _round_to_zero)
VFP_GEN_FIX(shto, )
VFP_GEN_FIX(slto, )
VFP_GEN_FIX(uhto, )
VFP_GEN_FIX(ulto, )
#undef VFP_GEN_FIX
static inline void gen_vfp_ld(DisasContext *s, int dp, TCGv_i32 addr)
{
if (dp) {
gen_aa32_ld64(s, cpu_F0d, addr, get_mem_index(s));
} else {
gen_aa32_ld32u(s, cpu_F0s, addr, get_mem_index(s));
}
}
static inline void gen_vfp_st(DisasContext *s, int dp, TCGv_i32 addr)
{
if (dp) {
gen_aa32_st64(s, cpu_F0d, addr, get_mem_index(s));
} else {
gen_aa32_st32(s, cpu_F0s, addr, get_mem_index(s));
}
}
static inline long
vfp_reg_offset (int dp, int reg)
{
if (dp)
return offsetof(CPUARMState, vfp.regs[reg]);
else if (reg & 1) {
return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.upper);
} else {
return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.lower);
}
}
/* Return the offset of a 32-bit piece of a NEON register.
zero is the least significant end of the register. */
static inline long
neon_reg_offset (int reg, int n)
{
int sreg;
sreg = reg * 2 + n;
return vfp_reg_offset(0, sreg);
}
static TCGv_i32 neon_load_reg(int reg, int pass)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp, cpu_env, neon_reg_offset(reg, pass));
return tmp;
}
static void neon_store_reg(int reg, int pass, TCGv_i32 var)
{
tcg_gen_st_i32(var, cpu_env, neon_reg_offset(reg, pass));
tcg_temp_free_i32(var);
}
static inline void neon_load_reg64(TCGv_i64 var, int reg)
{
tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(1, reg));
}
static inline void neon_store_reg64(TCGv_i64 var, int reg)
{
tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(1, reg));
}
#define tcg_gen_ld_f32 tcg_gen_ld_i32
#define tcg_gen_ld_f64 tcg_gen_ld_i64
#define tcg_gen_st_f32 tcg_gen_st_i32
#define tcg_gen_st_f64 tcg_gen_st_i64
static inline void gen_mov_F0_vreg(int dp, int reg)
{
if (dp)
tcg_gen_ld_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg));
else
tcg_gen_ld_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg));
}
static inline void gen_mov_F1_vreg(int dp, int reg)
{
if (dp)
tcg_gen_ld_f64(cpu_F1d, cpu_env, vfp_reg_offset(dp, reg));
else
tcg_gen_ld_f32(cpu_F1s, cpu_env, vfp_reg_offset(dp, reg));
}
static inline void gen_mov_vreg_F0(int dp, int reg)
{
if (dp)
tcg_gen_st_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg));
else
tcg_gen_st_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg));
}
#define ARM_CP_RW_BIT (1 << 20)
static inline void iwmmxt_load_reg(TCGv_i64 var, int reg)
{
tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
}
static inline void iwmmxt_store_reg(TCGv_i64 var, int reg)
{
tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
}
static inline TCGv_i32 iwmmxt_load_creg(int reg)
{
TCGv_i32 var = tcg_temp_new_i32();
tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
return var;
}
static inline void iwmmxt_store_creg(int reg, TCGv_i32 var)
{
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
tcg_temp_free_i32(var);
}
static inline void gen_op_iwmmxt_movq_wRn_M0(int rn)
{
iwmmxt_store_reg(cpu_M0, rn);
}
static inline void gen_op_iwmmxt_movq_M0_wRn(int rn)
{
iwmmxt_load_reg(cpu_M0, rn);
}
static inline void gen_op_iwmmxt_orq_M0_wRn(int rn)
{
iwmmxt_load_reg(cpu_V1, rn);
tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1);
}
static inline void gen_op_iwmmxt_andq_M0_wRn(int rn)
{
iwmmxt_load_reg(cpu_V1, rn);
tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1);
}
static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn)
{
iwmmxt_load_reg(cpu_V1, rn);
tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1);
}
#define IWMMXT_OP(name) \
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
{ \
iwmmxt_load_reg(cpu_V1, rn); \
gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \
}
#define IWMMXT_OP_ENV(name) \
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
{ \
iwmmxt_load_reg(cpu_V1, rn); \
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \
}
#define IWMMXT_OP_ENV_SIZE(name) \
IWMMXT_OP_ENV(name##b) \
IWMMXT_OP_ENV(name##w) \
IWMMXT_OP_ENV(name##l)
#define IWMMXT_OP_ENV1(name) \
static inline void gen_op_iwmmxt_##name##_M0(void) \
{ \
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \
}
IWMMXT_OP(maddsq)
IWMMXT_OP(madduq)
IWMMXT_OP(sadb)
IWMMXT_OP(sadw)
IWMMXT_OP(mulslw)
IWMMXT_OP(mulshw)
IWMMXT_OP(mululw)
IWMMXT_OP(muluhw)
IWMMXT_OP(macsw)
IWMMXT_OP(macuw)
IWMMXT_OP_ENV_SIZE(unpackl)
IWMMXT_OP_ENV_SIZE(unpackh)
IWMMXT_OP_ENV1(unpacklub)
IWMMXT_OP_ENV1(unpackluw)
IWMMXT_OP_ENV1(unpacklul)
IWMMXT_OP_ENV1(unpackhub)
IWMMXT_OP_ENV1(unpackhuw)
IWMMXT_OP_ENV1(unpackhul)
IWMMXT_OP_ENV1(unpacklsb)
IWMMXT_OP_ENV1(unpacklsw)
IWMMXT_OP_ENV1(unpacklsl)
IWMMXT_OP_ENV1(unpackhsb)
IWMMXT_OP_ENV1(unpackhsw)
IWMMXT_OP_ENV1(unpackhsl)
IWMMXT_OP_ENV_SIZE(cmpeq)
IWMMXT_OP_ENV_SIZE(cmpgtu)
IWMMXT_OP_ENV_SIZE(cmpgts)
IWMMXT_OP_ENV_SIZE(mins)
IWMMXT_OP_ENV_SIZE(minu)
IWMMXT_OP_ENV_SIZE(maxs)
IWMMXT_OP_ENV_SIZE(maxu)
IWMMXT_OP_ENV_SIZE(subn)
IWMMXT_OP_ENV_SIZE(addn)
IWMMXT_OP_ENV_SIZE(subu)
IWMMXT_OP_ENV_SIZE(addu)
IWMMXT_OP_ENV_SIZE(subs)
IWMMXT_OP_ENV_SIZE(adds)
IWMMXT_OP_ENV(avgb0)
IWMMXT_OP_ENV(avgb1)
IWMMXT_OP_ENV(avgw0)
IWMMXT_OP_ENV(avgw1)
IWMMXT_OP_ENV(packuw)
IWMMXT_OP_ENV(packul)
IWMMXT_OP_ENV(packuq)
IWMMXT_OP_ENV(packsw)
IWMMXT_OP_ENV(packsl)
IWMMXT_OP_ENV(packsq)
static void gen_op_iwmmxt_set_mup(void)
{
TCGv_i32 tmp;
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
tcg_gen_ori_i32(tmp, tmp, 2);
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
}
static void gen_op_iwmmxt_set_cup(void)
{
TCGv_i32 tmp;
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
tcg_gen_ori_i32(tmp, tmp, 1);
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
}
static void gen_op_iwmmxt_setpsr_nz(void)
{
TCGv_i32 tmp = tcg_temp_new_i32();
gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0);
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]);
}
static inline void gen_op_iwmmxt_addl_M0_wRn(int rn)
{
iwmmxt_load_reg(cpu_V1, rn);
tcg_gen_ext32u_i64(cpu_V1, cpu_V1);
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
}
static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn,
TCGv_i32 dest)
{
int rd;
uint32_t offset;
TCGv_i32 tmp;
rd = (insn >> 16) & 0xf;
tmp = load_reg(s, rd);
offset = (insn & 0xff) << ((insn >> 7) & 2);
if (insn & (1 << 24)) {
/* Pre indexed */
if (insn & (1 << 23))
tcg_gen_addi_i32(tmp, tmp, offset);
else
tcg_gen_addi_i32(tmp, tmp, -offset);
tcg_gen_mov_i32(dest, tmp);
if (insn & (1 << 21))
store_reg(s, rd, tmp);
else
tcg_temp_free_i32(tmp);
} else if (insn & (1 << 21)) {
/* Post indexed */
tcg_gen_mov_i32(dest, tmp);
if (insn & (1 << 23))
tcg_gen_addi_i32(tmp, tmp, offset);
else
tcg_gen_addi_i32(tmp, tmp, -offset);
store_reg(s, rd, tmp);
} else if (!(insn & (1 << 23)))
return 1;
return 0;
}
static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest)
{
int rd = (insn >> 0) & 0xf;
TCGv_i32 tmp;
if (insn & (1 << 8)) {
if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) {
return 1;
} else {
tmp = iwmmxt_load_creg(rd);
}
} else {
tmp = tcg_temp_new_i32();
iwmmxt_load_reg(cpu_V0, rd);
tcg_gen_extrl_i64_i32(tmp, cpu_V0);
}
tcg_gen_andi_i32(tmp, tmp, mask);
tcg_gen_mov_i32(dest, tmp);
tcg_temp_free_i32(tmp);
return 0;
}
/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred
(ie. an undefined instruction). */
static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn)
{
int rd, wrd;
int rdhi, rdlo, rd0, rd1, i;
TCGv_i32 addr;
TCGv_i32 tmp, tmp2, tmp3;
if ((insn & 0x0e000e00) == 0x0c000000) {
if ((insn & 0x0fe00ff0) == 0x0c400000) {
wrd = insn & 0xf;
rdlo = (insn >> 12) & 0xf;
rdhi = (insn >> 16) & 0xf;
if (insn & ARM_CP_RW_BIT) { /* TMRRC */
iwmmxt_load_reg(cpu_V0, wrd);
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
tcg_gen_extrl_i64_i32(cpu_R[rdhi], cpu_V0);
} else { /* TMCRR */
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
iwmmxt_store_reg(cpu_V0, wrd);
gen_op_iwmmxt_set_mup();
}
return 0;
}
wrd = (insn >> 12) & 0xf;
addr = tcg_temp_new_i32();
if (gen_iwmmxt_address(s, insn, addr)) {
tcg_temp_free_i32(addr);
return 1;
}
if (insn & ARM_CP_RW_BIT) {
if ((insn >> 28) == 0xf) { /* WLDRW wCx */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
iwmmxt_store_creg(wrd, tmp);
} else {
i = 1;
if (insn & (1 << 8)) {
if (insn & (1 << 22)) { /* WLDRD */
gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s));
i = 0;
} else { /* WLDRW wRd */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
}
} else {
tmp = tcg_temp_new_i32();
if (insn & (1 << 22)) { /* WLDRH */
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
} else { /* WLDRB */
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
}
}
if (i) {
tcg_gen_extu_i32_i64(cpu_M0, tmp);
tcg_temp_free_i32(tmp);
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
}
} else {
if ((insn >> 28) == 0xf) { /* WSTRW wCx */
tmp = iwmmxt_load_creg(wrd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
} else {
gen_op_iwmmxt_movq_M0_wRn(wrd);
tmp = tcg_temp_new_i32();
if (insn & (1 << 8)) {
if (insn & (1 << 22)) { /* WSTRD */
gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s));
} else { /* WSTRW wRd */
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
} else {
if (insn & (1 << 22)) { /* WSTRH */
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
} else { /* WSTRB */
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
gen_aa32_st8(s, tmp, addr, get_mem_index(s));
}
}
}
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
return 0;
}
if ((insn & 0x0f000000) != 0x0e000000)
return 1;
switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) {
case 0x000: /* WOR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_orq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x011: /* TMCR */
if (insn & 0xf)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
switch (wrd) {
case ARM_IWMMXT_wCID:
case ARM_IWMMXT_wCASF:
break;
case ARM_IWMMXT_wCon:
gen_op_iwmmxt_set_cup();
/* Fall through. */
case ARM_IWMMXT_wCSSF:
tmp = iwmmxt_load_creg(wrd);
tmp2 = load_reg(s, rd);
tcg_gen_andc_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
iwmmxt_store_creg(wrd, tmp);
break;
case ARM_IWMMXT_wCGR0:
case ARM_IWMMXT_wCGR1:
case ARM_IWMMXT_wCGR2:
case ARM_IWMMXT_wCGR3:
gen_op_iwmmxt_set_cup();
tmp = load_reg(s, rd);
iwmmxt_store_creg(wrd, tmp);
break;
default:
return 1;
}
break;
case 0x100: /* WXOR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_xorq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x111: /* TMRC */
if (insn & 0xf)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
tmp = iwmmxt_load_creg(wrd);
store_reg(s, rd, tmp);
break;
case 0x300: /* WANDN */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tcg_gen_neg_i64(cpu_M0, cpu_M0);
gen_op_iwmmxt_andq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x200: /* WAND */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_andq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x810: case 0xa10: /* WMADD */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21))
gen_op_iwmmxt_maddsq_M0_wRn(rd1);
else
gen_op_iwmmxt_madduq_M0_wRn(rd1);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_unpacklb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_unpacklw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_unpackll_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_unpackhb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_unpackhw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_unpackhl_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 22))
gen_op_iwmmxt_sadw_M0_wRn(rd1);
else
gen_op_iwmmxt_sadb_M0_wRn(rd1);
if (!(insn & (1 << 20)))
gen_op_iwmmxt_addl_M0_wRn(wrd);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21)) {
if (insn & (1 << 20))
gen_op_iwmmxt_mulshw_M0_wRn(rd1);
else
gen_op_iwmmxt_mulslw_M0_wRn(rd1);
} else {
if (insn & (1 << 20))
gen_op_iwmmxt_muluhw_M0_wRn(rd1);
else
gen_op_iwmmxt_mululw_M0_wRn(rd1);
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21))
gen_op_iwmmxt_macsw_M0_wRn(rd1);
else
gen_op_iwmmxt_macuw_M0_wRn(rd1);
if (!(insn & (1 << 20))) {
iwmmxt_load_reg(cpu_V1, wrd);
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_cmpeqb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_cmpeqw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_cmpeql_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 22)) {
if (insn & (1 << 20))
gen_op_iwmmxt_avgw1_M0_wRn(rd1);
else
gen_op_iwmmxt_avgw0_M0_wRn(rd1);
} else {
if (insn & (1 << 20))
gen_op_iwmmxt_avgb1_M0_wRn(rd1);
else
gen_op_iwmmxt_avgb0_M0_wRn(rd1);
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3));
tcg_gen_andi_i32(tmp, tmp, 7);
iwmmxt_load_reg(cpu_V1, rd1);
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
if (((insn >> 6) & 3) == 3)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
tmp = load_reg(s, rd);
gen_op_iwmmxt_movq_M0_wRn(wrd);
switch ((insn >> 6) & 3) {
case 0:
tmp2 = tcg_const_i32(0xff);
tmp3 = tcg_const_i32((insn & 7) << 3);
break;
case 1:
tmp2 = tcg_const_i32(0xffff);
tmp3 = tcg_const_i32((insn & 3) << 4);
break;
case 2:
tmp2 = tcg_const_i32(0xffffffff);
tmp3 = tcg_const_i32((insn & 1) << 5);
break;
default:
TCGV_UNUSED_I32(tmp2);
TCGV_UNUSED_I32(tmp3);
}
gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3);
tcg_temp_free_i32(tmp3);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
if (rd == 15 || ((insn >> 22) & 3) == 3)
return 1;
gen_op_iwmmxt_movq_M0_wRn(wrd);
tmp = tcg_temp_new_i32();
switch ((insn >> 22) & 3) {
case 0:
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3);
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
if (insn & 8) {
tcg_gen_ext8s_i32(tmp, tmp);
} else {
tcg_gen_andi_i32(tmp, tmp, 0xff);
}
break;
case 1:
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4);
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
if (insn & 8) {
tcg_gen_ext16s_i32(tmp, tmp);
} else {
tcg_gen_andi_i32(tmp, tmp, 0xffff);
}
break;
case 2:
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5);
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
break;
}
store_reg(s, rd, tmp);
break;
case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3)
return 1;
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
switch ((insn >> 22) & 3) {
case 0:
tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0);
break;
case 1:
tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4);
break;
case 2:
tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12);
break;
}
tcg_gen_shli_i32(tmp, tmp, 28);
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp);
break;
case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
if (((insn >> 6) & 3) == 3)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
tmp = load_reg(s, rd);
switch ((insn >> 6) & 3) {
case 0:
gen_helper_iwmmxt_bcstb(cpu_M0, tmp);
break;
case 1:
gen_helper_iwmmxt_bcstw(cpu_M0, tmp);
break;
case 2:
gen_helper_iwmmxt_bcstl(cpu_M0, tmp);
break;
}
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
return 1;
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
tmp2 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp2, tmp);
switch ((insn >> 22) & 3) {
case 0:
for (i = 0; i < 7; i ++) {
tcg_gen_shli_i32(tmp2, tmp2, 4);
tcg_gen_and_i32(tmp, tmp, tmp2);
}
break;
case 1:
for (i = 0; i < 3; i ++) {
tcg_gen_shli_i32(tmp2, tmp2, 8);
tcg_gen_and_i32(tmp, tmp, tmp2);
}
break;
case 2:
tcg_gen_shli_i32(tmp2, tmp2, 16);
tcg_gen_and_i32(tmp, tmp, tmp2);
break;
}
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0);
break;
case 1:
gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0);
break;
case 2:
gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
return 1;
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
tmp2 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp2, tmp);
switch ((insn >> 22) & 3) {
case 0:
for (i = 0; i < 7; i ++) {
tcg_gen_shli_i32(tmp2, tmp2, 4);
tcg_gen_or_i32(tmp, tmp, tmp2);
}
break;
case 1:
for (i = 0; i < 3; i ++) {
tcg_gen_shli_i32(tmp2, tmp2, 8);
tcg_gen_or_i32(tmp, tmp, tmp2);
}
break;
case 2:
tcg_gen_shli_i32(tmp2, tmp2, 16);
tcg_gen_or_i32(tmp, tmp, tmp2);
break;
}
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
rd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3)
return 1;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_temp_new_i32();
switch ((insn >> 22) & 3) {
case 0:
gen_helper_iwmmxt_msbb(tmp, cpu_M0);
break;
case 1:
gen_helper_iwmmxt_msbw(tmp, cpu_M0);
break;
case 2:
gen_helper_iwmmxt_msbl(tmp, cpu_M0);
break;
}
store_reg(s, rd, tmp);
break;
case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
case 0x906: case 0xb06: case 0xd06: case 0xf06:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsb_M0();
else
gen_op_iwmmxt_unpacklub_M0();
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsw_M0();
else
gen_op_iwmmxt_unpackluw_M0();
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsl_M0();
else
gen_op_iwmmxt_unpacklul_M0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsb_M0();
else
gen_op_iwmmxt_unpackhub_M0();
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsw_M0();
else
gen_op_iwmmxt_unpackhuw_M0();
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsl_M0();
else
gen_op_iwmmxt_unpackhul_M0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
case 0x214: case 0x614: case 0xa14: case 0xe14:
if (((insn >> 22) & 3) == 0)
return 1;
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_temp_new_i32();
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
switch ((insn >> 22) & 3) {
case 1:
gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 2:
gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 3:
gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp);
break;
}
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
case 0x014: case 0x414: case 0x814: case 0xc14:
if (((insn >> 22) & 3) == 0)
return 1;
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_temp_new_i32();
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
switch ((insn >> 22) & 3) {
case 1:
gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 2:
gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 3:
gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp);
break;
}
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
case 0x114: case 0x514: case 0x914: case 0xd14:
if (((insn >> 22) & 3) == 0)
return 1;
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_temp_new_i32();
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
switch ((insn >> 22) & 3) {
case 1:
gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 2:
gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 3:
gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp);
break;
}
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
case 0x314: case 0x714: case 0xb14: case 0xf14:
if (((insn >> 22) & 3) == 0)
return 1;
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_temp_new_i32();
switch ((insn >> 22) & 3) {
case 1:
if (gen_iwmmxt_shift(insn, 0xf, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 2:
if (gen_iwmmxt_shift(insn, 0x1f, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp);
break;
case 3:
if (gen_iwmmxt_shift(insn, 0x3f, tmp)) {
tcg_temp_free_i32(tmp);
return 1;
}
gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp);
break;
}
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
case 0x916: case 0xb16: case 0xd16: case 0xf16:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_minsb_M0_wRn(rd1);
else
gen_op_iwmmxt_minub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_minsw_M0_wRn(rd1);
else
gen_op_iwmmxt_minuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_minsl_M0_wRn(rd1);
else
gen_op_iwmmxt_minul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
case 0x816: case 0xa16: case 0xc16: case 0xe16:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsb_M0_wRn(rd1);
else
gen_op_iwmmxt_maxub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsw_M0_wRn(rd1);
else
gen_op_iwmmxt_maxuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsl_M0_wRn(rd1);
else
gen_op_iwmmxt_maxul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
case 0x402: case 0x502: case 0x602: case 0x702:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_const_i32((insn >> 20) & 3);
iwmmxt_load_reg(cpu_V1, rd1);
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
case 0x41a: case 0x51a: case 0x61a: case 0x71a:
case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 20) & 0xf) {
case 0x0:
gen_op_iwmmxt_subnb_M0_wRn(rd1);
break;
case 0x1:
gen_op_iwmmxt_subub_M0_wRn(rd1);
break;
case 0x3:
gen_op_iwmmxt_subsb_M0_wRn(rd1);
break;
case 0x4:
gen_op_iwmmxt_subnw_M0_wRn(rd1);
break;
case 0x5:
gen_op_iwmmxt_subuw_M0_wRn(rd1);
break;
case 0x7:
gen_op_iwmmxt_subsw_M0_wRn(rd1);
break;
case 0x8:
gen_op_iwmmxt_subnl_M0_wRn(rd1);
break;
case 0x9:
gen_op_iwmmxt_subul_M0_wRn(rd1);
break;
case 0xb:
gen_op_iwmmxt_subsl_M0_wRn(rd1);
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
case 0x41e: case 0x51e: case 0x61e: case 0x71e:
case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f));
gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
case 0x418: case 0x518: case 0x618: case 0x718:
case 0x818: case 0x918: case 0xa18: case 0xb18:
case 0xc18: case 0xd18: case 0xe18: case 0xf18:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 20) & 0xf) {
case 0x0:
gen_op_iwmmxt_addnb_M0_wRn(rd1);
break;
case 0x1:
gen_op_iwmmxt_addub_M0_wRn(rd1);
break;
case 0x3:
gen_op_iwmmxt_addsb_M0_wRn(rd1);
break;
case 0x4:
gen_op_iwmmxt_addnw_M0_wRn(rd1);
break;
case 0x5:
gen_op_iwmmxt_adduw_M0_wRn(rd1);
break;
case 0x7:
gen_op_iwmmxt_addsw_M0_wRn(rd1);
break;
case 0x8:
gen_op_iwmmxt_addnl_M0_wRn(rd1);
break;
case 0x9:
gen_op_iwmmxt_addul_M0_wRn(rd1);
break;
case 0xb:
gen_op_iwmmxt_addsl_M0_wRn(rd1);
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
case 0x408: case 0x508: case 0x608: case 0x708:
case 0x808: case 0x908: case 0xa08: case 0xb08:
case 0xc08: case 0xd08: case 0xe08: case 0xf08:
if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0)
return 1;
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_packsw_M0_wRn(rd1);
else
gen_op_iwmmxt_packuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_packsl_M0_wRn(rd1);
else
gen_op_iwmmxt_packul_M0_wRn(rd1);
break;
case 3:
if (insn & (1 << 21))
gen_op_iwmmxt_packsq_M0_wRn(rd1);
else
gen_op_iwmmxt_packuq_M0_wRn(rd1);
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x201: case 0x203: case 0x205: case 0x207:
case 0x209: case 0x20b: case 0x20d: case 0x20f:
case 0x211: case 0x213: case 0x215: case 0x217:
case 0x219: case 0x21b: case 0x21d: case 0x21f:
wrd = (insn >> 5) & 0xf;
rd0 = (insn >> 12) & 0xf;
rd1 = (insn >> 0) & 0xf;
if (rd0 == 0xf || rd1 == 0xf)
return 1;
gen_op_iwmmxt_movq_M0_wRn(wrd);
tmp = load_reg(s, rd0);
tmp2 = load_reg(s, rd1);
switch ((insn >> 16) & 0xf) {
case 0x0: /* TMIA */
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
break;
case 0x8: /* TMIAPH */
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
break;
case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
if (insn & (1 << 16))
tcg_gen_shri_i32(tmp, tmp, 16);
if (insn & (1 << 17))
tcg_gen_shri_i32(tmp2, tmp2, 16);
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
break;
default:
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
return 1;
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
default:
return 1;
}
return 0;
}
/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred
(ie. an undefined instruction). */
static int disas_dsp_insn(DisasContext *s, uint32_t insn)
{
int acc, rd0, rd1, rdhi, rdlo;
TCGv_i32 tmp, tmp2;
if ((insn & 0x0ff00f10) == 0x0e200010) {
/* Multiply with Internal Accumulate Format */
rd0 = (insn >> 12) & 0xf;
rd1 = insn & 0xf;
acc = (insn >> 5) & 7;
if (acc != 0)
return 1;
tmp = load_reg(s, rd0);
tmp2 = load_reg(s, rd1);
switch ((insn >> 16) & 0xf) {
case 0x0: /* MIA */
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
break;
case 0x8: /* MIAPH */
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
break;
case 0xc: /* MIABB */
case 0xd: /* MIABT */
case 0xe: /* MIATB */
case 0xf: /* MIATT */
if (insn & (1 << 16))
tcg_gen_shri_i32(tmp, tmp, 16);
if (insn & (1 << 17))
tcg_gen_shri_i32(tmp2, tmp2, 16);
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
break;
default:
return 1;
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
gen_op_iwmmxt_movq_wRn_M0(acc);
return 0;
}
if ((insn & 0x0fe00ff8) == 0x0c400000) {
/* Internal Accumulator Access Format */
rdhi = (insn >> 16) & 0xf;
rdlo = (insn >> 12) & 0xf;
acc = insn & 7;
if (acc != 0)
return 1;
if (insn & ARM_CP_RW_BIT) { /* MRA */
iwmmxt_load_reg(cpu_V0, acc);
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
tcg_gen_extrl_i64_i32(cpu_R[rdhi], cpu_V0);
tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1);
} else { /* MAR */
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
iwmmxt_store_reg(cpu_V0, acc);
}
return 0;
}
return 1;
}
#define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n))
#define VFP_SREG(insn, bigbit, smallbit) \
((VFP_REG_SHR(insn, bigbit - 1) & 0x1e) | (((insn) >> (smallbit)) & 1))
#define VFP_DREG(reg, insn, bigbit, smallbit) do { \
if (arm_dc_feature(s, ARM_FEATURE_VFP3)) { \
reg = (((insn) >> (bigbit)) & 0x0f) \
| (((insn) >> ((smallbit) - 4)) & 0x10); \
} else { \
if (insn & (1 << (smallbit))) \
return 1; \
reg = ((insn) >> (bigbit)) & 0x0f; \
}} while (0)
#define VFP_SREG_D(insn) VFP_SREG(insn, 12, 22)
#define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22)
#define VFP_SREG_N(insn) VFP_SREG(insn, 16, 7)
#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7)
#define VFP_SREG_M(insn) VFP_SREG(insn, 0, 5)
#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5)
/* Move between integer and VFP cores. */
static TCGv_i32 gen_vfp_mrs(void)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp, cpu_F0s);
return tmp;
}
static void gen_vfp_msr(TCGv_i32 tmp)
{
tcg_gen_mov_i32(cpu_F0s, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_neon_dup_u8(TCGv_i32 var, int shift)
{
TCGv_i32 tmp = tcg_temp_new_i32();
if (shift)
tcg_gen_shri_i32(var, var, shift);
tcg_gen_ext8u_i32(var, var);
tcg_gen_shli_i32(tmp, var, 8);
tcg_gen_or_i32(var, var, tmp);
tcg_gen_shli_i32(tmp, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_neon_dup_low16(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ext16u_i32(var, var);
tcg_gen_shli_i32(tmp, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_neon_dup_high16(TCGv_i32 var)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(var, var, 0xffff0000);
tcg_gen_shri_i32(tmp, var, 16);
tcg_gen_or_i32(var, var, tmp);
tcg_temp_free_i32(tmp);
}
static TCGv_i32 gen_load_and_replicate(DisasContext *s, TCGv_i32 addr, int size)
{
/* Load a single Neon element and replicate into a 32 bit TCG reg */
TCGv_i32 tmp = tcg_temp_new_i32();
switch (size) {
case 0:
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
gen_neon_dup_u8(tmp, 0);
break;
case 1:
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
gen_neon_dup_low16(tmp);
break;
case 2:
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
break;
default: /* Avoid compiler warnings. */
abort();
}
return tmp;
}
static int handle_vsel(uint32_t insn, uint32_t rd, uint32_t rn, uint32_t rm,
uint32_t dp)
{
uint32_t cc = extract32(insn, 20, 2);
if (dp) {
TCGv_i64 frn, frm, dest;
TCGv_i64 tmp, zero, zf, nf, vf;
zero = tcg_const_i64(0);
frn = tcg_temp_new_i64();
frm = tcg_temp_new_i64();
dest = tcg_temp_new_i64();
zf = tcg_temp_new_i64();
nf = tcg_temp_new_i64();
vf = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(zf, cpu_ZF);
tcg_gen_ext_i32_i64(nf, cpu_NF);
tcg_gen_ext_i32_i64(vf, cpu_VF);
tcg_gen_ld_f64(frn, cpu_env, vfp_reg_offset(dp, rn));
tcg_gen_ld_f64(frm, cpu_env, vfp_reg_offset(dp, rm));
switch (cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, vf, nf);
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i64(tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero,
frn, frm);
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, vf, nf);
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i64(tmp);
break;
}
tcg_gen_st_f64(dest, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i64(frn);
tcg_temp_free_i64(frm);
tcg_temp_free_i64(dest);
tcg_temp_free_i64(zf);
tcg_temp_free_i64(nf);
tcg_temp_free_i64(vf);
tcg_temp_free_i64(zero);
} else {
TCGv_i32 frn, frm, dest;
TCGv_i32 tmp, zero;
zero = tcg_const_i32(0);
frn = tcg_temp_new_i32();
frm = tcg_temp_new_i32();
dest = tcg_temp_new_i32();
tcg_gen_ld_f32(frn, cpu_env, vfp_reg_offset(dp, rn));
tcg_gen_ld_f32(frm, cpu_env, vfp_reg_offset(dp, rm));
switch (cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i32(tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero,
frn, frm);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i32(tmp);
break;
}
tcg_gen_st_f32(dest, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i32(frn);
tcg_temp_free_i32(frm);
tcg_temp_free_i32(dest);
tcg_temp_free_i32(zero);
}
return 0;
}
static int handle_vminmaxnm(uint32_t insn, uint32_t rd, uint32_t rn,
uint32_t rm, uint32_t dp)
{
uint32_t vmin = extract32(insn, 6, 1);
TCGv_ptr fpst = get_fpstatus_ptr(0);
if (dp) {
TCGv_i64 frn, frm, dest;
frn = tcg_temp_new_i64();
frm = tcg_temp_new_i64();
dest = tcg_temp_new_i64();
tcg_gen_ld_f64(frn, cpu_env, vfp_reg_offset(dp, rn));
tcg_gen_ld_f64(frm, cpu_env, vfp_reg_offset(dp, rm));
if (vmin) {
gen_helper_vfp_minnumd(dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnumd(dest, frn, frm, fpst);
}
tcg_gen_st_f64(dest, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i64(frn);
tcg_temp_free_i64(frm);
tcg_temp_free_i64(dest);
} else {
TCGv_i32 frn, frm, dest;
frn = tcg_temp_new_i32();
frm = tcg_temp_new_i32();
dest = tcg_temp_new_i32();
tcg_gen_ld_f32(frn, cpu_env, vfp_reg_offset(dp, rn));
tcg_gen_ld_f32(frm, cpu_env, vfp_reg_offset(dp, rm));
if (vmin) {
gen_helper_vfp_minnums(dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnums(dest, frn, frm, fpst);
}
tcg_gen_st_f32(dest, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i32(frn);
tcg_temp_free_i32(frm);
tcg_temp_free_i32(dest);
}
tcg_temp_free_ptr(fpst);
return 0;
}
static int handle_vrint(uint32_t insn, uint32_t rd, uint32_t rm, uint32_t dp,
int rounding)
{
TCGv_ptr fpst = get_fpstatus_ptr(0);
TCGv_i32 tcg_rmode;
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
if (dp) {
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
tcg_op = tcg_temp_new_i64();
tcg_res = tcg_temp_new_i64();
tcg_gen_ld_f64(tcg_op, cpu_env, vfp_reg_offset(dp, rm));
gen_helper_rintd(tcg_res, tcg_op, fpst);
tcg_gen_st_f64(tcg_res, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i64(tcg_op);
tcg_temp_free_i64(tcg_res);
} else {
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
tcg_op = tcg_temp_new_i32();
tcg_res = tcg_temp_new_i32();
tcg_gen_ld_f32(tcg_op, cpu_env, vfp_reg_offset(dp, rm));
gen_helper_rints(tcg_res, tcg_op, fpst);
tcg_gen_st_f32(tcg_res, cpu_env, vfp_reg_offset(dp, rd));
tcg_temp_free_i32(tcg_op);
tcg_temp_free_i32(tcg_res);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_ptr(fpst);
return 0;
}
static int handle_vcvt(uint32_t insn, uint32_t rd, uint32_t rm, uint32_t dp,
int rounding)
{
bool is_signed = extract32(insn, 7, 1);
TCGv_ptr fpst = get_fpstatus_ptr(0);
TCGv_i32 tcg_rmode, tcg_shift;
tcg_shift = tcg_const_i32(0);
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
if (dp) {
TCGv_i64 tcg_double, tcg_res;
TCGv_i32 tcg_tmp;
/* Rd is encoded as a single precision register even when the source
* is double precision.
*/
rd = ((rd << 1) & 0x1e) | ((rd >> 4) & 0x1);
tcg_double = tcg_temp_new_i64();
tcg_res = tcg_temp_new_i64();
tcg_tmp = tcg_temp_new_i32();
tcg_gen_ld_f64(tcg_double, cpu_env, vfp_reg_offset(1, rm));
if (is_signed) {
gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst);
} else {
gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst);
}
tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res);
tcg_gen_st_f32(tcg_tmp, cpu_env, vfp_reg_offset(0, rd));
tcg_temp_free_i32(tcg_tmp);
tcg_temp_free_i64(tcg_res);
tcg_temp_free_i64(tcg_double);
} else {
TCGv_i32 tcg_single, tcg_res;
tcg_single = tcg_temp_new_i32();
tcg_res = tcg_temp_new_i32();
tcg_gen_ld_f32(tcg_single, cpu_env, vfp_reg_offset(0, rm));
if (is_signed) {
gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst);
} else {
gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst);
}
tcg_gen_st_f32(tcg_res, cpu_env, vfp_reg_offset(0, rd));
tcg_temp_free_i32(tcg_res);
tcg_temp_free_i32(tcg_single);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_i32(tcg_shift);
tcg_temp_free_ptr(fpst);
return 0;
}
/* Table for converting the most common AArch32 encoding of
* rounding mode to arm_fprounding order (which matches the
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
*/
static const uint8_t fp_decode_rm[] = {
FPROUNDING_TIEAWAY,
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
};
static int disas_vfp_v8_insn(DisasContext *s, uint32_t insn)
{
uint32_t rd, rn, rm, dp = extract32(insn, 8, 1);
if (!arm_dc_feature(s, ARM_FEATURE_V8)) {
return 1;
}
if (dp) {
VFP_DREG_D(rd, insn);
VFP_DREG_N(rn, insn);
VFP_DREG_M(rm, insn);
} else {
rd = VFP_SREG_D(insn);
rn = VFP_SREG_N(insn);
rm = VFP_SREG_M(insn);
}
if ((insn & 0x0f800e50) == 0x0e000a00) {
return handle_vsel(insn, rd, rn, rm, dp);
} else if ((insn & 0x0fb00e10) == 0x0e800a00) {
return handle_vminmaxnm(insn, rd, rn, rm, dp);
} else if ((insn & 0x0fbc0ed0) == 0x0eb80a40) {
/* VRINTA, VRINTN, VRINTP, VRINTM */
int rounding = fp_decode_rm[extract32(insn, 16, 2)];
return handle_vrint(insn, rd, rm, dp, rounding);
} else if ((insn & 0x0fbc0e50) == 0x0ebc0a40) {
/* VCVTA, VCVTN, VCVTP, VCVTM */
int rounding = fp_decode_rm[extract32(insn, 16, 2)];
return handle_vcvt(insn, rd, rm, dp, rounding);
}
return 1;
}
/* Disassemble a VFP instruction. Returns nonzero if an error occurred
(ie. an undefined instruction). */
static int disas_vfp_insn(DisasContext *s, uint32_t insn)
{
uint32_t rd, rn, rm, op, i, n, offset, delta_d, delta_m, bank_mask;
int dp, veclen;
TCGv_i32 addr;
TCGv_i32 tmp;
TCGv_i32 tmp2;
if (!arm_dc_feature(s, ARM_FEATURE_VFP)) {
return 1;
}
/* FIXME: this access check should not take precedence over UNDEF
* for invalid encodings; we will generate incorrect syndrome information
* for attempts to execute invalid vfp/neon encodings with FP disabled.
*/
if (s->fp_excp_el) {
gen_exception_insn(s, 4, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
return 0;
}
if (!s->vfp_enabled) {
/* VFP disabled. Only allow fmxr/fmrx to/from some control regs. */
if ((insn & 0x0fe00fff) != 0x0ee00a10)
return 1;
rn = (insn >> 16) & 0xf;
if (rn != ARM_VFP_FPSID && rn != ARM_VFP_FPEXC && rn != ARM_VFP_MVFR2
&& rn != ARM_VFP_MVFR1 && rn != ARM_VFP_MVFR0) {
return 1;
}
}
if (extract32(insn, 28, 4) == 0xf) {
/* Encodings with T=1 (Thumb) or unconditional (ARM):
* only used in v8 and above.
*/
return disas_vfp_v8_insn(s, insn);
}
dp = ((insn & 0xf00) == 0xb00);
switch ((insn >> 24) & 0xf) {
case 0xe:
if (insn & (1 << 4)) {
/* single register transfer */
rd = (insn >> 12) & 0xf;
if (dp) {
int size;
int pass;
VFP_DREG_N(rn, insn);
if (insn & 0xf)
return 1;
if (insn & 0x00c00060
&& !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return 1;
}
pass = (insn >> 21) & 1;
if (insn & (1 << 22)) {
size = 0;
offset = ((insn >> 5) & 3) * 8;
} else if (insn & (1 << 5)) {
size = 1;
offset = (insn & (1 << 6)) ? 16 : 0;
} else {
size = 2;
offset = 0;
}
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
tmp = neon_load_reg(rn, pass);
switch (size) {
case 0:
if (offset)
tcg_gen_shri_i32(tmp, tmp, offset);
if (insn & (1 << 23))
gen_uxtb(tmp);
else
gen_sxtb(tmp);
break;
case 1:
if (insn & (1 << 23)) {
if (offset) {
tcg_gen_shri_i32(tmp, tmp, 16);
} else {
gen_uxth(tmp);
}
} else {
if (offset) {
tcg_gen_sari_i32(tmp, tmp, 16);
} else {
gen_sxth(tmp);
}
}
break;
case 2:
break;
}
store_reg(s, rd, tmp);
} else {
/* arm->vfp */
tmp = load_reg(s, rd);
if (insn & (1 << 23)) {
/* VDUP */
if (size == 0) {
gen_neon_dup_u8(tmp, 0);
} else if (size == 1) {
gen_neon_dup_low16(tmp);
}
for (n = 0; n <= pass * 2; n++) {
tmp2 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp2, tmp);
neon_store_reg(rn, n, tmp2);
}
neon_store_reg(rn, n, tmp);
} else {
/* VMOV */
switch (size) {
case 0:
tmp2 = neon_load_reg(rn, pass);
tcg_gen_deposit_i32(tmp, tmp2, tmp, offset, 8);
tcg_temp_free_i32(tmp2);
break;
case 1:
tmp2 = neon_load_reg(rn, pass);
tcg_gen_deposit_i32(tmp, tmp2, tmp, offset, 16);
tcg_temp_free_i32(tmp2);
break;
case 2:
break;
}
neon_store_reg(rn, pass, tmp);
}
}
} else { /* !dp */
if ((insn & 0x6f) != 0x00)
return 1;
rn = VFP_SREG_N(insn);
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
if (insn & (1 << 21)) {
/* system register */
rn >>= 1;
switch (rn) {
case ARM_VFP_FPSID:
/* VFP2 allows access to FSID from userspace.
VFP3 restricts all id registers to privileged
accesses. */
if (IS_USER(s)
&& arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
tmp = load_cpu_field(vfp.xregs[rn]);
break;
case ARM_VFP_FPEXC:
if (IS_USER(s))
return 1;
tmp = load_cpu_field(vfp.xregs[rn]);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
/* Not present in VFP3. */
if (IS_USER(s)
|| arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
tmp = load_cpu_field(vfp.xregs[rn]);
break;
case ARM_VFP_FPSCR:
if (rd == 15) {
tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(tmp, tmp, 0xf0000000);
} else {
tmp = tcg_temp_new_i32();
gen_helper_vfp_get_fpscr(tmp, cpu_env);
}
break;
case ARM_VFP_MVFR2:
if (!arm_dc_feature(s, ARM_FEATURE_V8)) {
return 1;
}
/* fall through */
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
if (IS_USER(s)
|| !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
return 1;
}
tmp = load_cpu_field(vfp.xregs[rn]);
break;
default:
return 1;
}
} else {
gen_mov_F0_vreg(0, rn);
tmp = gen_vfp_mrs();
}
if (rd == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp);
} else {
store_reg(s, rd, tmp);
}
} else {
/* arm->vfp */
if (insn & (1 << 21)) {
rn >>= 1;
/* system register */
switch (rn) {
case ARM_VFP_FPSID:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
/* Writes are ignored. */
break;
case ARM_VFP_FPSCR:
tmp = load_reg(s, rd);
gen_helper_vfp_set_fpscr(cpu_env, tmp);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
break;
case ARM_VFP_FPEXC:
if (IS_USER(s))
return 1;
/* TODO: VFP subarchitecture support.
* For now, keep the EN bit only */
tmp = load_reg(s, rd);
tcg_gen_andi_i32(tmp, tmp, 1 << 30);
store_cpu_field(tmp, vfp.xregs[rn]);
gen_lookup_tb(s);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
if (IS_USER(s)) {
return 1;
}
tmp = load_reg(s, rd);
store_cpu_field(tmp, vfp.xregs[rn]);
break;
default:
return 1;
}
} else {
tmp = load_reg(s, rd);
gen_vfp_msr(tmp);
gen_mov_vreg_F0(0, rn);
}
}
}
} else {
/* data processing */
/* The opcode is in bits 23, 21, 20 and 6. */
op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1);
if (dp) {
if (op == 15) {
/* rn is opcode */
rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
} else {
/* rn is register number */
VFP_DREG_N(rn, insn);
}
if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18) ||
((rn & 0x1e) == 0x6))) {
/* Integer or single/half precision destination. */
rd = VFP_SREG_D(insn);
} else {
VFP_DREG_D(rd, insn);
}
if (op == 15 &&
(((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14) ||
((rn & 0x1e) == 0x4))) {
/* VCVT from int or half precision is always from S reg
* regardless of dp bit. VCVT with immediate frac_bits
* has same format as SREG_M.
*/
rm = VFP_SREG_M(insn);
} else {
VFP_DREG_M(rm, insn);
}
} else {
rn = VFP_SREG_N(insn);
if (op == 15 && rn == 15) {
/* Double precision destination. */
VFP_DREG_D(rd, insn);
} else {
rd = VFP_SREG_D(insn);
}
/* NB that we implicitly rely on the encoding for the frac_bits
* in VCVT of fixed to float being the same as that of an SREG_M
*/
rm = VFP_SREG_M(insn);
}
veclen = s->vec_len;
if (op == 15 && rn > 3)
veclen = 0;
/* Shut up compiler warnings. */
delta_m = 0;
delta_d = 0;
bank_mask = 0;
if (veclen > 0) {
if (dp)
bank_mask = 0xc;
else
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((rd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
if (dp)
delta_d = (s->vec_stride >> 1) + 1;
else
delta_d = s->vec_stride + 1;
if ((rm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
/* Load the initial operands. */
if (op == 15) {
switch (rn) {
case 16:
case 17:
/* Integer source */
gen_mov_F0_vreg(0, rm);
break;
case 8:
case 9:
/* Compare */
gen_mov_F0_vreg(dp, rd);
gen_mov_F1_vreg(dp, rm);
break;
case 10:
case 11:
/* Compare with zero */
gen_mov_F0_vreg(dp, rd);
gen_vfp_F1_ld0(dp);
break;
case 20:
case 21:
case 22:
case 23:
case 28:
case 29:
case 30:
case 31:
/* Source and destination the same. */
gen_mov_F0_vreg(dp, rd);
break;
case 4:
case 5:
case 6:
case 7:
/* VCVTB, VCVTT: only present with the halfprec extension
* UNPREDICTABLE if bit 8 is set prior to ARMv8
* (we choose to UNDEF)
*/
if ((dp && !arm_dc_feature(s, ARM_FEATURE_V8)) ||
!arm_dc_feature(s, ARM_FEATURE_VFP_FP16)) {
return 1;
}
if (!extract32(rn, 1, 1)) {
/* Half precision source. */
gen_mov_F0_vreg(0, rm);
break;
}
/* Otherwise fall through */
default:
/* One source operand. */
gen_mov_F0_vreg(dp, rm);
break;
}
} else {
/* Two source operands. */
gen_mov_F0_vreg(dp, rn);
gen_mov_F1_vreg(dp, rm);
}
for (;;) {
/* Perform the calculation. */
switch (op) {
case 0: /* VMLA: fd + (fn * fm) */
/* Note that order of inputs to the add matters for NaNs */
gen_vfp_F1_mul(dp);
gen_mov_F0_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 1: /* VMLS: fd + -(fn * fm) */
gen_vfp_mul(dp);
gen_vfp_F1_neg(dp);
gen_mov_F0_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 2: /* VNMLS: -fd + (fn * fm) */
/* Note that it isn't valid to replace (-A + B) with (B - A)
* or similar plausible looking simplifications
* because this will give wrong results for NaNs.
*/
gen_vfp_F1_mul(dp);
gen_mov_F0_vreg(dp, rd);
gen_vfp_neg(dp);
gen_vfp_add(dp);
break;
case 3: /* VNMLA: -fd + -(fn * fm) */
gen_vfp_mul(dp);
gen_vfp_F1_neg(dp);
gen_mov_F0_vreg(dp, rd);
gen_vfp_neg(dp);
gen_vfp_add(dp);
break;
case 4: /* mul: fn * fm */
gen_vfp_mul(dp);
break;
case 5: /* nmul: -(fn * fm) */
gen_vfp_mul(dp);
gen_vfp_neg(dp);
break;
case 6: /* add: fn + fm */
gen_vfp_add(dp);
break;
case 7: /* sub: fn - fm */
gen_vfp_sub(dp);
break;
case 8: /* div: fn / fm */
gen_vfp_div(dp);
break;
case 10: /* VFNMA : fd = muladd(-fd, fn, fm) */
case 11: /* VFNMS : fd = muladd(-fd, -fn, fm) */
case 12: /* VFMA : fd = muladd( fd, fn, fm) */
case 13: /* VFMS : fd = muladd( fd, -fn, fm) */
/* These are fused multiply-add, and must be done as one
* floating point operation with no rounding between the
* multiplication and addition steps.
* NB that doing the negations here as separate steps is
* correct : an input NaN should come out with its sign bit
* flipped if it is a negated-input.
*/
if (!arm_dc_feature(s, ARM_FEATURE_VFP4)) {
return 1;
}
if (dp) {
TCGv_ptr fpst;
TCGv_i64 frd;
if (op & 1) {
/* VFNMS, VFMS */
gen_helper_vfp_negd(cpu_F0d, cpu_F0d);
}
frd = tcg_temp_new_i64();
tcg_gen_ld_f64(frd, cpu_env, vfp_reg_offset(dp, rd));
if (op & 2) {
/* VFNMA, VFNMS */
gen_helper_vfp_negd(frd, frd);
}
fpst = get_fpstatus_ptr(0);
gen_helper_vfp_muladdd(cpu_F0d, cpu_F0d,
cpu_F1d, frd, fpst);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i64(frd);
} else {
TCGv_ptr fpst;
TCGv_i32 frd;
if (op & 1) {
/* VFNMS, VFMS */
gen_helper_vfp_negs(cpu_F0s, cpu_F0s);
}
frd = tcg_temp_new_i32();
tcg_gen_ld_f32(frd, cpu_env, vfp_reg_offset(dp, rd));
if (op & 2) {
gen_helper_vfp_negs(frd, frd);
}
fpst = get_fpstatus_ptr(0);
gen_helper_vfp_muladds(cpu_F0s, cpu_F0s,
cpu_F1s, frd, fpst);
tcg_temp_free_ptr(fpst);
tcg_temp_free_i32(frd);
}
break;
case 14: /* fconst */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
n = (insn << 12) & 0x80000000;
i = ((insn >> 12) & 0x70) | (insn & 0xf);
if (dp) {
if (i & 0x40)
i |= 0x3f80;
else
i |= 0x4000;
n |= i << 16;
tcg_gen_movi_i64(cpu_F0d, ((uint64_t)n) << 32);
} else {
if (i & 0x40)
i |= 0x780;
else
i |= 0x800;
n |= i << 19;
tcg_gen_movi_i32(cpu_F0s, n);
}
break;
case 15: /* extension space */
switch (rn) {
case 0: /* cpy */
/* no-op */
break;
case 1: /* abs */
gen_vfp_abs(dp);
break;
case 2: /* neg */
gen_vfp_neg(dp);
break;
case 3: /* sqrt */
gen_vfp_sqrt(dp);
break;
case 4: /* vcvtb.f32.f16, vcvtb.f64.f16 */
tmp = gen_vfp_mrs();
tcg_gen_ext16u_i32(tmp, tmp);
if (dp) {
gen_helper_vfp_fcvt_f16_to_f64(cpu_F0d, tmp,
cpu_env);
} else {
gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp,
cpu_env);
}
tcg_temp_free_i32(tmp);
break;
case 5: /* vcvtt.f32.f16, vcvtt.f64.f16 */
tmp = gen_vfp_mrs();
tcg_gen_shri_i32(tmp, tmp, 16);
if (dp) {
gen_helper_vfp_fcvt_f16_to_f64(cpu_F0d, tmp,
cpu_env);
} else {
gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp,
cpu_env);
}
tcg_temp_free_i32(tmp);
break;
case 6: /* vcvtb.f16.f32, vcvtb.f16.f64 */
tmp = tcg_temp_new_i32();
if (dp) {
gen_helper_vfp_fcvt_f64_to_f16(tmp, cpu_F0d,
cpu_env);
} else {
gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s,
cpu_env);
}
gen_mov_F0_vreg(0, rd);
tmp2 = gen_vfp_mrs();
tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
gen_vfp_msr(tmp);
break;
case 7: /* vcvtt.f16.f32, vcvtt.f16.f64 */
tmp = tcg_temp_new_i32();
if (dp) {
gen_helper_vfp_fcvt_f64_to_f16(tmp, cpu_F0d,
cpu_env);
} else {
gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s,
cpu_env);
}
tcg_gen_shli_i32(tmp, tmp, 16);
gen_mov_F0_vreg(0, rd);
tmp2 = gen_vfp_mrs();
tcg_gen_ext16u_i32(tmp2, tmp2);
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
gen_vfp_msr(tmp);
break;
case 8: /* cmp */
gen_vfp_cmp(dp);
break;
case 9: /* cmpe */
gen_vfp_cmpe(dp);
break;
case 10: /* cmpz */
gen_vfp_cmp(dp);
break;
case 11: /* cmpez */
gen_vfp_F1_ld0(dp);
gen_vfp_cmpe(dp);
break;
case 12: /* vrintr */
{
TCGv_ptr fpst = get_fpstatus_ptr(0);
if (dp) {
gen_helper_rintd(cpu_F0d, cpu_F0d, fpst);
} else {
gen_helper_rints(cpu_F0s, cpu_F0s, fpst);
}
tcg_temp_free_ptr(fpst);
break;
}
case 13: /* vrintz */
{
TCGv_ptr fpst = get_fpstatus_ptr(0);
TCGv_i32 tcg_rmode;
tcg_rmode = tcg_const_i32(float_round_to_zero);
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
if (dp) {
gen_helper_rintd(cpu_F0d, cpu_F0d, fpst);
} else {
gen_helper_rints(cpu_F0s, cpu_F0s, fpst);
}
gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_ptr(fpst);
break;
}
case 14: /* vrintx */
{
TCGv_ptr fpst = get_fpstatus_ptr(0);
if (dp) {
gen_helper_rintd_exact(cpu_F0d, cpu_F0d, fpst);
} else {
gen_helper_rints_exact(cpu_F0s, cpu_F0s, fpst);
}
tcg_temp_free_ptr(fpst);
break;
}
case 15: /* single<->double conversion */
if (dp)
gen_helper_vfp_fcvtsd(cpu_F0s, cpu_F0d, cpu_env);
else
gen_helper_vfp_fcvtds(cpu_F0d, cpu_F0s, cpu_env);
break;
case 16: /* fuito */
gen_vfp_uito(dp, 0);
break;
case 17: /* fsito */
gen_vfp_sito(dp, 0);
break;
case 20: /* fshto */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_shto(dp, 16 - rm, 0);
break;
case 21: /* fslto */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_slto(dp, 32 - rm, 0);
break;
case 22: /* fuhto */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_uhto(dp, 16 - rm, 0);
break;
case 23: /* fulto */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_ulto(dp, 32 - rm, 0);
break;
case 24: /* ftoui */
gen_vfp_toui(dp, 0);
break;
case 25: /* ftouiz */
gen_vfp_touiz(dp, 0);
break;
case 26: /* ftosi */
gen_vfp_tosi(dp, 0);
break;
case 27: /* ftosiz */
gen_vfp_tosiz(dp, 0);
break;
case 28: /* ftosh */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_tosh(dp, 16 - rm, 0);
break;
case 29: /* ftosl */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_tosl(dp, 32 - rm, 0);
break;
case 30: /* ftouh */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_touh(dp, 16 - rm, 0);
break;
case 31: /* ftoul */
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return 1;
}
gen_vfp_toul(dp, 32 - rm, 0);
break;
default: /* undefined */
return 1;
}
break;
default: /* undefined */
return 1;
}
/* Write back the result. */
if (op == 15 && (rn >= 8 && rn <= 11)) {
/* Comparison, do nothing. */
} else if (op == 15 && dp && ((rn & 0x1c) == 0x18 ||
(rn & 0x1e) == 0x6)) {
/* VCVT double to int: always integer result.
* VCVT double to half precision is always a single
* precision result.
*/
gen_mov_vreg_F0(0, rd);
} else if (op == 15 && rn == 15) {
/* conversion */
gen_mov_vreg_F0(!dp, rd);
} else {
gen_mov_vreg_F0(dp, rd);
}
/* break out of the loop if we have finished */
if (veclen == 0)
break;
if (op == 15 && delta_m == 0) {
/* single source one-many */
while (veclen--) {
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
gen_mov_vreg_F0(dp, rd);
}
break;
}
/* Setup the next operands. */
veclen--;
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
if (op == 15) {
/* One source operand. */
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F0_vreg(dp, rm);
} else {
/* Two source operands. */
rn = ((rn + delta_d) & (bank_mask - 1))
| (rn & bank_mask);
gen_mov_F0_vreg(dp, rn);
if (delta_m) {
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F1_vreg(dp, rm);
}
}
}
}
break;
case 0xc:
case 0xd:
if ((insn & 0x03e00000) == 0x00400000) {
/* two-register transfer */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
if (dp) {
VFP_DREG_M(rm, insn);
} else {
rm = VFP_SREG_M(insn);
}
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
if (dp) {
gen_mov_F0_vreg(0, rm * 2);
tmp = gen_vfp_mrs();
store_reg(s, rd, tmp);
gen_mov_F0_vreg(0, rm * 2 + 1);
tmp = gen_vfp_mrs();
store_reg(s, rn, tmp);
} else {
gen_mov_F0_vreg(0, rm);
tmp = gen_vfp_mrs();
store_reg(s, rd, tmp);
gen_mov_F0_vreg(0, rm + 1);
tmp = gen_vfp_mrs();
store_reg(s, rn, tmp);
}
} else {
/* arm->vfp */
if (dp) {
tmp = load_reg(s, rd);
gen_vfp_msr(tmp);
gen_mov_vreg_F0(0, rm * 2);
tmp = load_reg(s, rn);
gen_vfp_msr(tmp);
gen_mov_vreg_F0(0, rm * 2 + 1);
} else {
tmp = load_reg(s, rd);
gen_vfp_msr(tmp);
gen_mov_vreg_F0(0, rm);
tmp = load_reg(s, rn);
gen_vfp_msr(tmp);
gen_mov_vreg_F0(0, rm + 1);
}
}
} else {
/* Load/store */
rn = (insn >> 16) & 0xf;
if (dp)
VFP_DREG_D(rd, insn);
else
rd = VFP_SREG_D(insn);
if ((insn & 0x01200000) == 0x01000000) {
/* Single load/store */
offset = (insn & 0xff) << 2;
if ((insn & (1 << 23)) == 0)
offset = -offset;
if (s->thumb && rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc & ~2);
} else {
addr = load_reg(s, rn);
}
tcg_gen_addi_i32(addr, addr, offset);
if (insn & (1 << 20)) {
gen_vfp_ld(s, dp, addr);
gen_mov_vreg_F0(dp, rd);
} else {
gen_mov_F0_vreg(dp, rd);
gen_vfp_st(s, dp, addr);
}
tcg_temp_free_i32(addr);
} else {
/* load/store multiple */
int w = insn & (1 << 21);
if (dp)
n = (insn >> 1) & 0x7f;
else
n = insn & 0xff;
if (w && !(((insn >> 23) ^ (insn >> 24)) & 1)) {
/* P == U , W == 1 => UNDEF */
return 1;
}
if (n == 0 || (rd + n) > 32 || (dp && n > 16)) {
/* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return 1;
}
if (rn == 15 && w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return 1;
}
if (s->thumb && rn == 15) {
/* This is actually UNPREDICTABLE */
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc & ~2);
} else {
addr = load_reg(s, rn);
}
if (insn & (1 << 24)) /* pre-decrement */
tcg_gen_addi_i32(addr, addr, -((insn & 0xff) << 2));
if (dp)
offset = 8;
else
offset = 4;
for (i = 0; i < n; i++) {
if (insn & ARM_CP_RW_BIT) {
/* load */
gen_vfp_ld(s, dp, addr);
gen_mov_vreg_F0(dp, rd + i);
} else {
/* store */
gen_mov_F0_vreg(dp, rd + i);
gen_vfp_st(s, dp, addr);
}
tcg_gen_addi_i32(addr, addr, offset);
}
if (w) {
/* writeback */
if (insn & (1 << 24))
offset = -offset * n;
else if (dp && (insn & 1))
offset = 4;
else
offset = 0;
if (offset != 0)
tcg_gen_addi_i32(addr, addr, offset);
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
}
break;
default:
/* Should never happen. */
return 1;
}
return 0;
}
static inline bool use_goto_tb(DisasContext *s, target_ulong dest)
{
#ifndef CONFIG_USER_ONLY
return (s->tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) ||
((s->pc - 1) & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
#else
return true;
#endif
}
static void gen_goto_ptr(void)
{
TCGv addr = tcg_temp_new();
tcg_gen_extu_i32_tl(addr, cpu_R[15]);
tcg_gen_lookup_and_goto_ptr(addr);
tcg_temp_free(addr);
}
static void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
{
if (use_goto_tb(s, dest)) {
tcg_gen_goto_tb(n);
gen_set_pc_im(s, dest);
tcg_gen_exit_tb((uintptr_t)s->tb + n);
} else {
gen_set_pc_im(s, dest);
gen_goto_ptr();
}
}
static inline void gen_jmp (DisasContext *s, uint32_t dest)
{
if (unlikely(is_singlestepping(s))) {
/* An indirect jump so that we still trigger the debug exception. */
if (s->thumb)
dest |= 1;
gen_bx_im(s, dest);
} else {
gen_goto_tb(s, 0, dest);
s->is_jmp = DISAS_TB_JUMP;
}
}
static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y)
{
if (x)
tcg_gen_sari_i32(t0, t0, 16);
else
gen_sxth(t0);
if (y)
tcg_gen_sari_i32(t1, t1, 16);
else
gen_sxth(t1);
tcg_gen_mul_i32(t0, t0, t1);
}
/* Return the mask of PSR bits set by a MSR instruction. */
static uint32_t msr_mask(DisasContext *s, int flags, int spsr)
{
uint32_t mask;
mask = 0;
if (flags & (1 << 0))
mask |= 0xff;
if (flags & (1 << 1))
mask |= 0xff00;
if (flags & (1 << 2))
mask |= 0xff0000;
if (flags & (1 << 3))
mask |= 0xff000000;
/* Mask out undefined bits. */
mask &= ~CPSR_RESERVED;
if (!arm_dc_feature(s, ARM_FEATURE_V4T)) {
mask &= ~CPSR_T;
}
if (!arm_dc_feature(s, ARM_FEATURE_V5)) {
mask &= ~CPSR_Q; /* V5TE in reality*/
}
if (!arm_dc_feature(s, ARM_FEATURE_V6)) {
mask &= ~(CPSR_E | CPSR_GE);
}
if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) {
mask &= ~CPSR_IT;
}
/* Mask out execution state and reserved bits. */
if (!spsr) {
mask &= ~(CPSR_EXEC | CPSR_RESERVED);
}
/* Mask out privileged bits. */
if (IS_USER(s))
mask &= CPSR_USER;
return mask;
}
/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0)
{
TCGv_i32 tmp;
if (spsr) {
/* ??? This is also undefined in system mode. */
if (IS_USER(s))
return 1;
tmp = load_cpu_field(spsr);
tcg_gen_andi_i32(tmp, tmp, ~mask);
tcg_gen_andi_i32(t0, t0, mask);
tcg_gen_or_i32(tmp, tmp, t0);
store_cpu_field(tmp, spsr);
} else {
gen_set_cpsr(t0, mask);
}
tcg_temp_free_i32(t0);
gen_lookup_tb(s);
return 0;
}
/* Returns nonzero if access to the PSR is not permitted. */
static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val)
{
TCGv_i32 tmp;
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
return gen_set_psr(s, mask, spsr, tmp);
}
static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn,
int *tgtmode, int *regno)
{
/* Decode the r and sysm fields of MSR/MRS banked accesses into
* the target mode and register number, and identify the various
* unpredictable cases.
* MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if:
* + executed in user mode
* + using R15 as the src/dest register
* + accessing an unimplemented register
* + accessing a register that's inaccessible at current PL/security state*
* + accessing a register that you could access with a different insn
* We choose to UNDEF in all these cases.
* Since we don't know which of the various AArch32 modes we are in
* we have to defer some checks to runtime.
* Accesses to Monitor mode registers from Secure EL1 (which implies
* that EL3 is AArch64) must trap to EL3.
*
* If the access checks fail this function will emit code to take
* an exception and return false. Otherwise it will return true,
* and set *tgtmode and *regno appropriately.
*/
int exc_target = default_exception_el(s);
/* These instructions are present only in ARMv8, or in ARMv7 with the
* Virtualization Extensions.
*/
if (!arm_dc_feature(s, ARM_FEATURE_V8) &&
!arm_dc_feature(s, ARM_FEATURE_EL2)) {
goto undef;
}
if (IS_USER(s) || rn == 15) {
goto undef;
}
/* The table in the v8 ARM ARM section F5.2.3 describes the encoding
* of registers into (r, sysm).
*/
if (r) {
/* SPSRs for other modes */
switch (sysm) {
case 0xe: /* SPSR_fiq */
*tgtmode = ARM_CPU_MODE_FIQ;
break;
case 0x10: /* SPSR_irq */
*tgtmode = ARM_CPU_MODE_IRQ;
break;
case 0x12: /* SPSR_svc */
*tgtmode = ARM_CPU_MODE_SVC;
break;
case 0x14: /* SPSR_abt */
*tgtmode = ARM_CPU_MODE_ABT;
break;
case 0x16: /* SPSR_und */
*tgtmode = ARM_CPU_MODE_UND;
break;
case 0x1c: /* SPSR_mon */
*tgtmode = ARM_CPU_MODE_MON;
break;
case 0x1e: /* SPSR_hyp */
*tgtmode = ARM_CPU_MODE_HYP;
break;
default: /* unallocated */
goto undef;
}
/* We arbitrarily assign SPSR a register number of 16. */
*regno = 16;
} else {
/* general purpose registers for other modes */
switch (sysm) {
case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */
*tgtmode = ARM_CPU_MODE_USR;
*regno = sysm + 8;
break;
case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */
*tgtmode = ARM_CPU_MODE_FIQ;
*regno = sysm;
break;
case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */
*tgtmode = ARM_CPU_MODE_IRQ;
*regno = sysm & 1 ? 13 : 14;
break;
case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */
*tgtmode = ARM_CPU_MODE_SVC;
*regno = sysm & 1 ? 13 : 14;
break;
case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */
*tgtmode = ARM_CPU_MODE_ABT;
*regno = sysm & 1 ? 13 : 14;
break;
case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */
*tgtmode = ARM_CPU_MODE_UND;
*regno = sysm & 1 ? 13 : 14;
break;
case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */
*tgtmode = ARM_CPU_MODE_MON;
*regno = sysm & 1 ? 13 : 14;
break;
case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */
*tgtmode = ARM_CPU_MODE_HYP;
/* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */
*regno = sysm & 1 ? 13 : 17;
break;
default: /* unallocated */
goto undef;
}
}
/* Catch the 'accessing inaccessible register' cases we can detect
* at translate time.
*/
switch (*tgtmode) {
case ARM_CPU_MODE_MON:
if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) {
goto undef;
}
if (s->current_el == 1) {
/* If we're in Secure EL1 (which implies that EL3 is AArch64)
* then accesses to Mon registers trap to EL3
*/
exc_target = 3;
goto undef;
}
break;
case ARM_CPU_MODE_HYP:
/* Note that we can forbid accesses from EL2 here because they
* must be from Hyp mode itself
*/
if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 3) {
goto undef;
}
break;
default:
break;
}
return true;
undef:
/* If we get here then some access check did not pass */
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), exc_target);
return false;
}
static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn)
{
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
int tgtmode = 0, regno = 0;
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, &regno)) {
return;
}
/* Sync state because msr_banked() can raise exceptions */
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - 4);
tcg_reg = load_reg(s, rn);
tcg_tgtmode = tcg_const_i32(tgtmode);
tcg_regno = tcg_const_i32(regno);
gen_helper_msr_banked(cpu_env, tcg_reg, tcg_tgtmode, tcg_regno);
tcg_temp_free_i32(tcg_tgtmode);
tcg_temp_free_i32(tcg_regno);
tcg_temp_free_i32(tcg_reg);
s->is_jmp = DISAS_UPDATE;
}
static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn)
{
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
int tgtmode = 0, regno = 0;
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, &regno)) {
return;
}
/* Sync state because mrs_banked() can raise exceptions */
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - 4);
tcg_reg = tcg_temp_new_i32();
tcg_tgtmode = tcg_const_i32(tgtmode);
tcg_regno = tcg_const_i32(regno);
gen_helper_mrs_banked(tcg_reg, cpu_env, tcg_tgtmode, tcg_regno);
tcg_temp_free_i32(tcg_tgtmode);
tcg_temp_free_i32(tcg_regno);
store_reg(s, rn, tcg_reg);
s->is_jmp = DISAS_UPDATE;
}
/* Store value to PC as for an exception return (ie don't
* mask bits). The subsequent call to gen_helper_cpsr_write_eret()
* will do the masking based on the new value of the Thumb bit.
*/
static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc)
{
tcg_gen_mov_i32(cpu_R[15], pc);
tcg_temp_free_i32(pc);
}
/* Generate a v6 exception return. Marks both values as dead. */
static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr)
{
store_pc_exc_ret(s, pc);
/* The cpsr_write_eret helper will mask the low bits of PC
* appropriately depending on the new Thumb bit, so it must
* be called after storing the new PC.
*/
gen_helper_cpsr_write_eret(cpu_env, cpsr);
tcg_temp_free_i32(cpsr);
s->is_jmp = DISAS_JUMP;
}
/* Generate an old-style exception return. Marks pc as dead. */
static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
{
gen_rfe(s, pc, load_cpu_field(spsr));
}
/*
* For WFI we will halt the vCPU until an IRQ. For WFE and YIELD we
* only call the helper when running single threaded TCG code to ensure
* the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
* just skip this instruction. Currently the SEV/SEVL instructions
* which are *one* of many ways to wake the CPU from WFE are not
* implemented so we can't sleep like WFI does.
*/
static void gen_nop_hint(DisasContext *s, int val)
{
switch (val) {
case 1: /* yield */
if (!parallel_cpus) {
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_YIELD;
}
break;
case 3: /* wfi */
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFI;
break;
case 2: /* wfe */
if (!parallel_cpus) {
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFE;
}
break;
case 4: /* sev */
case 5: /* sevl */
/* TODO: Implement SEV, SEVL and WFE. May help SMP performance. */
default: /* nop */
break;
}
}
#define CPU_V001 cpu_V0, cpu_V0, cpu_V1
static inline void gen_neon_add(int size, TCGv_i32 t0, TCGv_i32 t1)
{
switch (size) {
case 0: gen_helper_neon_add_u8(t0, t0, t1); break;
case 1: gen_helper_neon_add_u16(t0, t0, t1); break;
case 2: tcg_gen_add_i32(t0, t0, t1); break;
default: abort();
}
}
static inline void gen_neon_rsb(int size, TCGv_i32 t0, TCGv_i32 t1)
{
switch (size) {
case 0: gen_helper_neon_sub_u8(t0, t1, t0); break;
case 1: gen_helper_neon_sub_u16(t0, t1, t0); break;
case 2: tcg_gen_sub_i32(t0, t1, t0); break;
default: return;
}
}
/* 32-bit pairwise ops end up the same as the elementwise versions. */
#define gen_helper_neon_pmax_s32 gen_helper_neon_max_s32
#define gen_helper_neon_pmax_u32 gen_helper_neon_max_u32
#define gen_helper_neon_pmin_s32 gen_helper_neon_min_s32
#define gen_helper_neon_pmin_u32 gen_helper_neon_min_u32
#define GEN_NEON_INTEGER_OP_ENV(name) do { \
switch ((size << 1) | u) { \
case 0: \
gen_helper_neon_##name##_s8(tmp, cpu_env, tmp, tmp2); \
break; \
case 1: \
gen_helper_neon_##name##_u8(tmp, cpu_env, tmp, tmp2); \
break; \
case 2: \
gen_helper_neon_##name##_s16(tmp, cpu_env, tmp, tmp2); \
break; \
case 3: \
gen_helper_neon_##name##_u16(tmp, cpu_env, tmp, tmp2); \
break; \
case 4: \
gen_helper_neon_##name##_s32(tmp, cpu_env, tmp, tmp2); \
break; \
case 5: \
gen_helper_neon_##name##_u32(tmp, cpu_env, tmp, tmp2); \
break; \
default: return 1; \
}} while (0)
#define GEN_NEON_INTEGER_OP(name) do { \
switch ((size << 1) | u) { \
case 0: \
gen_helper_neon_##name##_s8(tmp, tmp, tmp2); \
break; \
case 1: \
gen_helper_neon_##name##_u8(tmp, tmp, tmp2); \
break; \
case 2: \
gen_helper_neon_##name##_s16(tmp, tmp, tmp2); \
break; \
case 3: \
gen_helper_neon_##name##_u16(tmp, tmp, tmp2); \
break; \
case 4: \
gen_helper_neon_##name##_s32(tmp, tmp, tmp2); \
break; \
case 5: \
gen_helper_neon_##name##_u32(tmp, tmp, tmp2); \
break; \
default: return 1; \
}} while (0)
static TCGv_i32 neon_load_scratch(int scratch)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
return tmp;
}
static void neon_store_scratch(int scratch, TCGv_i32 var)
{
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
tcg_temp_free_i32(var);
}
static inline TCGv_i32 neon_get_scalar(int size, int reg)
{
TCGv_i32 tmp;
if (size == 1) {
tmp = neon_load_reg(reg & 7, reg >> 4);
if (reg & 8) {
gen_neon_dup_high16(tmp);
} else {
gen_neon_dup_low16(tmp);
}
} else {
tmp = neon_load_reg(reg & 15, reg >> 4);
}
return tmp;
}
static int gen_neon_unzip(int rd, int rm, int size, int q)
{
TCGv_i32 tmp, tmp2;
if (!q && size == 2) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rm);
if (q) {
switch (size) {
case 0:
gen_helper_neon_qunzip8(cpu_env, tmp, tmp2);
break;
case 1:
gen_helper_neon_qunzip16(cpu_env, tmp, tmp2);
break;
case 2:
gen_helper_neon_qunzip32(cpu_env, tmp, tmp2);
break;
default:
abort();
}
} else {
switch (size) {
case 0:
gen_helper_neon_unzip8(cpu_env, tmp, tmp2);
break;
case 1:
gen_helper_neon_unzip16(cpu_env, tmp, tmp2);
break;
default:
abort();
}
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
return 0;
}
static int gen_neon_zip(int rd, int rm, int size, int q)
{
TCGv_i32 tmp, tmp2;
if (!q && size == 2) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rm);
if (q) {
switch (size) {
case 0:
gen_helper_neon_qzip8(cpu_env, tmp, tmp2);
break;
case 1:
gen_helper_neon_qzip16(cpu_env, tmp, tmp2);
break;
case 2:
gen_helper_neon_qzip32(cpu_env, tmp, tmp2);
break;
default:
abort();
}
} else {
switch (size) {
case 0:
gen_helper_neon_zip8(cpu_env, tmp, tmp2);
break;
case 1:
gen_helper_neon_zip16(cpu_env, tmp, tmp2);
break;
default:
abort();
}
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
return 0;
}
static void gen_neon_trn_u8(TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 rd, tmp;
rd = tcg_temp_new_i32();
tmp = tcg_temp_new_i32();
tcg_gen_shli_i32(rd, t0, 8);
tcg_gen_andi_i32(rd, rd, 0xff00ff00);
tcg_gen_andi_i32(tmp, t1, 0x00ff00ff);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shri_i32(t1, t1, 8);
tcg_gen_andi_i32(t1, t1, 0x00ff00ff);
tcg_gen_andi_i32(tmp, t0, 0xff00ff00);
tcg_gen_or_i32(t1, t1, tmp);
tcg_gen_mov_i32(t0, rd);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(rd);
}
static void gen_neon_trn_u16(TCGv_i32 t0, TCGv_i32 t1)
{
TCGv_i32 rd, tmp;
rd = tcg_temp_new_i32();
tmp = tcg_temp_new_i32();
tcg_gen_shli_i32(rd, t0, 16);
tcg_gen_andi_i32(tmp, t1, 0xffff);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shri_i32(t1, t1, 16);
tcg_gen_andi_i32(tmp, t0, 0xffff0000);
tcg_gen_or_i32(t1, t1, tmp);
tcg_gen_mov_i32(t0, rd);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(rd);
}
static struct {
int nregs;
int interleave;
int spacing;
} neon_ls_element_type[11] = {
{4, 4, 1},
{4, 4, 2},
{4, 1, 1},
{4, 2, 1},
{3, 3, 1},
{3, 3, 2},
{3, 1, 1},
{1, 1, 1},
{2, 2, 1},
{2, 2, 2},
{2, 1, 1}
};
/* Translate a NEON load/store element instruction. Return nonzero if the
instruction is invalid. */
static int disas_neon_ls_insn(DisasContext *s, uint32_t insn)
{
int rd, rn, rm;
int op;
int nregs;
int interleave;
int spacing;
int stride;
int size;
int reg;
int pass;
int load;
int shift;
int n;
TCGv_i32 addr;
TCGv_i32 tmp;
TCGv_i32 tmp2;
TCGv_i64 tmp64;
/* FIXME: this access check should not take precedence over UNDEF
* for invalid encodings; we will generate incorrect syndrome information
* for attempts to execute invalid vfp/neon encodings with FP disabled.
*/
if (s->fp_excp_el) {
gen_exception_insn(s, 4, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
return 0;
}
if (!s->vfp_enabled)
return 1;
VFP_DREG_D(rd, insn);
rn = (insn >> 16) & 0xf;
rm = insn & 0xf;
load = (insn & (1 << 21)) != 0;
if ((insn & (1 << 23)) == 0) {
/* Load store all elements. */
op = (insn >> 8) & 0xf;
size = (insn >> 6) & 3;
if (op > 10)
return 1;
/* Catch UNDEF cases for bad values of align field */
switch (op & 0xc) {
case 4:
if (((insn >> 5) & 1) == 1) {
return 1;
}
break;
case 8:
if (((insn >> 4) & 3) == 3) {
return 1;
}
break;
default:
break;
}
nregs = neon_ls_element_type[op].nregs;
interleave = neon_ls_element_type[op].interleave;
spacing = neon_ls_element_type[op].spacing;
if (size == 3 && (interleave | spacing) != 1)
return 1;
addr = tcg_temp_new_i32();
load_reg_var(s, addr, rn);
stride = (1 << size) * interleave;
for (reg = 0; reg < nregs; reg++) {
if (interleave > 2 || (interleave == 2 && nregs == 2)) {
load_reg_var(s, addr, rn);
tcg_gen_addi_i32(addr, addr, (1 << size) * reg);
} else if (interleave == 2 && nregs == 4 && reg == 2) {
load_reg_var(s, addr, rn);
tcg_gen_addi_i32(addr, addr, 1 << size);
}
if (size == 3) {
tmp64 = tcg_temp_new_i64();
if (load) {
gen_aa32_ld64(s, tmp64, addr, get_mem_index(s));
neon_store_reg64(tmp64, rd);
} else {
neon_load_reg64(tmp64, rd);
gen_aa32_st64(s, tmp64, addr, get_mem_index(s));
}
tcg_temp_free_i64(tmp64);
tcg_gen_addi_i32(addr, addr, stride);
} else {
for (pass = 0; pass < 2; pass++) {
if (size == 2) {
if (load) {
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
neon_store_reg(rd, pass, tmp);
} else {
tmp = neon_load_reg(rd, pass);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
tcg_gen_addi_i32(addr, addr, stride);
} else if (size == 1) {
if (load) {
tmp = tcg_temp_new_i32();
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
tcg_gen_addi_i32(addr, addr, stride);
tmp2 = tcg_temp_new_i32();
gen_aa32_ld16u(s, tmp2, addr, get_mem_index(s));
tcg_gen_addi_i32(addr, addr, stride);
tcg_gen_shli_i32(tmp2, tmp2, 16);
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
neon_store_reg(rd, pass, tmp);
} else {
tmp = neon_load_reg(rd, pass);
tmp2 = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp2, tmp, 16);
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, stride);
gen_aa32_st16(s, tmp2, addr, get_mem_index(s));
tcg_temp_free_i32(tmp2);
tcg_gen_addi_i32(addr, addr, stride);
}
} else /* size == 0 */ {
if (load) {
TCGV_UNUSED_I32(tmp2);
for (n = 0; n < 4; n++) {
tmp = tcg_temp_new_i32();
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
tcg_gen_addi_i32(addr, addr, stride);
if (n == 0) {
tmp2 = tmp;
} else {
tcg_gen_shli_i32(tmp, tmp, n * 8);
tcg_gen_or_i32(tmp2, tmp2, tmp);
tcg_temp_free_i32(tmp);
}
}
neon_store_reg(rd, pass, tmp2);
} else {
tmp2 = neon_load_reg(rd, pass);
for (n = 0; n < 4; n++) {
tmp = tcg_temp_new_i32();
if (n == 0) {
tcg_gen_mov_i32(tmp, tmp2);
} else {
tcg_gen_shri_i32(tmp, tmp2, n * 8);
}
gen_aa32_st8(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, stride);
}
tcg_temp_free_i32(tmp2);
}
}
}
}
rd += spacing;
}
tcg_temp_free_i32(addr);
stride = nregs * 8;
} else {
size = (insn >> 10) & 3;
if (size == 3) {
/* Load single element to all lanes. */
int a = (insn >> 4) & 1;
if (!load) {
return 1;
}
size = (insn >> 6) & 3;
nregs = ((insn >> 8) & 3) + 1;
if (size == 3) {
if (nregs != 4 || a == 0) {
return 1;
}
/* For VLD4 size==3 a == 1 means 32 bits at 16 byte alignment */
size = 2;
}
if (nregs == 1 && a == 1 && size == 0) {
return 1;
}
if (nregs == 3 && a == 1) {
return 1;
}
addr = tcg_temp_new_i32();
load_reg_var(s, addr, rn);
if (nregs == 1) {
/* VLD1 to all lanes: bit 5 indicates how many Dregs to write */
tmp = gen_load_and_replicate(s, addr, size);
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0));
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1));
if (insn & (1 << 5)) {
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 0));
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 1));
}
tcg_temp_free_i32(tmp);
} else {
/* VLD2/3/4 to all lanes: bit 5 indicates register stride */
stride = (insn & (1 << 5)) ? 2 : 1;
for (reg = 0; reg < nregs; reg++) {
tmp = gen_load_and_replicate(s, addr, size);
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0));
tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, 1 << size);
rd += stride;
}
}
tcg_temp_free_i32(addr);
stride = (1 << size) * nregs;
} else {
/* Single element. */
int idx = (insn >> 4) & 0xf;
pass = (insn >> 7) & 1;
switch (size) {
case 0:
shift = ((insn >> 5) & 3) * 8;
stride = 1;
break;
case 1:
shift = ((insn >> 6) & 1) * 16;
stride = (insn & (1 << 5)) ? 2 : 1;
break;
case 2:
shift = 0;
stride = (insn & (1 << 6)) ? 2 : 1;
break;
default:
abort();
}
nregs = ((insn >> 8) & 3) + 1;
/* Catch the UNDEF cases. This is unavoidably a bit messy. */
switch (nregs) {
case 1:
if (((idx & (1 << size)) != 0) ||
(size == 2 && ((idx & 3) == 1 || (idx & 3) == 2))) {
return 1;
}
break;
case 3:
if ((idx & 1) != 0) {
return 1;
}
/* fall through */
case 2:
if (size == 2 && (idx & 2) != 0) {
return 1;
}
break;
case 4:
if ((size == 2) && ((idx & 3) == 3)) {
return 1;
}
break;
default:
abort();
}
if ((rd + stride * (nregs - 1)) > 31) {
/* Attempts to write off the end of the register file
* are UNPREDICTABLE; we choose to UNDEF because otherwise
* the neon_load_reg() would write off the end of the array.
*/
return 1;
}
addr = tcg_temp_new_i32();
load_reg_var(s, addr, rn);
for (reg = 0; reg < nregs; reg++) {
if (load) {
tmp = tcg_temp_new_i32();
switch (size) {
case 0:
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
break;
case 1:
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
break;
case 2:
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
break;
default: /* Avoid compiler warnings. */
abort();
}
if (size != 2) {
tmp2 = neon_load_reg(rd, pass);
tcg_gen_deposit_i32(tmp, tmp2, tmp,
shift, size ? 16 : 8);
tcg_temp_free_i32(tmp2);
}
neon_store_reg(rd, pass, tmp);
} else { /* Store */
tmp = neon_load_reg(rd, pass);
if (shift)
tcg_gen_shri_i32(tmp, tmp, shift);
switch (size) {
case 0:
gen_aa32_st8(s, tmp, addr, get_mem_index(s));
break;
case 1:
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
break;
case 2:
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
break;
}
tcg_temp_free_i32(tmp);
}
rd += stride;
tcg_gen_addi_i32(addr, addr, 1 << size);
}
tcg_temp_free_i32(addr);
stride = nregs * (1 << size);
}
}
if (rm != 15) {
TCGv_i32 base;
base = load_reg(s, rn);
if (rm == 13) {
tcg_gen_addi_i32(base, base, stride);
} else {
TCGv_i32 index;
index = load_reg(s, rm);
tcg_gen_add_i32(base, base, index);
tcg_temp_free_i32(index);
}
store_reg(s, rn, base);
}
return 0;
}
/* Bitwise select. dest = c ? t : f. Clobbers T and F. */
static void gen_neon_bsl(TCGv_i32 dest, TCGv_i32 t, TCGv_i32 f, TCGv_i32 c)
{
tcg_gen_and_i32(t, t, c);
tcg_gen_andc_i32(f, f, c);
tcg_gen_or_i32(dest, t, f);
}
static inline void gen_neon_narrow(int size, TCGv_i32 dest, TCGv_i64 src)
{
switch (size) {
case 0: gen_helper_neon_narrow_u8(dest, src); break;
case 1: gen_helper_neon_narrow_u16(dest, src); break;
case 2: tcg_gen_extrl_i64_i32(dest, src); break;
default: abort();
}
}
static inline void gen_neon_narrow_sats(int size, TCGv_i32 dest, TCGv_i64 src)
{
switch (size) {
case 0: gen_helper_neon_narrow_sat_s8(dest, cpu_env, src); break;
case 1: gen_helper_neon_narrow_sat_s16(dest, cpu_env, src); break;
case 2: gen_helper_neon_narrow_sat_s32(dest, cpu_env, src); break;
default: abort();
}
}
static inline void gen_neon_narrow_satu(int size, TCGv_i32 dest, TCGv_i64 src)
{
switch (size) {
case 0: gen_helper_neon_narrow_sat_u8(dest, cpu_env, src); break;
case 1: gen_helper_neon_narrow_sat_u16(dest, cpu_env, src); break;
case 2: gen_helper_neon_narrow_sat_u32(dest, cpu_env, src); break;
default: abort();
}
}
static inline void gen_neon_unarrow_sats(int size, TCGv_i32 dest, TCGv_i64 src)
{
switch (size) {
case 0: gen_helper_neon_unarrow_sat8(dest, cpu_env, src); break;
case 1: gen_helper_neon_unarrow_sat16(dest, cpu_env, src); break;
case 2: gen_helper_neon_unarrow_sat32(dest, cpu_env, src); break;
default: abort();
}
}
static inline void gen_neon_shift_narrow(int size, TCGv_i32 var, TCGv_i32 shift,
int q, int u)
{
if (q) {
if (u) {
switch (size) {
case 1: gen_helper_neon_rshl_u16(var, var, shift); break;
case 2: gen_helper_neon_rshl_u32(var, var, shift); break;
default: abort();
}
} else {
switch (size) {
case 1: gen_helper_neon_rshl_s16(var, var, shift); break;
case 2: gen_helper_neon_rshl_s32(var, var, shift); break;
default: abort();
}
}
} else {
if (u) {
switch (size) {
case 1: gen_helper_neon_shl_u16(var, var, shift); break;
case 2: gen_helper_neon_shl_u32(var, var, shift); break;
default: abort();
}
} else {
switch (size) {
case 1: gen_helper_neon_shl_s16(var, var, shift); break;
case 2: gen_helper_neon_shl_s32(var, var, shift); break;
default: abort();
}
}
}
}
static inline void gen_neon_widen(TCGv_i64 dest, TCGv_i32 src, int size, int u)
{
if (u) {
switch (size) {
case 0: gen_helper_neon_widen_u8(dest, src); break;
case 1: gen_helper_neon_widen_u16(dest, src); break;
case 2: tcg_gen_extu_i32_i64(dest, src); break;
default: abort();
}
} else {
switch (size) {
case 0: gen_helper_neon_widen_s8(dest, src); break;
case 1: gen_helper_neon_widen_s16(dest, src); break;
case 2: tcg_gen_ext_i32_i64(dest, src); break;
default: abort();
}
}
tcg_temp_free_i32(src);
}
static inline void gen_neon_addl(int size)
{
switch (size) {
case 0: gen_helper_neon_addl_u16(CPU_V001); break;
case 1: gen_helper_neon_addl_u32(CPU_V001); break;
case 2: tcg_gen_add_i64(CPU_V001); break;
default: abort();
}
}
static inline void gen_neon_subl(int size)
{
switch (size) {
case 0: gen_helper_neon_subl_u16(CPU_V001); break;
case 1: gen_helper_neon_subl_u32(CPU_V001); break;
case 2: tcg_gen_sub_i64(CPU_V001); break;
default: abort();
}
}
static inline void gen_neon_negl(TCGv_i64 var, int size)
{
switch (size) {
case 0: gen_helper_neon_negl_u16(var, var); break;
case 1: gen_helper_neon_negl_u32(var, var); break;
case 2:
tcg_gen_neg_i64(var, var);
break;
default: abort();
}
}
static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size)
{
switch (size) {
case 1: gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); break;
case 2: gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); break;
default: abort();
}
}
static inline void gen_neon_mull(TCGv_i64 dest, TCGv_i32 a, TCGv_i32 b,
int size, int u)
{
TCGv_i64 tmp;
switch ((size << 1) | u) {
case 0: gen_helper_neon_mull_s8(dest, a, b); break;
case 1: gen_helper_neon_mull_u8(dest, a, b); break;
case 2: gen_helper_neon_mull_s16(dest, a, b); break;
case 3: gen_helper_neon_mull_u16(dest, a, b); break;
case 4:
tmp = gen_muls_i64_i32(a, b);
tcg_gen_mov_i64(dest, tmp);
tcg_temp_free_i64(tmp);
break;
case 5:
tmp = gen_mulu_i64_i32(a, b);
tcg_gen_mov_i64(dest, tmp);
tcg_temp_free_i64(tmp);
break;
default: abort();
}
/* gen_helper_neon_mull_[su]{8|16} do not free their parameters.
Don't forget to clean them now. */
if (size < 2) {
tcg_temp_free_i32(a);
tcg_temp_free_i32(b);
}
}
static void gen_neon_narrow_op(int op, int u, int size,
TCGv_i32 dest, TCGv_i64 src)
{
if (op) {
if (u) {
gen_neon_unarrow_sats(size, dest, src);
} else {
gen_neon_narrow(size, dest, src);
}
} else {
if (u) {
gen_neon_narrow_satu(size, dest, src);
} else {
gen_neon_narrow_sats(size, dest, src);
}
}
}
/* Symbolic constants for op fields for Neon 3-register same-length.
* The values correspond to bits [11:8,4]; see the ARM ARM DDI0406B
* table A7-9.
*/
#define NEON_3R_VHADD 0
#define NEON_3R_VQADD 1
#define NEON_3R_VRHADD 2
#define NEON_3R_LOGIC 3 /* VAND,VBIC,VORR,VMOV,VORN,VEOR,VBIF,VBIT,VBSL */
#define NEON_3R_VHSUB 4
#define NEON_3R_VQSUB 5
#define NEON_3R_VCGT 6
#define NEON_3R_VCGE 7
#define NEON_3R_VSHL 8
#define NEON_3R_VQSHL 9
#define NEON_3R_VRSHL 10
#define NEON_3R_VQRSHL 11
#define NEON_3R_VMAX 12
#define NEON_3R_VMIN 13
#define NEON_3R_VABD 14
#define NEON_3R_VABA 15
#define NEON_3R_VADD_VSUB 16
#define NEON_3R_VTST_VCEQ 17
#define NEON_3R_VML 18 /* VMLA, VMLAL, VMLS, VMLSL */
#define NEON_3R_VMUL 19
#define NEON_3R_VPMAX 20
#define NEON_3R_VPMIN 21
#define NEON_3R_VQDMULH_VQRDMULH 22
#define NEON_3R_VPADD 23
#define NEON_3R_SHA 24 /* SHA1C,SHA1P,SHA1M,SHA1SU0,SHA256H{2},SHA256SU1 */
#define NEON_3R_VFM 25 /* VFMA, VFMS : float fused multiply-add */
#define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */
#define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */
#define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */
#define NEON_3R_FLOAT_ACMP 29 /* float VACGE, VACGT, VACLE, VACLT */
#define NEON_3R_FLOAT_MINMAX 30 /* float VMIN, VMAX */
#define NEON_3R_FLOAT_MISC 31 /* float VRECPS, VRSQRTS, VMAXNM/MINNM */
static const uint8_t neon_3r_sizes[] = {
[NEON_3R_VHADD] = 0x7,
[NEON_3R_VQADD] = 0xf,
[NEON_3R_VRHADD] = 0x7,
[NEON_3R_LOGIC] = 0xf, /* size field encodes op type */
[NEON_3R_VHSUB] = 0x7,
[NEON_3R_VQSUB] = 0xf,
[NEON_3R_VCGT] = 0x7,
[NEON_3R_VCGE] = 0x7,
[NEON_3R_VSHL] = 0xf,
[NEON_3R_VQSHL] = 0xf,
[NEON_3R_VRSHL] = 0xf,
[NEON_3R_VQRSHL] = 0xf,
[NEON_3R_VMAX] = 0x7,
[NEON_3R_VMIN] = 0x7,
[NEON_3R_VABD] = 0x7,
[NEON_3R_VABA] = 0x7,
[NEON_3R_VADD_VSUB] = 0xf,
[NEON_3R_VTST_VCEQ] = 0x7,
[NEON_3R_VML] = 0x7,
[NEON_3R_VMUL] = 0x7,
[NEON_3R_VPMAX] = 0x7,
[NEON_3R_VPMIN] = 0x7,
[NEON_3R_VQDMULH_VQRDMULH] = 0x6,
[NEON_3R_VPADD] = 0x7,
[NEON_3R_SHA] = 0xf, /* size field encodes op type */
[NEON_3R_VFM] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_ACMP] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_MINMAX] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_MISC] = 0x5, /* size bit 1 encodes op */
};
/* Symbolic constants for op fields for Neon 2-register miscellaneous.
* The values correspond to bits [17:16,10:7]; see the ARM ARM DDI0406B
* table A7-13.
*/
#define NEON_2RM_VREV64 0
#define NEON_2RM_VREV32 1
#define NEON_2RM_VREV16 2
#define NEON_2RM_VPADDL 4
#define NEON_2RM_VPADDL_U 5
#define NEON_2RM_AESE 6 /* Includes AESD */
#define NEON_2RM_AESMC 7 /* Includes AESIMC */
#define NEON_2RM_VCLS 8
#define NEON_2RM_VCLZ 9
#define NEON_2RM_VCNT 10
#define NEON_2RM_VMVN 11
#define NEON_2RM_VPADAL 12
#define NEON_2RM_VPADAL_U 13
#define NEON_2RM_VQABS 14
#define NEON_2RM_VQNEG 15
#define NEON_2RM_VCGT0 16
#define NEON_2RM_VCGE0 17
#define NEON_2RM_VCEQ0 18
#define NEON_2RM_VCLE0 19
#define NEON_2RM_VCLT0 20
#define NEON_2RM_SHA1H 21
#define NEON_2RM_VABS 22
#define NEON_2RM_VNEG 23
#define NEON_2RM_VCGT0_F 24
#define NEON_2RM_VCGE0_F 25
#define NEON_2RM_VCEQ0_F 26
#define NEON_2RM_VCLE0_F 27
#define NEON_2RM_VCLT0_F 28
#define NEON_2RM_VABS_F 30
#define NEON_2RM_VNEG_F 31
#define NEON_2RM_VSWP 32
#define NEON_2RM_VTRN 33
#define NEON_2RM_VUZP 34
#define NEON_2RM_VZIP 35
#define NEON_2RM_VMOVN 36 /* Includes VQMOVN, VQMOVUN */
#define NEON_2RM_VQMOVN 37 /* Includes VQMOVUN */
#define NEON_2RM_VSHLL 38
#define NEON_2RM_SHA1SU1 39 /* Includes SHA256SU0 */
#define NEON_2RM_VRINTN 40
#define NEON_2RM_VRINTX 41
#define NEON_2RM_VRINTA 42
#define NEON_2RM_VRINTZ 43
#define NEON_2RM_VCVT_F16_F32 44
#define NEON_2RM_VRINTM 45
#define NEON_2RM_VCVT_F32_F16 46
#define NEON_2RM_VRINTP 47
#define NEON_2RM_VCVTAU 48
#define NEON_2RM_VCVTAS 49
#define NEON_2RM_VCVTNU 50
#define NEON_2RM_VCVTNS 51
#define NEON_2RM_VCVTPU 52
#define NEON_2RM_VCVTPS 53
#define NEON_2RM_VCVTMU 54
#define NEON_2RM_VCVTMS 55
#define NEON_2RM_VRECPE 56
#define NEON_2RM_VRSQRTE 57
#define NEON_2RM_VRECPE_F 58
#define NEON_2RM_VRSQRTE_F 59
#define NEON_2RM_VCVT_FS 60
#define NEON_2RM_VCVT_FU 61
#define NEON_2RM_VCVT_SF 62
#define NEON_2RM_VCVT_UF 63
static int neon_2rm_is_float_op(int op)
{
/* Return true if this neon 2reg-misc op is float-to-float */
return (op == NEON_2RM_VABS_F || op == NEON_2RM_VNEG_F ||
(op >= NEON_2RM_VRINTN && op <= NEON_2RM_VRINTZ) ||
op == NEON_2RM_VRINTM ||
(op >= NEON_2RM_VRINTP && op <= NEON_2RM_VCVTMS) ||
op >= NEON_2RM_VRECPE_F);
}
static bool neon_2rm_is_v8_op(int op)
{
/* Return true if this neon 2reg-misc op is ARMv8 and up */
switch (op) {
case NEON_2RM_VRINTN:
case NEON_2RM_VRINTA:
case NEON_2RM_VRINTM:
case NEON_2RM_VRINTP:
case NEON_2RM_VRINTZ:
case NEON_2RM_VRINTX:
case NEON_2RM_VCVTAU:
case NEON_2RM_VCVTAS:
case NEON_2RM_VCVTNU:
case NEON_2RM_VCVTNS:
case NEON_2RM_VCVTPU:
case NEON_2RM_VCVTPS:
case NEON_2RM_VCVTMU:
case NEON_2RM_VCVTMS:
return true;
default:
return false;
}
}
/* Each entry in this array has bit n set if the insn allows
* size value n (otherwise it will UNDEF). Since unallocated
* op values will have no bits set they always UNDEF.
*/
static const uint8_t neon_2rm_sizes[] = {
[NEON_2RM_VREV64] = 0x7,
[NEON_2RM_VREV32] = 0x3,
[NEON_2RM_VREV16] = 0x1,
[NEON_2RM_VPADDL] = 0x7,
[NEON_2RM_VPADDL_U] = 0x7,
[NEON_2RM_AESE] = 0x1,
[NEON_2RM_AESMC] = 0x1,
[NEON_2RM_VCLS] = 0x7,
[NEON_2RM_VCLZ] = 0x7,
[NEON_2RM_VCNT] = 0x1,
[NEON_2RM_VMVN] = 0x1,
[NEON_2RM_VPADAL] = 0x7,
[NEON_2RM_VPADAL_U] = 0x7,
[NEON_2RM_VQABS] = 0x7,
[NEON_2RM_VQNEG] = 0x7,
[NEON_2RM_VCGT0] = 0x7,
[NEON_2RM_VCGE0] = 0x7,
[NEON_2RM_VCEQ0] = 0x7,
[NEON_2RM_VCLE0] = 0x7,
[NEON_2RM_VCLT0] = 0x7,
[NEON_2RM_SHA1H] = 0x4,
[NEON_2RM_VABS] = 0x7,
[NEON_2RM_VNEG] = 0x7,
[NEON_2RM_VCGT0_F] = 0x4,
[NEON_2RM_VCGE0_F] = 0x4,
[NEON_2RM_VCEQ0_F] = 0x4,
[NEON_2RM_VCLE0_F] = 0x4,
[NEON_2RM_VCLT0_F] = 0x4,
[NEON_2RM_VABS_F] = 0x4,
[NEON_2RM_VNEG_F] = 0x4,
[NEON_2RM_VSWP] = 0x1,
[NEON_2RM_VTRN] = 0x7,
[NEON_2RM_VUZP] = 0x7,
[NEON_2RM_VZIP] = 0x7,
[NEON_2RM_VMOVN] = 0x7,
[NEON_2RM_VQMOVN] = 0x7,
[NEON_2RM_VSHLL] = 0x7,
[NEON_2RM_SHA1SU1] = 0x4,
[NEON_2RM_VRINTN] = 0x4,
[NEON_2RM_VRINTX] = 0x4,
[NEON_2RM_VRINTA] = 0x4,
[NEON_2RM_VRINTZ] = 0x4,
[NEON_2RM_VCVT_F16_F32] = 0x2,
[NEON_2RM_VRINTM] = 0x4,
[NEON_2RM_VCVT_F32_F16] = 0x2,
[NEON_2RM_VRINTP] = 0x4,
[NEON_2RM_VCVTAU] = 0x4,
[NEON_2RM_VCVTAS] = 0x4,
[NEON_2RM_VCVTNU] = 0x4,
[NEON_2RM_VCVTNS] = 0x4,
[NEON_2RM_VCVTPU] = 0x4,
[NEON_2RM_VCVTPS] = 0x4,
[NEON_2RM_VCVTMU] = 0x4,
[NEON_2RM_VCVTMS] = 0x4,
[NEON_2RM_VRECPE] = 0x4,
[NEON_2RM_VRSQRTE] = 0x4,
[NEON_2RM_VRECPE_F] = 0x4,
[NEON_2RM_VRSQRTE_F] = 0x4,
[NEON_2RM_VCVT_FS] = 0x4,
[NEON_2RM_VCVT_FU] = 0x4,
[NEON_2RM_VCVT_SF] = 0x4,
[NEON_2RM_VCVT_UF] = 0x4,
};
/* Translate a NEON data processing instruction. Return nonzero if the
instruction is invalid.
We process data in a mixture of 32-bit and 64-bit chunks.
Mostly we use 32-bit chunks so we can use normal scalar instructions. */
static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
{
int op;
int q;
int rd, rn, rm;
int size;
int shift;
int pass;
int count;
int pairwise;
int u;
uint32_t imm, mask;
TCGv_i32 tmp, tmp2, tmp3, tmp4, tmp5;
TCGv_i64 tmp64;
/* FIXME: this access check should not take precedence over UNDEF
* for invalid encodings; we will generate incorrect syndrome information
* for attempts to execute invalid vfp/neon encodings with FP disabled.
*/
if (s->fp_excp_el) {
gen_exception_insn(s, 4, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
return 0;
}
if (!s->vfp_enabled)
return 1;
q = (insn & (1 << 6)) != 0;
u = (insn >> 24) & 1;
VFP_DREG_D(rd, insn);
VFP_DREG_N(rn, insn);
VFP_DREG_M(rm, insn);
size = (insn >> 20) & 3;
if ((insn & (1 << 23)) == 0) {
/* Three register same length. */
op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1);
/* Catch invalid op and bad size combinations: UNDEF */
if ((neon_3r_sizes[op] & (1 << size)) == 0) {
return 1;
}
/* All insns of this form UNDEF for either this condition or the
* superset of cases "Q==1"; we catch the latter later.
*/
if (q && ((rd | rn | rm) & 1)) {
return 1;
}
/*
* The SHA-1/SHA-256 3-register instructions require special treatment
* here, as their size field is overloaded as an op type selector, and
* they all consume their input in a single pass.
*/
if (op == NEON_3R_SHA) {
if (!q) {
return 1;
}
if (!u) { /* SHA-1 */
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA1)) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rn);
tmp3 = tcg_const_i32(rm);
tmp4 = tcg_const_i32(size);
gen_helper_crypto_sha1_3reg(cpu_env, tmp, tmp2, tmp3, tmp4);
tcg_temp_free_i32(tmp4);
} else { /* SHA-256 */
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA256) || size == 3) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rn);
tmp3 = tcg_const_i32(rm);
switch (size) {
case 0:
gen_helper_crypto_sha256h(cpu_env, tmp, tmp2, tmp3);
break;
case 1:
gen_helper_crypto_sha256h2(cpu_env, tmp, tmp2, tmp3);
break;
case 2:
gen_helper_crypto_sha256su1(cpu_env, tmp, tmp2, tmp3);
break;
}
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp3);
return 0;
}
if (size == 3 && op != NEON_3R_LOGIC) {
/* 64-bit element instructions. */
for (pass = 0; pass < (q ? 2 : 1); pass++) {
neon_load_reg64(cpu_V0, rn + pass);
neon_load_reg64(cpu_V1, rm + pass);
switch (op) {
case NEON_3R_VQADD:
if (u) {
gen_helper_neon_qadd_u64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
} else {
gen_helper_neon_qadd_s64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
}
break;
case NEON_3R_VQSUB:
if (u) {
gen_helper_neon_qsub_u64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
} else {
gen_helper_neon_qsub_s64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
}
break;
case NEON_3R_VSHL:
if (u) {
gen_helper_neon_shl_u64(cpu_V0, cpu_V1, cpu_V0);
} else {
gen_helper_neon_shl_s64(cpu_V0, cpu_V1, cpu_V0);
}
break;
case NEON_3R_VQSHL:
if (u) {
gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
cpu_V1, cpu_V0);
} else {
gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
cpu_V1, cpu_V0);
}
break;
case NEON_3R_VRSHL:
if (u) {
gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0);
} else {
gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0);
}
break;
case NEON_3R_VQRSHL:
if (u) {
gen_helper_neon_qrshl_u64(cpu_V0, cpu_env,
cpu_V1, cpu_V0);
} else {
gen_helper_neon_qrshl_s64(cpu_V0, cpu_env,
cpu_V1, cpu_V0);
}
break;
case NEON_3R_VADD_VSUB:
if (u) {
tcg_gen_sub_i64(CPU_V001);
} else {
tcg_gen_add_i64(CPU_V001);
}
break;
default:
abort();
}
neon_store_reg64(cpu_V0, rd + pass);
}
return 0;
}
pairwise = 0;
switch (op) {
case NEON_3R_VSHL:
case NEON_3R_VQSHL:
case NEON_3R_VRSHL:
case NEON_3R_VQRSHL:
{
int rtmp;
/* Shift instruction operands are reversed. */
rtmp = rn;
rn = rm;
rm = rtmp;
}
break;
case NEON_3R_VPADD:
if (u) {
return 1;
}
/* Fall through */
case NEON_3R_VPMAX:
case NEON_3R_VPMIN:
pairwise = 1;
break;
case NEON_3R_FLOAT_ARITH:
pairwise = (u && size < 2); /* if VPADD (float) */
break;
case NEON_3R_FLOAT_MINMAX:
pairwise = u; /* if VPMIN/VPMAX (float) */
break;
case NEON_3R_FLOAT_CMP:
if (!u && size) {
/* no encoding for U=0 C=1x */
return 1;
}
break;
case NEON_3R_FLOAT_ACMP:
if (!u) {
return 1;
}
break;
case NEON_3R_FLOAT_MISC:
/* VMAXNM/VMINNM in ARMv8 */
if (u && !arm_dc_feature(s, ARM_FEATURE_V8)) {
return 1;
}
break;
case NEON_3R_VMUL:
if (u && (size != 0)) {
/* UNDEF on invalid size for polynomial subcase */
return 1;
}
break;
case NEON_3R_VFM:
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) || u) {
return 1;
}
break;
default:
break;
}
if (pairwise && q) {
/* All the pairwise insns UNDEF if Q is set */
return 1;
}
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (pairwise) {
/* Pairwise. */
if (pass < 1) {
tmp = neon_load_reg(rn, 0);
tmp2 = neon_load_reg(rn, 1);
} else {
tmp = neon_load_reg(rm, 0);
tmp2 = neon_load_reg(rm, 1);
}
} else {
/* Elementwise. */
tmp = neon_load_reg(rn, pass);
tmp2 = neon_load_reg(rm, pass);
}
switch (op) {
case NEON_3R_VHADD:
GEN_NEON_INTEGER_OP(hadd);
break;
case NEON_3R_VQADD:
GEN_NEON_INTEGER_OP_ENV(qadd);
break;
case NEON_3R_VRHADD:
GEN_NEON_INTEGER_OP(rhadd);
break;
case NEON_3R_LOGIC: /* Logic ops. */
switch ((u << 2) | size) {
case 0: /* VAND */
tcg_gen_and_i32(tmp, tmp, tmp2);
break;
case 1: /* BIC */
tcg_gen_andc_i32(tmp, tmp, tmp2);
break;
case 2: /* VORR */
tcg_gen_or_i32(tmp, tmp, tmp2);
break;
case 3: /* VORN */
tcg_gen_orc_i32(tmp, tmp, tmp2);
break;
case 4: /* VEOR */
tcg_gen_xor_i32(tmp, tmp, tmp2);
break;
case 5: /* VBSL */
tmp3 = neon_load_reg(rd, pass);
gen_neon_bsl(tmp, tmp, tmp2, tmp3);
tcg_temp_free_i32(tmp3);
break;
case 6: /* VBIT */
tmp3 = neon_load_reg(rd, pass);
gen_neon_bsl(tmp, tmp, tmp3, tmp2);
tcg_temp_free_i32(tmp3);
break;
case 7: /* VBIF */
tmp3 = neon_load_reg(rd, pass);
gen_neon_bsl(tmp, tmp3, tmp, tmp2);
tcg_temp_free_i32(tmp3);
break;
}
break;
case NEON_3R_VHSUB:
GEN_NEON_INTEGER_OP(hsub);
break;
case NEON_3R_VQSUB:
GEN_NEON_INTEGER_OP_ENV(qsub);
break;
case NEON_3R_VCGT:
GEN_NEON_INTEGER_OP(cgt);
break;
case NEON_3R_VCGE:
GEN_NEON_INTEGER_OP(cge);
break;
case NEON_3R_VSHL:
GEN_NEON_INTEGER_OP(shl);
break;
case NEON_3R_VQSHL:
GEN_NEON_INTEGER_OP_ENV(qshl);
break;
case NEON_3R_VRSHL:
GEN_NEON_INTEGER_OP(rshl);
break;
case NEON_3R_VQRSHL:
GEN_NEON_INTEGER_OP_ENV(qrshl);
break;
case NEON_3R_VMAX:
GEN_NEON_INTEGER_OP(max);
break;
case NEON_3R_VMIN:
GEN_NEON_INTEGER_OP(min);
break;
case NEON_3R_VABD:
GEN_NEON_INTEGER_OP(abd);
break;
case NEON_3R_VABA:
GEN_NEON_INTEGER_OP(abd);
tcg_temp_free_i32(tmp2);
tmp2 = neon_load_reg(rd, pass);
gen_neon_add(size, tmp, tmp2);
break;
case NEON_3R_VADD_VSUB:
if (!u) { /* VADD */
gen_neon_add(size, tmp, tmp2);
} else { /* VSUB */
switch (size) {
case 0: gen_helper_neon_sub_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_sub_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_sub_i32(tmp, tmp, tmp2); break;
default: abort();
}
}
break;
case NEON_3R_VTST_VCEQ:
if (!u) { /* VTST */
switch (size) {
case 0: gen_helper_neon_tst_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_tst_u16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_tst_u32(tmp, tmp, tmp2); break;
default: abort();
}
} else { /* VCEQ */
switch (size) {
case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
default: abort();
}
}
break;
case NEON_3R_VML: /* VMLA, VMLAL, VMLS,VMLSL */
switch (size) {
case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
tmp2 = neon_load_reg(rd, pass);
if (u) { /* VMLS */
gen_neon_rsb(size, tmp, tmp2);
} else { /* VMLA */
gen_neon_add(size, tmp, tmp2);
}
break;
case NEON_3R_VMUL:
if (u) { /* polynomial */
gen_helper_neon_mul_p8(tmp, tmp, tmp2);
} else { /* Integer */
switch (size) {
case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
default: abort();
}
}
break;
case NEON_3R_VPMAX:
GEN_NEON_INTEGER_OP(pmax);
break;
case NEON_3R_VPMIN:
GEN_NEON_INTEGER_OP(pmin);
break;
case NEON_3R_VQDMULH_VQRDMULH: /* Multiply high. */
if (!u) { /* VQDMULH */
switch (size) {
case 1:
gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
break;
case 2:
gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
break;
default: abort();
}
} else { /* VQRDMULH */
switch (size) {
case 1:
gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
break;
case 2:
gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
break;
default: abort();
}
}
break;
case NEON_3R_VPADD:
switch (size) {
case 0: gen_helper_neon_padd_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_padd_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_add_i32(tmp, tmp, tmp2); break;
default: abort();
}
break;
case NEON_3R_FLOAT_ARITH: /* Floating point arithmetic. */
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
switch ((u << 2) | size) {
case 0: /* VADD */
case 4: /* VPADD */
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
break;
case 2: /* VSUB */
gen_helper_vfp_subs(tmp, tmp, tmp2, fpstatus);
break;
case 6: /* VABD */
gen_helper_neon_abd_f32(tmp, tmp, tmp2, fpstatus);
break;
default:
abort();
}
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_3R_FLOAT_MULTIPLY:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
if (!u) {
tcg_temp_free_i32(tmp2);
tmp2 = neon_load_reg(rd, pass);
if (size == 0) {
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
} else {
gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
}
}
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_3R_FLOAT_CMP:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
if (!u) {
gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
} else {
if (size == 0) {
gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
} else {
gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
}
}
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_3R_FLOAT_ACMP:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
if (size == 0) {
gen_helper_neon_acge_f32(tmp, tmp, tmp2, fpstatus);
} else {
gen_helper_neon_acgt_f32(tmp, tmp, tmp2, fpstatus);
}
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_3R_FLOAT_MINMAX:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
if (size == 0) {
gen_helper_vfp_maxs(tmp, tmp, tmp2, fpstatus);
} else {
gen_helper_vfp_mins(tmp, tmp, tmp2, fpstatus);
}
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_3R_FLOAT_MISC:
if (u) {
/* VMAXNM/VMINNM */
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
if (size == 0) {
gen_helper_vfp_maxnums(tmp, tmp, tmp2, fpstatus);
} else {
gen_helper_vfp_minnums(tmp, tmp, tmp2, fpstatus);
}
tcg_temp_free_ptr(fpstatus);
} else {
if (size == 0) {
gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env);
} else {
gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env);
}
}
break;
case NEON_3R_VFM:
{
/* VFMA, VFMS: fused multiply-add */
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
TCGv_i32 tmp3 = neon_load_reg(rd, pass);
if (size) {
/* VFMS */
gen_helper_vfp_negs(tmp, tmp);
}
gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus);
tcg_temp_free_i32(tmp3);
tcg_temp_free_ptr(fpstatus);
break;
}
default:
abort();
}
tcg_temp_free_i32(tmp2);
/* Save the result. For elementwise operations we can put it
straight into the destination register. For pairwise operations
we have to be careful to avoid clobbering the source operands. */
if (pairwise && rd == rm) {
neon_store_scratch(pass, tmp);
} else {
neon_store_reg(rd, pass, tmp);
}
} /* for pass */
if (pairwise && rd == rm) {
for (pass = 0; pass < (q ? 4 : 2); pass++) {
tmp = neon_load_scratch(pass);
neon_store_reg(rd, pass, tmp);
}
}
/* End of 3 register same size operations. */
} else if (insn & (1 << 4)) {
if ((insn & 0x00380080) != 0) {
/* Two registers and shift. */
op = (insn >> 8) & 0xf;
if (insn & (1 << 7)) {
/* 64-bit shift. */
if (op > 7) {
return 1;
}
size = 3;
} else {
size = 2;
while ((insn & (1 << (size + 19))) == 0)
size--;
}
shift = (insn >> 16) & ((1 << (3 + size)) - 1);
/* To avoid excessive duplication of ops we implement shift
by immediate using the variable shift operations. */
if (op < 8) {
/* Shift by immediate:
VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */
if (q && ((rd | rm) & 1)) {
return 1;
}
if (!u && (op == 4 || op == 6)) {
return 1;
}
/* Right shifts are encoded as N - shift, where N is the
element size in bits. */
if (op <= 4)
shift = shift - (1 << (size + 3));
if (size == 3) {
count = q + 1;
} else {
count = q ? 4: 2;
}
switch (size) {
case 0:
imm = (uint8_t) shift;
imm |= imm << 8;
imm |= imm << 16;
break;
case 1:
imm = (uint16_t) shift;
imm |= imm << 16;
break;
case 2:
case 3:
imm = shift;
break;
default:
abort();
}
for (pass = 0; pass < count; pass++) {
if (size == 3) {
neon_load_reg64(cpu_V0, rm + pass);
tcg_gen_movi_i64(cpu_V1, imm);
switch (op) {
case 0: /* VSHR */
case 1: /* VSRA */
if (u)
gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1);
else
gen_helper_neon_shl_s64(cpu_V0, cpu_V0, cpu_V1);
break;
case 2: /* VRSHR */
case 3: /* VRSRA */
if (u)
gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1);
else
gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1);
break;
case 4: /* VSRI */
case 5: /* VSHL, VSLI */
gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1);
break;
case 6: /* VQSHLU */
gen_helper_neon_qshlu_s64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
break;
case 7: /* VQSHL */
if (u) {
gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
} else {
gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
cpu_V0, cpu_V1);
}
break;
}
if (op == 1 || op == 3) {
/* Accumulate. */
neon_load_reg64(cpu_V1, rd + pass);
tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1);
} else if (op == 4 || (op == 5 && u)) {
/* Insert */
neon_load_reg64(cpu_V1, rd + pass);
uint64_t mask;
if (shift < -63 || shift > 63) {
mask = 0;
} else {
if (op == 4) {
mask = 0xffffffffffffffffull >> -shift;
} else {
mask = 0xffffffffffffffffull << shift;
}
}
tcg_gen_andi_i64(cpu_V1, cpu_V1, ~mask);
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
}
neon_store_reg64(cpu_V0, rd + pass);
} else { /* size < 3 */
/* Operands in T0 and T1. */
tmp = neon_load_reg(rm, pass);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, imm);
switch (op) {
case 0: /* VSHR */
case 1: /* VSRA */
GEN_NEON_INTEGER_OP(shl);
break;
case 2: /* VRSHR */
case 3: /* VRSRA */
GEN_NEON_INTEGER_OP(rshl);
break;
case 4: /* VSRI */
case 5: /* VSHL, VSLI */
switch (size) {
case 0: gen_helper_neon_shl_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_shl_u16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_shl_u32(tmp, tmp, tmp2); break;
default: abort();
}
break;
case 6: /* VQSHLU */
switch (size) {
case 0:
gen_helper_neon_qshlu_s8(tmp, cpu_env,
tmp, tmp2);
break;
case 1:
gen_helper_neon_qshlu_s16(tmp, cpu_env,
tmp, tmp2);
break;
case 2:
gen_helper_neon_qshlu_s32(tmp, cpu_env,
tmp, tmp2);
break;
default:
abort();
}
break;
case 7: /* VQSHL */
GEN_NEON_INTEGER_OP_ENV(qshl);
break;
}
tcg_temp_free_i32(tmp2);
if (op == 1 || op == 3) {
/* Accumulate. */
tmp2 = neon_load_reg(rd, pass);
gen_neon_add(size, tmp, tmp2);
tcg_temp_free_i32(tmp2);
} else if (op == 4 || (op == 5 && u)) {
/* Insert */
switch (size) {
case 0:
if (op == 4)
mask = 0xff >> -shift;
else
mask = (uint8_t)(0xff << shift);
mask |= mask << 8;
mask |= mask << 16;
break;
case 1:
if (op == 4)
mask = 0xffff >> -shift;
else
mask = (uint16_t)(0xffff << shift);
mask |= mask << 16;
break;
case 2:
if (shift < -31 || shift > 31) {
mask = 0;
} else {
if (op == 4)
mask = 0xffffffffu >> -shift;
else
mask = 0xffffffffu << shift;
}
break;
default:
abort();
}
tmp2 = neon_load_reg(rd, pass);
tcg_gen_andi_i32(tmp, tmp, mask);
tcg_gen_andi_i32(tmp2, tmp2, ~mask);
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
neon_store_reg(rd, pass, tmp);
}
} /* for pass */
} else if (op < 10) {
/* Shift by immediate and narrow:
VSHRN, VRSHRN, VQSHRN, VQRSHRN. */
int input_unsigned = (op == 8) ? !u : u;
if (rm & 1) {
return 1;
}
shift = shift - (1 << (size + 3));
size++;
if (size == 3) {
tmp64 = tcg_const_i64(shift);
neon_load_reg64(cpu_V0, rm);
neon_load_reg64(cpu_V1, rm + 1);
for (pass = 0; pass < 2; pass++) {
TCGv_i64 in;
if (pass == 0) {
in = cpu_V0;
} else {
in = cpu_V1;
}
if (q) {
if (input_unsigned) {
gen_helper_neon_rshl_u64(cpu_V0, in, tmp64);
} else {
gen_helper_neon_rshl_s64(cpu_V0, in, tmp64);
}
} else {
if (input_unsigned) {
gen_helper_neon_shl_u64(cpu_V0, in, tmp64);
} else {
gen_helper_neon_shl_s64(cpu_V0, in, tmp64);
}
}
tmp = tcg_temp_new_i32();
gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
neon_store_reg(rd, pass, tmp);
} /* for pass */
tcg_temp_free_i64(tmp64);
} else {
if (size == 1) {
imm = (uint16_t)shift;
imm |= imm << 16;
} else {
/* size == 2 */
imm = (uint32_t)shift;
}
tmp2 = tcg_const_i32(imm);
tmp4 = neon_load_reg(rm + 1, 0);
tmp5 = neon_load_reg(rm + 1, 1);
for (pass = 0; pass < 2; pass++) {
if (pass == 0) {
tmp = neon_load_reg(rm, 0);
} else {
tmp = tmp4;
}
gen_neon_shift_narrow(size, tmp, tmp2, q,
input_unsigned);
if (pass == 0) {
tmp3 = neon_load_reg(rm, 1);
} else {
tmp3 = tmp5;
}
gen_neon_shift_narrow(size, tmp3, tmp2, q,
input_unsigned);
tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp3);
tmp = tcg_temp_new_i32();
gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
neon_store_reg(rd, pass, tmp);
} /* for pass */
tcg_temp_free_i32(tmp2);
}
} else if (op == 10) {
/* VSHLL, VMOVL */
if (q || (rd & 1)) {
return 1;
}
tmp = neon_load_reg(rm, 0);
tmp2 = neon_load_reg(rm, 1);
for (pass = 0; pass < 2; pass++) {
if (pass == 1)
tmp = tmp2;
gen_neon_widen(cpu_V0, tmp, size, u);
if (shift != 0) {
/* The shift is less than the width of the source
type, so we can just shift the whole register. */
tcg_gen_shli_i64(cpu_V0, cpu_V0, shift);
/* Widen the result of shift: we need to clear
* the potential overflow bits resulting from
* left bits of the narrow input appearing as
* right bits of left the neighbour narrow
* input. */
if (size < 2 || !u) {
uint64_t imm64;
if (size == 0) {
imm = (0xffu >> (8 - shift));
imm |= imm << 16;
} else if (size == 1) {
imm = 0xffff >> (16 - shift);
} else {
/* size == 2 */
imm = 0xffffffff >> (32 - shift);
}
if (size < 2) {
imm64 = imm | (((uint64_t)imm) << 32);
} else {
imm64 = imm;
}
tcg_gen_andi_i64(cpu_V0, cpu_V0, ~imm64);
}
}
neon_store_reg64(cpu_V0, rd + pass);
}
} else if (op >= 14) {
/* VCVT fixed-point. */
if (!(insn & (1 << 21)) || (q && ((rd | rm) & 1))) {
return 1;
}
/* We have already masked out the must-be-1 top bit of imm6,
* hence this 32-shift where the ARM ARM has 64-imm6.
*/
shift = 32 - shift;
for (pass = 0; pass < (q ? 4 : 2); pass++) {
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass));
if (!(op & 1)) {
if (u)
gen_vfp_ulto(0, shift, 1);
else
gen_vfp_slto(0, shift, 1);
} else {
if (u)
gen_vfp_toul(0, shift, 1);
else
gen_vfp_tosl(0, shift, 1);
}
tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass));
}
} else {
return 1;
}
} else { /* (insn & 0x00380080) == 0 */
int invert;
if (q && (rd & 1)) {
return 1;
}
op = (insn >> 8) & 0xf;
/* One register and immediate. */
imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf);
invert = (insn & (1 << 5)) != 0;
/* Note that op = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE.
* We choose to not special-case this and will behave as if a
* valid constant encoding of 0 had been given.
*/
switch (op) {
case 0: case 1:
/* no-op */
break;
case 2: case 3:
imm <<= 8;
break;
case 4: case 5:
imm <<= 16;
break;
case 6: case 7:
imm <<= 24;
break;
case 8: case 9:
imm |= imm << 16;
break;
case 10: case 11:
imm = (imm << 8) | (imm << 24);
break;
case 12:
imm = (imm << 8) | 0xff;
break;
case 13:
imm = (imm << 16) | 0xffff;
break;
case 14:
imm |= (imm << 8) | (imm << 16) | (imm << 24);
if (invert)
imm = ~imm;
break;
case 15:
if (invert) {
return 1;
}
imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19)
| ((imm & 0x40) ? (0x1f << 25) : (1 << 30));
break;
}
if (invert)
imm = ~imm;
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (op & 1 && op < 12) {
tmp = neon_load_reg(rd, pass);
if (invert) {
/* The immediate value has already been inverted, so
BIC becomes AND. */
tcg_gen_andi_i32(tmp, tmp, imm);
} else {
tcg_gen_ori_i32(tmp, tmp, imm);
}
} else {
/* VMOV, VMVN. */
tmp = tcg_temp_new_i32();
if (op == 14 && invert) {
int n;
uint32_t val;
val = 0;
for (n = 0; n < 4; n++) {
if (imm & (1 << (n + (pass & 1) * 4)))
val |= 0xff << (n * 8);
}
tcg_gen_movi_i32(tmp, val);
} else {
tcg_gen_movi_i32(tmp, imm);
}
}
neon_store_reg(rd, pass, tmp);
}
}
} else { /* (insn & 0x00800010 == 0x00800000) */
if (size != 3) {
op = (insn >> 8) & 0xf;
if ((insn & (1 << 6)) == 0) {
/* Three registers of different lengths. */
int src1_wide;
int src2_wide;
int prewiden;
/* undefreq: bit 0 : UNDEF if size == 0
* bit 1 : UNDEF if size == 1
* bit 2 : UNDEF if size == 2
* bit 3 : UNDEF if U == 1
* Note that [2:0] set implies 'always UNDEF'
*/
int undefreq;
/* prewiden, src1_wide, src2_wide, undefreq */
static const int neon_3reg_wide[16][4] = {
{1, 0, 0, 0}, /* VADDL */
{1, 1, 0, 0}, /* VADDW */
{1, 0, 0, 0}, /* VSUBL */
{1, 1, 0, 0}, /* VSUBW */
{0, 1, 1, 0}, /* VADDHN */
{0, 0, 0, 0}, /* VABAL */
{0, 1, 1, 0}, /* VSUBHN */
{0, 0, 0, 0}, /* VABDL */
{0, 0, 0, 0}, /* VMLAL */
{0, 0, 0, 9}, /* VQDMLAL */
{0, 0, 0, 0}, /* VMLSL */
{0, 0, 0, 9}, /* VQDMLSL */
{0, 0, 0, 0}, /* Integer VMULL */
{0, 0, 0, 1}, /* VQDMULL */
{0, 0, 0, 0xa}, /* Polynomial VMULL */
{0, 0, 0, 7}, /* Reserved: always UNDEF */
};
prewiden = neon_3reg_wide[op][0];
src1_wide = neon_3reg_wide[op][1];
src2_wide = neon_3reg_wide[op][2];
undefreq = neon_3reg_wide[op][3];
if ((undefreq & (1 << size)) ||
((undefreq & 8) && u)) {
return 1;
}
if ((src1_wide && (rn & 1)) ||
(src2_wide && (rm & 1)) ||
(!src2_wide && (rd & 1))) {
return 1;
}
/* Handle VMULL.P64 (Polynomial 64x64 to 128 bit multiply)
* outside the loop below as it only performs a single pass.
*/
if (op == 14 && size == 2) {
TCGv_i64 tcg_rn, tcg_rm, tcg_rd;
if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
return 1;
}
tcg_rn = tcg_temp_new_i64();
tcg_rm = tcg_temp_new_i64();
tcg_rd = tcg_temp_new_i64();
neon_load_reg64(tcg_rn, rn);
neon_load_reg64(tcg_rm, rm);
gen_helper_neon_pmull_64_lo(tcg_rd, tcg_rn, tcg_rm);
neon_store_reg64(tcg_rd, rd);
gen_helper_neon_pmull_64_hi(tcg_rd, tcg_rn, tcg_rm);
neon_store_reg64(tcg_rd, rd + 1);
tcg_temp_free_i64(tcg_rn);
tcg_temp_free_i64(tcg_rm);
tcg_temp_free_i64(tcg_rd);
return 0;
}
/* Avoid overlapping operands. Wide source operands are
always aligned so will never overlap with wide
destinations in problematic ways. */
if (rd == rm && !src2_wide) {
tmp = neon_load_reg(rm, 1);
neon_store_scratch(2, tmp);
} else if (rd == rn && !src1_wide) {
tmp = neon_load_reg(rn, 1);
neon_store_scratch(2, tmp);
}
TCGV_UNUSED_I32(tmp3);
for (pass = 0; pass < 2; pass++) {
if (src1_wide) {
neon_load_reg64(cpu_V0, rn + pass);
TCGV_UNUSED_I32(tmp);
} else {
if (pass == 1 && rd == rn) {
tmp = neon_load_scratch(2);
} else {
tmp = neon_load_reg(rn, pass);
}
if (prewiden) {
gen_neon_widen(cpu_V0, tmp, size, u);
}
}
if (src2_wide) {
neon_load_reg64(cpu_V1, rm + pass);
TCGV_UNUSED_I32(tmp2);
} else {
if (pass == 1 && rd == rm) {
tmp2 = neon_load_scratch(2);
} else {
tmp2 = neon_load_reg(rm, pass);
}
if (prewiden) {
gen_neon_widen(cpu_V1, tmp2, size, u);
}
}
switch (op) {
case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */
gen_neon_addl(size);
break;
case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */
gen_neon_subl(size);
break;
case 5: case 7: /* VABAL, VABDL */
switch ((size << 1) | u) {
case 0:
gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2);
break;
case 1:
gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2);
break;
case 2:
gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2);
break;
case 3:
gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2);
break;
case 4:
gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2);
break;
case 5:
gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2);
break;
default: abort();
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
case 8: case 9: case 10: case 11: case 12: case 13:
/* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
break;
case 14: /* Polynomial VMULL */
gen_helper_neon_mull_p8(cpu_V0, tmp, tmp2);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
default: /* 15 is RESERVED: caught earlier */
abort();
}
if (op == 13) {
/* VQDMULL */
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
neon_store_reg64(cpu_V0, rd + pass);
} else if (op == 5 || (op >= 8 && op <= 11)) {
/* Accumulate. */
neon_load_reg64(cpu_V1, rd + pass);
switch (op) {
case 10: /* VMLSL */
gen_neon_negl(cpu_V0, size);
/* Fall through */
case 5: case 8: /* VABAL, VMLAL */
gen_neon_addl(size);
break;
case 9: case 11: /* VQDMLAL, VQDMLSL */
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
if (op == 11) {
gen_neon_negl(cpu_V0, size);
}
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
break;
default:
abort();
}
neon_store_reg64(cpu_V0, rd + pass);
} else if (op == 4 || op == 6) {
/* Narrowing operation. */
tmp = tcg_temp_new_i32();
if (!u) {
switch (size) {
case 0:
gen_helper_neon_narrow_high_u8(tmp, cpu_V0);
break;
case 1:
gen_helper_neon_narrow_high_u16(tmp, cpu_V0);
break;
case 2:
tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
tcg_gen_extrl_i64_i32(tmp, cpu_V0);
break;
default: abort();
}
} else {
switch (size) {
case 0:
gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0);
break;
case 1:
gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0);
break;
case 2:
tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31);
tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
tcg_gen_extrl_i64_i32(tmp, cpu_V0);
break;
default: abort();
}
}
if (pass == 0) {
tmp3 = tmp;
} else {
neon_store_reg(rd, 0, tmp3);
neon_store_reg(rd, 1, tmp);
}
} else {
/* Write back the result. */
neon_store_reg64(cpu_V0, rd + pass);
}
}
} else {
/* Two registers and a scalar. NB that for ops of this form
* the ARM ARM labels bit 24 as Q, but it is in our variable
* 'u', not 'q'.
*/
if (size == 0) {
return 1;
}
switch (op) {
case 1: /* Float VMLA scalar */
case 5: /* Floating point VMLS scalar */
case 9: /* Floating point VMUL scalar */
if (size == 1) {
return 1;
}
/* fall through */
case 0: /* Integer VMLA scalar */
case 4: /* Integer VMLS scalar */
case 8: /* Integer VMUL scalar */
case 12: /* VQDMULH scalar */
case 13: /* VQRDMULH scalar */
if (u && ((rd | rn) & 1)) {
return 1;
}
tmp = neon_get_scalar(size, rm);
neon_store_scratch(0, tmp);
for (pass = 0; pass < (u ? 4 : 2); pass++) {
tmp = neon_load_scratch(0);
tmp2 = neon_load_reg(rn, pass);
if (op == 12) {
if (size == 1) {
gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
}
} else if (op == 13) {
if (size == 1) {
gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
}
} else if (op & 1) {
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_ptr(fpstatus);
} else {
switch (size) {
case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
default: abort();
}
}
tcg_temp_free_i32(tmp2);
if (op < 8) {
/* Accumulate. */
tmp2 = neon_load_reg(rd, pass);
switch (op) {
case 0:
gen_neon_add(size, tmp, tmp2);
break;
case 1:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case 4:
gen_neon_rsb(size, tmp, tmp2);
break;
case 5:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
default:
abort();
}
tcg_temp_free_i32(tmp2);
}
neon_store_reg(rd, pass, tmp);
}
break;
case 3: /* VQDMLAL scalar */
case 7: /* VQDMLSL scalar */
case 11: /* VQDMULL scalar */
if (u == 1) {
return 1;
}
/* fall through */
case 2: /* VMLAL sclar */
case 6: /* VMLSL scalar */
case 10: /* VMULL scalar */
if (rd & 1) {
return 1;
}
tmp2 = neon_get_scalar(size, rm);
/* We need a copy of tmp2 because gen_neon_mull
* deletes it during pass 0. */
tmp4 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp4, tmp2);
tmp3 = neon_load_reg(rn, 1);
for (pass = 0; pass < 2; pass++) {
if (pass == 0) {
tmp = neon_load_reg(rn, 0);
} else {
tmp = tmp3;
tmp2 = tmp4;
}
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
if (op != 11) {
neon_load_reg64(cpu_V1, rd + pass);
}
switch (op) {
case 6:
gen_neon_negl(cpu_V0, size);
/* Fall through */
case 2:
gen_neon_addl(size);
break;
case 3: case 7:
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
if (op == 7) {
gen_neon_negl(cpu_V0, size);
}
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
break;
case 10:
/* no-op */
break;
case 11:
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
break;
default:
abort();
}
neon_store_reg64(cpu_V0, rd + pass);
}
break;
default: /* 14 and 15 are RESERVED */
return 1;
}
}
} else { /* size == 3 */
if (!u) {
/* Extract. */
imm = (insn >> 8) & 0xf;
if (imm > 7 && !q)
return 1;
if (q && ((rd | rn | rm) & 1)) {
return 1;
}
if (imm == 0) {
neon_load_reg64(cpu_V0, rn);
if (q) {
neon_load_reg64(cpu_V1, rn + 1);
}
} else if (imm == 8) {
neon_load_reg64(cpu_V0, rn + 1);
if (q) {
neon_load_reg64(cpu_V1, rm);
}
} else if (q) {
tmp64 = tcg_temp_new_i64();
if (imm < 8) {
neon_load_reg64(cpu_V0, rn);
neon_load_reg64(tmp64, rn + 1);
} else {
neon_load_reg64(cpu_V0, rn + 1);
neon_load_reg64(tmp64, rm);
}
tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8);
tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8));
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
if (imm < 8) {
neon_load_reg64(cpu_V1, rm);
} else {
neon_load_reg64(cpu_V1, rm + 1);
imm -= 8;
}
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
tcg_gen_shri_i64(tmp64, tmp64, imm * 8);
tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64);
tcg_temp_free_i64(tmp64);
} else {
/* BUGFIX */
neon_load_reg64(cpu_V0, rn);
tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8);
neon_load_reg64(cpu_V1, rm);
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
}
neon_store_reg64(cpu_V0, rd);
if (q) {
neon_store_reg64(cpu_V1, rd + 1);
}
} else if ((insn & (1 << 11)) == 0) {
/* Two register misc. */
op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf);
size = (insn >> 18) & 3;
/* UNDEF for unknown op values and bad op-size combinations */
if ((neon_2rm_sizes[op] & (1 << size)) == 0) {
return 1;
}
if (neon_2rm_is_v8_op(op) &&
!arm_dc_feature(s, ARM_FEATURE_V8)) {
return 1;
}
if ((op != NEON_2RM_VMOVN && op != NEON_2RM_VQMOVN) &&
q && ((rm | rd) & 1)) {
return 1;
}
switch (op) {
case NEON_2RM_VREV64:
for (pass = 0; pass < (q ? 2 : 1); pass++) {
tmp = neon_load_reg(rm, pass * 2);
tmp2 = neon_load_reg(rm, pass * 2 + 1);
switch (size) {
case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
case 1: gen_swap_half(tmp); break;
case 2: /* no-op */ break;
default: abort();
}
neon_store_reg(rd, pass * 2 + 1, tmp);
if (size == 2) {
neon_store_reg(rd, pass * 2, tmp2);
} else {
switch (size) {
case 0: tcg_gen_bswap32_i32(tmp2, tmp2); break;
case 1: gen_swap_half(tmp2); break;
default: abort();
}
neon_store_reg(rd, pass * 2, tmp2);
}
}
break;
case NEON_2RM_VPADDL: case NEON_2RM_VPADDL_U:
case NEON_2RM_VPADAL: case NEON_2RM_VPADAL_U:
for (pass = 0; pass < q + 1; pass++) {
tmp = neon_load_reg(rm, pass * 2);
gen_neon_widen(cpu_V0, tmp, size, op & 1);
tmp = neon_load_reg(rm, pass * 2 + 1);
gen_neon_widen(cpu_V1, tmp, size, op & 1);
switch (size) {
case 0: gen_helper_neon_paddl_u16(CPU_V001); break;
case 1: gen_helper_neon_paddl_u32(CPU_V001); break;
case 2: tcg_gen_add_i64(CPU_V001); break;
default: abort();
}
if (op >= NEON_2RM_VPADAL) {
/* Accumulate. */
neon_load_reg64(cpu_V1, rd + pass);
gen_neon_addl(size);
}
neon_store_reg64(cpu_V0, rd + pass);
}
break;
case NEON_2RM_VTRN:
if (size == 2) {
int n;
for (n = 0; n < (q ? 4 : 2); n += 2) {
tmp = neon_load_reg(rm, n);
tmp2 = neon_load_reg(rd, n + 1);
neon_store_reg(rm, n, tmp2);
neon_store_reg(rd, n + 1, tmp);
}
} else {
goto elementwise;
}
break;
case NEON_2RM_VUZP:
if (gen_neon_unzip(rd, rm, size, q)) {
return 1;
}
break;
case NEON_2RM_VZIP:
if (gen_neon_zip(rd, rm, size, q)) {
return 1;
}
break;
case NEON_2RM_VMOVN: case NEON_2RM_VQMOVN:
/* also VQMOVUN; op field and mnemonics don't line up */
if (rm & 1) {
return 1;
}
TCGV_UNUSED_I32(tmp2);
for (pass = 0; pass < 2; pass++) {
neon_load_reg64(cpu_V0, rm + pass);
tmp = tcg_temp_new_i32();
gen_neon_narrow_op(op == NEON_2RM_VMOVN, q, size,
tmp, cpu_V0);
if (pass == 0) {
tmp2 = tmp;
} else {
neon_store_reg(rd, 0, tmp2);
neon_store_reg(rd, 1, tmp);
}
}
break;
case NEON_2RM_VSHLL:
if (q || (rd & 1)) {
return 1;
}
tmp = neon_load_reg(rm, 0);
tmp2 = neon_load_reg(rm, 1);
for (pass = 0; pass < 2; pass++) {
if (pass == 1)
tmp = tmp2;
gen_neon_widen(cpu_V0, tmp, size, 1);
tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size);
neon_store_reg64(cpu_V0, rd + pass);
}
break;
case NEON_2RM_VCVT_F16_F32:
if (!arm_dc_feature(s, ARM_FEATURE_VFP_FP16) ||
q || (rm & 1)) {
return 1;
}
tmp = tcg_temp_new_i32();
tmp2 = tcg_temp_new_i32();
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 0));
gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 1));
gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env);
tcg_gen_shli_i32(tmp2, tmp2, 16);
tcg_gen_or_i32(tmp2, tmp2, tmp);
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 2));
gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 3));
neon_store_reg(rd, 0, tmp2);
tmp2 = tcg_temp_new_i32();
gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env);
tcg_gen_shli_i32(tmp2, tmp2, 16);
tcg_gen_or_i32(tmp2, tmp2, tmp);
neon_store_reg(rd, 1, tmp2);
tcg_temp_free_i32(tmp);
break;
case NEON_2RM_VCVT_F32_F16:
if (!arm_dc_feature(s, ARM_FEATURE_VFP_FP16) ||
q || (rd & 1)) {
return 1;
}
tmp3 = tcg_temp_new_i32();
tmp = neon_load_reg(rm, 0);
tmp2 = neon_load_reg(rm, 1);
tcg_gen_ext16u_i32(tmp3, tmp);
gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 0));
tcg_gen_shri_i32(tmp3, tmp, 16);
gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 1));
tcg_temp_free_i32(tmp);
tcg_gen_ext16u_i32(tmp3, tmp2);
gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 2));
tcg_gen_shri_i32(tmp3, tmp2, 16);
gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 3));
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp3);
break;
case NEON_2RM_AESE: case NEON_2RM_AESMC:
if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
|| ((rm | rd) & 1)) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rm);
/* Bit 6 is the lowest opcode bit; it distinguishes between
* encryption (AESE/AESMC) and decryption (AESD/AESIMC)
*/
tmp3 = tcg_const_i32(extract32(insn, 6, 1));
if (op == NEON_2RM_AESE) {
gen_helper_crypto_aese(cpu_env, tmp, tmp2, tmp3);
} else {
gen_helper_crypto_aesmc(cpu_env, tmp, tmp2, tmp3);
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp3);
break;
case NEON_2RM_SHA1H:
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA1)
|| ((rm | rd) & 1)) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rm);
gen_helper_crypto_sha1h(cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
break;
case NEON_2RM_SHA1SU1:
if ((rm | rd) & 1) {
return 1;
}
/* bit 6 (q): set -> SHA256SU0, cleared -> SHA1SU1 */
if (q) {
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA256)) {
return 1;
}
} else if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA1)) {
return 1;
}
tmp = tcg_const_i32(rd);
tmp2 = tcg_const_i32(rm);
if (q) {
gen_helper_crypto_sha256su0(cpu_env, tmp, tmp2);
} else {
gen_helper_crypto_sha1su1(cpu_env, tmp, tmp2);
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
break;
default:
elementwise:
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (neon_2rm_is_float_op(op)) {
tcg_gen_ld_f32(cpu_F0s, cpu_env,
neon_reg_offset(rm, pass));
TCGV_UNUSED_I32(tmp);
} else {
tmp = neon_load_reg(rm, pass);
}
switch (op) {
case NEON_2RM_VREV32:
switch (size) {
case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
case 1: gen_swap_half(tmp); break;
default: abort();
}
break;
case NEON_2RM_VREV16:
gen_rev16(tmp);
break;
case NEON_2RM_VCLS:
switch (size) {
case 0: gen_helper_neon_cls_s8(tmp, tmp); break;
case 1: gen_helper_neon_cls_s16(tmp, tmp); break;
case 2: gen_helper_neon_cls_s32(tmp, tmp); break;
default: abort();
}
break;
case NEON_2RM_VCLZ:
switch (size) {
case 0: gen_helper_neon_clz_u8(tmp, tmp); break;
case 1: gen_helper_neon_clz_u16(tmp, tmp); break;
case 2: tcg_gen_clzi_i32(tmp, tmp, 32); break;
default: abort();
}
break;
case NEON_2RM_VCNT:
gen_helper_neon_cnt_u8(tmp, tmp);
break;
case NEON_2RM_VMVN:
tcg_gen_not_i32(tmp, tmp);
break;
case NEON_2RM_VQABS:
switch (size) {
case 0:
gen_helper_neon_qabs_s8(tmp, cpu_env, tmp);
break;
case 1:
gen_helper_neon_qabs_s16(tmp, cpu_env, tmp);
break;
case 2:
gen_helper_neon_qabs_s32(tmp, cpu_env, tmp);
break;
default: abort();
}
break;
case NEON_2RM_VQNEG:
switch (size) {
case 0:
gen_helper_neon_qneg_s8(tmp, cpu_env, tmp);
break;
case 1:
gen_helper_neon_qneg_s16(tmp, cpu_env, tmp);
break;
case 2:
gen_helper_neon_qneg_s32(tmp, cpu_env, tmp);
break;
default: abort();
}
break;
case NEON_2RM_VCGT0: case NEON_2RM_VCLE0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_cgt_s8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_cgt_s16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_cgt_s32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
if (op == NEON_2RM_VCLE0) {
tcg_gen_not_i32(tmp, tmp);
}
break;
case NEON_2RM_VCGE0: case NEON_2RM_VCLT0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_cge_s8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_cge_s16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_cge_s32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
if (op == NEON_2RM_VCLT0) {
tcg_gen_not_i32(tmp, tmp);
}
break;
case NEON_2RM_VCEQ0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
break;
case NEON_2RM_VABS:
switch(size) {
case 0: gen_helper_neon_abs_s8(tmp, tmp); break;
case 1: gen_helper_neon_abs_s16(tmp, tmp); break;
case 2: tcg_gen_abs_i32(tmp, tmp); break;
default: abort();
}
break;
case NEON_2RM_VNEG:
tmp2 = tcg_const_i32(0);
gen_neon_rsb(size, tmp, tmp2);
tcg_temp_free_i32(tmp2);
break;
case NEON_2RM_VCGT0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
tmp2 = tcg_const_i32(0);
gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_i32(tmp2);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCGE0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
tmp2 = tcg_const_i32(0);
gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_i32(tmp2);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCEQ0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
tmp2 = tcg_const_i32(0);
gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
tcg_temp_free_i32(tmp2);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCLE0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
tmp2 = tcg_const_i32(0);
gen_helper_neon_cge_f32(tmp, tmp2, tmp, fpstatus);
tcg_temp_free_i32(tmp2);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCLT0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
tmp2 = tcg_const_i32(0);
gen_helper_neon_cgt_f32(tmp, tmp2, tmp, fpstatus);
tcg_temp_free_i32(tmp2);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VABS_F:
gen_vfp_abs(0);
break;
case NEON_2RM_VNEG_F:
gen_vfp_neg(0);
break;
case NEON_2RM_VSWP:
tmp2 = neon_load_reg(rd, pass);
neon_store_reg(rm, pass, tmp2);
break;
case NEON_2RM_VTRN:
tmp2 = neon_load_reg(rd, pass);
switch (size) {
case 0: gen_neon_trn_u8(tmp, tmp2); break;
case 1: gen_neon_trn_u16(tmp, tmp2); break;
default: abort();
}
neon_store_reg(rm, pass, tmp2);
break;
case NEON_2RM_VRINTN:
case NEON_2RM_VRINTA:
case NEON_2RM_VRINTM:
case NEON_2RM_VRINTP:
case NEON_2RM_VRINTZ:
{
TCGv_i32 tcg_rmode;
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
int rmode;
if (op == NEON_2RM_VRINTZ) {
rmode = FPROUNDING_ZERO;
} else {
rmode = fp_decode_rm[((op & 0x6) >> 1) ^ 1];
}
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
cpu_env);
gen_helper_rints(cpu_F0s, cpu_F0s, fpstatus);
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
cpu_env);
tcg_temp_free_ptr(fpstatus);
tcg_temp_free_i32(tcg_rmode);
break;
}
case NEON_2RM_VRINTX:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_rints_exact(cpu_F0s, cpu_F0s, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCVTAU:
case NEON_2RM_VCVTAS:
case NEON_2RM_VCVTNU:
case NEON_2RM_VCVTNS:
case NEON_2RM_VCVTPU:
case NEON_2RM_VCVTPS:
case NEON_2RM_VCVTMU:
case NEON_2RM_VCVTMS:
{
bool is_signed = !extract32(insn, 7, 1);
TCGv_ptr fpst = get_fpstatus_ptr(1);
TCGv_i32 tcg_rmode, tcg_shift;
int rmode = fp_decode_rm[extract32(insn, 8, 2)];
tcg_shift = tcg_const_i32(0);
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
cpu_env);
if (is_signed) {
gen_helper_vfp_tosls(cpu_F0s, cpu_F0s,
tcg_shift, fpst);
} else {
gen_helper_vfp_touls(cpu_F0s, cpu_F0s,
tcg_shift, fpst);
}
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
cpu_env);
tcg_temp_free_i32(tcg_rmode);
tcg_temp_free_i32(tcg_shift);
tcg_temp_free_ptr(fpst);
break;
}
case NEON_2RM_VRECPE:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_recpe_u32(tmp, tmp, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VRSQRTE:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_rsqrte_u32(tmp, tmp, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VRECPE_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_recpe_f32(cpu_F0s, cpu_F0s, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VRSQRTE_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VCVT_FS: /* VCVT.F32.S32 */
gen_vfp_sito(0, 1);
break;
case NEON_2RM_VCVT_FU: /* VCVT.F32.U32 */
gen_vfp_uito(0, 1);
break;
case NEON_2RM_VCVT_SF: /* VCVT.S32.F32 */
gen_vfp_tosiz(0, 1);
break;
case NEON_2RM_VCVT_UF: /* VCVT.U32.F32 */
gen_vfp_touiz(0, 1);
break;
default:
/* Reserved op values were caught by the
* neon_2rm_sizes[] check earlier.
*/
abort();
}
if (neon_2rm_is_float_op(op)) {
tcg_gen_st_f32(cpu_F0s, cpu_env,
neon_reg_offset(rd, pass));
} else {
neon_store_reg(rd, pass, tmp);
}
}
break;
}
} else if ((insn & (1 << 10)) == 0) {
/* VTBL, VTBX. */
int n = ((insn >> 8) & 3) + 1;
if ((rn + n) > 32) {
/* This is UNPREDICTABLE; we choose to UNDEF to avoid the
* helper function running off the end of the register file.
*/
return 1;
}
n <<= 3;
if (insn & (1 << 6)) {
tmp = neon_load_reg(rd, 0);
} else {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
}
tmp2 = neon_load_reg(rm, 0);
tmp4 = tcg_const_i32(rn);
tmp5 = tcg_const_i32(n);
gen_helper_neon_tbl(tmp2, cpu_env, tmp2, tmp, tmp4, tmp5);
tcg_temp_free_i32(tmp);
if (insn & (1 << 6)) {
tmp = neon_load_reg(rd, 1);
} else {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
}
tmp3 = neon_load_reg(rm, 1);
gen_helper_neon_tbl(tmp3, cpu_env, tmp3, tmp, tmp4, tmp5);
tcg_temp_free_i32(tmp5);
tcg_temp_free_i32(tmp4);
neon_store_reg(rd, 0, tmp2);
neon_store_reg(rd, 1, tmp3);
tcg_temp_free_i32(tmp);
} else if ((insn & 0x380) == 0) {
/* VDUP */
if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) {
return 1;
}
if (insn & (1 << 19)) {
tmp = neon_load_reg(rm, 1);
} else {
tmp = neon_load_reg(rm, 0);
}
if (insn & (1 << 16)) {
gen_neon_dup_u8(tmp, ((insn >> 17) & 3) * 8);
} else if (insn & (1 << 17)) {
if ((insn >> 18) & 1)
gen_neon_dup_high16(tmp);
else
gen_neon_dup_low16(tmp);
}
for (pass = 0; pass < (q ? 4 : 2); pass++) {
tmp2 = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp2, tmp);
neon_store_reg(rd, pass, tmp2);
}
tcg_temp_free_i32(tmp);
} else {
return 1;
}
}
}
return 0;
}
static int disas_coproc_insn(DisasContext *s, uint32_t insn)
{
int cpnum, is64, crn, crm, opc1, opc2, isread, rt, rt2;
const ARMCPRegInfo *ri;
cpnum = (insn >> 8) & 0xf;
/* First check for coprocessor space used for XScale/iwMMXt insns */
if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cpnum < 2)) {
if (extract32(s->c15_cpar, cpnum, 1) == 0) {
return 1;
}
if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
return disas_iwmmxt_insn(s, insn);
} else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) {
return disas_dsp_insn(s, insn);
}
return 1;
}
/* Otherwise treat as a generic register access */
is64 = (insn & (1 << 25)) == 0;
if (!is64 && ((insn & (1 << 4)) == 0)) {
/* cdp */
return 1;
}
crm = insn & 0xf;
if (is64) {
crn = 0;
opc1 = (insn >> 4) & 0xf;
opc2 = 0;
rt2 = (insn >> 16) & 0xf;
} else {
crn = (insn >> 16) & 0xf;
opc1 = (insn >> 21) & 7;
opc2 = (insn >> 5) & 7;
rt2 = 0;
}
isread = (insn >> 20) & 1;
rt = (insn >> 12) & 0xf;
ri = get_arm_cp_reginfo(s->cp_regs,
ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2));
if (ri) {
/* Check access permissions */
if (!cp_access_ok(s->current_el, ri, isread)) {
return 1;
}
if (ri->accessfn ||
(arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) {
/* Emit code to perform further access permissions checks at
* runtime; this may result in an exception.
* Note that on XScale all cp0..c13 registers do an access check
* call in order to handle c15_cpar.
*/
TCGv_ptr tmpptr;
TCGv_i32 tcg_syn, tcg_isread;
uint32_t syndrome;
/* Note that since we are an implementation which takes an
* exception on a trapped conditional instruction only if the
* instruction passes its condition code check, we can take
* advantage of the clause in the ARM ARM that allows us to set
* the COND field in the instruction to 0xE in all cases.
* We could fish the actual condition out of the insn (ARM)
* or the condexec bits (Thumb) but it isn't necessary.
*/
switch (cpnum) {
case 14:
if (is64) {
syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
isread, false);
} else {
syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm,
rt, isread, false);
}
break;
case 15:
if (is64) {
syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
isread, false);
} else {
syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm,
rt, isread, false);
}
break;
default:
/* ARMv8 defines that only coprocessors 14 and 15 exist,
* so this can only happen if this is an ARMv7 or earlier CPU,
* in which case the syndrome information won't actually be
* guest visible.
*/
assert(!arm_dc_feature(s, ARM_FEATURE_V8));
syndrome = syn_uncategorized();
break;
}
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - 4);
tmpptr = tcg_const_ptr(ri);
tcg_syn = tcg_const_i32(syndrome);
tcg_isread = tcg_const_i32(isread);
gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn,
tcg_isread);
tcg_temp_free_ptr(tmpptr);
tcg_temp_free_i32(tcg_syn);
tcg_temp_free_i32(tcg_isread);
}
/* Handle special cases first */
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
case ARM_CP_NOP:
return 0;
case ARM_CP_WFI:
if (isread) {
return 1;
}
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFI;
return 0;
default:
break;
}
if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
gen_io_start();
}
if (isread) {
/* Read */
if (is64) {
TCGv_i64 tmp64;
TCGv_i32 tmp;
if (ri->type & ARM_CP_CONST) {
tmp64 = tcg_const_i64(ri->resetvalue);
} else if (ri->readfn) {
TCGv_ptr tmpptr;
tmp64 = tcg_temp_new_i64();
tmpptr = tcg_const_ptr(ri);
gen_helper_get_cp_reg64(tmp64, cpu_env, tmpptr);
tcg_temp_free_ptr(tmpptr);
} else {
tmp64 = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset);
}
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
store_reg(s, rt, tmp);
tcg_gen_shri_i64(tmp64, tmp64, 32);
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
store_reg(s, rt2, tmp);
} else {
TCGv_i32 tmp;
if (ri->type & ARM_CP_CONST) {
tmp = tcg_const_i32(ri->resetvalue);
} else if (ri->readfn) {
TCGv_ptr tmpptr;
tmp = tcg_temp_new_i32();
tmpptr = tcg_const_ptr(ri);
gen_helper_get_cp_reg(tmp, cpu_env, tmpptr);
tcg_temp_free_ptr(tmpptr);
} else {
tmp = load_cpu_offset(ri->fieldoffset);
}
if (rt == 15) {
/* Destination register of r15 for 32 bit loads sets
* the condition codes from the high 4 bits of the value
*/
gen_set_nzcv(tmp);
tcg_temp_free_i32(tmp);
} else {
store_reg(s, rt, tmp);
}
}
} else {
/* Write */
if (ri->type & ARM_CP_CONST) {
/* If not forbidden by access permissions, treat as WI */
return 0;
}
if (is64) {
TCGv_i32 tmplo, tmphi;
TCGv_i64 tmp64 = tcg_temp_new_i64();
tmplo = load_reg(s, rt);
tmphi = load_reg(s, rt2);
tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi);
tcg_temp_free_i32(tmplo);
tcg_temp_free_i32(tmphi);
if (ri->writefn) {
TCGv_ptr tmpptr = tcg_const_ptr(ri);
gen_helper_set_cp_reg64(cpu_env, tmpptr, tmp64);
tcg_temp_free_ptr(tmpptr);
} else {
tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset);
}
tcg_temp_free_i64(tmp64);
} else {
if (ri->writefn) {
TCGv_i32 tmp;
TCGv_ptr tmpptr;
tmp = load_reg(s, rt);
tmpptr = tcg_const_ptr(ri);
gen_helper_set_cp_reg(cpu_env, tmpptr, tmp);
tcg_temp_free_ptr(tmpptr);
tcg_temp_free_i32(tmp);
} else {
TCGv_i32 tmp = load_reg(s, rt);
store_cpu_offset(tmp, ri->fieldoffset);
}
}
}
if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
/* I/O operations must end the TB here (whether read or write) */
gen_io_end();
gen_lookup_tb(s);
} else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/* We default to ending the TB on a coprocessor register write,
* but allow this to be suppressed by the register definition
* (usually only necessary to work around guest bugs).
*/
gen_lookup_tb(s);
}
return 0;
}
/* Unknown register; this might be a guest error or a QEMU
* unimplemented feature.
*/
if (is64) {
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
"64 bit system register cp:%d opc1: %d crm:%d "
"(%s)\n",
isread ? "read" : "write", cpnum, opc1, crm,
s->ns ? "non-secure" : "secure");
} else {
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
"system register cp:%d opc1:%d crn:%d crm:%d opc2:%d "
"(%s)\n",
isread ? "read" : "write", cpnum, opc1, crn, crm, opc2,
s->ns ? "non-secure" : "secure");
}
return 1;
}
/* Store a 64-bit value to a register pair. Clobbers val. */
static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val)
{
TCGv_i32 tmp;
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, val);
store_reg(s, rlow, tmp);
tmp = tcg_temp_new_i32();
tcg_gen_shri_i64(val, val, 32);
tcg_gen_extrl_i64_i32(tmp, val);
store_reg(s, rhigh, tmp);
}
/* load a 32-bit value from a register and perform a 64-bit accumulate. */
static void gen_addq_lo(DisasContext *s, TCGv_i64 val, int rlow)
{
TCGv_i64 tmp;
TCGv_i32 tmp2;
/* Load value and extend to 64 bits. */
tmp = tcg_temp_new_i64();
tmp2 = load_reg(s, rlow);
tcg_gen_extu_i32_i64(tmp, tmp2);
tcg_temp_free_i32(tmp2);
tcg_gen_add_i64(val, val, tmp);
tcg_temp_free_i64(tmp);
}
/* load and add a 64-bit value from a register pair. */
static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh)
{
TCGv_i64 tmp;
TCGv_i32 tmpl;
TCGv_i32 tmph;
/* Load 64-bit value rd:rn. */
tmpl = load_reg(s, rlow);
tmph = load_reg(s, rhigh);
tmp = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(tmp, tmpl, tmph);
tcg_temp_free_i32(tmpl);
tcg_temp_free_i32(tmph);
tcg_gen_add_i64(val, val, tmp);
tcg_temp_free_i64(tmp);
}
/* Set N and Z flags from hi|lo. */
static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi)
{
tcg_gen_mov_i32(cpu_NF, hi);
tcg_gen_or_i32(cpu_ZF, lo, hi);
}
/* Load/Store exclusive instructions are implemented by remembering
the value/address loaded, and seeing if these are the same
when the store is performed. This should be sufficient to implement
the architecturally mandated semantics, and avoids having to monitor
regular stores. The compare vs the remembered value is done during
the cmpxchg operation, but we must compare the addresses manually. */
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
TCGv_i32 addr, int size)
{
TCGv_i32 tmp = tcg_temp_new_i32();
TCGMemOp opc = size | MO_ALIGN | s->be_data;
s->is_ldex = true;
if (size == 3) {
TCGv_i32 tmp2 = tcg_temp_new_i32();
TCGv_i64 t64 = tcg_temp_new_i64();
gen_aa32_ld_i64(s, t64, addr, get_mem_index(s), opc);
tcg_gen_mov_i64(cpu_exclusive_val, t64);
tcg_gen_extr_i64_i32(tmp, tmp2, t64);
tcg_temp_free_i64(t64);
store_reg(s, rt2, tmp2);
} else {
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc);
tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp);
}
store_reg(s, rt, tmp);
tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr);
}
static void gen_clrex(DisasContext *s)
{
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i32 addr, int size)
{
TCGv_i32 t0, t1, t2;
TCGv_i64 extaddr;
TCGv taddr;
TCGLabel *done_label;
TCGLabel *fail_label;
TCGMemOp opc = size | MO_ALIGN | s->be_data;
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) {
[addr] = {Rt};
{Rd} = 0;
} else {
{Rd} = 1;
} */
fail_label = gen_new_label();
done_label = gen_new_label();
extaddr = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(extaddr, addr);
tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label);
tcg_temp_free_i64(extaddr);
taddr = gen_aa32_addr(s, addr, opc);
t0 = tcg_temp_new_i32();
t1 = load_reg(s, rt);
if (size == 3) {
TCGv_i64 o64 = tcg_temp_new_i64();
TCGv_i64 n64 = tcg_temp_new_i64();
t2 = load_reg(s, rt2);
tcg_gen_concat_i32_i64(n64, t1, t2);
tcg_temp_free_i32(t2);
gen_aa32_frob64(s, n64);
tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64,
get_mem_index(s), opc);
tcg_temp_free_i64(n64);
gen_aa32_frob64(s, o64);
tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val);
tcg_gen_extrl_i64_i32(t0, o64);
tcg_temp_free_i64(o64);
} else {
t2 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val);
tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc);
tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2);
tcg_temp_free_i32(t2);
}
tcg_temp_free_i32(t1);
tcg_temp_free(taddr);
tcg_gen_mov_i32(cpu_R[rd], t0);
tcg_temp_free_i32(t0);
tcg_gen_br(done_label);
gen_set_label(fail_label);
tcg_gen_movi_i32(cpu_R[rd], 1);
gen_set_label(done_label);
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
/* gen_srs:
* @env: CPUARMState
* @s: DisasContext
* @mode: mode field from insn (which stack to store to)
* @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn
* @writeback: true if writeback bit set
*
* Generate code for the SRS (Store Return State) insn.
*/
static void gen_srs(DisasContext *s,
uint32_t mode, uint32_t amode, bool writeback)
{
int32_t offset;
TCGv_i32 addr, tmp;
bool undef = false;
/* SRS is:
* - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1
* and specified mode is monitor mode
* - UNDEFINED in Hyp mode
* - UNPREDICTABLE in User or System mode
* - UNPREDICTABLE if the specified mode is:
* -- not implemented
* -- not a valid mode number
* -- a mode that's at a higher exception level
* -- Monitor, if we are Non-secure
* For the UNPREDICTABLE cases we choose to UNDEF.
*/
if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) {
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), 3);
return;
}
if (s->current_el == 0 || s->current_el == 2) {
undef = true;
}
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_FIQ:
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_SVC:
case ARM_CPU_MODE_ABT:
case ARM_CPU_MODE_UND:
case ARM_CPU_MODE_SYS:
break;
case ARM_CPU_MODE_HYP:
if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) {
undef = true;
}
break;
case ARM_CPU_MODE_MON:
/* No need to check specifically for "are we non-secure" because
* we've already made EL0 UNDEF and handled the trap for S-EL1;
* so if this isn't EL3 then we must be non-secure.
*/
if (s->current_el != 3) {
undef = true;
}
break;
default:
undef = true;
}
if (undef) {
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
return;
}
addr = tcg_temp_new_i32();
tmp = tcg_const_i32(mode);
/* get_r13_banked() will raise an exception if called from System mode */
gen_set_condexec(s);
gen_set_pc_im(s, s->pc - 4);
gen_helper_get_r13_banked(addr, cpu_env, tmp);
tcg_temp_free_i32(tmp);
switch (amode) {
case 0: /* DA */
offset = -4;
break;
case 1: /* IA */
offset = 0;
break;
case 2: /* DB */
offset = -8;
break;
case 3: /* IB */
offset = 4;
break;
default:
abort();
}
tcg_gen_addi_i32(addr, addr, offset);
tmp = load_reg(s, 14);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
tmp = load_cpu_field(spsr);
tcg_gen_addi_i32(addr, addr, 4);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
if (writeback) {
switch (amode) {
case 0:
offset = -8;
break;
case 1:
offset = 4;
break;
case 2:
offset = -4;
break;
case 3:
offset = 0;
break;
default:
abort();
}
tcg_gen_addi_i32(addr, addr, offset);
tmp = tcg_const_i32(mode);
gen_helper_set_r13_banked(cpu_env, tmp, addr);
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
s->is_jmp = DISAS_UPDATE;
}
static void disas_arm_insn(DisasContext *s, unsigned int insn)
{
unsigned int cond, val, op1, i, shift, rm, rs, rn, rd, sh;
TCGv_i32 tmp;
TCGv_i32 tmp2;
TCGv_i32 tmp3;
TCGv_i32 addr;
TCGv_i64 tmp64;
/* M variants do not implement ARM mode; this must raise the INVSTATE
* UsageFault exception.
*/
if (arm_dc_feature(s, ARM_FEATURE_M)) {
gen_exception_insn(s, 4, EXCP_INVSTATE, syn_uncategorized(),
default_exception_el(s));
return;
}
cond = insn >> 28;
if (cond == 0xf){
/* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we
* choose to UNDEF. In ARMv5 and above the space is used
* for miscellaneous unconditional instructions.
*/
ARCH(5);
/* Unconditional instructions. */
if (((insn >> 25) & 7) == 1) {
/* NEON Data processing. */
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
goto illegal_op;
}
if (disas_neon_data_insn(s, insn)) {
goto illegal_op;
}
return;
}
if ((insn & 0x0f100000) == 0x04000000) {
/* NEON load/store. */
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
goto illegal_op;
}
if (disas_neon_ls_insn(s, insn)) {
goto illegal_op;
}
return;
}
if ((insn & 0x0f000e10) == 0x0e000a00) {
/* VFP. */
if (disas_vfp_insn(s, insn)) {
goto illegal_op;
}
return;
}
if (((insn & 0x0f30f000) == 0x0510f000) ||
((insn & 0x0f30f010) == 0x0710f000)) {
if ((insn & (1 << 22)) == 0) {
/* PLDW; v7MP */
if (!arm_dc_feature(s, ARM_FEATURE_V7MP)) {
goto illegal_op;
}
}
/* Otherwise PLD; v5TE+ */
ARCH(5TE);
return;
}
if (((insn & 0x0f70f000) == 0x0450f000) ||
((insn & 0x0f70f010) == 0x0650f000)) {
ARCH(7);
return; /* PLI; V7 */
}
if (((insn & 0x0f700000) == 0x04100000) ||
((insn & 0x0f700010) == 0x06100000)) {
if (!arm_dc_feature(s, ARM_FEATURE_V7MP)) {
goto illegal_op;
}
return; /* v7MP: Unallocated memory hint: must NOP */
}
if ((insn & 0x0ffffdff) == 0x01010000) {
ARCH(6);
/* setend */
if (((insn >> 9) & 1) != !!(s->be_data == MO_BE)) {
gen_helper_setend(cpu_env);
s->is_jmp = DISAS_UPDATE;
}
return;
} else if ((insn & 0x0fffff00) == 0x057ff000) {
switch ((insn >> 4) & 0xf) {
case 1: /* clrex */
ARCH(6K);
gen_clrex(s);
return;
case 4: /* dsb */
case 5: /* dmb */
ARCH(7);
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
return;
case 6: /* isb */
/* We need to break the TB after this insn to execute
* self-modifying code correctly and also to take
* any pending interrupts immediately.
*/
gen_lookup_tb(s);
return;
default:
goto illegal_op;
}
} else if ((insn & 0x0e5fffe0) == 0x084d0500) {
/* srs */
ARCH(6);
gen_srs(s, (insn & 0x1f), (insn >> 23) & 3, insn & (1 << 21));
return;
} else if ((insn & 0x0e50ffe0) == 0x08100a00) {
/* rfe */
int32_t offset;
if (IS_USER(s))
goto illegal_op;
ARCH(6);
rn = (insn >> 16) & 0xf;
addr = load_reg(s, rn);
i = (insn >> 23) & 3;
switch (i) {
case 0: offset = -4; break; /* DA */
case 1: offset = 0; break; /* IA */
case 2: offset = -8; break; /* DB */
case 3: offset = 4; break; /* IB */
default: abort();
}
if (offset)
tcg_gen_addi_i32(addr, addr, offset);
/* Load PC into tmp and CPSR into tmp2. */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
tcg_gen_addi_i32(addr, addr, 4);
tmp2 = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp2, addr, get_mem_index(s));
if (insn & (1 << 21)) {
/* Base writeback. */
switch (i) {
case 0: offset = -8; break;
case 1: offset = 4; break;
case 2: offset = -4; break;
case 3: offset = 0; break;
default: abort();
}
if (offset)
tcg_gen_addi_i32(addr, addr, offset);
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
gen_rfe(s, tmp, tmp2);
return;
} else if ((insn & 0x0e000000) == 0x0a000000) {
/* branch link and change to thumb (blx <offset>) */
int32_t offset;
val = (uint32_t)s->pc;
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
store_reg(s, 14, tmp);
/* Sign-extend the 24-bit offset */
offset = (((int32_t)insn) << 8) >> 8;
/* offset * 4 + bit24 * 2 + (thumb bit) */
val += (offset << 2) | ((insn >> 23) & 2) | 1;
/* pipeline offset */
val += 4;
/* protected by ARCH(5); above, near the start of uncond block */
gen_bx_im(s, val);
return;
} else if ((insn & 0x0e000f00) == 0x0c000100) {
if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
/* iWMMXt register transfer. */
if (extract32(s->c15_cpar, 1, 1)) {
if (!disas_iwmmxt_insn(s, insn)) {
return;
}
}
}
} else if ((insn & 0x0fe00000) == 0x0c400000) {
/* Coprocessor double register transfer. */
ARCH(5TE);
} else if ((insn & 0x0f000010) == 0x0e000010) {
/* Additional coprocessor register transfer. */
} else if ((insn & 0x0ff10020) == 0x01000000) {
uint32_t mask;
uint32_t val;
/* cps (privileged) */
if (IS_USER(s))
return;
mask = val = 0;
if (insn & (1 << 19)) {
if (insn & (1 << 8))
mask |= CPSR_A;
if (insn & (1 << 7))
mask |= CPSR_I;
if (insn & (1 << 6))
mask |= CPSR_F;
if (insn & (1 << 18))
val |= mask;
}
if (insn & (1 << 17)) {
mask |= CPSR_M;
val |= (insn & 0x1f);
}
if (mask) {
gen_set_psr_im(s, mask, 0, val);
}
return;
}
goto illegal_op;
}
if (cond != 0xe) {
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
arm_gen_test_cc(cond ^ 1, s->condlabel);
s->condjmp = 1;
}
if ((insn & 0x0f900000) == 0x03000000) {
if ((insn & (1 << 21)) == 0) {
ARCH(6T2);
rd = (insn >> 12) & 0xf;
val = ((insn >> 4) & 0xf000) | (insn & 0xfff);
if ((insn & (1 << 22)) == 0) {
/* MOVW */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
} else {
/* MOVT */
tmp = load_reg(s, rd);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_ori_i32(tmp, tmp, val << 16);
}
store_reg(s, rd, tmp);
} else {
if (((insn >> 12) & 0xf) != 0xf)
goto illegal_op;
if (((insn >> 16) & 0xf) == 0) {
gen_nop_hint(s, insn & 0xff);
} else {
/* CPSR = immediate */
val = insn & 0xff;
shift = ((insn >> 8) & 0xf) * 2;
if (shift)
val = (val >> shift) | (val << (32 - shift));
i = ((insn & (1 << 22)) != 0);
if (gen_set_psr_im(s, msr_mask(s, (insn >> 16) & 0xf, i),
i, val)) {
goto illegal_op;
}
}
}
} else if ((insn & 0x0f900000) == 0x01000000
&& (insn & 0x00000090) != 0x00000090) {
/* miscellaneous instructions */
op1 = (insn >> 21) & 3;
sh = (insn >> 4) & 0xf;
rm = insn & 0xf;
switch (sh) {
case 0x0: /* MSR, MRS */
if (insn & (1 << 9)) {
/* MSR (banked) and MRS (banked) */
int sysm = extract32(insn, 16, 4) |
(extract32(insn, 8, 1) << 4);
int r = extract32(insn, 22, 1);
if (op1 & 1) {
/* MSR (banked) */
gen_msr_banked(s, r, sysm, rm);
} else {
/* MRS (banked) */
int rd = extract32(insn, 12, 4);
gen_mrs_banked(s, r, sysm, rd);
}
break;
}
/* MSR, MRS (for PSRs) */
if (op1 & 1) {
/* PSR = reg */
tmp = load_reg(s, rm);
i = ((op1 & 2) != 0);
if (gen_set_psr(s, msr_mask(s, (insn >> 16) & 0xf, i), i, tmp))
goto illegal_op;
} else {
/* reg = PSR */
rd = (insn >> 12) & 0xf;
if (op1 & 2) {
if (IS_USER(s))
goto illegal_op;
tmp = load_cpu_field(spsr);
} else {
tmp = tcg_temp_new_i32();
gen_helper_cpsr_read(tmp, cpu_env);
}
store_reg(s, rd, tmp);
}
break;
case 0x1:
if (op1 == 1) {
/* branch/exchange thumb (bx). */
ARCH(4T);
tmp = load_reg(s, rm);
gen_bx(s, tmp);
} else if (op1 == 3) {
/* clz */
ARCH(5);
rd = (insn >> 12) & 0xf;
tmp = load_reg(s, rm);
tcg_gen_clzi_i32(tmp, tmp, 32);
store_reg(s, rd, tmp);
} else {
goto illegal_op;
}
break;
case 0x2:
if (op1 == 1) {
ARCH(5J); /* bxj */
/* Trivial implementation equivalent to bx. */
tmp = load_reg(s, rm);
gen_bx(s, tmp);
} else {
goto illegal_op;
}
break;
case 0x3:
if (op1 != 1)
goto illegal_op;
ARCH(5);
/* branch link/exchange thumb (blx) */
tmp = load_reg(s, rm);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, s->pc);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
break;
case 0x4:
{
/* crc32/crc32c */
uint32_t c = extract32(insn, 8, 4);
/* Check this CPU supports ARMv8 CRC instructions.
* op1 == 3 is UNPREDICTABLE but handle as UNDEFINED.
* Bits 8, 10 and 11 should be zero.
*/
if (!arm_dc_feature(s, ARM_FEATURE_CRC) || op1 == 0x3 ||
(c & 0xd) != 0) {
goto illegal_op;
}
rn = extract32(insn, 16, 4);
rd = extract32(insn, 12, 4);
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if (op1 == 0) {
tcg_gen_andi_i32(tmp2, tmp2, 0xff);
} else if (op1 == 1) {
tcg_gen_andi_i32(tmp2, tmp2, 0xffff);
}
tmp3 = tcg_const_i32(1 << op1);
if (c & 0x2) {
gen_helper_crc32c(tmp, tmp, tmp2, tmp3);
} else {
gen_helper_crc32(tmp, tmp, tmp2, tmp3);
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp3);
store_reg(s, rd, tmp);
break;
}
case 0x5: /* saturating add/subtract */
ARCH(5TE);
rd = (insn >> 12) & 0xf;
rn = (insn >> 16) & 0xf;
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rn);
if (op1 & 2)
gen_helper_double_saturate(tmp2, cpu_env, tmp2);
if (op1 & 1)
gen_helper_sub_saturate(tmp, cpu_env, tmp, tmp2);
else
gen_helper_add_saturate(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 7:
{
int imm16 = extract32(insn, 0, 4) | (extract32(insn, 8, 12) << 4);
switch (op1) {
case 0:
/* HLT */
gen_hlt(s, imm16);
break;
case 1:
/* bkpt */
ARCH(5);
gen_exception_insn(s, 4, EXCP_BKPT,
syn_aa32_bkpt(imm16, false),
default_exception_el(s));
break;
case 2:
/* Hypervisor call (v7) */
ARCH(7);
if (IS_USER(s)) {
goto illegal_op;
}
gen_hvc(s, imm16);
break;
case 3:
/* Secure monitor call (v6+) */
ARCH(6K);
if (IS_USER(s)) {
goto illegal_op;
}
gen_smc(s);
break;
default:
g_assert_not_reached();
}
break;
}
case 0x8: /* signed multiply */
case 0xa:
case 0xc:
case 0xe:
ARCH(5TE);
rs = (insn >> 8) & 0xf;
rn = (insn >> 12) & 0xf;
rd = (insn >> 16) & 0xf;
if (op1 == 1) {
/* (32 * 16) >> 16 */
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
if (sh & 4)
tcg_gen_sari_i32(tmp2, tmp2, 16);
else
gen_sxth(tmp2);
tmp64 = gen_muls_i64_i32(tmp, tmp2);
tcg_gen_shri_i64(tmp64, tmp64, 16);
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
if ((sh & 2) == 0) {
tmp2 = load_reg(s, rn);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
store_reg(s, rd, tmp);
} else {
/* 16 * 16 */
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
gen_mulxy(tmp, tmp2, sh & 2, sh & 4);
tcg_temp_free_i32(tmp2);
if (op1 == 2) {
tmp64 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_temp_free_i32(tmp);
gen_addq(s, tmp64, rn, rd);
gen_storeq_reg(s, rn, rd, tmp64);
tcg_temp_free_i64(tmp64);
} else {
if (op1 == 0) {
tmp2 = load_reg(s, rn);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
store_reg(s, rd, tmp);
}
}
break;
default:
goto illegal_op;
}
} else if (((insn & 0x0e000000) == 0 &&
(insn & 0x00000090) != 0x90) ||
((insn & 0x0e000000) == (1 << 25))) {
int set_cc, logic_cc, shiftop;
op1 = (insn >> 21) & 0xf;
set_cc = (insn >> 20) & 1;
logic_cc = table_logic_cc[op1] & set_cc;
/* data processing instruction */
if (insn & (1 << 25)) {
/* immediate operand */
val = insn & 0xff;
shift = ((insn >> 8) & 0xf) * 2;
if (shift) {
val = (val >> shift) | (val << (32 - shift));
}
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, val);
if (logic_cc && shift) {
gen_set_CF_bit31(tmp2);
}
} else {
/* register */
rm = (insn) & 0xf;
tmp2 = load_reg(s, rm);
shiftop = (insn >> 5) & 3;
if (!(insn & (1 << 4))) {
shift = (insn >> 7) & 0x1f;
gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
} else {
rs = (insn >> 8) & 0xf;
tmp = load_reg(s, rs);
gen_arm_shift_reg(tmp2, shiftop, tmp, logic_cc);
}
}
if (op1 != 0x0f && op1 != 0x0d) {
rn = (insn >> 16) & 0xf;
tmp = load_reg(s, rn);
} else {
TCGV_UNUSED_I32(tmp);
}
rd = (insn >> 12) & 0xf;
switch(op1) {
case 0x00:
tcg_gen_and_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, rd, tmp);
break;
case 0x01:
tcg_gen_xor_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, rd, tmp);
break;
case 0x02:
if (set_cc && rd == 15) {
/* SUBS r15, ... is used for exception return. */
if (IS_USER(s)) {
goto illegal_op;
}
gen_sub_CC(tmp, tmp, tmp2);
gen_exception_return(s, tmp);
} else {
if (set_cc) {
gen_sub_CC(tmp, tmp, tmp2);
} else {
tcg_gen_sub_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, rd, tmp);
}
break;
case 0x03:
if (set_cc) {
gen_sub_CC(tmp, tmp2, tmp);
} else {
tcg_gen_sub_i32(tmp, tmp2, tmp);
}
store_reg_bx(s, rd, tmp);
break;
case 0x04:
if (set_cc) {
gen_add_CC(tmp, tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, rd, tmp);
break;
case 0x05:
if (set_cc) {
gen_adc_CC(tmp, tmp, tmp2);
} else {
gen_add_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, rd, tmp);
break;
case 0x06:
if (set_cc) {
gen_sbc_CC(tmp, tmp, tmp2);
} else {
gen_sub_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, rd, tmp);
break;
case 0x07:
if (set_cc) {
gen_sbc_CC(tmp, tmp2, tmp);
} else {
gen_sub_carry(tmp, tmp2, tmp);
}
store_reg_bx(s, rd, tmp);
break;
case 0x08:
if (set_cc) {
tcg_gen_and_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
tcg_temp_free_i32(tmp);
break;
case 0x09:
if (set_cc) {
tcg_gen_xor_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
tcg_temp_free_i32(tmp);
break;
case 0x0a:
if (set_cc) {
gen_sub_CC(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp);
break;
case 0x0b:
if (set_cc) {
gen_add_CC(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp);
break;
case 0x0c:
tcg_gen_or_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, rd, tmp);
break;
case 0x0d:
if (logic_cc && rd == 15) {
/* MOVS r15, ... is used for exception return. */
if (IS_USER(s)) {
goto illegal_op;
}
gen_exception_return(s, tmp2);
} else {
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, rd, tmp2);
}
break;
case 0x0e:
tcg_gen_andc_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, rd, tmp);
break;
default:
case 0x0f:
tcg_gen_not_i32(tmp2, tmp2);
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, rd, tmp2);
break;
}
if (op1 != 0x0f && op1 != 0x0d) {
tcg_temp_free_i32(tmp2);
}
} else {
/* other instructions */
op1 = (insn >> 24) & 0xf;
switch(op1) {
case 0x0:
case 0x1:
/* multiplies, extra load/stores */
sh = (insn >> 5) & 3;
if (sh == 0) {
if (op1 == 0x0) {
rd = (insn >> 16) & 0xf;
rn = (insn >> 12) & 0xf;
rs = (insn >> 8) & 0xf;
rm = (insn) & 0xf;
op1 = (insn >> 20) & 0xf;
switch (op1) {
case 0: case 1: case 2: case 3: case 6:
/* 32 bit mul */
tmp = load_reg(s, rs);
tmp2 = load_reg(s, rm);
tcg_gen_mul_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (insn & (1 << 22)) {
/* Subtract (mls) */
ARCH(6T2);
tmp2 = load_reg(s, rn);
tcg_gen_sub_i32(tmp, tmp2, tmp);
tcg_temp_free_i32(tmp2);
} else if (insn & (1 << 21)) {
/* Add */
tmp2 = load_reg(s, rn);
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
if (insn & (1 << 20))
gen_logic_CC(tmp);
store_reg(s, rd, tmp);
break;
case 4:
/* 64 bit mul double accumulate (UMAAL) */
ARCH(6);
tmp = load_reg(s, rs);
tmp2 = load_reg(s, rm);
tmp64 = gen_mulu_i64_i32(tmp, tmp2);
gen_addq_lo(s, tmp64, rn);
gen_addq_lo(s, tmp64, rd);
gen_storeq_reg(s, rn, rd, tmp64);
tcg_temp_free_i64(tmp64);
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
/* 64 bit mul: UMULL, UMLAL, SMULL, SMLAL. */
tmp = load_reg(s, rs);
tmp2 = load_reg(s, rm);
if (insn & (1 << 22)) {
tcg_gen_muls2_i32(tmp, tmp2, tmp, tmp2);
} else {
tcg_gen_mulu2_i32(tmp, tmp2, tmp, tmp2);
}
if (insn & (1 << 21)) { /* mult accumulate */
TCGv_i32 al = load_reg(s, rn);
TCGv_i32 ah = load_reg(s, rd);
tcg_gen_add2_i32(tmp, tmp2, tmp, tmp2, al, ah);
tcg_temp_free_i32(al);
tcg_temp_free_i32(ah);
}
if (insn & (1 << 20)) {
gen_logicq_cc(tmp, tmp2);
}
store_reg(s, rn, tmp);
store_reg(s, rd, tmp2);
break;
default:
goto illegal_op;
}
} else {
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
if (insn & (1 << 23)) {
/* load/store exclusive */
int op2 = (insn >> 8) & 3;
op1 = (insn >> 21) & 0x3;
switch (op2) {
case 0: /* lda/stl */
if (op1 == 1) {
goto illegal_op;
}
ARCH(8);
break;
case 1: /* reserved */
goto illegal_op;
case 2: /* ldaex/stlex */
ARCH(8);
break;
case 3: /* ldrex/strex */
if (op1) {
ARCH(6K);
} else {
ARCH(6);
}
break;
}
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
/* Since the emulation does not have barriers,
the acquire/release semantics need no special
handling */
if (op2 == 0) {
if (insn & (1 << 20)) {
tmp = tcg_temp_new_i32();
switch (op1) {
case 0: /* lda */
gen_aa32_ld32u_iss(s, tmp, addr,
get_mem_index(s),
rd | ISSIsAcqRel);
break;
case 2: /* ldab */
gen_aa32_ld8u_iss(s, tmp, addr,
get_mem_index(s),
rd | ISSIsAcqRel);
break;
case 3: /* ldah */
gen_aa32_ld16u_iss(s, tmp, addr,
get_mem_index(s),
rd | ISSIsAcqRel);
break;
default:
abort();
}
store_reg(s, rd, tmp);
} else {
rm = insn & 0xf;
tmp = load_reg(s, rm);
switch (op1) {
case 0: /* stl */
gen_aa32_st32_iss(s, tmp, addr,
get_mem_index(s),
rm | ISSIsAcqRel);
break;
case 2: /* stlb */
gen_aa32_st8_iss(s, tmp, addr,
get_mem_index(s),
rm | ISSIsAcqRel);
break;
case 3: /* stlh */
gen_aa32_st16_iss(s, tmp, addr,
get_mem_index(s),
rm | ISSIsAcqRel);
break;
default:
abort();
}
tcg_temp_free_i32(tmp);
}
} else if (insn & (1 << 20)) {
switch (op1) {
case 0: /* ldrex */
gen_load_exclusive(s, rd, 15, addr, 2);
break;
case 1: /* ldrexd */
gen_load_exclusive(s, rd, rd + 1, addr, 3);
break;
case 2: /* ldrexb */
gen_load_exclusive(s, rd, 15, addr, 0);
break;
case 3: /* ldrexh */
gen_load_exclusive(s, rd, 15, addr, 1);
break;
default:
abort();
}
} else {
rm = insn & 0xf;
switch (op1) {
case 0: /* strex */
gen_store_exclusive(s, rd, rm, 15, addr, 2);
break;
case 1: /* strexd */
gen_store_exclusive(s, rd, rm, rm + 1, addr, 3);
break;
case 2: /* strexb */
gen_store_exclusive(s, rd, rm, 15, addr, 0);
break;
case 3: /* strexh */
gen_store_exclusive(s, rd, rm, 15, addr, 1);
break;
default:
abort();
}
}
tcg_temp_free_i32(addr);
} else {
TCGv taddr;
TCGMemOp opc = s->be_data;
/* SWP instruction */
rm = (insn) & 0xf;
if (insn & (1 << 22)) {
opc |= MO_UB;
} else {
opc |= MO_UL | MO_ALIGN;
}
addr = load_reg(s, rn);
taddr = gen_aa32_addr(s, addr, opc);
tcg_temp_free_i32(addr);
tmp = load_reg(s, rm);
tcg_gen_atomic_xchg_i32(tmp, taddr, tmp,
get_mem_index(s), opc);
tcg_temp_free(taddr);
store_reg(s, rd, tmp);
}
}
} else {
int address_offset;
bool load = insn & (1 << 20);
bool wbit = insn & (1 << 21);
bool pbit = insn & (1 << 24);
bool doubleword = false;
ISSInfo issinfo;
/* Misc load/store */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
/* ISS not valid if writeback */
issinfo = (pbit & !wbit) ? rd : ISSInvalid;
if (!load && (sh & 2)) {
/* doubleword */
ARCH(5TE);
if (rd & 1) {
/* UNPREDICTABLE; we choose to UNDEF */
goto illegal_op;
}
load = (sh & 1) == 0;
doubleword = true;
}
addr = load_reg(s, rn);
if (pbit) {
gen_add_datah_offset(s, insn, 0, addr);
}
address_offset = 0;
if (doubleword) {
if (!load) {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = load_reg(s, rd + 1);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
} else {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
store_reg(s, rd, tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
rd++;
}
address_offset = -4;
} else if (load) {
/* load */
tmp = tcg_temp_new_i32();
switch (sh) {
case 1:
gen_aa32_ld16u_iss(s, tmp, addr, get_mem_index(s),
issinfo);
break;
case 2:
gen_aa32_ld8s_iss(s, tmp, addr, get_mem_index(s),
issinfo);
break;
default:
case 3:
gen_aa32_ld16s_iss(s, tmp, addr, get_mem_index(s),
issinfo);
break;
}
} else {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st16_iss(s, tmp, addr, get_mem_index(s), issinfo);
tcg_temp_free_i32(tmp);
}
/* Perform base writeback before the loaded value to
ensure correct behavior with overlapping index registers.
ldrd with base writeback is undefined if the
destination and index registers overlap. */
if (!pbit) {
gen_add_datah_offset(s, insn, address_offset, addr);
store_reg(s, rn, addr);
} else if (wbit) {
if (address_offset)
tcg_gen_addi_i32(addr, addr, address_offset);
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
if (load) {
/* Complete the load. */
store_reg(s, rd, tmp);
}
}
break;
case 0x4:
case 0x5:
goto do_ldst;
case 0x6:
case 0x7:
if (insn & (1 << 4)) {
ARCH(6);
/* Armv6 Media instructions. */
rm = insn & 0xf;
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
rs = (insn >> 8) & 0xf;
switch ((insn >> 23) & 3) {
case 0: /* Parallel add/subtract. */
op1 = (insn >> 20) & 7;
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
sh = (insn >> 5) & 7;
if ((op1 & 3) == 0 || sh == 5 || sh == 6)
goto illegal_op;
gen_arm_parallel_addsub(op1, sh, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 1:
if ((insn & 0x00700020) == 0) {
/* Halfword pack. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
shift = (insn >> 7) & 0x1f;
if (insn & (1 << 6)) {
/* pkhtb */
if (shift == 0)
shift = 31;
tcg_gen_sari_i32(tmp2, tmp2, shift);
tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
tcg_gen_ext16u_i32(tmp2, tmp2);
} else {
/* pkhbt */
if (shift)
tcg_gen_shli_i32(tmp2, tmp2, shift);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
}
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((insn & 0x00200020) == 0x00200000) {
/* [us]sat */
tmp = load_reg(s, rm);
shift = (insn >> 7) & 0x1f;
if (insn & (1 << 6)) {
if (shift == 0)
shift = 31;
tcg_gen_sari_i32(tmp, tmp, shift);
} else {
tcg_gen_shli_i32(tmp, tmp, shift);
}
sh = (insn >> 16) & 0x1f;
tmp2 = tcg_const_i32(sh);
if (insn & (1 << 22))
gen_helper_usat(tmp, cpu_env, tmp, tmp2);
else
gen_helper_ssat(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((insn & 0x00300fe0) == 0x00200f20) {
/* [us]sat16 */
tmp = load_reg(s, rm);
sh = (insn >> 16) & 0x1f;
tmp2 = tcg_const_i32(sh);
if (insn & (1 << 22))
gen_helper_usat16(tmp, cpu_env, tmp, tmp2);
else
gen_helper_ssat16(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((insn & 0x00700fe0) == 0x00000fa0) {
/* Select bytes. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
tmp3 = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE));
gen_helper_sel_flags(tmp, tmp3, tmp, tmp2);
tcg_temp_free_i32(tmp3);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((insn & 0x000003e0) == 0x00000060) {
tmp = load_reg(s, rm);
shift = (insn >> 10) & 3;
/* ??? In many cases it's not necessary to do a
rotate, a shift is sufficient. */
if (shift != 0)
tcg_gen_rotri_i32(tmp, tmp, shift * 8);
op1 = (insn >> 20) & 7;
switch (op1) {
case 0: gen_sxtb16(tmp); break;
case 2: gen_sxtb(tmp); break;
case 3: gen_sxth(tmp); break;
case 4: gen_uxtb16(tmp); break;
case 6: gen_uxtb(tmp); break;
case 7: gen_uxth(tmp); break;
default: goto illegal_op;
}
if (rn != 15) {
tmp2 = load_reg(s, rn);
if ((op1 & 3) == 0) {
gen_add16(tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
}
store_reg(s, rd, tmp);
} else if ((insn & 0x003f0f60) == 0x003f0f20) {
/* rev */
tmp = load_reg(s, rm);
if (insn & (1 << 22)) {
if (insn & (1 << 7)) {
gen_revsh(tmp);
} else {
ARCH(6T2);
gen_helper_rbit(tmp, tmp);
}
} else {
if (insn & (1 << 7))
gen_rev16(tmp);
else
tcg_gen_bswap32_i32(tmp, tmp);
}
store_reg(s, rd, tmp);
} else {
goto illegal_op;
}
break;
case 2: /* Multiplies (Type 3). */
switch ((insn >> 20) & 0x7) {
case 5:
if (((insn >> 6) ^ (insn >> 7)) & 1) {
/* op2 not 00x or 11x : UNDEF */
goto illegal_op;
}
/* Signed multiply most significant [accumulate].
(SMMUL, SMMLA, SMMLS) */
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
tmp64 = gen_muls_i64_i32(tmp, tmp2);
if (rd != 15) {
tmp = load_reg(s, rd);
if (insn & (1 << 6)) {
tmp64 = gen_subq_msw(tmp64, tmp);
} else {
tmp64 = gen_addq_msw(tmp64, tmp);
}
}
if (insn & (1 << 5)) {
tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u);
}
tcg_gen_shri_i64(tmp64, tmp64, 32);
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
store_reg(s, rn, tmp);
break;
case 0:
case 4:
/* SMLAD, SMUAD, SMLSD, SMUSD, SMLALD, SMLSLD */
if (insn & (1 << 7)) {
goto illegal_op;
}
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
if (insn & (1 << 5))
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
if (insn & (1 << 22)) {
/* smlald, smlsld */
TCGv_i64 tmp64_2;
tmp64 = tcg_temp_new_i64();
tmp64_2 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_gen_ext_i32_i64(tmp64_2, tmp2);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
if (insn & (1 << 6)) {
tcg_gen_sub_i64(tmp64, tmp64, tmp64_2);
} else {
tcg_gen_add_i64(tmp64, tmp64, tmp64_2);
}
tcg_temp_free_i64(tmp64_2);
gen_addq(s, tmp64, rd, rn);
gen_storeq_reg(s, rd, rn, tmp64);
tcg_temp_free_i64(tmp64);
} else {
/* smuad, smusd, smlad, smlsd */
if (insn & (1 << 6)) {
/* This subtraction cannot overflow. */
tcg_gen_sub_i32(tmp, tmp, tmp2);
} else {
/* This addition cannot overflow 32 bits;
* however it may overflow considered as a
* signed operation, in which case we must set
* the Q flag.
*/
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
if (rd != 15)
{
tmp2 = load_reg(s, rd);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
store_reg(s, rn, tmp);
}
break;
case 1:
case 3:
/* SDIV, UDIV */
if (!arm_dc_feature(s, ARM_FEATURE_ARM_DIV)) {
goto illegal_op;
}
if (((insn >> 5) & 7) || (rd != 15)) {
goto illegal_op;
}
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
if (insn & (1 << 21)) {
gen_helper_udiv(tmp, tmp, tmp2);
} else {
gen_helper_sdiv(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
store_reg(s, rn, tmp);
break;
default:
goto illegal_op;
}
break;
case 3:
op1 = ((insn >> 17) & 0x38) | ((insn >> 5) & 7);
switch (op1) {
case 0: /* Unsigned sum of absolute differences. */
ARCH(6);
tmp = load_reg(s, rm);
tmp2 = load_reg(s, rs);
gen_helper_usad8(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (rd != 15) {
tmp2 = load_reg(s, rd);
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
store_reg(s, rn, tmp);
break;
case 0x20: case 0x24: case 0x28: case 0x2c:
/* Bitfield insert/clear. */
ARCH(6T2);
shift = (insn >> 7) & 0x1f;
i = (insn >> 16) & 0x1f;
if (i < shift) {
/* UNPREDICTABLE; we choose to UNDEF */
goto illegal_op;
}
i = i + 1 - shift;
if (rm == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rm);
}
if (i != 32) {
tmp2 = load_reg(s, rd);
tcg_gen_deposit_i32(tmp, tmp2, tmp, shift, i);
tcg_temp_free_i32(tmp2);
}
store_reg(s, rd, tmp);
break;
case 0x12: case 0x16: case 0x1a: case 0x1e: /* sbfx */
case 0x32: case 0x36: case 0x3a: case 0x3e: /* ubfx */
ARCH(6T2);
tmp = load_reg(s, rm);
shift = (insn >> 7) & 0x1f;
i = ((insn >> 16) & 0x1f) + 1;
if (shift + i > 32)
goto illegal_op;
if (i < 32) {
if (op1 & 0x20) {
tcg_gen_extract_i32(tmp, tmp, shift, i);
} else {
tcg_gen_sextract_i32(tmp, tmp, shift, i);
}
}
store_reg(s, rd, tmp);
break;
default:
goto illegal_op;
}
break;
}
break;
}
do_ldst:
/* Check for undefined extension instructions
* per the ARM Bible IE:
* xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
*/
sh = (0xf << 20) | (0xf << 4);
if (op1 == 0x7 && ((insn & sh) == sh))
{
goto illegal_op;
}
/* load/store byte/word */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
tmp2 = load_reg(s, rn);
if ((insn & 0x01200000) == 0x00200000) {
/* ldrt/strt */
i = get_a32_user_mem_index(s);
} else {
i = get_mem_index(s);
}
if (insn & (1 << 24))
gen_add_data_offset(s, insn, tmp2);
if (insn & (1 << 20)) {
/* load */
tmp = tcg_temp_new_i32();
if (insn & (1 << 22)) {
gen_aa32_ld8u_iss(s, tmp, tmp2, i, rd);
} else {
gen_aa32_ld32u_iss(s, tmp, tmp2, i, rd);
}
} else {
/* store */
tmp = load_reg(s, rd);
if (insn & (1 << 22)) {
gen_aa32_st8_iss(s, tmp, tmp2, i, rd);
} else {
gen_aa32_st32_iss(s, tmp, tmp2, i, rd);
}
tcg_temp_free_i32(tmp);
}
if (!(insn & (1 << 24))) {
gen_add_data_offset(s, insn, tmp2);
store_reg(s, rn, tmp2);
} else if (insn & (1 << 21)) {
store_reg(s, rn, tmp2);
} else {
tcg_temp_free_i32(tmp2);
}
if (insn & (1 << 20)) {
/* Complete the load. */
store_reg_from_load(s, rd, tmp);
}
break;
case 0x08:
case 0x09:
{
int j, n, loaded_base;
bool exc_return = false;
bool is_load = extract32(insn, 20, 1);
bool user = false;
TCGv_i32 loaded_var;
/* load/store multiple words */
/* XXX: store correct base if write back */
if (insn & (1 << 22)) {
/* LDM (user), LDM (exception return) and STM (user) */
if (IS_USER(s))
goto illegal_op; /* only usable in supervisor mode */
if (is_load && extract32(insn, 15, 1)) {
exc_return = true;
} else {
user = true;
}
}
rn = (insn >> 16) & 0xf;
addr = load_reg(s, rn);
/* compute total size */
loaded_base = 0;
TCGV_UNUSED_I32(loaded_var);
n = 0;
for(i=0;i<16;i++) {
if (insn & (1 << i))
n++;
}
/* XXX: test invalid n == 0 case ? */
if (insn & (1 << 23)) {
if (insn & (1 << 24)) {
/* pre increment */
tcg_gen_addi_i32(addr, addr, 4);
} else {
/* post increment */
}
} else {
if (insn & (1 << 24)) {
/* pre decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
} else {
/* post decrement */
if (n != 1)
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
}
j = 0;
for(i=0;i<16;i++) {
if (insn & (1 << i)) {
if (is_load) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
if (user) {
tmp2 = tcg_const_i32(i);
gen_helper_set_user_reg(cpu_env, tmp2, tmp);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
} else if (i == rn) {
loaded_var = tmp;
loaded_base = 1;
} else if (rn == 15 && exc_return) {
store_pc_exc_ret(s, tmp);
} else {
store_reg_from_load(s, i, tmp);
}
} else {
/* store */
if (i == 15) {
/* special case: r15 = PC + 8 */
val = (long)s->pc + 4;
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
} else if (user) {
tmp = tcg_temp_new_i32();
tmp2 = tcg_const_i32(i);
gen_helper_get_user_reg(tmp, cpu_env, tmp2);
tcg_temp_free_i32(tmp2);
} else {
tmp = load_reg(s, i);
}
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
j++;
/* no need to add after the last transfer */
if (j != n)
tcg_gen_addi_i32(addr, addr, 4);
}
}
if (insn & (1 << 21)) {
/* write back */
if (insn & (1 << 23)) {
if (insn & (1 << 24)) {
/* pre increment */
} else {
/* post increment */
tcg_gen_addi_i32(addr, addr, 4);
}
} else {
if (insn & (1 << 24)) {
/* pre decrement */
if (n != 1)
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
} else {
/* post decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
}
}
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
if (loaded_base) {
store_reg(s, rn, loaded_var);
}
if (exc_return) {
/* Restore CPSR from SPSR. */
tmp = load_cpu_field(spsr);
gen_helper_cpsr_write_eret(cpu_env, tmp);
tcg_temp_free_i32(tmp);
s->is_jmp = DISAS_JUMP;
}
}
break;
case 0xa:
case 0xb:
{
int32_t offset;
/* branch (and link) */
val = (int32_t)s->pc;
if (insn & (1 << 24)) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, val);
store_reg(s, 14, tmp);
}
offset = sextract32(insn << 2, 0, 26);
val += offset + 4;
gen_jmp(s, val);
}
break;
case 0xc:
case 0xd:
case 0xe:
if (((insn >> 8) & 0xe) == 10) {
/* VFP. */
if (disas_vfp_insn(s, insn)) {
goto illegal_op;
}
} else if (disas_coproc_insn(s, insn)) {
/* Coprocessor. */
goto illegal_op;
}
break;
case 0xf:
/* swi */
gen_set_pc_im(s, s->pc);
s->svc_imm = extract32(insn, 0, 24);
s->is_jmp = DISAS_SWI;
break;
default:
illegal_op:
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
break;
}
}
}
/* Return true if this is a Thumb-2 logical op. */
static int
thumb2_logic_op(int op)
{
return (op < 8);
}
/* Generate code for a Thumb-2 data processing operation. If CONDS is nonzero
then set condition code flags based on the result of the operation.
If SHIFTER_OUT is nonzero then set the carry flag for logical operations
to the high bit of T1.
Returns zero if the opcode is valid. */
static int
gen_thumb2_data_op(DisasContext *s, int op, int conds, uint32_t shifter_out,
TCGv_i32 t0, TCGv_i32 t1)
{
int logic_cc;
logic_cc = 0;
switch (op) {
case 0: /* and */
tcg_gen_and_i32(t0, t0, t1);
logic_cc = conds;
break;
case 1: /* bic */
tcg_gen_andc_i32(t0, t0, t1);
logic_cc = conds;
break;
case 2: /* orr */
tcg_gen_or_i32(t0, t0, t1);
logic_cc = conds;
break;
case 3: /* orn */
tcg_gen_orc_i32(t0, t0, t1);
logic_cc = conds;
break;
case 4: /* eor */
tcg_gen_xor_i32(t0, t0, t1);
logic_cc = conds;
break;
case 8: /* add */
if (conds)
gen_add_CC(t0, t0, t1);
else
tcg_gen_add_i32(t0, t0, t1);
break;
case 10: /* adc */
if (conds)
gen_adc_CC(t0, t0, t1);
else
gen_adc(t0, t1);
break;
case 11: /* sbc */
if (conds) {
gen_sbc_CC(t0, t0, t1);
} else {
gen_sub_carry(t0, t0, t1);
}
break;
case 13: /* sub */
if (conds)
gen_sub_CC(t0, t0, t1);
else
tcg_gen_sub_i32(t0, t0, t1);
break;
case 14: /* rsb */
if (conds)
gen_sub_CC(t0, t1, t0);
else
tcg_gen_sub_i32(t0, t1, t0);
break;
default: /* 5, 6, 7, 9, 12, 15. */
return 1;
}
if (logic_cc) {
gen_logic_CC(t0);
if (shifter_out)
gen_set_CF_bit31(t1);
}
return 0;
}
/* Translate a 32-bit thumb instruction. Returns nonzero if the instruction
is not legal. */
static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw1)
{
uint32_t insn, imm, shift, offset;
uint32_t rd, rn, rm, rs;
TCGv_i32 tmp;
TCGv_i32 tmp2;
TCGv_i32 tmp3;
TCGv_i32 addr;
TCGv_i64 tmp64;
int op;
int shiftop;
int conds;
int logic_cc;
if (!(arm_dc_feature(s, ARM_FEATURE_THUMB2)
|| arm_dc_feature(s, ARM_FEATURE_M))) {
/* Thumb-1 cores may need to treat bl and blx as a pair of
16-bit instructions to get correct prefetch abort behavior. */
insn = insn_hw1;
if ((insn & (1 << 12)) == 0) {
ARCH(5);
/* Second half of blx. */
offset = ((insn & 0x7ff) << 1);
tmp = load_reg(s, 14);
tcg_gen_addi_i32(tmp, tmp, offset);
tcg_gen_andi_i32(tmp, tmp, 0xfffffffc);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, s->pc | 1);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
return 0;
}
if (insn & (1 << 11)) {
/* Second half of bl. */
offset = ((insn & 0x7ff) << 1) | 1;
tmp = load_reg(s, 14);
tcg_gen_addi_i32(tmp, tmp, offset);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, s->pc | 1);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
return 0;
}
if ((s->pc & ~TARGET_PAGE_MASK) == 0) {
/* Instruction spans a page boundary. Implement it as two
16-bit instructions in case the second half causes an
prefetch abort. */
offset = ((int32_t)insn << 21) >> 9;
tcg_gen_movi_i32(cpu_R[14], s->pc + 2 + offset);
return 0;
}
/* Fall through to 32-bit decode. */
}
insn = arm_lduw_code(env, s->pc, s->sctlr_b);
s->pc += 2;
insn |= (uint32_t)insn_hw1 << 16;
if ((insn & 0xf800e800) != 0xf000e800) {
ARCH(6T2);
}
rn = (insn >> 16) & 0xf;
rs = (insn >> 12) & 0xf;
rd = (insn >> 8) & 0xf;
rm = insn & 0xf;
switch ((insn >> 25) & 0xf) {
case 0: case 1: case 2: case 3:
/* 16-bit instructions. Should never happen. */
abort();
case 4:
if (insn & (1 << 22)) {
/* Other load/store, table branch. */
if (insn & 0x01200000) {
/* Load/store doubleword. */
if (rn == 15) {
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc & ~3);
} else {
addr = load_reg(s, rn);
}
offset = (insn & 0xff) * 4;
if ((insn & (1 << 23)) == 0)
offset = -offset;
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, offset);
offset = 0;
}
if (insn & (1 << 20)) {
/* ldrd */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
store_reg(s, rs, tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
store_reg(s, rd, tmp);
} else {
/* strd */
tmp = load_reg(s, rs);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = load_reg(s, rd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
if (insn & (1 << 21)) {
/* Base writeback. */
if (rn == 15)
goto illegal_op;
tcg_gen_addi_i32(addr, addr, offset - 4);
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
} else if ((insn & (1 << 23)) == 0) {
/* Load/store exclusive word. */
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
tcg_gen_addi_i32(addr, addr, (insn & 0xff) << 2);
if (insn & (1 << 20)) {
gen_load_exclusive(s, rs, 15, addr, 2);
} else {
gen_store_exclusive(s, rd, rs, 15, addr, 2);
}
tcg_temp_free_i32(addr);
} else if ((insn & (7 << 5)) == 0) {
/* Table Branch. */
if (rn == 15) {
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc);
} else {
addr = load_reg(s, rn);
}
tmp = load_reg(s, rm);
tcg_gen_add_i32(addr, addr, tmp);
if (insn & (1 << 4)) {
/* tbh */
tcg_gen_add_i32(addr, addr, tmp);
tcg_temp_free_i32(tmp);
tmp = tcg_temp_new_i32();
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
} else { /* tbb */
tcg_temp_free_i32(tmp);
tmp = tcg_temp_new_i32();
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i32(addr);
tcg_gen_shli_i32(tmp, tmp, 1);
tcg_gen_addi_i32(tmp, tmp, s->pc);
store_reg(s, 15, tmp);
} else {
int op2 = (insn >> 6) & 0x3;
op = (insn >> 4) & 0x3;
switch (op2) {
case 0:
goto illegal_op;
case 1:
/* Load/store exclusive byte/halfword/doubleword */
if (op == 2) {
goto illegal_op;
}
ARCH(7);
break;
case 2:
/* Load-acquire/store-release */
if (op == 3) {
goto illegal_op;
}
/* Fall through */
case 3:
/* Load-acquire/store-release exclusive */
ARCH(8);
break;
}
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
if (!(op2 & 1)) {
if (insn & (1 << 20)) {
tmp = tcg_temp_new_i32();
switch (op) {
case 0: /* ldab */
gen_aa32_ld8u_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
case 1: /* ldah */
gen_aa32_ld16u_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
case 2: /* lda */
gen_aa32_ld32u_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
default:
abort();
}
store_reg(s, rs, tmp);
} else {
tmp = load_reg(s, rs);
switch (op) {
case 0: /* stlb */
gen_aa32_st8_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
case 1: /* stlh */
gen_aa32_st16_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
case 2: /* stl */
gen_aa32_st32_iss(s, tmp, addr, get_mem_index(s),
rs | ISSIsAcqRel);
break;
default:
abort();
}
tcg_temp_free_i32(tmp);
}
} else if (insn & (1 << 20)) {
gen_load_exclusive(s, rs, rd, addr, op);
} else {
gen_store_exclusive(s, rm, rs, rd, addr, op);
}
tcg_temp_free_i32(addr);
}
} else {
/* Load/store multiple, RFE, SRS. */
if (((insn >> 23) & 1) == ((insn >> 24) & 1)) {
/* RFE, SRS: not available in user mode or on M profile */
if (IS_USER(s) || arm_dc_feature(s, ARM_FEATURE_M)) {
goto illegal_op;
}
if (insn & (1 << 20)) {
/* rfe */
addr = load_reg(s, rn);
if ((insn & (1 << 24)) == 0)
tcg_gen_addi_i32(addr, addr, -8);
/* Load PC into tmp and CPSR into tmp2. */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
tcg_gen_addi_i32(addr, addr, 4);
tmp2 = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp2, addr, get_mem_index(s));
if (insn & (1 << 21)) {
/* Base writeback. */
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, 4);
} else {
tcg_gen_addi_i32(addr, addr, -4);
}
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
gen_rfe(s, tmp, tmp2);
} else {
/* srs */
gen_srs(s, (insn & 0x1f), (insn & (1 << 24)) ? 1 : 2,
insn & (1 << 21));
}
} else {
int i, loaded_base = 0;
TCGv_i32 loaded_var;
/* Load/store multiple. */
addr = load_reg(s, rn);
offset = 0;
for (i = 0; i < 16; i++) {
if (insn & (1 << i))
offset += 4;
}
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, -offset);
}
TCGV_UNUSED_I32(loaded_var);
for (i = 0; i < 16; i++) {
if ((insn & (1 << i)) == 0)
continue;
if (insn & (1 << 20)) {
/* Load. */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
if (i == 15) {
gen_bx_excret(s, tmp);
} else if (i == rn) {
loaded_var = tmp;
loaded_base = 1;
} else {
store_reg(s, i, tmp);
}
} else {
/* Store. */
tmp = load_reg(s, i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
tcg_gen_addi_i32(addr, addr, 4);
}
if (loaded_base) {
store_reg(s, rn, loaded_var);
}
if (insn & (1 << 21)) {
/* Base register writeback. */
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, -offset);
}
/* Fault if writeback register is in register list. */
if (insn & (1 << rn))
goto illegal_op;
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
}
break;
case 5:
op = (insn >> 21) & 0xf;
if (op == 6) {
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
/* Halfword pack. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3);
if (insn & (1 << 5)) {
/* pkhtb */
if (shift == 0)
shift = 31;
tcg_gen_sari_i32(tmp2, tmp2, shift);
tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
tcg_gen_ext16u_i32(tmp2, tmp2);
} else {
/* pkhbt */
if (shift)
tcg_gen_shli_i32(tmp2, tmp2, shift);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
}
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else {
/* Data processing register constant shift. */
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
tmp2 = load_reg(s, rm);
shiftop = (insn >> 4) & 3;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
conds = (insn & (1 << 20)) != 0;
logic_cc = (conds && thumb2_logic_op(op));
gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2))
goto illegal_op;
tcg_temp_free_i32(tmp2);
if (rd != 15) {
store_reg(s, rd, tmp);
} else {
tcg_temp_free_i32(tmp);
}
}
break;
case 13: /* Misc data processing. */
op = ((insn >> 22) & 6) | ((insn >> 7) & 1);
if (op < 4 && (insn & 0xf000) != 0xf000)
goto illegal_op;
switch (op) {
case 0: /* Register controlled shift. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if ((insn & 0x70) != 0)
goto illegal_op;
op = (insn >> 21) & 3;
logic_cc = (insn & (1 << 20)) != 0;
gen_arm_shift_reg(tmp, op, tmp2, logic_cc);
if (logic_cc)
gen_logic_CC(tmp);
store_reg(s, rd, tmp);
break;
case 1: /* Sign/zero extend. */
op = (insn >> 20) & 7;
switch (op) {
case 0: /* SXTAH, SXTH */
case 1: /* UXTAH, UXTH */
case 4: /* SXTAB, SXTB */
case 5: /* UXTAB, UXTB */
break;
case 2: /* SXTAB16, SXTB16 */
case 3: /* UXTAB16, UXTB16 */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
break;
default:
goto illegal_op;
}
if (rn != 15) {
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
}
tmp = load_reg(s, rm);
shift = (insn >> 4) & 3;
/* ??? In many cases it's not necessary to do a
rotate, a shift is sufficient. */
if (shift != 0)
tcg_gen_rotri_i32(tmp, tmp, shift * 8);
op = (insn >> 20) & 7;
switch (op) {
case 0: gen_sxth(tmp); break;
case 1: gen_uxth(tmp); break;
case 2: gen_sxtb16(tmp); break;
case 3: gen_uxtb16(tmp); break;
case 4: gen_sxtb(tmp); break;
case 5: gen_uxtb(tmp); break;
default:
g_assert_not_reached();
}
if (rn != 15) {
tmp2 = load_reg(s, rn);
if ((op >> 1) == 1) {
gen_add16(tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
}
store_reg(s, rd, tmp);
break;
case 2: /* SIMD add/subtract. */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
op = (insn >> 20) & 7;
shift = (insn >> 4) & 7;
if ((op & 3) == 3 || (shift & 3) == 3)
goto illegal_op;
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
gen_thumb2_parallel_addsub(op, shift, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 3: /* Other data processing. */
op = ((insn >> 17) & 0x38) | ((insn >> 4) & 7);
if (op < 4) {
/* Saturating add/subtract. */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if (op & 1)
gen_helper_double_saturate(tmp, cpu_env, tmp);
if (op & 2)
gen_helper_sub_saturate(tmp, cpu_env, tmp2, tmp);
else
gen_helper_add_saturate(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
} else {
switch (op) {
case 0x0a: /* rbit */
case 0x08: /* rev */
case 0x09: /* rev16 */
case 0x0b: /* revsh */
case 0x18: /* clz */
break;
case 0x10: /* sel */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
break;
case 0x20: /* crc32/crc32c */
case 0x21:
case 0x22:
case 0x28:
case 0x29:
case 0x2a:
if (!arm_dc_feature(s, ARM_FEATURE_CRC)) {
goto illegal_op;
}
break;
default:
goto illegal_op;
}
tmp = load_reg(s, rn);
switch (op) {
case 0x0a: /* rbit */
gen_helper_rbit(tmp, tmp);
break;
case 0x08: /* rev */
tcg_gen_bswap32_i32(tmp, tmp);
break;
case 0x09: /* rev16 */
gen_rev16(tmp);
break;
case 0x0b: /* revsh */
gen_revsh(tmp);
break;
case 0x10: /* sel */
tmp2 = load_reg(s, rm);
tmp3 = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE));
gen_helper_sel_flags(tmp, tmp3, tmp, tmp2);
tcg_temp_free_i32(tmp3);
tcg_temp_free_i32(tmp2);
break;
case 0x18: /* clz */
tcg_gen_clzi_i32(tmp, tmp, 32);
break;
case 0x20:
case 0x21:
case 0x22:
case 0x28:
case 0x29:
case 0x2a:
{
/* crc32/crc32c */
uint32_t sz = op & 0x3;
uint32_t c = op & 0x8;
tmp2 = load_reg(s, rm);
if (sz == 0) {
tcg_gen_andi_i32(tmp2, tmp2, 0xff);
} else if (sz == 1) {
tcg_gen_andi_i32(tmp2, tmp2, 0xffff);
}
tmp3 = tcg_const_i32(1 << sz);
if (c) {
gen_helper_crc32c(tmp, tmp, tmp2, tmp3);
} else {
gen_helper_crc32(tmp, tmp, tmp2, tmp3);
}
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp3);
break;
}
default:
g_assert_not_reached();
}
}
store_reg(s, rd, tmp);
break;
case 4: case 5: /* 32-bit multiply. Sum of absolute differences. */
switch ((insn >> 20) & 7) {
case 0: /* 32 x 32 -> 32 */
case 7: /* Unsigned sum of absolute differences. */
break;
case 1: /* 16 x 16 -> 32 */
case 2: /* Dual multiply add. */
case 3: /* 32 * 16 -> 32msb */
case 4: /* Dual multiply subtract. */
case 5: case 6: /* 32 * 32 -> 32msb (SMMUL, SMMLA, SMMLS) */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
goto illegal_op;
}
break;
}
op = (insn >> 4) & 0xf;
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
switch ((insn >> 20) & 7) {
case 0: /* 32 x 32 -> 32 */
tcg_gen_mul_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
if (op)
tcg_gen_sub_i32(tmp, tmp2, tmp);
else
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 1: /* 16 x 16 -> 32 */
gen_mulxy(tmp, tmp2, op & 2, op & 1);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 2: /* Dual multiply add. */
case 4: /* Dual multiply subtract. */
if (op)
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
if (insn & (1 << 22)) {
/* This subtraction cannot overflow. */
tcg_gen_sub_i32(tmp, tmp, tmp2);
} else {
/* This addition cannot overflow 32 bits;
* however it may overflow considered as a signed
* operation, in which case we must set the Q flag.
*/
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
if (rs != 15)
{
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 3: /* 32 * 16 -> 32msb */
if (op)
tcg_gen_sari_i32(tmp2, tmp2, 16);
else
gen_sxth(tmp2);
tmp64 = gen_muls_i64_i32(tmp, tmp2);
tcg_gen_shri_i64(tmp64, tmp64, 16);
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
if (rs != 15)
{
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 5: case 6: /* 32 * 32 -> 32msb (SMMUL, SMMLA, SMMLS) */
tmp64 = gen_muls_i64_i32(tmp, tmp2);
if (rs != 15) {
tmp = load_reg(s, rs);
if (insn & (1 << 20)) {
tmp64 = gen_addq_msw(tmp64, tmp);
} else {
tmp64 = gen_subq_msw(tmp64, tmp);
}
}
if (insn & (1 << 4)) {
tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u);
}
tcg_gen_shri_i64(tmp64, tmp64, 32);
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
break;
case 7: /* Unsigned sum of absolute differences. */
gen_helper_usad8(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
}
store_reg(s, rd, tmp);
break;
case 6: case 7: /* 64-bit multiply, Divide. */
op = ((insn >> 4) & 0xf) | ((insn >> 16) & 0x70);
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if ((op & 0x50) == 0x10) {
/* sdiv, udiv */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DIV)) {
goto illegal_op;
}
if (op & 0x20)
gen_helper_udiv(tmp, tmp, tmp2);
else
gen_helper_sdiv(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((op & 0xe) == 0xc) {
/* Dual multiply accumulate long. */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
goto illegal_op;
}
if (op & 1)
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
if (op & 0x10) {
tcg_gen_sub_i32(tmp, tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
/* BUGFIX */
tmp64 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_temp_free_i32(tmp);
gen_addq(s, tmp64, rs, rd);
gen_storeq_reg(s, rs, rd, tmp64);
tcg_temp_free_i64(tmp64);
} else {
if (op & 0x20) {
/* Unsigned 64-bit multiply */
tmp64 = gen_mulu_i64_i32(tmp, tmp2);
} else {
if (op & 8) {
/* smlalxy */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
goto illegal_op;
}
gen_mulxy(tmp, tmp2, op & 2, op & 1);
tcg_temp_free_i32(tmp2);
tmp64 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_temp_free_i32(tmp);
} else {
/* Signed 64-bit multiply */
tmp64 = gen_muls_i64_i32(tmp, tmp2);
}
}
if (op & 4) {
/* umaal */
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
tcg_temp_free_i64(tmp64);
goto illegal_op;
}
gen_addq_lo(s, tmp64, rs);
gen_addq_lo(s, tmp64, rd);
} else if (op & 0x40) {
/* 64-bit accumulate. */
gen_addq(s, tmp64, rs, rd);
}
gen_storeq_reg(s, rs, rd, tmp64);
tcg_temp_free_i64(tmp64);
}
break;
}
break;
case 6: case 7: case 14: case 15:
/* Coprocessor. */
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/* We don't currently implement M profile FP support,
* so this entire space should give a NOCP fault.
*/
gen_exception_insn(s, 4, EXCP_NOCP, syn_uncategorized(),
default_exception_el(s));
break;
}
if (((insn >> 24) & 3) == 3) {
/* Translate into the equivalent ARM encoding. */
insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28);
if (disas_neon_data_insn(s, insn)) {
goto illegal_op;
}
} else if (((insn >> 8) & 0xe) == 10) {
if (disas_vfp_insn(s, insn)) {
goto illegal_op;
}
} else {
if (insn & (1 << 28))
goto illegal_op;
if (disas_coproc_insn(s, insn)) {
goto illegal_op;
}
}
break;
case 8: case 9: case 10: case 11:
if (insn & (1 << 15)) {
/* Branches, misc control. */
if (insn & 0x5000) {
/* Unconditional branch. */
/* signextend(hw1[10:0]) -> offset[:12]. */
offset = ((int32_t)insn << 5) >> 9 & ~(int32_t)0xfff;
/* hw1[10:0] -> offset[11:1]. */
offset |= (insn & 0x7ff) << 1;
/* (~hw2[13, 11] ^ offset[24]) -> offset[23,22]
offset[24:22] already have the same value because of the
sign extension above. */
offset ^= ((~insn) & (1 << 13)) << 10;
offset ^= ((~insn) & (1 << 11)) << 11;
if (insn & (1 << 14)) {
/* Branch and link. */
tcg_gen_movi_i32(cpu_R[14], s->pc | 1);
}
offset += s->pc;
if (insn & (1 << 12)) {
/* b/bl */
gen_jmp(s, offset);
} else {
/* blx */
offset &= ~(uint32_t)2;
/* thumb2 bx, no need to check */
gen_bx_im(s, offset);
}
} else if (((insn >> 23) & 7) == 7) {
/* Misc control */
if (insn & (1 << 13))
goto illegal_op;
if (insn & (1 << 26)) {
if (arm_dc_feature(s, ARM_FEATURE_M)) {
goto illegal_op;
}
if (!(insn & (1 << 20))) {
/* Hypervisor call (v7) */
int imm16 = extract32(insn, 16, 4) << 12
| extract32(insn, 0, 12);
ARCH(7);
if (IS_USER(s)) {
goto illegal_op;
}
gen_hvc(s, imm16);
} else {
/* Secure monitor call (v6+) */
ARCH(6K);
if (IS_USER(s)) {
goto illegal_op;
}
gen_smc(s);
}
} else {
op = (insn >> 20) & 7;
switch (op) {
case 0: /* msr cpsr. */
if (arm_dc_feature(s, ARM_FEATURE_M)) {
tmp = load_reg(s, rn);
/* the constant is the mask and SYSm fields */
addr = tcg_const_i32(insn & 0xfff);
gen_helper_v7m_msr(cpu_env, addr, tmp);
tcg_temp_free_i32(addr);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
break;
}
/* fall through */
case 1: /* msr spsr. */
if (arm_dc_feature(s, ARM_FEATURE_M)) {
goto illegal_op;
}
if (extract32(insn, 5, 1)) {
/* MSR (banked) */
int sysm = extract32(insn, 8, 4) |
(extract32(insn, 4, 1) << 4);
int r = op & 1;
gen_msr_banked(s, r, sysm, rm);
break;
}
/* MSR (for PSRs) */
tmp = load_reg(s, rn);
if (gen_set_psr(s,
msr_mask(s, (insn >> 8) & 0xf, op == 1),
op == 1, tmp))
goto illegal_op;
break;
case 2: /* cps, nop-hint. */
if (((insn >> 8) & 7) == 0) {
gen_nop_hint(s, insn & 0xff);
}
/* Implemented as NOP in user mode. */
if (IS_USER(s))
break;
offset = 0;
imm = 0;
if (insn & (1 << 10)) {
if (insn & (1 << 7))
offset |= CPSR_A;
if (insn & (1 << 6))
offset |= CPSR_I;
if (insn & (1 << 5))
offset |= CPSR_F;
if (insn & (1 << 9))
imm = CPSR_A | CPSR_I | CPSR_F;
}
if (insn & (1 << 8)) {
offset |= 0x1f;
imm |= (insn & 0x1f);
}
if (offset) {
gen_set_psr_im(s, offset, 0, imm);
}
break;
case 3: /* Special control operations. */
ARCH(7);
op = (insn >> 4) & 0xf;
switch (op) {
case 2: /* clrex */
gen_clrex(s);
break;
case 4: /* dsb */
case 5: /* dmb */
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
break;
case 6: /* isb */
/* We need to break the TB after this insn
* to execute self-modifying code correctly
* and also to take any pending interrupts
* immediately.
*/
gen_lookup_tb(s);
break;
default:
goto illegal_op;
}
break;
case 4: /* bxj */
/* Trivial implementation equivalent to bx.
* This instruction doesn't exist at all for M-profile.
*/
if (arm_dc_feature(s, ARM_FEATURE_M)) {
goto illegal_op;
}
tmp = load_reg(s, rn);
gen_bx(s, tmp);
break;
case 5: /* Exception return. */
if (IS_USER(s)) {
goto illegal_op;
}
if (rn != 14 || rd != 15) {
goto illegal_op;
}
tmp = load_reg(s, rn);
tcg_gen_subi_i32(tmp, tmp, insn & 0xff);
gen_exception_return(s, tmp);
break;
case 6: /* MRS */
if (extract32(insn, 5, 1) &&
!arm_dc_feature(s, ARM_FEATURE_M)) {
/* MRS (banked) */
int sysm = extract32(insn, 16, 4) |
(extract32(insn, 4, 1) << 4);
gen_mrs_banked(s, 0, sysm, rd);
break;
}
if (extract32(insn, 16, 4) != 0xf) {
goto illegal_op;
}
if (!arm_dc_feature(s, ARM_FEATURE_M) &&
extract32(insn, 0, 8) != 0) {
goto illegal_op;
}
/* mrs cpsr */
tmp = tcg_temp_new_i32();
if (arm_dc_feature(s, ARM_FEATURE_M)) {
addr = tcg_const_i32(insn & 0xff);
gen_helper_v7m_mrs(tmp, cpu_env, addr);
tcg_temp_free_i32(addr);
} else {
gen_helper_cpsr_read(tmp, cpu_env);
}
store_reg(s, rd, tmp);
break;
case 7: /* MRS */
if (extract32(insn, 5, 1) &&
!arm_dc_feature(s, ARM_FEATURE_M)) {
/* MRS (banked) */
int sysm = extract32(insn, 16, 4) |
(extract32(insn, 4, 1) << 4);
gen_mrs_banked(s, 1, sysm, rd);
break;
}
/* mrs spsr. */
/* Not accessible in user mode. */
if (IS_USER(s) || arm_dc_feature(s, ARM_FEATURE_M)) {
goto illegal_op;
}
if (extract32(insn, 16, 4) != 0xf ||
extract32(insn, 0, 8) != 0) {
goto illegal_op;
}
tmp = load_cpu_field(spsr);
store_reg(s, rd, tmp);
break;
}
}
} else {
/* Conditional branch. */
op = (insn >> 22) & 0xf;
/* Generate a conditional jump to next instruction. */
s->condlabel = gen_new_label();
arm_gen_test_cc(op ^ 1, s->condlabel);
s->condjmp = 1;
/* offset[11:1] = insn[10:0] */
offset = (insn & 0x7ff) << 1;
/* offset[17:12] = insn[21:16]. */
offset |= (insn & 0x003f0000) >> 4;
/* offset[31:20] = insn[26]. */
offset |= ((int32_t)((insn << 5) & 0x80000000)) >> 11;
/* offset[18] = insn[13]. */
offset |= (insn & (1 << 13)) << 5;
/* offset[19] = insn[11]. */
offset |= (insn & (1 << 11)) << 8;
/* jump to the offset */
gen_jmp(s, s->pc + offset);
}
} else {
/* Data processing immediate. */
if (insn & (1 << 25)) {
if (insn & (1 << 24)) {
if (insn & (1 << 20))
goto illegal_op;
/* Bitfield/Saturate. */
op = (insn >> 21) & 7;
imm = insn & 0x1f;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
switch (op) {
case 2: /* Signed bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32) {
tcg_gen_sextract_i32(tmp, tmp, shift, imm);
}
break;
case 6: /* Unsigned bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32) {
tcg_gen_extract_i32(tmp, tmp, shift, imm);
}
break;
case 3: /* Bitfield insert/clear. */
if (imm < shift)
goto illegal_op;
imm = imm + 1 - shift;
if (imm != 32) {
tmp2 = load_reg(s, rd);
tcg_gen_deposit_i32(tmp, tmp2, tmp, shift, imm);
tcg_temp_free_i32(tmp2);
}
break;
case 7:
goto illegal_op;
default: /* Saturate. */
if (shift) {
if (op & 1)
tcg_gen_sari_i32(tmp, tmp, shift);
else
tcg_gen_shli_i32(tmp, tmp, shift);
}
tmp2 = tcg_const_i32(imm);
if (op & 4) {
/* Unsigned. */
if ((op & 1) && shift == 0) {
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
goto illegal_op;
}
gen_helper_usat16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_usat(tmp, cpu_env, tmp, tmp2);
}
} else {
/* Signed. */
if ((op & 1) && shift == 0) {
if (!arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
goto illegal_op;
}
gen_helper_ssat16(tmp, cpu_env, tmp, tmp2);
} else {
gen_helper_ssat(tmp, cpu_env, tmp, tmp2);
}
}
tcg_temp_free_i32(tmp2);
break;
}
store_reg(s, rd, tmp);
} else {
imm = ((insn & 0x04000000) >> 15)
| ((insn & 0x7000) >> 4) | (insn & 0xff);
if (insn & (1 << 22)) {
/* 16-bit immediate. */
imm |= (insn >> 4) & 0xf000;
if (insn & (1 << 23)) {
/* movt */
tmp = load_reg(s, rd);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_ori_i32(tmp, tmp, imm << 16);
} else {
/* movw */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, imm);
}
} else {
/* Add/sub 12-bit immediate. */
if (rn == 15) {
offset = s->pc & ~(uint32_t)3;
if (insn & (1 << 23))
offset -= imm;
else
offset += imm;
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, offset);
} else {
tmp = load_reg(s, rn);
if (insn & (1 << 23))
tcg_gen_subi_i32(tmp, tmp, imm);
else
tcg_gen_addi_i32(tmp, tmp, imm);
}
}
store_reg(s, rd, tmp);
}
} else {
int shifter_out = 0;
/* modified 12-bit immediate. */
shift = ((insn & 0x04000000) >> 23) | ((insn & 0x7000) >> 12);
imm = (insn & 0xff);
switch (shift) {
case 0: /* XY */
/* Nothing to do. */
break;
case 1: /* 00XY00XY */
imm |= imm << 16;
break;
case 2: /* XY00XY00 */
imm |= imm << 16;
imm <<= 8;
break;
case 3: /* XYXYXYXY */
imm |= imm << 16;
imm |= imm << 8;
break;
default: /* Rotated constant. */
shift = (shift << 1) | (imm >> 7);
imm |= 0x80;
imm = imm << (32 - shift);
shifter_out = 1;
break;
}
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, imm);
rn = (insn >> 16) & 0xf;
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
op = (insn >> 21) & 0xf;
if (gen_thumb2_data_op(s, op, (insn & (1 << 20)) != 0,
shifter_out, tmp, tmp2))
goto illegal_op;
tcg_temp_free_i32(tmp2);
rd = (insn >> 8) & 0xf;
if (rd != 15) {
store_reg(s, rd, tmp);
} else {
tcg_temp_free_i32(tmp);
}
}
}
break;
case 12: /* Load/store single data item. */
{
int postinc = 0;
int writeback = 0;
int memidx;
ISSInfo issinfo;
if ((insn & 0x01100000) == 0x01000000) {
if (disas_neon_ls_insn(s, insn)) {
goto illegal_op;
}
break;
}
op = ((insn >> 21) & 3) | ((insn >> 22) & 4);
if (rs == 15) {
if (!(insn & (1 << 20))) {
goto illegal_op;
}
if (op != 2) {
/* Byte or halfword load space with dest == r15 : memory hints.
* Catch them early so we don't emit pointless addressing code.
* This space is a mix of:
* PLD/PLDW/PLI, which we implement as NOPs (note that unlike
* the ARM encodings, PLDW space doesn't UNDEF for non-v7MP
* cores)
* unallocated hints, which must be treated as NOPs
* UNPREDICTABLE space, which we NOP or UNDEF depending on
* which is easiest for the decoding logic
* Some space which must UNDEF
*/
int op1 = (insn >> 23) & 3;
int op2 = (insn >> 6) & 0x3f;
if (op & 2) {
goto illegal_op;
}
if (rn == 15) {
/* UNPREDICTABLE, unallocated hint or
* PLD/PLDW/PLI (literal)
*/
return 0;
}
if (op1 & 1) {
return 0; /* PLD/PLDW/PLI or unallocated hint */
}
if ((op2 == 0) || ((op2 & 0x3c) == 0x30)) {
return 0; /* PLD/PLDW/PLI or unallocated hint */
}
/* UNDEF space, or an UNPREDICTABLE */
return 1;
}
}
memidx = get_mem_index(s);
if (rn == 15) {
addr = tcg_temp_new_i32();
/* PC relative. */
/* s->pc has already been incremented by 4. */
imm = s->pc & 0xfffffffc;
if (insn & (1 << 23))
imm += insn & 0xfff;
else
imm -= insn & 0xfff;
tcg_gen_movi_i32(addr, imm);
} else {
addr = load_reg(s, rn);
if (insn & (1 << 23)) {
/* Positive offset. */
imm = insn & 0xfff;
tcg_gen_addi_i32(addr, addr, imm);
} else {
imm = insn & 0xff;
switch ((insn >> 8) & 0xf) {
case 0x0: /* Shifted Register. */
shift = (insn >> 4) & 0xf;
if (shift > 3) {
tcg_temp_free_i32(addr);
goto illegal_op;
}
tmp = load_reg(s, rm);
if (shift)
tcg_gen_shli_i32(tmp, tmp, shift);
tcg_gen_add_i32(addr, addr, tmp);
tcg_temp_free_i32(tmp);
break;
case 0xc: /* Negative offset. */
tcg_gen_addi_i32(addr, addr, -imm);
break;
case 0xe: /* User privilege. */
tcg_gen_addi_i32(addr, addr, imm);
memidx = get_a32_user_mem_index(s);
break;
case 0x9: /* Post-decrement. */
imm = -imm;
/* Fall through. */
case 0xb: /* Post-increment. */
postinc = 1;
writeback = 1;
break;
case 0xd: /* Pre-decrement. */
imm = -imm;
/* Fall through. */
case 0xf: /* Pre-increment. */
tcg_gen_addi_i32(addr, addr, imm);
writeback = 1;
break;
default:
tcg_temp_free_i32(addr);
goto illegal_op;
}
}
}
issinfo = writeback ? ISSInvalid : rs;
if (insn & (1 << 20)) {
/* Load. */
tmp = tcg_temp_new_i32();
switch (op) {
case 0:
gen_aa32_ld8u_iss(s, tmp, addr, memidx, issinfo);
break;
case 4:
gen_aa32_ld8s_iss(s, tmp, addr, memidx, issinfo);
break;
case 1:
gen_aa32_ld16u_iss(s, tmp, addr, memidx, issinfo);
break;
case 5:
gen_aa32_ld16s_iss(s, tmp, addr, memidx, issinfo);
break;
case 2:
gen_aa32_ld32u_iss(s, tmp, addr, memidx, issinfo);
break;
default:
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
goto illegal_op;
}
if (rs == 15) {
gen_bx_excret(s, tmp);
} else {
store_reg(s, rs, tmp);
}
} else {
/* Store. */
tmp = load_reg(s, rs);
switch (op) {
case 0:
gen_aa32_st8_iss(s, tmp, addr, memidx, issinfo);
break;
case 1:
gen_aa32_st16_iss(s, tmp, addr, memidx, issinfo);
break;
case 2:
gen_aa32_st32_iss(s, tmp, addr, memidx, issinfo);
break;
default:
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
goto illegal_op;
}
tcg_temp_free_i32(tmp);
}
if (postinc)
tcg_gen_addi_i32(addr, addr, imm);
if (writeback) {
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
break;
default:
goto illegal_op;
}
return 0;
illegal_op:
return 1;
}
static void disas_thumb_insn(CPUARMState *env, DisasContext *s)
{
uint32_t val, insn, op, rm, rn, rd, shift, cond;
int32_t offset;
int i;
TCGv_i32 tmp;
TCGv_i32 tmp2;
TCGv_i32 addr;
if (s->condexec_mask) {
cond = s->condexec_cond;
if (cond != 0x0e) { /* Skip conditional when condition is AL. */
s->condlabel = gen_new_label();
arm_gen_test_cc(cond ^ 1, s->condlabel);
s->condjmp = 1;
}
}
insn = arm_lduw_code(env, s->pc, s->sctlr_b);
s->pc += 2;
switch (insn >> 12) {
case 0: case 1:
rd = insn & 7;
op = (insn >> 11) & 3;
if (op == 3) {
/* add/subtract */
rn = (insn >> 3) & 7;
tmp = load_reg(s, rn);
if (insn & (1 << 10)) {
/* immediate */
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, (insn >> 6) & 7);
} else {
/* reg */
rm = (insn >> 6) & 7;
tmp2 = load_reg(s, rm);
}
if (insn & (1 << 9)) {
if (s->condexec_mask)
tcg_gen_sub_i32(tmp, tmp, tmp2);
else
gen_sub_CC(tmp, tmp, tmp2);
} else {
if (s->condexec_mask)
tcg_gen_add_i32(tmp, tmp, tmp2);
else
gen_add_CC(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else {
/* shift immediate */
rm = (insn >> 3) & 7;
shift = (insn >> 6) & 0x1f;
tmp = load_reg(s, rm);
gen_arm_shift_im(tmp, op, shift, s->condexec_mask == 0);
if (!s->condexec_mask)
gen_logic_CC(tmp);
store_reg(s, rd, tmp);
}
break;
case 2: case 3:
/* arithmetic large immediate */
op = (insn >> 11) & 3;
rd = (insn >> 8) & 0x7;
if (op == 0) { /* mov */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, insn & 0xff);
if (!s->condexec_mask)
gen_logic_CC(tmp);
store_reg(s, rd, tmp);
} else {
tmp = load_reg(s, rd);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, insn & 0xff);
switch (op) {
case 1: /* cmp */
gen_sub_CC(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
break;
case 2: /* add */
if (s->condexec_mask)
tcg_gen_add_i32(tmp, tmp, tmp2);
else
gen_add_CC(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 3: /* sub */
if (s->condexec_mask)
tcg_gen_sub_i32(tmp, tmp, tmp2);
else
gen_sub_CC(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
}
}
break;
case 4:
if (insn & (1 << 11)) {
rd = (insn >> 8) & 7;
/* load pc-relative. Bit 1 of PC is ignored. */
val = s->pc + 2 + ((insn & 0xff) * 4);
val &= ~(uint32_t)2;
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, val);
tmp = tcg_temp_new_i32();
gen_aa32_ld32u_iss(s, tmp, addr, get_mem_index(s),
rd | ISSIs16Bit);
tcg_temp_free_i32(addr);
store_reg(s, rd, tmp);
break;
}
if (insn & (1 << 10)) {
/* data processing extended or blx */
rd = (insn & 7) | ((insn >> 4) & 8);
rm = (insn >> 3) & 0xf;
op = (insn >> 8) & 3;
switch (op) {
case 0: /* add */
tmp = load_reg(s, rd);
tmp2 = load_reg(s, rm);
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 1: /* cmp */
tmp = load_reg(s, rd);
tmp2 = load_reg(s, rm);
gen_sub_CC(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
tcg_temp_free_i32(tmp);
break;
case 2: /* mov/cpy */
tmp = load_reg(s, rm);
store_reg(s, rd, tmp);
break;
case 3:/* branch [and link] exchange thumb register */
tmp = load_reg(s, rm);
if (insn & (1 << 7)) {
ARCH(5);
val = (uint32_t)s->pc | 1;
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, val);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
} else {
/* Only BX works as exception-return, not BLX */
gen_bx_excret(s, tmp);
}
break;
}
break;
}
/* data processing register */
rd = insn & 7;
rm = (insn >> 3) & 7;
op = (insn >> 6) & 0xf;
if (op == 2 || op == 3 || op == 4 || op == 7) {
/* the shift/rotate ops want the operands backwards */
val = rm;
rm = rd;
rd = val;
val = 1;
} else {
val = 0;
}
if (op == 9) { /* neg */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else if (op != 0xf) { /* mvn doesn't read its first operand */
tmp = load_reg(s, rd);
} else {
TCGV_UNUSED_I32(tmp);
}
tmp2 = load_reg(s, rm);
switch (op) {
case 0x0: /* and */
tcg_gen_and_i32(tmp, tmp, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp);
break;
case 0x1: /* eor */
tcg_gen_xor_i32(tmp, tmp, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp);
break;
case 0x2: /* lsl */
if (s->condexec_mask) {
gen_shl(tmp2, tmp2, tmp);
} else {
gen_helper_shl_cc(tmp2, cpu_env, tmp2, tmp);
gen_logic_CC(tmp2);
}
break;
case 0x3: /* lsr */
if (s->condexec_mask) {
gen_shr(tmp2, tmp2, tmp);
} else {
gen_helper_shr_cc(tmp2, cpu_env, tmp2, tmp);
gen_logic_CC(tmp2);
}
break;
case 0x4: /* asr */
if (s->condexec_mask) {
gen_sar(tmp2, tmp2, tmp);
} else {
gen_helper_sar_cc(tmp2, cpu_env, tmp2, tmp);
gen_logic_CC(tmp2);
}
break;
case 0x5: /* adc */
if (s->condexec_mask) {
gen_adc(tmp, tmp2);
} else {
gen_adc_CC(tmp, tmp, tmp2);
}
break;
case 0x6: /* sbc */
if (s->condexec_mask) {
gen_sub_carry(tmp, tmp, tmp2);
} else {
gen_sbc_CC(tmp, tmp, tmp2);
}
break;
case 0x7: /* ror */
if (s->condexec_mask) {
tcg_gen_andi_i32(tmp, tmp, 0x1f);
tcg_gen_rotr_i32(tmp2, tmp2, tmp);
} else {
gen_helper_ror_cc(tmp2, cpu_env, tmp2, tmp);
gen_logic_CC(tmp2);
}
break;
case 0x8: /* tst */
tcg_gen_and_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
rd = 16;
break;
case 0x9: /* neg */
if (s->condexec_mask)
tcg_gen_neg_i32(tmp, tmp2);
else
gen_sub_CC(tmp, tmp, tmp2);
break;
case 0xa: /* cmp */
gen_sub_CC(tmp, tmp, tmp2);
rd = 16;
break;
case 0xb: /* cmn */
gen_add_CC(tmp, tmp, tmp2);
rd = 16;
break;
case 0xc: /* orr */
tcg_gen_or_i32(tmp, tmp, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp);
break;
case 0xd: /* mul */
tcg_gen_mul_i32(tmp, tmp, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp);
break;
case 0xe: /* bic */
tcg_gen_andc_i32(tmp, tmp, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp);
break;
case 0xf: /* mvn */
tcg_gen_not_i32(tmp2, tmp2);
if (!s->condexec_mask)
gen_logic_CC(tmp2);
val = 1;
rm = rd;
break;
}
if (rd != 16) {
if (val) {
store_reg(s, rm, tmp2);
if (op != 0xf)
tcg_temp_free_i32(tmp);
} else {
store_reg(s, rd, tmp);
tcg_temp_free_i32(tmp2);
}
} else {
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(tmp2);
}
break;
case 5:
/* load/store register offset. */
rd = insn & 7;
rn = (insn >> 3) & 7;
rm = (insn >> 6) & 7;
op = (insn >> 9) & 7;
addr = load_reg(s, rn);
tmp = load_reg(s, rm);
tcg_gen_add_i32(addr, addr, tmp);
tcg_temp_free_i32(tmp);
if (op < 3) { /* store */
tmp = load_reg(s, rd);
} else {
tmp = tcg_temp_new_i32();
}
switch (op) {
case 0: /* str */
gen_aa32_st32_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 1: /* strh */
gen_aa32_st16_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 2: /* strb */
gen_aa32_st8_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 3: /* ldrsb */
gen_aa32_ld8s_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 4: /* ldr */
gen_aa32_ld32u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 5: /* ldrh */
gen_aa32_ld16u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 6: /* ldrb */
gen_aa32_ld8u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
case 7: /* ldrsh */
gen_aa32_ld16s_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
break;
}
if (op >= 3) { /* load */
store_reg(s, rd, tmp);
} else {
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
break;
case 6:
/* load/store word immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
addr = load_reg(s, rn);
val = (insn >> 4) & 0x7c;
tcg_gen_addi_i32(addr, addr, val);
if (insn & (1 << 11)) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
store_reg(s, rd, tmp);
} else {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
break;
case 7:
/* load/store byte immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
addr = load_reg(s, rn);
val = (insn >> 6) & 0x1f;
tcg_gen_addi_i32(addr, addr, val);
if (insn & (1 << 11)) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld8u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
store_reg(s, rd, tmp);
} else {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st8_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
break;
case 8:
/* load/store halfword immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
addr = load_reg(s, rn);
val = (insn >> 5) & 0x3e;
tcg_gen_addi_i32(addr, addr, val);
if (insn & (1 << 11)) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld16u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
store_reg(s, rd, tmp);
} else {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st16_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
break;
case 9:
/* load/store from stack */
rd = (insn >> 8) & 7;
addr = load_reg(s, 13);
val = (insn & 0xff) * 4;
tcg_gen_addi_i32(addr, addr, val);
if (insn & (1 << 11)) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
store_reg(s, rd, tmp);
} else {
/* store */
tmp = load_reg(s, rd);
gen_aa32_st32_iss(s, tmp, addr, get_mem_index(s), rd | ISSIs16Bit);
tcg_temp_free_i32(tmp);
}
tcg_temp_free_i32(addr);
break;
case 10:
/* add to high reg */
rd = (insn >> 8) & 7;
if (insn & (1 << 11)) {
/* SP */
tmp = load_reg(s, 13);
} else {
/* PC. bit 1 is ignored. */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, (s->pc + 2) & ~(uint32_t)2);
}
val = (insn & 0xff) * 4;
tcg_gen_addi_i32(tmp, tmp, val);
store_reg(s, rd, tmp);
break;
case 11:
/* misc */
op = (insn >> 8) & 0xf;
switch (op) {
case 0:
/* adjust stack pointer */
tmp = load_reg(s, 13);
val = (insn & 0x7f) * 4;
if (insn & (1 << 7))
val = -(int32_t)val;
tcg_gen_addi_i32(tmp, tmp, val);
store_reg(s, 13, tmp);
break;
case 2: /* sign/zero extend. */
ARCH(6);
rd = insn & 7;
rm = (insn >> 3) & 7;
tmp = load_reg(s, rm);
switch ((insn >> 6) & 3) {
case 0: gen_sxth(tmp); break;
case 1: gen_sxtb(tmp); break;
case 2: gen_uxth(tmp); break;
case 3: gen_uxtb(tmp); break;
}
store_reg(s, rd, tmp);
break;
case 4: case 5: case 0xc: case 0xd:
/* push/pop */
addr = load_reg(s, 13);
if (insn & (1 << 8))
offset = 4;
else
offset = 0;
for (i = 0; i < 8; i++) {
if (insn & (1 << i))
offset += 4;
}
if ((insn & (1 << 11)) == 0) {
tcg_gen_addi_i32(addr, addr, -offset);
}
for (i = 0; i < 8; i++) {
if (insn & (1 << i)) {
if (insn & (1 << 11)) {
/* pop */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
store_reg(s, i, tmp);
} else {
/* push */
tmp = load_reg(s, i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
/* advance to the next address. */
tcg_gen_addi_i32(addr, addr, 4);
}
}
TCGV_UNUSED_I32(tmp);
if (insn & (1 << 8)) {
if (insn & (1 << 11)) {
/* pop pc */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
/* don't set the pc until the rest of the instruction
has completed */
} else {
/* push lr */
tmp = load_reg(s, 14);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
tcg_gen_addi_i32(addr, addr, 4);
}
if ((insn & (1 << 11)) == 0) {
tcg_gen_addi_i32(addr, addr, -offset);
}
/* write back the new stack pointer */
store_reg(s, 13, addr);
/* set the new PC value */
if ((insn & 0x0900) == 0x0900) {
store_reg_from_load(s, 15, tmp);
}
break;
case 1: case 3: case 9: case 11: /* czb */
rm = insn & 7;
tmp = load_reg(s, rm);
s->condlabel = gen_new_label();
s->condjmp = 1;
if (insn & (1 << 11))
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, s->condlabel);
else
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, s->condlabel);
tcg_temp_free_i32(tmp);
offset = ((insn & 0xf8) >> 2) | (insn & 0x200) >> 3;
val = (uint32_t)s->pc + 2;
val += offset;
gen_jmp(s, val);
break;
case 15: /* IT, nop-hint. */
if ((insn & 0xf) == 0) {
gen_nop_hint(s, (insn >> 4) & 0xf);
break;
}
/* If Then. */
s->condexec_cond = (insn >> 4) & 0xe;
s->condexec_mask = insn & 0x1f;
/* No actual code generated for this insn, just setup state. */
break;
case 0xe: /* bkpt */
{
int imm8 = extract32(insn, 0, 8);
ARCH(5);
gen_exception_insn(s, 2, EXCP_BKPT, syn_aa32_bkpt(imm8, true),
default_exception_el(s));
break;
}
case 0xa: /* rev, and hlt */
{
int op1 = extract32(insn, 6, 2);
if (op1 == 2) {
/* HLT */
int imm6 = extract32(insn, 0, 6);
gen_hlt(s, imm6);
break;
}
/* Otherwise this is rev */
ARCH(6);
rn = (insn >> 3) & 0x7;
rd = insn & 0x7;
tmp = load_reg(s, rn);
switch (op1) {
case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
case 1: gen_rev16(tmp); break;
case 3: gen_revsh(tmp); break;
default:
g_assert_not_reached();
}
store_reg(s, rd, tmp);
break;
}
case 6:
switch ((insn >> 5) & 7) {
case 2:
/* setend */
ARCH(6);
if (((insn >> 3) & 1) != !!(s->be_data == MO_BE)) {
gen_helper_setend(cpu_env);
s->is_jmp = DISAS_UPDATE;
}
break;
case 3:
/* cps */
ARCH(6);
if (IS_USER(s)) {
break;
}
if (arm_dc_feature(s, ARM_FEATURE_M)) {
tmp = tcg_const_i32((insn & (1 << 4)) != 0);
/* FAULTMASK */
if (insn & 1) {
addr = tcg_const_i32(19);
gen_helper_v7m_msr(cpu_env, addr, tmp);
tcg_temp_free_i32(addr);
}
/* PRIMASK */
if (insn & 2) {
addr = tcg_const_i32(16);
gen_helper_v7m_msr(cpu_env, addr, tmp);
tcg_temp_free_i32(addr);
}
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
} else {
if (insn & (1 << 4)) {
shift = CPSR_A | CPSR_I | CPSR_F;
} else {
shift = 0;
}
gen_set_psr_im(s, ((insn & 7) << 6), 0, shift);
}
break;
default:
goto undef;
}
break;
default:
goto undef;
}
break;
case 12:
{
/* load/store multiple */
TCGv_i32 loaded_var;
TCGV_UNUSED_I32(loaded_var);
rn = (insn >> 8) & 0x7;
addr = load_reg(s, rn);
for (i = 0; i < 8; i++) {
if (insn & (1 << i)) {
if (insn & (1 << 11)) {
/* load */
tmp = tcg_temp_new_i32();
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
if (i == rn) {
loaded_var = tmp;
} else {
store_reg(s, i, tmp);
}
} else {
/* store */
tmp = load_reg(s, i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
tcg_temp_free_i32(tmp);
}
/* advance to the next address */
tcg_gen_addi_i32(addr, addr, 4);
}
}
if ((insn & (1 << rn)) == 0) {
/* base reg not in list: base register writeback */
store_reg(s, rn, addr);
} else {
/* base reg in list: if load, complete it now */
if (insn & (1 << 11)) {
store_reg(s, rn, loaded_var);
}
tcg_temp_free_i32(addr);
}
break;
}
case 13:
/* conditional branch or swi */
cond = (insn >> 8) & 0xf;
if (cond == 0xe)
goto undef;
if (cond == 0xf) {
/* swi */
gen_set_pc_im(s, s->pc);
s->svc_imm = extract32(insn, 0, 8);
s->is_jmp = DISAS_SWI;
break;
}
/* generate a conditional jump to next instruction */
s->condlabel = gen_new_label();
arm_gen_test_cc(cond ^ 1, s->condlabel);
s->condjmp = 1;
/* jump to the offset */
val = (uint32_t)s->pc + 2;
offset = ((int32_t)insn << 24) >> 24;
val += offset << 1;
gen_jmp(s, val);
break;
case 14:
if (insn & (1 << 11)) {
if (disas_thumb2_insn(env, s, insn))
goto undef32;
break;
}
/* unconditional branch */
val = (uint32_t)s->pc;
offset = ((int32_t)insn << 21) >> 21;
val += (offset << 1) + 2;
gen_jmp(s, val);
break;
case 15:
if (disas_thumb2_insn(env, s, insn))
goto undef32;
break;
}
return;
undef32:
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
return;
illegal_op:
undef:
gen_exception_insn(s, 2, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
}
static bool insn_crosses_page(CPUARMState *env, DisasContext *s)
{
/* Return true if the insn at dc->pc might cross a page boundary.
* (False positives are OK, false negatives are not.)
*/
uint16_t insn;
if ((s->pc & 3) == 0) {
/* At a 4-aligned address we can't be crossing a page */
return false;
}
/* This must be a Thumb insn */
insn = arm_lduw_code(env, s->pc, s->sctlr_b);
if ((insn >> 11) >= 0x1d) {
/* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the
* First half of a 32-bit Thumb insn. Thumb-1 cores might
* end up actually treating this as two 16-bit insns (see the
* code at the start of disas_thumb2_insn()) but we don't bother
* to check for that as it is unlikely, and false positives here
* are harmless.
*/
return true;
}
/* Definitely a 16-bit insn, can't be crossing a page. */
return false;
}
/* generate intermediate code for basic block 'tb'. */
void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb)
{
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
DisasContext dc1, *dc = &dc1;
target_ulong pc_start;
target_ulong next_page_start;
int num_insns;
int max_insns;
bool end_of_page;
/* generate intermediate code */
/* The A64 decoder has its own top level loop, because it doesn't need
* the A32/T32 complexity to do with conditional execution/IT blocks/etc.
*/
if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
gen_intermediate_code_a64(cpu, tb);
return;
}
pc_start = tb->pc;
dc->tb = tb;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->condjmp = 0;
dc->aarch64 = 0;
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
* there is no secure EL1, so we route exceptions to EL3.
*/
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3);
dc->thumb = ARM_TBFLAG_THUMB(tb->flags);
dc->sctlr_b = ARM_TBFLAG_SCTLR_B(tb->flags);
dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1;
dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4;
dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(tb->flags));
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->ns = ARM_TBFLAG_NS(tb->flags);
dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
dc->vfp_enabled = ARM_TBFLAG_VFPEN(tb->flags);
dc->vec_len = ARM_TBFLAG_VECLEN(tb->flags);
dc->vec_stride = ARM_TBFLAG_VECSTRIDE(tb->flags);
dc->c15_cpar = ARM_TBFLAG_XSCALE_CPAR(tb->flags);
dc->v7m_handler_mode = ARM_TBFLAG_HANDLER(tb->flags);
dc->cp_regs = cpu->cp_regs;
dc->features = env->features;
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
dc->is_ldex = false;
dc->ss_same_el = false; /* Can't be true since EL_d must be AArch64 */
cpu_F0s = tcg_temp_new_i32();
cpu_F1s = tcg_temp_new_i32();
cpu_F0d = tcg_temp_new_i64();
cpu_F1d = tcg_temp_new_i64();
cpu_V0 = cpu_F0d;
cpu_V1 = cpu_F1d;
/* FIXME: cpu_M0 can probably be the same as cpu_V0. */
cpu_M0 = tcg_temp_new_i64();
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
if (max_insns > TCG_MAX_INSNS) {
max_insns = TCG_MAX_INSNS;
}
gen_tb_start(tb);
tcg_clear_temp_count();
/* A note on handling of the condexec (IT) bits:
*
* We want to avoid the overhead of having to write the updated condexec
* bits back to the CPUARMState for every instruction in an IT block. So:
* (1) if the condexec bits are not already zero then we write
* zero back into the CPUARMState now. This avoids complications trying
* to do it at the end of the block. (For example if we don't do this
* it's hard to identify whether we can safely skip writing condexec
* at the end of the TB, which we definitely want to do for the case
* where a TB doesn't do anything with the IT state at all.)
* (2) if we are going to leave the TB then we call gen_set_condexec()
* which will write the correct value into CPUARMState if zero is wrong.
* This is done both for leaving the TB at the end, and for leaving
* it because of an exception we know will happen, which is done in
* gen_exception_insn(). The latter is necessary because we need to
* leave the TB with the PC/IT state just prior to execution of the
* instruction which caused the exception.
* (3) if we leave the TB unexpectedly (eg a data abort on a load)
* then the CPUARMState will be wrong and we need to reset it.
* This is handled in the same way as restoration of the
* PC in these situations; we save the value of the condexec bits
* for each PC via tcg_gen_insn_start(), and restore_state_to_opc()
* then uses this to restore them after an exception.
*
* Note that there are no instructions which can read the condexec
* bits, and none which can write non-static values to them, so
* we don't need to care about whether CPUARMState is correct in the
* middle of a TB.
*/
/* Reset the conditional execution bits immediately. This avoids
complications trying to do it at the end of the block. */
if (dc->condexec_mask || dc->condexec_cond)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
store_cpu_field(tmp, condexec_bits);
}
do {
dc->insn_start_idx = tcg_op_buf_count();
tcg_gen_insn_start(dc->pc,
(dc->condexec_cond << 4) | (dc->condexec_mask >> 1),
0);
num_insns++;
#ifdef CONFIG_USER_ONLY
/* Intercept jump to the magic kernel page. */
if (dc->pc >= 0xffff0000) {
/* We always get here via a jump, so know we are not in a
conditional execution block. */
gen_exception_internal(EXCP_KERNEL_TRAP);
dc->is_jmp = DISAS_EXC;
break;
}
#endif
if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
CPUBreakpoint *bp;
QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
if (bp->pc == dc->pc) {
if (bp->flags & BP_CPU) {
gen_set_condexec(dc);
gen_set_pc_im(dc, dc->pc);
gen_helper_check_breakpoints(cpu_env);
/* End the TB early; it's likely not going to be executed */
dc->is_jmp = DISAS_UPDATE;
} else {
gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
/* The address covered by the breakpoint must be
included in [tb->pc, tb->pc + tb->size) in order
to for it to be properly cleared -- thus we
increment the PC here so that the logic setting
tb->size below does the right thing. */
/* TODO: Advance PC by correct instruction length to
* avoid disassembler error messages */
dc->pc += 2;
goto done_generating;
}
break;
}
}
}
if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
if (dc->ss_active && !dc->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(num_insns == 1);
gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
default_exception_el(dc));
goto done_generating;
}
if (dc->thumb) {
disas_thumb_insn(env, dc);
if (dc->condexec_mask) {
dc->condexec_cond = (dc->condexec_cond & 0xe)
| ((dc->condexec_mask >> 4) & 1);
dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
if (dc->condexec_mask == 0) {
dc->condexec_cond = 0;
}
}
} else {
unsigned int insn = arm_ldl_code(env, dc->pc, dc->sctlr_b);
dc->pc += 4;
disas_arm_insn(dc, insn);
}
if (dc->condjmp && !dc->is_jmp) {
gen_set_label(dc->condlabel);
dc->condjmp = 0;
}
if (tcg_check_temp_count()) {
fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
dc->pc);
}
/* Translation stops when a conditional branch is encountered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefetch aborts occur at the right place. */
/* We want to stop the TB if the next insn starts in a new page,
* or if it spans between this page and the next. This means that
* if we're looking at the last halfword in the page we need to
* see if it's a 16-bit Thumb insn (which will fit in this TB)
* or a 32-bit Thumb insn (which won't).
* This is to avoid generating a silly TB with a single 16-bit insn
* in it at the end of this page (which would execute correctly
* but isn't very efficient).
*/
end_of_page = (dc->pc >= next_page_start) ||
((dc->pc >= next_page_start - 3) && insn_crosses_page(env, dc));
} while (!dc->is_jmp && !tcg_op_buf_full() &&
!is_singlestepping(dc) &&
!singlestep &&
!end_of_page &&
num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
if (dc->condjmp) {
/* FIXME: This can theoretically happen with self-modifying
code. */
cpu_abort(cs, "IO on conditional branch instruction");
}
gen_io_end();
}
/* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has
already been written. */
gen_set_condexec(dc);
if (dc->is_jmp == DISAS_BX_EXCRET) {
/* Exception return branches need some special case code at the
* end of the TB, which is complex enough that it has to
* handle the single-step vs not and the condition-failed
* insn codepath itself.
*/
gen_bx_excret_final_code(dc);
} else if (unlikely(is_singlestepping(dc))) {
/* Unconditional and "condition passed" instruction codepath. */
switch (dc->is_jmp) {
case DISAS_SWI:
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
default_exception_el(dc));
break;
case DISAS_HVC:
gen_ss_advance(dc);
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
break;
case DISAS_SMC:
gen_ss_advance(dc);
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
break;
case DISAS_NEXT:
case DISAS_UPDATE:
gen_set_pc_im(dc, dc->pc);
/* fall through */
default:
/* FIXME: Single stepping a WFI insn will not halt the CPU. */
gen_singlestep_exception(dc);
}
} else {
/* While branches must always occur at the end of an IT block,
there are a few other things that can cause us to terminate
the TB in the middle of an IT block:
- Exception generating instructions (bkpt, swi, undefined).
- Page boundaries.
- Hardware watchpoints.
Hardware breakpoints have already been handled and skip this code.
*/
switch(dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
case DISAS_UPDATE:
gen_set_pc_im(dc, dc->pc);
/* fall through */
case DISAS_JUMP:
gen_goto_ptr();
break;
default:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
case DISAS_EXC:
/* nothing more to generate */
break;
case DISAS_WFI:
gen_helper_wfi(cpu_env);
/* The helper doesn't necessarily throw an exception, but we
* must go back to the main loop to check for interrupts anyway.
*/
tcg_gen_exit_tb(0);
break;
case DISAS_WFE:
gen_helper_wfe(cpu_env);
break;
case DISAS_YIELD:
gen_helper_yield(cpu_env);
break;
case DISAS_SWI:
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
default_exception_el(dc));
break;
case DISAS_HVC:
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
break;
case DISAS_SMC:
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
break;
}
}
if (dc->condjmp) {
/* "Condition failed" instruction codepath for the branch/trap insn */
gen_set_label(dc->condlabel);
gen_set_condexec(dc);
if (unlikely(is_singlestepping(dc))) {
gen_set_pc_im(dc, dc->pc);
gen_singlestep_exception(dc);
} else {
gen_goto_tb(dc, 1, dc->pc);
}
}
done_generating:
gen_tb_end(tb, num_insns);
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
qemu_log_in_addr_range(pc_start)) {
qemu_log_lock();
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(cs, pc_start, dc->pc - pc_start,
dc->thumb | (dc->sctlr_b << 1));
qemu_log("\n");
qemu_log_unlock();
}
#endif
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
static const char *cpu_mode_names[16] = {
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
"???", "???", "hyp", "und", "???", "???", "???", "sys"
};
void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int i;
uint32_t psr;
const char *ns_status;
if (is_a64(env)) {
aarch64_cpu_dump_state(cs, f, cpu_fprintf, flags);
return;
}
for(i=0;i<16;i++) {
cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
psr = cpsr_read(env);
if (arm_feature(env, ARM_FEATURE_EL3) &&
(psr & CPSR_M) != ARM_CPU_MODE_MON) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
} else {
ns_status = "";
}
cpu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
psr,
psr & (1 << 31) ? 'N' : '-',
psr & (1 << 30) ? 'Z' : '-',
psr & (1 << 29) ? 'C' : '-',
psr & (1 << 28) ? 'V' : '-',
psr & CPSR_T ? 'T' : 'A',
ns_status,
cpu_mode_names[psr & 0xf], (psr & 0x10) ? 32 : 26);
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 0;
if (arm_feature(env, ARM_FEATURE_VFP)) {
numvfpregs += 16;
}
if (arm_feature(env, ARM_FEATURE_VFP3)) {
numvfpregs += 16;
}
for (i = 0; i < numvfpregs; i++) {
uint64_t v = float64_val(env->vfp.regs[i]);
cpu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
i * 2, (uint32_t)v,
i * 2 + 1, (uint32_t)(v >> 32),
i, v);
}
cpu_fprintf(f, "FPSCR: %08x\n", (int)env->vfp.xregs[ARM_VFP_FPSCR]);
}
}
void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb,
target_ulong *data)
{
if (is_a64(env)) {
env->pc = data[0];
env->condexec_bits = 0;
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
} else {
env->regs[15] = data[0];
env->condexec_bits = data[1];
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
}
}