19b254e86a
When we do an AT address translation operation, the page table walk
is supposed to be performed in the context of the EL we're doing the
walk for, so for instance an AT S1E2R walk is done for EL2. In the
pseudocode an EL is passed to AArch64.AT(), which calls
SecurityStateAtEL() to find the security state that we should be
doing the walk with.
In ats_write64() we get this wrong, instead using the current
security space always. This is fine for AT operations performed from
EL1 and EL2, because there the current security state and the
security state for the lower EL are the same. But for AT operations
performed from EL3, the current security state is always either
Secure or Root, whereas we want to use the security state defined by
SCR_EL3.{NS,NSE} for the walk. This affects not just guests using
FEAT_RME but also ones where EL3 is Secure state and the EL3 code
is trying to do an AT for a NonSecure EL2 or EL1.
Use arm_security_space_below_el3() to get the SecuritySpace to
pass to do_ats_write() for all AT operations except the
AT S1E3* operations.
Cc: qemu-stable@nongnu.org
Fixes: e1ee56ec23
("target/arm: Pass security space rather than flag for AT instructions")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2250
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240405180232.3570066-1-peter.maydell@linaro.org
12801 lines
456 KiB
C
12801 lines
456 KiB
C
/*
|
|
* ARM generic helpers.
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "trace.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "cpu-features.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/crc32c.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "exec/exec-all.h"
|
|
#include <zlib.h> /* For crc32 */
|
|
#include "hw/irq.h"
|
|
#include "sysemu/cpu-timers.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/guest-random.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "semihosting/common-semi.h"
|
|
#endif
|
|
#include "cpregs.h"
|
|
#include "target/arm/gtimer.h"
|
|
|
|
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
|
|
|
|
static void switch_mode(CPUARMState *env, int mode);
|
|
|
|
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
return CPREG_FIELD64(env, ri);
|
|
} else {
|
|
return CPREG_FIELD32(env, ri);
|
|
}
|
|
}
|
|
|
|
void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
CPREG_FIELD64(env, ri) = value;
|
|
} else {
|
|
CPREG_FIELD32(env, ri) = value;
|
|
}
|
|
}
|
|
|
|
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return (char *)env + ri->fieldoffset;
|
|
}
|
|
|
|
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Raw read of a coprocessor register (as needed for migration, etc). */
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return ri->resetvalue;
|
|
} else if (ri->raw_readfn) {
|
|
return ri->raw_readfn(env, ri);
|
|
} else if (ri->readfn) {
|
|
return ri->readfn(env, ri);
|
|
} else {
|
|
return raw_read(env, ri);
|
|
}
|
|
}
|
|
|
|
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t v)
|
|
{
|
|
/*
|
|
* Raw write of a coprocessor register (as needed for migration, etc).
|
|
* Note that constant registers are treated as write-ignored; the
|
|
* caller should check for success by whether a readback gives the
|
|
* value written.
|
|
*/
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return;
|
|
} else if (ri->raw_writefn) {
|
|
ri->raw_writefn(env, ri, v);
|
|
} else if (ri->writefn) {
|
|
ri->writefn(env, ri, v);
|
|
} else {
|
|
raw_write(env, ri, v);
|
|
}
|
|
}
|
|
|
|
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* Return true if the regdef would cause an assertion if you called
|
|
* read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
|
|
* program bug for it not to have the NO_RAW flag).
|
|
* NB that returning false here doesn't necessarily mean that calling
|
|
* read/write_raw_cp_reg() is safe, because we can't distinguish "has
|
|
* read/write access functions which are safe for raw use" from "has
|
|
* read/write access functions which have side effects but has forgotten
|
|
* to provide raw access functions".
|
|
* The tests here line up with the conditions in read/write_raw_cp_reg()
|
|
* and assertions in raw_read()/raw_write().
|
|
*/
|
|
if ((ri->type & ARM_CP_CONST) ||
|
|
ri->fieldoffset ||
|
|
((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
|
|
{
|
|
/* Write the coprocessor state from cpu->env to the (index,value) list. */
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
const ARMCPRegInfo *ri;
|
|
uint64_t newval;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
|
|
newval = read_raw_cp_reg(&cpu->env, ri);
|
|
if (kvm_sync) {
|
|
/*
|
|
* Only sync if the previous list->cpustate sync succeeded.
|
|
* Rather than tracking the success/failure state for every
|
|
* item in the list, we just recheck "does the raw write we must
|
|
* have made in write_list_to_cpustate() read back OK" here.
|
|
*/
|
|
uint64_t oldval = cpu->cpreg_values[i];
|
|
|
|
if (oldval == newval) {
|
|
continue;
|
|
}
|
|
|
|
write_raw_cp_reg(&cpu->env, ri, oldval);
|
|
if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
|
|
continue;
|
|
}
|
|
|
|
write_raw_cp_reg(&cpu->env, ri, newval);
|
|
}
|
|
cpu->cpreg_values[i] = newval;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool write_list_to_cpustate(ARMCPU *cpu)
|
|
{
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
uint64_t v = cpu->cpreg_values[i];
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
/*
|
|
* Write value and confirm it reads back as written
|
|
* (to catch read-only registers and partially read-only
|
|
* registers where the incoming migration value doesn't match)
|
|
*/
|
|
write_raw_cp_reg(&cpu->env, ri, v);
|
|
if (read_raw_cp_reg(&cpu->env, ri) != v) {
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void add_cpreg_to_list(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
uint32_t regidx = (uintptr_t)key;
|
|
const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
|
|
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
|
|
/* The value array need not be initialized at this point */
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static void count_cpreg(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = g_hash_table_lookup(cpu->cp_regs, key);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
|
|
{
|
|
uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
|
|
uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
|
|
|
|
if (aidx > bidx) {
|
|
return 1;
|
|
}
|
|
if (aidx < bidx) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void init_cpreg_list(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Initialise the cpreg_tuples[] array based on the cp_regs hash.
|
|
* Note that we require cpreg_tuples[] to be sorted by key ID.
|
|
*/
|
|
GList *keys;
|
|
int arraylen;
|
|
|
|
keys = g_hash_table_get_keys(cpu->cp_regs);
|
|
keys = g_list_sort(keys, cpreg_key_compare);
|
|
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, count_cpreg, cpu);
|
|
|
|
arraylen = cpu->cpreg_array_len;
|
|
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, add_cpreg_to_list, cpu);
|
|
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
g_list_free(keys);
|
|
}
|
|
|
|
static bool arm_pan_enabled(CPUARMState *env)
|
|
{
|
|
if (is_a64(env)) {
|
|
if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
|
|
return false;
|
|
}
|
|
return env->pstate & PSTATE_PAN;
|
|
} else {
|
|
return env->uncached_cpsr & CPSR_PAN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
|
|
*/
|
|
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (!is_a64(env) && arm_current_el(env) == 3 &&
|
|
arm_is_secure_below_el3(env)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/*
|
|
* Some secure-only AArch32 registers trap to EL3 if used from
|
|
* Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
|
|
* Note that an access from Secure EL1 can only happen if EL3 is AArch64.
|
|
* We assume that the .access field is set to PL1_RW.
|
|
*/
|
|
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
/* This will be EL1 NS and EL2 NS, which just UNDEF */
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
/*
|
|
* Check for traps to performance monitor registers, which are controlled
|
|
* by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
|
|
*/
|
|
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
|
|
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
|
|
CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
|
|
if (arm_hcr_el2_eff(env) & trap) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TSW. */
|
|
static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TACR. */
|
|
static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB. */
|
|
static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
|
|
static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
|
|
static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
#endif
|
|
|
|
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
raw_write(env, ri, value);
|
|
tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
|
|
}
|
|
|
|
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (raw_read(env, ri) != value) {
|
|
/*
|
|
* Unlike real hardware the qemu TLB uses virtual addresses,
|
|
* not modified virtual addresses, so this causes a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
raw_write(env, ri, value);
|
|
}
|
|
}
|
|
|
|
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
|
|
&& !extended_addresses_enabled(env)) {
|
|
/*
|
|
* For VMSA (when not using the LPAE long descriptor page table
|
|
* format) this register includes the ASID, so do a TLB flush.
|
|
* For PMSA it is purely a process ID and no action is needed.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static int alle1_tlbmask(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Note that the 'ALL' scope must invalidate both stage 1 and
|
|
* stage 2 translations, whereas most other scopes only invalidate
|
|
* stage 1 translations.
|
|
*/
|
|
return (ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E10_0 |
|
|
ARMMMUIdxBit_Stage2 |
|
|
ARMMMUIdxBit_Stage2_S);
|
|
}
|
|
|
|
|
|
/* IS variants of TLB operations must affect all cores */
|
|
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
/*
|
|
* Non-IS variants of TLB operations are upgraded to
|
|
* IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
|
|
* force broadcast of these operations.
|
|
*/
|
|
static bool tlb_force_broadcast(CPUARMState *env)
|
|
{
|
|
return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
|
|
}
|
|
|
|
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate all (TLBIALL) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_all_cpus_synced(cs);
|
|
} else {
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
|
|
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
value &= TARGET_PAGE_MASK;
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_all_cpus_synced(cs, value);
|
|
} else {
|
|
tlb_flush_page(cs, value);
|
|
}
|
|
}
|
|
|
|
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by ASID (TLBIASID) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_all_cpus_synced(cs);
|
|
} else {
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
|
|
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
value &= TARGET_PAGE_MASK;
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_all_cpus_synced(cs, value);
|
|
} else {
|
|
tlb_flush_page(cs, value);
|
|
}
|
|
}
|
|
|
|
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
|
|
}
|
|
|
|
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
|
|
}
|
|
|
|
|
|
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
|
|
ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static const ARMCPRegInfo cp_reginfo[] = {
|
|
/*
|
|
* Define the secure and non-secure FCSE identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. There is also no
|
|
* v8 EL1 version of the register so the non-secure instance stands alone.
|
|
*/
|
|
{ .name = "FCSEIDR",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
{ .name = "FCSEIDR_S",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
/*
|
|
* Define the secure and non-secure context identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. In the
|
|
* non-secure case, the 32-bit register will have reset and migration
|
|
* disabled during registration as it is handled by the 64-bit instance.
|
|
*/
|
|
{ .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_CONTEXTIDR_EL1,
|
|
.nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
{ .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
|
|
/*
|
|
* NB: Some of these registers exist in v8 but with more precise
|
|
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
|
|
*/
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR",
|
|
.cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
/*
|
|
* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
|
|
* For v6 and v5, these mappings are overly broad.
|
|
*/
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
/* Cache maintenance ops; some of this space may be overridden later. */
|
|
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
|
|
/*
|
|
* Not all pre-v6 cores implemented this WFI, so this is slightly
|
|
* over-broad.
|
|
*/
|
|
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
|
|
/*
|
|
* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
|
|
* is UNPREDICTABLE; we choose to NOP as most implementations do).
|
|
*/
|
|
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
/*
|
|
* L1 cache lockdown. Not architectural in v6 and earlier but in practice
|
|
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
|
|
* OMAPCP will override this space.
|
|
*/
|
|
{ .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
|
|
.resetvalue = 0 },
|
|
{ .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
|
|
.resetvalue = 0 },
|
|
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
|
|
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
|
|
* implementing it as RAZ means the "debug architecture version" bits
|
|
* will read as a reserved value, which should cause Linux to not try
|
|
* to use the debug hardware.
|
|
*/
|
|
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/*
|
|
* MMU TLB control. Note that the wildcarding means we cover not just
|
|
* the unified TLB ops but also the dside/iside/inner-shareable variants.
|
|
*/
|
|
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint32_t mask = 0;
|
|
|
|
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
|
|
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
|
|
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
|
|
*/
|
|
if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
|
|
/* VFP coprocessor: cp10 & cp11 [23:20] */
|
|
mask |= R_CPACR_ASEDIS_MASK |
|
|
R_CPACR_D32DIS_MASK |
|
|
R_CPACR_CP11_MASK |
|
|
R_CPACR_CP10_MASK;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_NEON)) {
|
|
/* ASEDIS [31] bit is RAO/WI */
|
|
value |= R_CPACR_ASEDIS_MASK;
|
|
}
|
|
|
|
/*
|
|
* VFPv3 and upwards with NEON implement 32 double precision
|
|
* registers (D0-D31).
|
|
*/
|
|
if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
|
|
/* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
|
|
value |= R_CPACR_D32DIS_MASK;
|
|
}
|
|
}
|
|
value &= mask;
|
|
}
|
|
|
|
/*
|
|
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
|
|
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
|
|
value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
|
|
}
|
|
|
|
env->cp15.cpacr_el1 = value;
|
|
}
|
|
|
|
static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
|
|
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
|
|
*/
|
|
uint64_t value = env->cp15.cpacr_el1;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* Call cpacr_write() so that we reset with the correct RAO bits set
|
|
* for our CPU features.
|
|
*/
|
|
cpacr_write(env, ri, 0);
|
|
}
|
|
|
|
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* Check if CPACR accesses are to be trapped to EL2 */
|
|
if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
|
|
FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
/* Check if CPACR accesses are to be trapped to EL3 */
|
|
} else if (arm_current_el(env) < 3 &&
|
|
FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* Check if CPTR accesses are set to trap to EL3 */
|
|
if (arm_current_el(env) == 2 &&
|
|
FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo v6_cp_reginfo[] = {
|
|
/* prefetch by MVA in v6, NOP in v7 */
|
|
{ .name = "MVA_prefetch",
|
|
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/*
|
|
* We need to break the TB after ISB to execute self-modifying code
|
|
* correctly and also to take any pending interrupts immediately.
|
|
* So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
|
|
*/
|
|
{ .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
|
|
{ .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
|
|
offsetof(CPUARMState, cp15.ifar_ns) },
|
|
.resetvalue = 0, },
|
|
/*
|
|
* Watchpoint Fault Address Register : should actually only be present
|
|
* for 1136, 1176, 11MPCore.
|
|
*/
|
|
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
|
|
{ .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
|
|
.crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
|
|
.fgt = FGT_CPACR_EL1,
|
|
.nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
|
|
.resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
|
|
};
|
|
|
|
typedef struct pm_event {
|
|
uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
|
|
/* If the event is supported on this CPU (used to generate PMCEID[01]) */
|
|
bool (*supported)(CPUARMState *);
|
|
/*
|
|
* Retrieve the current count of the underlying event. The programmed
|
|
* counters hold a difference from the return value from this function
|
|
*/
|
|
uint64_t (*get_count)(CPUARMState *);
|
|
/*
|
|
* Return how many nanoseconds it will take (at a minimum) for count events
|
|
* to occur. A negative value indicates the counter will never overflow, or
|
|
* that the counter has otherwise arranged for the overflow bit to be set
|
|
* and the PMU interrupt to be raised on overflow.
|
|
*/
|
|
int64_t (*ns_per_count)(uint64_t);
|
|
} pm_event;
|
|
|
|
static bool event_always_supported(CPUARMState *env)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static uint64_t swinc_get_count(CPUARMState *env)
|
|
{
|
|
/*
|
|
* SW_INCR events are written directly to the pmevcntr's by writes to
|
|
* PMSWINC, so there is no underlying count maintained by the PMU itself
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int64_t swinc_ns_per(uint64_t ignored)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return the underlying cycle count for the PMU cycle counters. If we're in
|
|
* usermode, simply return 0.
|
|
*/
|
|
static uint64_t cycles_get_count(CPUARMState *env)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
|
|
#else
|
|
return cpu_get_host_ticks();
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static int64_t cycles_ns_per(uint64_t cycles)
|
|
{
|
|
return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
|
|
}
|
|
|
|
static bool instructions_supported(CPUARMState *env)
|
|
{
|
|
/* Precise instruction counting */
|
|
return icount_enabled() == ICOUNT_PRECISE;
|
|
}
|
|
|
|
static uint64_t instructions_get_count(CPUARMState *env)
|
|
{
|
|
assert(icount_enabled() == ICOUNT_PRECISE);
|
|
return (uint64_t)icount_get_raw();
|
|
}
|
|
|
|
static int64_t instructions_ns_per(uint64_t icount)
|
|
{
|
|
assert(icount_enabled() == ICOUNT_PRECISE);
|
|
return icount_to_ns((int64_t)icount);
|
|
}
|
|
#endif
|
|
|
|
static bool pmuv3p1_events_supported(CPUARMState *env)
|
|
{
|
|
/* For events which are supported in any v8.1 PMU */
|
|
return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
|
|
}
|
|
|
|
static bool pmuv3p4_events_supported(CPUARMState *env)
|
|
{
|
|
/* For events which are supported in any v8.1 PMU */
|
|
return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
|
|
}
|
|
|
|
static uint64_t zero_event_get_count(CPUARMState *env)
|
|
{
|
|
/* For events which on QEMU never fire, so their count is always zero */
|
|
return 0;
|
|
}
|
|
|
|
static int64_t zero_event_ns_per(uint64_t cycles)
|
|
{
|
|
/* An event which never fires can never overflow */
|
|
return -1;
|
|
}
|
|
|
|
static const pm_event pm_events[] = {
|
|
{ .number = 0x000, /* SW_INCR */
|
|
.supported = event_always_supported,
|
|
.get_count = swinc_get_count,
|
|
.ns_per_count = swinc_ns_per,
|
|
},
|
|
#ifndef CONFIG_USER_ONLY
|
|
{ .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
|
|
.supported = instructions_supported,
|
|
.get_count = instructions_get_count,
|
|
.ns_per_count = instructions_ns_per,
|
|
},
|
|
{ .number = 0x011, /* CPU_CYCLES, Cycle */
|
|
.supported = event_always_supported,
|
|
.get_count = cycles_get_count,
|
|
.ns_per_count = cycles_ns_per,
|
|
},
|
|
#endif
|
|
{ .number = 0x023, /* STALL_FRONTEND */
|
|
.supported = pmuv3p1_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
{ .number = 0x024, /* STALL_BACKEND */
|
|
.supported = pmuv3p1_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
{ .number = 0x03c, /* STALL */
|
|
.supported = pmuv3p4_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
|
|
* events (i.e. the statistical profiling extension), this implementation
|
|
* should first be updated to something sparse instead of the current
|
|
* supported_event_map[] array.
|
|
*/
|
|
#define MAX_EVENT_ID 0x3c
|
|
#define UNSUPPORTED_EVENT UINT16_MAX
|
|
static uint16_t supported_event_map[MAX_EVENT_ID + 1];
|
|
|
|
/*
|
|
* Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
|
|
* of ARM event numbers to indices in our pm_events array.
|
|
*
|
|
* Note: Events in the 0x40XX range are not currently supported.
|
|
*/
|
|
void pmu_init(ARMCPU *cpu)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Empty supported_event_map and cpu->pmceid[01] before adding supported
|
|
* events to them
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
|
|
supported_event_map[i] = UNSUPPORTED_EVENT;
|
|
}
|
|
cpu->pmceid0 = 0;
|
|
cpu->pmceid1 = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
|
|
const pm_event *cnt = &pm_events[i];
|
|
assert(cnt->number <= MAX_EVENT_ID);
|
|
/* We do not currently support events in the 0x40xx range */
|
|
assert(cnt->number <= 0x3f);
|
|
|
|
if (cnt->supported(&cpu->env)) {
|
|
supported_event_map[cnt->number] = i;
|
|
uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
|
|
if (cnt->number & 0x20) {
|
|
cpu->pmceid1 |= event_mask;
|
|
} else {
|
|
cpu->pmceid0 |= event_mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check at runtime whether a PMU event is supported for the current machine
|
|
*/
|
|
static bool event_supported(uint16_t number)
|
|
{
|
|
if (number > MAX_EVENT_ID) {
|
|
return false;
|
|
}
|
|
return supported_event_map[number] != UNSUPPORTED_EVENT;
|
|
}
|
|
|
|
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* Performance monitor registers user accessibility is controlled
|
|
* by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
|
|
* trapping to EL2 or EL3 for other accesses.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
|
|
if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* ER: event counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0
|
|
&& isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_swinc(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* SW: software increment write trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 1)) != 0
|
|
&& !isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_selr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* ER: event counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* CR: cycle counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 2)) != 0
|
|
&& isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
/*
|
|
* Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
|
|
* We use these to decide whether we need to wrap a write to MDCR_EL2
|
|
* or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
|
|
*/
|
|
#define MDCR_EL2_PMU_ENABLE_BITS \
|
|
(MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
|
|
#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
|
|
|
|
/*
|
|
* Returns true if the counter (pass 31 for PMCCNTR) should count events using
|
|
* the current EL, security state, and register configuration.
|
|
*/
|
|
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
|
|
{
|
|
uint64_t filter;
|
|
bool e, p, u, nsk, nsu, nsh, m;
|
|
bool enabled, prohibited = false, filtered;
|
|
bool secure = arm_is_secure(env);
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2;
|
|
uint8_t hpmn;
|
|
|
|
/*
|
|
* We might be called for M-profile cores where MDCR_EL2 doesn't
|
|
* exist and arm_mdcr_el2_eff() will assert, so this early-exit check
|
|
* must be before we read that value.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_PMU)) {
|
|
return false;
|
|
}
|
|
|
|
mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
hpmn = mdcr_el2 & MDCR_HPMN;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2) ||
|
|
(counter < hpmn || counter == 31)) {
|
|
e = env->cp15.c9_pmcr & PMCRE;
|
|
} else {
|
|
e = mdcr_el2 & MDCR_HPME;
|
|
}
|
|
enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
|
|
|
|
/* Is event counting prohibited? */
|
|
if (el == 2 && (counter < hpmn || counter == 31)) {
|
|
prohibited = mdcr_el2 & MDCR_HPMD;
|
|
}
|
|
if (secure) {
|
|
prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
|
|
}
|
|
|
|
if (counter == 31) {
|
|
/*
|
|
* The cycle counter defaults to running. PMCR.DP says "disable
|
|
* the cycle counter when event counting is prohibited".
|
|
* Some MDCR bits disable the cycle counter specifically.
|
|
*/
|
|
prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
|
|
if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
if (secure) {
|
|
prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
|
|
}
|
|
if (el == 2) {
|
|
prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (counter == 31) {
|
|
filter = env->cp15.pmccfiltr_el0;
|
|
} else {
|
|
filter = env->cp15.c14_pmevtyper[counter];
|
|
}
|
|
|
|
p = filter & PMXEVTYPER_P;
|
|
u = filter & PMXEVTYPER_U;
|
|
nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
|
|
nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
|
|
nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
|
|
m = arm_el_is_aa64(env, 1) &&
|
|
arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
|
|
|
|
if (el == 0) {
|
|
filtered = secure ? u : u != nsu;
|
|
} else if (el == 1) {
|
|
filtered = secure ? p : p != nsk;
|
|
} else if (el == 2) {
|
|
filtered = !nsh;
|
|
} else { /* EL3 */
|
|
filtered = m != p;
|
|
}
|
|
|
|
if (counter != 31) {
|
|
/*
|
|
* If not checking PMCCNTR, ensure the counter is setup to an event we
|
|
* support
|
|
*/
|
|
uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
|
|
if (!event_supported(event)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return enabled && !prohibited && !filtered;
|
|
}
|
|
|
|
static void pmu_update_irq(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
|
|
(env->cp15.c9_pminten & env->cp15.c9_pmovsr));
|
|
}
|
|
|
|
static bool pmccntr_clockdiv_enabled(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Return true if the clock divider is enabled and the cycle counter
|
|
* is supposed to tick only once every 64 clock cycles. This is
|
|
* controlled by PMCR.D, but if PMCR.LC is set to enable the long
|
|
* (64-bit) cycle counter PMCR.D has no effect.
|
|
*/
|
|
return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
|
|
}
|
|
|
|
static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
|
|
{
|
|
/* Return true if the specified event counter is configured to be 64 bit */
|
|
|
|
/* This isn't intended to be used with the cycle counter */
|
|
assert(counter < 31);
|
|
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
return false;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/*
|
|
* MDCR_EL2.HLP still applies even when EL2 is disabled in the
|
|
* current security state, so we don't use arm_mdcr_el2_eff() here.
|
|
*/
|
|
bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
|
|
int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
|
|
|
|
if (counter >= hpmn) {
|
|
return hlp;
|
|
}
|
|
}
|
|
return env->cp15.c9_pmcr & PMCRLP;
|
|
}
|
|
|
|
/*
|
|
* Ensure c15_ccnt is the guest-visible count so that operations such as
|
|
* enabling/disabling the counter or filtering, modifying the count itself,
|
|
* etc. can be done logically. This is essentially a no-op if the counter is
|
|
* not enabled at the time of the call.
|
|
*/
|
|
static void pmccntr_op_start(CPUARMState *env)
|
|
{
|
|
uint64_t cycles = cycles_get_count(env);
|
|
|
|
if (pmu_counter_enabled(env, 31)) {
|
|
uint64_t eff_cycles = cycles;
|
|
if (pmccntr_clockdiv_enabled(env)) {
|
|
eff_cycles /= 64;
|
|
}
|
|
|
|
uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
|
|
|
|
uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
|
|
1ull << 63 : 1ull << 31;
|
|
if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1ULL << 31);
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
env->cp15.c15_ccnt = new_pmccntr;
|
|
}
|
|
env->cp15.c15_ccnt_delta = cycles;
|
|
}
|
|
|
|
/*
|
|
* If PMCCNTR is enabled, recalculate the delta between the clock and the
|
|
* guest-visible count. A call to pmccntr_op_finish should follow every call to
|
|
* pmccntr_op_start.
|
|
*/
|
|
static void pmccntr_op_finish(CPUARMState *env)
|
|
{
|
|
if (pmu_counter_enabled(env, 31)) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Calculate when the counter will next overflow */
|
|
uint64_t remaining_cycles = -env->cp15.c15_ccnt;
|
|
if (!(env->cp15.c9_pmcr & PMCRLC)) {
|
|
remaining_cycles = (uint32_t)remaining_cycles;
|
|
}
|
|
int64_t overflow_in = cycles_ns_per(remaining_cycles);
|
|
|
|
if (overflow_in > 0) {
|
|
int64_t overflow_at;
|
|
|
|
if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
overflow_in, &overflow_at)) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
|
|
if (pmccntr_clockdiv_enabled(env)) {
|
|
prev_cycles /= 64;
|
|
}
|
|
env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
|
|
}
|
|
}
|
|
|
|
static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
|
|
{
|
|
|
|
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
|
|
uint64_t count = 0;
|
|
if (event_supported(event)) {
|
|
uint16_t event_idx = supported_event_map[event];
|
|
count = pm_events[event_idx].get_count(env);
|
|
}
|
|
|
|
if (pmu_counter_enabled(env, counter)) {
|
|
uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
|
|
uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
|
|
1ULL << 63 : 1ULL << 31;
|
|
|
|
if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1 << counter);
|
|
pmu_update_irq(env);
|
|
}
|
|
env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
|
|
}
|
|
env->cp15.c14_pmevcntr_delta[counter] = count;
|
|
}
|
|
|
|
static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
|
|
{
|
|
if (pmu_counter_enabled(env, counter)) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
|
|
uint16_t event_idx = supported_event_map[event];
|
|
uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
|
|
int64_t overflow_in;
|
|
|
|
if (!pmevcntr_is_64_bit(env, counter)) {
|
|
delta = (uint32_t)delta;
|
|
}
|
|
overflow_in = pm_events[event_idx].ns_per_count(delta);
|
|
|
|
if (overflow_in > 0) {
|
|
int64_t overflow_at;
|
|
|
|
if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
overflow_in, &overflow_at)) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
env->cp15.c14_pmevcntr_delta[counter] -=
|
|
env->cp15.c14_pmevcntr[counter];
|
|
}
|
|
}
|
|
|
|
void pmu_op_start(CPUARMState *env)
|
|
{
|
|
unsigned int i;
|
|
pmccntr_op_start(env);
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
pmevcntr_op_start(env, i);
|
|
}
|
|
}
|
|
|
|
void pmu_op_finish(CPUARMState *env)
|
|
{
|
|
unsigned int i;
|
|
pmccntr_op_finish(env);
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
pmevcntr_op_finish(env, i);
|
|
}
|
|
}
|
|
|
|
void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
pmu_op_start(&cpu->env);
|
|
}
|
|
|
|
void pmu_post_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
pmu_op_finish(&cpu->env);
|
|
}
|
|
|
|
void arm_pmu_timer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
/*
|
|
* Update all the counter values based on the current underlying counts,
|
|
* triggering interrupts to be raised, if necessary. pmu_op_finish() also
|
|
* has the effect of setting the cpu->pmu_timer to the next earliest time a
|
|
* counter may expire.
|
|
*/
|
|
pmu_op_start(&cpu->env);
|
|
pmu_op_finish(&cpu->env);
|
|
}
|
|
|
|
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
|
|
if (value & PMCRC) {
|
|
/* The counter has been reset */
|
|
env->cp15.c15_ccnt = 0;
|
|
}
|
|
|
|
if (value & PMCRP) {
|
|
unsigned int i;
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
env->cp15.c14_pmevcntr[i] = 0;
|
|
}
|
|
}
|
|
|
|
env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
|
|
env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
|
|
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint64_t pmcr = env->cp15.c9_pmcr;
|
|
|
|
/*
|
|
* If EL2 is implemented and enabled for the current security state, reads
|
|
* of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
|
|
*/
|
|
if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
|
|
pmcr &= ~PMCRN_MASK;
|
|
pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
|
|
}
|
|
|
|
return pmcr;
|
|
}
|
|
|
|
static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
unsigned int i;
|
|
uint64_t overflow_mask, new_pmswinc;
|
|
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
/* Increment a counter's count iff: */
|
|
if ((value & (1 << i)) && /* counter's bit is set */
|
|
/* counter is enabled and not filtered */
|
|
pmu_counter_enabled(env, i) &&
|
|
/* counter is SW_INCR */
|
|
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
|
|
pmevcntr_op_start(env, i);
|
|
|
|
/*
|
|
* Detect if this write causes an overflow since we can't predict
|
|
* PMSWINC overflows like we can for other events
|
|
*/
|
|
new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
|
|
|
|
overflow_mask = pmevcntr_is_64_bit(env, i) ?
|
|
1ULL << 63 : 1ULL << 31;
|
|
|
|
if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1 << i);
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
env->cp15.c14_pmevcntr[i] = new_pmswinc;
|
|
|
|
pmevcntr_op_finish(env, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint64_t ret;
|
|
pmccntr_op_start(env);
|
|
ret = env->cp15.c15_ccnt;
|
|
pmccntr_op_finish(env);
|
|
return ret;
|
|
}
|
|
|
|
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
|
|
* PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
|
|
* meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
|
|
* accessed.
|
|
*/
|
|
env->cp15.c9_pmselr = value & 0x1f;
|
|
}
|
|
|
|
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
env->cp15.c15_ccnt = value;
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t cur_val = pmccntr_read(env, NULL);
|
|
|
|
pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
|
|
}
|
|
|
|
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
/* M is not accessible from AArch32 */
|
|
env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
|
|
(value & PMCCFILTR);
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* M is not visible in AArch32 */
|
|
return env->cp15.pmccfiltr_el0 & PMCCFILTR;
|
|
}
|
|
|
|
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmcnten |= value;
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmcnten &= ~value;
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmovsr &= ~value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmovsr |= value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value, const uint8_t counter)
|
|
{
|
|
if (counter == 31) {
|
|
pmccfiltr_write(env, ri, value);
|
|
} else if (counter < pmu_num_counters(env)) {
|
|
pmevcntr_op_start(env, counter);
|
|
|
|
/*
|
|
* If this counter's event type is changing, store the current
|
|
* underlying count for the new type in c14_pmevcntr_delta[counter] so
|
|
* pmevcntr_op_finish has the correct baseline when it converts back to
|
|
* a delta.
|
|
*/
|
|
uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
|
|
PMXEVTYPER_EVTCOUNT;
|
|
uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
|
|
if (old_event != new_event) {
|
|
uint64_t count = 0;
|
|
if (event_supported(new_event)) {
|
|
uint16_t event_idx = supported_event_map[new_event];
|
|
count = pm_events[event_idx].get_count(env);
|
|
}
|
|
env->cp15.c14_pmevcntr_delta[counter] = count;
|
|
}
|
|
|
|
env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
|
|
pmevcntr_op_finish(env, counter);
|
|
}
|
|
/*
|
|
* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
|
|
* PMSELR value is equal to or greater than the number of implemented
|
|
* counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
|
|
*/
|
|
}
|
|
|
|
static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
const uint8_t counter)
|
|
{
|
|
if (counter == 31) {
|
|
return env->cp15.pmccfiltr_el0;
|
|
} else if (counter < pmu_num_counters(env)) {
|
|
return env->cp15.c14_pmevtyper[counter];
|
|
} else {
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
|
|
* are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
pmevtyper_write(env, ri, value, counter);
|
|
}
|
|
|
|
static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
env->cp15.c14_pmevtyper[counter] = value;
|
|
|
|
/*
|
|
* pmevtyper_rawwrite is called between a pair of pmu_op_start and
|
|
* pmu_op_finish calls when loading saved state for a migration. Because
|
|
* we're potentially updating the type of event here, the value written to
|
|
* c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
|
|
* different counter type. Therefore, we need to set this value to the
|
|
* current count for the counter type we're writing so that pmu_op_finish
|
|
* has the correct count for its calculation.
|
|
*/
|
|
uint16_t event = value & PMXEVTYPER_EVTCOUNT;
|
|
if (event_supported(event)) {
|
|
uint16_t event_idx = supported_event_map[event];
|
|
env->cp15.c14_pmevcntr_delta[counter] =
|
|
pm_events[event_idx].get_count(env);
|
|
}
|
|
}
|
|
|
|
static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
return pmevtyper_read(env, ri, counter);
|
|
}
|
|
|
|
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value, uint8_t counter)
|
|
{
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
/* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
|
|
value &= MAKE_64BIT_MASK(0, 32);
|
|
}
|
|
if (counter < pmu_num_counters(env)) {
|
|
pmevcntr_op_start(env, counter);
|
|
env->cp15.c14_pmevcntr[counter] = value;
|
|
pmevcntr_op_finish(env, counter);
|
|
}
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
|
|
* are CONSTRAINED UNPREDICTABLE.
|
|
*/
|
|
}
|
|
|
|
static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint8_t counter)
|
|
{
|
|
if (counter < pmu_num_counters(env)) {
|
|
uint64_t ret;
|
|
pmevcntr_op_start(env, counter);
|
|
ret = env->cp15.c14_pmevcntr[counter];
|
|
pmevcntr_op_finish(env, counter);
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
/* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
|
|
ret &= MAKE_64BIT_MASK(0, 32);
|
|
}
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
|
|
* are CONSTRAINED UNPREDICTABLE.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
pmevcntr_write(env, ri, value, counter);
|
|
}
|
|
|
|
static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
return pmevcntr_read(env, ri, counter);
|
|
}
|
|
|
|
static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
assert(counter < pmu_num_counters(env));
|
|
env->cp15.c14_pmevcntr[counter] = value;
|
|
pmevcntr_write(env, ri, value, counter);
|
|
}
|
|
|
|
static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
assert(counter < pmu_num_counters(env));
|
|
return env->cp15.c14_pmevcntr[counter];
|
|
}
|
|
|
|
static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
env->cp15.c9_pmuserenr = value & 0xf;
|
|
} else {
|
|
env->cp15.c9_pmuserenr = value & 1;
|
|
}
|
|
}
|
|
|
|
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* We have no event counters so only the C bit can be changed */
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pminten |= value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pminten &= ~value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Note that even though the AArch64 view of this register has bits
|
|
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
|
|
* architectural requirements for bits which are RES0 only in some
|
|
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
|
|
* requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
|
|
*/
|
|
raw_write(env, ri, value & ~0x1FULL);
|
|
}
|
|
|
|
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
/* Begin with base v8.0 state. */
|
|
uint64_t valid_mask = 0x3fff;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t changed;
|
|
|
|
/*
|
|
* Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
|
|
* passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
|
|
* Instead, choose the format based on the mode of EL3.
|
|
*/
|
|
if (arm_el_is_aa64(env, 3)) {
|
|
value |= SCR_FW | SCR_AW; /* RES1 */
|
|
valid_mask &= ~SCR_NET; /* RES0 */
|
|
|
|
if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
|
|
!cpu_isar_feature(aa64_aa32_el2, cpu)) {
|
|
value |= SCR_RW; /* RAO/WI */
|
|
}
|
|
if (cpu_isar_feature(aa64_ras, cpu)) {
|
|
valid_mask |= SCR_TERR;
|
|
}
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
valid_mask |= SCR_TLOR;
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
valid_mask |= SCR_API | SCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_sel2, cpu)) {
|
|
valid_mask |= SCR_EEL2;
|
|
} else if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
/* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
|
|
value |= SCR_NS;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
valid_mask |= SCR_ATA;
|
|
}
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
valid_mask |= SCR_ENSCXT;
|
|
}
|
|
if (cpu_isar_feature(aa64_doublefault, cpu)) {
|
|
valid_mask |= SCR_EASE | SCR_NMEA;
|
|
}
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
valid_mask |= SCR_ENTP2;
|
|
}
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
valid_mask |= SCR_HXEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
valid_mask |= SCR_FGTEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= SCR_NSE | SCR_GPF;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
valid_mask |= SCR_ECVEN;
|
|
}
|
|
} else {
|
|
valid_mask &= ~(SCR_RW | SCR_ST);
|
|
if (cpu_isar_feature(aa32_ras, cpu)) {
|
|
valid_mask |= SCR_TERR;
|
|
}
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
valid_mask &= ~SCR_HCE;
|
|
|
|
/*
|
|
* On ARMv7, SMD (or SCD as it is called in v7) is only
|
|
* supported if EL2 exists. The bit is UNK/SBZP when
|
|
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
|
|
* when EL2 is unavailable.
|
|
* On ARMv8, this bit is always available.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V7) &&
|
|
!arm_feature(env, ARM_FEATURE_V8)) {
|
|
valid_mask &= ~SCR_SMD;
|
|
}
|
|
}
|
|
|
|
/* Clear all-context RES0 bits. */
|
|
value &= valid_mask;
|
|
changed = env->cp15.scr_el3 ^ value;
|
|
env->cp15.scr_el3 = value;
|
|
|
|
/*
|
|
* If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
|
|
* we must invalidate all TLBs below EL3.
|
|
*/
|
|
if (changed & (SCR_NS | SCR_NSE)) {
|
|
tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
|
|
ARMMMUIdxBit_E20_0 |
|
|
ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E2));
|
|
}
|
|
}
|
|
|
|
static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* scr_write will set the RES1 bits on an AArch64-only CPU.
|
|
* The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
|
|
*/
|
|
scr_write(env, ri, 0);
|
|
}
|
|
|
|
static CPAccessResult access_tid4(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Acquire the CSSELR index from the bank corresponding to the CCSIDR
|
|
* bank
|
|
*/
|
|
uint32_t index = A32_BANKED_REG_GET(env, csselr,
|
|
ri->secure & ARM_CP_SECSTATE_S);
|
|
|
|
return cpu->ccsidr[index];
|
|
}
|
|
|
|
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
raw_write(env, ri, value & 0xf);
|
|
}
|
|
|
|
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
bool el1 = arm_current_el(env) == 1;
|
|
uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
|
|
uint64_t ret = 0;
|
|
|
|
if (hcr_el2 & HCR_IMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
|
|
ret |= CPSR_I;
|
|
}
|
|
} else {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ret |= CPSR_I;
|
|
}
|
|
}
|
|
|
|
if (hcr_el2 & HCR_FMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
|
|
ret |= CPSR_F;
|
|
}
|
|
} else {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
ret |= CPSR_F;
|
|
}
|
|
}
|
|
|
|
if (hcr_el2 & HCR_AMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
|
|
ret |= CPSR_A;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return access_aa64_tid1(env, ri, isread);
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo v7_cp_reginfo[] = {
|
|
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
|
|
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/*
|
|
* Performance monitors are implementation defined in v7,
|
|
* but with an ARM recommended set of registers, which we
|
|
* follow.
|
|
*
|
|
* Performance registers fall into three categories:
|
|
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
|
|
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
|
|
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
|
|
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
|
|
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
|
|
*/
|
|
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenset_write,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
|
|
.writefn = pmcntenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.writefn = pmcntenclr_write,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO },
|
|
{ .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenclr_write },
|
|
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_RW, .type = ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.writefn = pmovsr_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsr_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .accessfn = pmreg_access_swinc,
|
|
.fgt = FGT_PMSWINC_EL0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.writefn = pmswinc_write },
|
|
{ .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
|
|
.access = PL0_W, .accessfn = pmreg_access_swinc,
|
|
.fgt = FGT_PMSWINC_EL0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.writefn = pmswinc_write },
|
|
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_RW, .type = ARM_CP_ALIAS,
|
|
.fgt = FGT_PMSELR_EL0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
|
|
.accessfn = pmreg_access_selr, .writefn = pmselr_write,
|
|
.raw_writefn = raw_write},
|
|
{ .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
|
|
.access = PL0_RW, .accessfn = pmreg_access_selr,
|
|
.fgt = FGT_PMSELR_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
|
|
.writefn = pmselr_write, .raw_writefn = raw_write, },
|
|
{ .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fgt = FGT_PMCCNTR_EL0,
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write32,
|
|
.accessfn = pmreg_access_ccntr },
|
|
{ .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access_ccntr,
|
|
.fgt = FGT_PMCCNTR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write,
|
|
.raw_readfn = raw_read, .raw_writefn = raw_write, },
|
|
{ .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
|
|
.writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCCFILTR_EL0,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.resetvalue = 0, },
|
|
{ .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
|
|
.writefn = pmccfiltr_write, .raw_writefn = raw_write,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCCFILTR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
|
|
.resetvalue = 0, },
|
|
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
|
|
{ .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
|
|
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access_xevcntr,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
|
|
{ .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access_xevcntr,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
|
|
{ .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R | PL1_RW, .accessfn = access_tpm,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
|
|
.resetvalue = 0,
|
|
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
|
{ .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
|
|
.access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
|
|
.resetvalue = 0,
|
|
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
|
|
.resetvalue = 0,
|
|
.writefn = pmintenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenset_write, .raw_writefn = raw_write,
|
|
.resetvalue = 0x0 },
|
|
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenclr_write, },
|
|
{ .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenclr_write },
|
|
{ .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_R,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CCSIDR_EL1,
|
|
.readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
|
|
{ .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CSSELR_EL1,
|
|
.writefn = csselr_write, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
|
|
offsetof(CPUARMState, cp15.csselr_ns) } },
|
|
/*
|
|
* Auxiliary ID register: this actually has an IMPDEF value but for now
|
|
* just RAZ for all cores:
|
|
*/
|
|
{ .name = "AIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid1,
|
|
.fgt = FGT_AIDR_EL1,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* Auxiliary fault status registers: these also are IMPDEF, and we
|
|
* choose to RAZ/WI for all cores.
|
|
*/
|
|
{ .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AFSR0_EL1,
|
|
.nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AFSR1_EL1,
|
|
.nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/*
|
|
* MAIR can just read-as-written because we don't implement caches
|
|
* and so don't need to care about memory attributes.
|
|
*/
|
|
{ .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_MAIR_EL1,
|
|
.nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
|
|
.resetvalue = 0 },
|
|
{ .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
|
|
.resetvalue = 0 },
|
|
/*
|
|
* For non-long-descriptor page tables these are PRRR and NMRR;
|
|
* regardless they still act as reads-as-written for QEMU.
|
|
*/
|
|
/*
|
|
* MAIR0/1 are defined separately from their 64-bit counterpart which
|
|
* allows them to assign the correct fieldoffset based on the endianness
|
|
* handled in the field definitions.
|
|
*/
|
|
{ .name = "MAIR0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
|
|
offsetof(CPUARMState, cp15.mair0_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "MAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
|
|
offsetof(CPUARMState, cp15.mair1_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
|
|
.fgt = FGT_ISR_EL1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
|
|
/* 32 bit ITLB invalidates */
|
|
{ .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
/* 32 bit DTLB invalidates */
|
|
{ .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
/* 32 bit TLB invalidates */
|
|
{ .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
{ .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimvaa_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
|
|
/* 32 bit TLB invalidates, Inner Shareable */
|
|
{ .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbiall_is_write },
|
|
{ .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimva_is_write },
|
|
{ .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbiasid_is_write },
|
|
{ .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimvaa_is_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
|
|
/* PMOVSSET is not implemented in v7 before v7ve */
|
|
{ .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsset_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsset_write,
|
|
.raw_writefn = raw_write },
|
|
};
|
|
|
|
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= 1;
|
|
env->teecr = value;
|
|
}
|
|
|
|
static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
|
|
* at all, so we don't need to check whether we're v8A.
|
|
*/
|
|
if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
|
|
(env->cp15.hstr_el2 & HSTR_TTEE)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 0 && (env->teecr & 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return teecr_access(env, ri, isread);
|
|
}
|
|
|
|
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
|
|
{ .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
|
|
.resetvalue = 0,
|
|
.writefn = teecr_write, .accessfn = teecr_access },
|
|
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
|
|
.accessfn = teehbr_access, .resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo v6k_cp_reginfo[] = {
|
|
{ .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_TPIDR_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
|
|
{ .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_TPIDR_EL0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
|
|
.access = PL0_R | PL1_W,
|
|
.fgt = FGT_TPIDRRO_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
|
|
.resetvalue = 0},
|
|
{ .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R | PL1_W,
|
|
.fgt = FGT_TPIDRRO_EL0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
|
|
.access = PL1_RW,
|
|
.fgt = FGT_TPIDR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
|
|
{ .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
|
|
.access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
|
|
* Writable only at the highest implemented exception level.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
uint64_t hcr;
|
|
uint32_t cntkctl;
|
|
|
|
switch (el) {
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
cntkctl = env->cp15.cnthctl_el2;
|
|
} else {
|
|
cntkctl = env->cp15.c14_cntkctl;
|
|
}
|
|
if (!extract32(cntkctl, 0, 2)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (!isread && ri->state == ARM_CP_STATE_AA32 &&
|
|
arm_is_secure_below_el3(env)) {
|
|
/* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
break;
|
|
}
|
|
|
|
if (!isread && el < arm_highest_el(env)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
|
|
bool isread)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool has_el2 = arm_is_el2_enabled(env);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
switch (cur_el) {
|
|
case 0:
|
|
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
|
|
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
|
|
}
|
|
|
|
/* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
|
|
if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
|
|
if (has_el2 && timeridx == GTIMER_PHYS &&
|
|
(hcr & HCR_E2H
|
|
? !extract32(env->cp15.cnthctl_el2, 10, 1)
|
|
: !extract32(env->cp15.cnthctl_el2, 0, 1))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (has_el2 && timeridx == GTIMER_VIRT) {
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
|
|
bool isread)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool has_el2 = arm_is_el2_enabled(env);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
switch (cur_el) {
|
|
case 0:
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
|
|
return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
|
|
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
|
|
}
|
|
|
|
/*
|
|
* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
|
|
* EL0 if EL0[PV]TEN is zero.
|
|
*/
|
|
if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
|
|
case 1:
|
|
if (has_el2 && timeridx == GTIMER_PHYS) {
|
|
if (hcr & HCR_E2H) {
|
|
/* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
|
|
if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
/* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
|
|
if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
}
|
|
if (has_el2 && timeridx == GTIMER_VIRT) {
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_pct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_counter_access(env, GTIMER_PHYS, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_vct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_counter_access(env, GTIMER_VIRT, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_timer_access(env, GTIMER_PHYS, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_timer_access(env, GTIMER_VIRT, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_stimer_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* The AArch64 register view of the secure physical timer is
|
|
* always accessible from EL3, and configurably accessible from
|
|
* Secure EL1.
|
|
*/
|
|
switch (arm_current_el(env)) {
|
|
case 1:
|
|
if (!arm_is_secure(env)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_ST)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
case 0:
|
|
case 2:
|
|
return CP_ACCESS_TRAP;
|
|
case 3:
|
|
return CP_ACCESS_OK;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static uint64_t gt_get_countervalue(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
|
|
}
|
|
|
|
static void gt_update_irq(ARMCPU *cpu, int timeridx)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t cnthctl = env->cp15.cnthctl_el2;
|
|
ARMSecuritySpace ss = arm_security_space(env);
|
|
/* ISTATUS && !IMASK */
|
|
int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
|
|
|
|
/*
|
|
* If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
|
|
* It is RES0 in Secure and NonSecure state.
|
|
*/
|
|
if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
|
|
((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
|
|
(timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
|
|
irqstate = 0;
|
|
}
|
|
|
|
qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
|
|
trace_arm_gt_update_irq(timeridx, irqstate);
|
|
}
|
|
|
|
void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
/*
|
|
* Changing security state between Root and Secure/NonSecure, which may
|
|
* happen when switching EL, can change the effective value of CNTHCTL_EL2
|
|
* mask bits. Update the IRQ state accordingly.
|
|
*/
|
|
gt_update_irq(cpu, GTIMER_VIRT);
|
|
gt_update_irq(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
|
|
{
|
|
if ((env->cp15.scr_el3 & SCR_ECVEN) &&
|
|
FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
|
|
arm_is_el2_enabled(env) &&
|
|
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
return env->cp15.cntpoff_el2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t gt_phys_cnt_offset(CPUARMState *env)
|
|
{
|
|
if (arm_current_el(env) >= 2) {
|
|
return 0;
|
|
}
|
|
return gt_phys_raw_cnt_offset(env);
|
|
}
|
|
|
|
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
|
|
{
|
|
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
|
|
|
|
if (gt->ctl & 1) {
|
|
/*
|
|
* Timer enabled: calculate and set current ISTATUS, irq, and
|
|
* reset timer to when ISTATUS next has to change
|
|
*/
|
|
uint64_t offset = timeridx == GTIMER_VIRT ?
|
|
cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
|
|
uint64_t count = gt_get_countervalue(&cpu->env);
|
|
/* Note that this must be unsigned 64 bit arithmetic: */
|
|
int istatus = count - offset >= gt->cval;
|
|
uint64_t nexttick;
|
|
|
|
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
|
|
|
|
if (istatus) {
|
|
/*
|
|
* Next transition is when (count - offset) rolls back over to 0.
|
|
* If offset > count then this is when count == offset;
|
|
* if offset <= count then this is when count == offset + 2^64
|
|
* For the latter case we set nexttick to an "as far in future
|
|
* as possible" value and let the code below handle it.
|
|
*/
|
|
if (offset > count) {
|
|
nexttick = offset;
|
|
} else {
|
|
nexttick = UINT64_MAX;
|
|
}
|
|
} else {
|
|
/*
|
|
* Next transition is when (count - offset) == cval, i.e.
|
|
* when count == (cval + offset).
|
|
* If that would overflow, then again we set up the next interrupt
|
|
* for "as far in the future as possible" for the code below.
|
|
*/
|
|
if (uadd64_overflow(gt->cval, offset, &nexttick)) {
|
|
nexttick = UINT64_MAX;
|
|
}
|
|
}
|
|
/*
|
|
* Note that the desired next expiry time might be beyond the
|
|
* signed-64-bit range of a QEMUTimer -- in this case we just
|
|
* set the timer for as far in the future as possible. When the
|
|
* timer expires we will reset the timer for any remaining period.
|
|
*/
|
|
if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
|
|
timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
|
|
} else {
|
|
timer_mod(cpu->gt_timer[timeridx], nexttick);
|
|
}
|
|
trace_arm_gt_recalc(timeridx, nexttick);
|
|
} else {
|
|
/* Timer disabled: ISTATUS and timer output always clear */
|
|
gt->ctl &= ~4;
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
trace_arm_gt_recalc_disabled(timeridx);
|
|
}
|
|
gt_update_irq(cpu, timeridx);
|
|
}
|
|
|
|
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
}
|
|
|
|
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
|
|
}
|
|
|
|
static uint64_t gt_virt_cnt_offset(CPUARMState *env)
|
|
{
|
|
uint64_t hcr;
|
|
|
|
switch (arm_current_el(env)) {
|
|
case 2:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if (hcr & HCR_E2H) {
|
|
return 0;
|
|
}
|
|
break;
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return env->cp15.cntvoff_el2;
|
|
}
|
|
|
|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
|
|
}
|
|
|
|
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
trace_arm_gt_cval_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].cval = value;
|
|
gt_recalc_timer(env_archcpu(env), timeridx);
|
|
}
|
|
|
|
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
uint64_t offset = 0;
|
|
|
|
switch (timeridx) {
|
|
case GTIMER_VIRT:
|
|
case GTIMER_HYPVIRT:
|
|
offset = gt_virt_cnt_offset(env);
|
|
break;
|
|
case GTIMER_PHYS:
|
|
offset = gt_phys_cnt_offset(env);
|
|
break;
|
|
}
|
|
|
|
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
|
|
(gt_get_countervalue(env) - offset));
|
|
}
|
|
|
|
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
uint64_t offset = 0;
|
|
|
|
switch (timeridx) {
|
|
case GTIMER_VIRT:
|
|
case GTIMER_HYPVIRT:
|
|
offset = gt_virt_cnt_offset(env);
|
|
break;
|
|
case GTIMER_PHYS:
|
|
offset = gt_phys_cnt_offset(env);
|
|
break;
|
|
}
|
|
|
|
trace_arm_gt_tval_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
|
|
sextract64(value, 0, 32);
|
|
gt_recalc_timer(env_archcpu(env), timeridx);
|
|
}
|
|
|
|
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
|
|
|
|
trace_arm_gt_ctl_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
|
|
if ((oldval ^ value) & 1) {
|
|
/* Enable toggled */
|
|
gt_recalc_timer(cpu, timeridx);
|
|
} else if ((oldval ^ value) & 2) {
|
|
/*
|
|
* IMASK toggled: don't need to recalculate,
|
|
* just set the interrupt line based on ISTATUS
|
|
*/
|
|
trace_arm_gt_imask_toggle(timeridx);
|
|
gt_update_irq(cpu, timeridx);
|
|
}
|
|
}
|
|
|
|
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static int gt_phys_redir_timeridx(CPUARMState *env)
|
|
{
|
|
switch (arm_mmu_idx(env)) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return GTIMER_HYP;
|
|
default:
|
|
return GTIMER_PHYS;
|
|
}
|
|
}
|
|
|
|
static int gt_virt_redir_timeridx(CPUARMState *env)
|
|
{
|
|
switch (arm_mmu_idx(env)) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return GTIMER_HYPVIRT;
|
|
default:
|
|
return GTIMER_VIRT;
|
|
}
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].cval;
|
|
}
|
|
|
|
static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_cval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return gt_tval_read(env, ri, timeridx);
|
|
}
|
|
|
|
static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_tval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].ctl;
|
|
}
|
|
|
|
static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_ctl_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t oldval = env->cp15.cnthctl_el2;
|
|
uint32_t valid_mask =
|
|
R_CNTHCTL_EL0PCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EL0VCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EVNTEN_MASK |
|
|
R_CNTHCTL_EVNTDIR_MASK |
|
|
R_CNTHCTL_EVNTI_MASK |
|
|
R_CNTHCTL_EL0VTEN_MASK |
|
|
R_CNTHCTL_EL0PTEN_MASK |
|
|
R_CNTHCTL_EL1PCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EL1PTEN_MASK;
|
|
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
|
|
valid_mask |=
|
|
R_CNTHCTL_EL1TVT_MASK |
|
|
R_CNTHCTL_EL1TVCT_MASK |
|
|
R_CNTHCTL_EL1NVPCT_MASK |
|
|
R_CNTHCTL_EL1NVVCT_MASK |
|
|
R_CNTHCTL_EVNTIS_MASK;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
valid_mask |= R_CNTHCTL_ECV_MASK;
|
|
}
|
|
|
|
/* Clear RES0 bits */
|
|
value &= valid_mask;
|
|
|
|
raw_write(env, ri, value);
|
|
|
|
if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
|
|
gt_update_irq(cpu, GTIMER_VIRT);
|
|
} else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
|
|
gt_update_irq(cpu, GTIMER_PHYS);
|
|
}
|
|
}
|
|
|
|
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
trace_arm_gt_cntvoff_write(value);
|
|
raw_write(env, ri, value);
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].cval;
|
|
}
|
|
|
|
static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_cval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return gt_tval_read(env, ri, timeridx);
|
|
}
|
|
|
|
static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_tval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].ctl;
|
|
}
|
|
|
|
static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_ctl_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
void arm_gt_ptimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
void arm_gt_vtimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
void arm_gt_htimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_HYP);
|
|
}
|
|
|
|
void arm_gt_stimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_SEC);
|
|
}
|
|
|
|
void arm_gt_hvtimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
|
|
}
|
|
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
/*
|
|
* Note that CNTFRQ is purely reads-as-written for the benefit
|
|
* of software; writing it doesn't actually change the timer frequency.
|
|
* Our reset value matches the fixed frequency we implement the timer at.
|
|
*/
|
|
{ .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
|
|
},
|
|
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
|
|
.resetfn = arm_gt_cntfrq_reset,
|
|
},
|
|
/* overall control: mostly access permissions */
|
|
{ .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
|
|
.resetvalue = 0,
|
|
},
|
|
/* per-timer control */
|
|
{ .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL_S",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.resetvalue = 0,
|
|
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.resetvalue = 0,
|
|
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
/* TimerValue views: a 32 bit downcounting view of the underlying state */
|
|
{ .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL_S",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
|
|
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
|
|
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
|
|
},
|
|
/* The counter itself */
|
|
{ .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access,
|
|
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
|
|
},
|
|
{ .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access,
|
|
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
|
|
},
|
|
/* Comparison value, indicating when the timer goes off */
|
|
{ .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_IO,
|
|
.nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.resetvalue = 0, .accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_IO,
|
|
.nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.resetvalue = 0, .accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
/*
|
|
* Secure timer -- this is actually restricted to only EL3
|
|
* and configurably Secure-EL1 via the accessfn.
|
|
*/
|
|
{ .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.readfn = gt_sec_tval_read,
|
|
.writefn = gt_sec_tval_write,
|
|
.resetfn = gt_sec_timer_reset,
|
|
},
|
|
{ .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
|
|
* are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
|
|
* so our implementations here are identical to the normal registers.
|
|
*/
|
|
static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
|
|
{ .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access,
|
|
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
|
|
},
|
|
{ .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access,
|
|
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
|
|
},
|
|
};
|
|
|
|
static CPAccessResult gt_cntpoff_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ECVEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
trace_arm_gt_cntpoff_write(value);
|
|
raw_write(env, ri, value);
|
|
gt_recalc_timer(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
|
|
.name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
|
|
.accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
|
|
.nv2_redirect_offset = 0x1a8,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
|
|
};
|
|
#else
|
|
|
|
/*
|
|
* In user-mode most of the generic timer registers are inaccessible
|
|
* however modern kernels (4.12+) allow access to cntvct_el0
|
|
*/
|
|
|
|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Currently we have no support for QEMUTimer in linux-user so we
|
|
* can't call gt_get_countervalue(env), instead we directly
|
|
* call the lower level functions.
|
|
*/
|
|
return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
|
|
}
|
|
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
|
|
.type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
|
|
.resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
|
|
},
|
|
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.readfn = gt_virt_cnt_read,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
|
|
* is exposed to userspace by Linux.
|
|
*/
|
|
static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
|
|
{ .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.readfn = gt_virt_cnt_read,
|
|
},
|
|
};
|
|
|
|
#endif
|
|
|
|
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
raw_write(env, ri, value);
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
raw_write(env, ri, value & 0xfffff6ff);
|
|
} else {
|
|
raw_write(env, ri, value & 0xfffff1ff);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* get_phys_addr() isn't present for user-mode-only targets */
|
|
|
|
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (ri->opc2 & 4) {
|
|
/*
|
|
* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
|
|
* Secure EL1 (which can only happen if EL3 is AArch64).
|
|
* They are simply UNDEF if executed from NS EL1.
|
|
* They function normally from EL2 or EL3.
|
|
*/
|
|
if (arm_current_el(env) == 1) {
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_TCG
|
|
static int par_el1_shareability(GetPhysAddrResult *res)
|
|
{
|
|
/*
|
|
* The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
|
|
* memory -- see pseudocode PAREncodeShareability().
|
|
*/
|
|
if (((res->cacheattrs.attrs & 0xf0) == 0) ||
|
|
res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
|
|
return 2;
|
|
}
|
|
return res->cacheattrs.shareability;
|
|
}
|
|
|
|
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
ARMSecuritySpace ss)
|
|
{
|
|
bool ret;
|
|
uint64_t par64;
|
|
bool format64 = false;
|
|
ARMMMUFaultInfo fi = {};
|
|
GetPhysAddrResult res = {};
|
|
|
|
/*
|
|
* I_MXTJT: Granule protection checks are not performed on the final address
|
|
* of a successful translation.
|
|
*/
|
|
ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
|
|
&res, &fi);
|
|
|
|
/*
|
|
* ATS operations only do S1 or S1+S2 translations, so we never
|
|
* have to deal with the ARMCacheAttrs format for S2 only.
|
|
*/
|
|
assert(!res.cacheattrs.is_s2_format);
|
|
|
|
if (ret) {
|
|
/*
|
|
* Some kinds of translation fault must cause exceptions rather
|
|
* than being reported in the PAR.
|
|
*/
|
|
int current_el = arm_current_el(env);
|
|
int target_el;
|
|
uint32_t syn, fsr, fsc;
|
|
bool take_exc = false;
|
|
|
|
if (fi.s1ptw && current_el == 1
|
|
&& arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
|
|
/*
|
|
* Synchronous stage 2 fault on an access made as part of the
|
|
* translation table walk for AT S1E0* or AT S1E1* insn
|
|
* executed from NS EL1. If this is a synchronous external abort
|
|
* and SCR_EL3.EA == 1, then we take a synchronous external abort
|
|
* to EL3. Otherwise the fault is taken as an exception to EL2,
|
|
* and HPFAR_EL2 holds the faulting IPA.
|
|
*/
|
|
if (fi.type == ARMFault_SyncExternalOnWalk &&
|
|
(env->cp15.scr_el3 & SCR_EA)) {
|
|
target_el = 3;
|
|
} else {
|
|
env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
|
|
if (arm_is_secure_below_el3(env) && fi.s1ns) {
|
|
env->cp15.hpfar_el2 |= HPFAR_NS;
|
|
}
|
|
target_el = 2;
|
|
}
|
|
take_exc = true;
|
|
} else if (fi.type == ARMFault_SyncExternalOnWalk) {
|
|
/*
|
|
* Synchronous external aborts during a translation table walk
|
|
* are taken as Data Abort exceptions.
|
|
*/
|
|
if (fi.stage2) {
|
|
if (current_el == 3) {
|
|
target_el = 3;
|
|
} else {
|
|
target_el = 2;
|
|
}
|
|
} else {
|
|
target_el = exception_target_el(env);
|
|
}
|
|
take_exc = true;
|
|
}
|
|
|
|
if (take_exc) {
|
|
/* Construct FSR and FSC using same logic as arm_deliver_fault() */
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
|
arm_s1_regime_using_lpae_format(env, mmu_idx)) {
|
|
fsr = arm_fi_to_lfsc(&fi);
|
|
fsc = extract32(fsr, 0, 6);
|
|
} else {
|
|
fsr = arm_fi_to_sfsc(&fi);
|
|
fsc = 0x3f;
|
|
}
|
|
/*
|
|
* Report exception with ESR indicating a fault due to a
|
|
* translation table walk for a cache maintenance instruction.
|
|
*/
|
|
syn = syn_data_abort_no_iss(current_el == target_el, 0,
|
|
fi.ea, 1, fi.s1ptw, 1, fsc);
|
|
env->exception.vaddress = value;
|
|
env->exception.fsr = fsr;
|
|
raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
|
|
}
|
|
}
|
|
|
|
if (is_a64(env)) {
|
|
format64 = true;
|
|
} else if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
/*
|
|
* ATS1Cxx:
|
|
* * TTBCR.EAE determines whether the result is returned using the
|
|
* 32-bit or the 64-bit PAR format
|
|
* * Instructions executed in Hyp mode always use the 64bit format
|
|
*
|
|
* ATS1S2NSOxx uses the 64bit format if any of the following is true:
|
|
* * The Non-secure TTBCR.EAE bit is set to 1
|
|
* * The implementation includes EL2, and the value of HCR.VM is 1
|
|
*
|
|
* (Note that HCR.DC makes HCR.VM behave as if it is 1.)
|
|
*
|
|
* ATS1Hx always uses the 64bit format.
|
|
*/
|
|
format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
if (mmu_idx == ARMMMUIdx_E10_0 ||
|
|
mmu_idx == ARMMMUIdx_E10_1 ||
|
|
mmu_idx == ARMMMUIdx_E10_1_PAN) {
|
|
format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
|
|
} else {
|
|
format64 |= arm_current_el(env) == 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (format64) {
|
|
/* Create a 64-bit PAR */
|
|
par64 = (1 << 11); /* LPAE bit always set */
|
|
if (!ret) {
|
|
par64 |= res.f.phys_addr & ~0xfffULL;
|
|
if (!res.f.attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
|
|
par64 |= par_el1_shareability(&res) << 7; /* SH */
|
|
} else {
|
|
uint32_t fsr = arm_fi_to_lfsc(&fi);
|
|
|
|
par64 |= 1; /* F */
|
|
par64 |= (fsr & 0x3f) << 1; /* FS */
|
|
if (fi.stage2) {
|
|
par64 |= (1 << 9); /* S */
|
|
}
|
|
if (fi.s1ptw) {
|
|
par64 |= (1 << 8); /* PTW */
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* fsr is a DFSR/IFSR value for the short descriptor
|
|
* translation table format (with WnR always clear).
|
|
* Convert it to a 32-bit PAR.
|
|
*/
|
|
if (!ret) {
|
|
/* We do not set any attribute bits in the PAR */
|
|
if (res.f.lg_page_size == 24
|
|
&& arm_feature(env, ARM_FEATURE_V7)) {
|
|
par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
|
|
} else {
|
|
par64 = res.f.phys_addr & 0xfffff000;
|
|
}
|
|
if (!res.f.attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
} else {
|
|
uint32_t fsr = arm_fi_to_sfsc(&fi);
|
|
|
|
par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
|
|
((fsr & 0xf) << 1) | 1;
|
|
}
|
|
}
|
|
return par64;
|
|
}
|
|
#endif /* CONFIG_TCG */
|
|
|
|
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
uint64_t par64;
|
|
ARMMMUIdx mmu_idx;
|
|
int el = arm_current_el(env);
|
|
ARMSecuritySpace ss = arm_security_space(env);
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
/* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_E3;
|
|
break;
|
|
case 2:
|
|
g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
|
|
/* fall through */
|
|
case 1:
|
|
if (ri->crm == 9 && arm_pan_enabled(env)) {
|
|
mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_Stage1_E1;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2:
|
|
/* stage 1 current state PL0: ATS1CUR, ATS1CUW */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
break;
|
|
case 2:
|
|
g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
|
|
mmu_idx = ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
case 1:
|
|
mmu_idx = ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 4:
|
|
/* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
|
|
mmu_idx = ARMMMUIdx_E10_1;
|
|
ss = ARMSS_NonSecure;
|
|
break;
|
|
case 6:
|
|
/* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
ss = ARMSS_NonSecure;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
uint64_t par64;
|
|
|
|
/* There is no SecureEL2 for AArch32. */
|
|
par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
|
|
ARMSS_NonSecure);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
|
|
* lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
|
|
* only happen when executing at EL3 because that combination also causes an
|
|
* illegal exception return. We don't need to check FEAT_RME either, because
|
|
* scr_write() ensures that the NSE bit is not set otherwise.
|
|
*/
|
|
if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3 &&
|
|
!(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return at_e012_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return at_e012_access(env, ri, isread);
|
|
}
|
|
|
|
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
ARMMMUIdx mmu_idx;
|
|
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
|
|
bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
|
|
bool for_el3 = false;
|
|
ARMSecuritySpace ss;
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
switch (ri->opc1) {
|
|
case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
|
|
if (ri->crm == 9 && arm_pan_enabled(env)) {
|
|
mmu_idx = regime_e20 ?
|
|
ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
|
|
} else {
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
|
|
}
|
|
break;
|
|
case 4: /* AT S1E2R, AT S1E2W */
|
|
mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
|
|
break;
|
|
case 6: /* AT S1E3R, AT S1E3W */
|
|
mmu_idx = ARMMMUIdx_E3;
|
|
for_el3 = true;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2: /* AT S1E0R, AT S1E0W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
case 4: /* AT S12E1R, AT S12E1W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
|
|
break;
|
|
case 6: /* AT S12E0R, AT S12E0W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
|
|
env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
#endif
|
|
|
|
/* Return basic MPU access permission bits. */
|
|
static uint32_t simple_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val >> i) & mask;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Pad basic MPU access permission bits to extended format. */
|
|
static uint32_t extended_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val & mask) << i;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
|
|
}
|
|
|
|
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
|
|
}
|
|
|
|
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return 0;
|
|
}
|
|
|
|
u32p += env->pmsav7.rnr[M_REG_NS];
|
|
return *u32p;
|
|
}
|
|
|
|
static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return;
|
|
}
|
|
|
|
u32p += env->pmsav7.rnr[M_REG_NS];
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
*u32p = value;
|
|
}
|
|
|
|
static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t nrgs = cpu->pmsav7_dregion;
|
|
|
|
if (value >= nrgs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"PMSAv7 RGNR write >= # supported regions, %" PRIu32
|
|
" > %" PRIu32 "\n", (uint32_t)value, nrgs);
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
|
|
}
|
|
|
|
static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
|
|
}
|
|
|
|
static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
|
|
}
|
|
|
|
static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
|
|
}
|
|
|
|
static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Ignore writes that would select not implemented region.
|
|
* This is architecturally UNPREDICTABLE.
|
|
*/
|
|
if (value >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
|
|
env->pmsav7.rnr[M_REG_NS] = value;
|
|
}
|
|
|
|
static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
|
|
}
|
|
|
|
static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.hprbar[env->pmsav8.hprselr];
|
|
}
|
|
|
|
static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
|
|
}
|
|
|
|
static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.hprlar[env->pmsav8.hprselr];
|
|
}
|
|
|
|
static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint32_t n;
|
|
uint32_t bit;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* Ignore writes to unimplemented regions */
|
|
int rmax = MIN(cpu->pmsav8r_hdregion, 32);
|
|
value &= MAKE_64BIT_MASK(0, rmax);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (n = 0; n < rmax; ++n) {
|
|
bit = extract32(value, n, 1);
|
|
env->pmsav8.hprlar[n] = deposit32(
|
|
env->pmsav8.hprlar[n], 0, 1, bit);
|
|
}
|
|
}
|
|
|
|
static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint32_t n;
|
|
uint32_t result = 0x0;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
|
|
if (env->pmsav8.hprlar[n] & 0x1) {
|
|
result |= (0x1 << n);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Ignore writes that would select not implemented region.
|
|
* This is architecturally UNPREDICTABLE.
|
|
*/
|
|
if (value >= cpu->pmsav8r_hdregion) {
|
|
return;
|
|
}
|
|
|
|
env->pmsav8.hprselr = value;
|
|
}
|
|
|
|
static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
|
|
(extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
|
|
if (ri->opc1 & 4) {
|
|
if (index >= cpu->pmsav8r_hdregion) {
|
|
return;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
env->pmsav8.hprlar[index] = value;
|
|
} else {
|
|
env->pmsav8.hprbar[index] = value;
|
|
}
|
|
} else {
|
|
if (index >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
env->pmsav8.rlar[M_REG_NS][index] = value;
|
|
} else {
|
|
env->pmsav8.rbar[M_REG_NS][index] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
|
|
(extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
|
|
|
|
if (ri->opc1 & 4) {
|
|
if (index >= cpu->pmsav8r_hdregion) {
|
|
return 0x0;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
return env->pmsav8.hprlar[index];
|
|
} else {
|
|
return env->pmsav8.hprbar[index];
|
|
}
|
|
} else {
|
|
if (index >= cpu->pmsav7_dregion) {
|
|
return 0x0;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
return env->pmsav8.rlar[M_REG_NS][index];
|
|
} else {
|
|
return env->pmsav8.rbar[M_REG_NS][index];
|
|
}
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
|
|
{ .name = "PRBAR",
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_tvm_trvm,
|
|
.readfn = prbar_read, .writefn = prbar_write },
|
|
{ .name = "PRLAR",
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_tvm_trvm,
|
|
.readfn = prlar_read, .writefn = prlar_write },
|
|
{ .name = "PRSELR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.writefn = prselr_write,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
|
|
{ .name = "HPRBAR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprbar_read, .writefn = hprbar_write },
|
|
{ .name = "HPRLAR",
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprlar_read, .writefn = hprlar_write },
|
|
{ .name = "HPRSELR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.writefn = hprselr_write,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
|
|
{ .name = "HPRENR",
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprenr_read, .writefn = hprenr_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
|
|
/*
|
|
* Reset for all these registers is handled in arm_cpu_reset(),
|
|
* because the PMSAv7 is also used by M-profile CPUs, which do
|
|
* not register cpregs but still need the state to be reset.
|
|
*/
|
|
{ .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
|
|
.writefn = pmsav7_rgnr_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
|
|
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
|
|
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
|
|
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
|
|
{ .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
|
|
/* Protection region base and size registers */
|
|
{ .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
|
|
{ .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
|
|
{ .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
|
|
{ .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
|
|
{ .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
|
|
{ .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
|
|
{ .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
|
|
{ .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
|
|
};
|
|
|
|
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
|
|
/*
|
|
* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
|
|
* using Long-descriptor translation table format
|
|
*/
|
|
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
|
|
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/*
|
|
* In an implementation that includes the Security Extensions
|
|
* TTBCR has additional fields PD0 [4] and PD1 [5] for
|
|
* Short-descriptor translation table format.
|
|
*/
|
|
value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
|
|
} else {
|
|
value &= TTBCR_N;
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
/*
|
|
* With LPAE the TTBCR could result in a change of ASID
|
|
* via the TTBCR.A1 bit, so do a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
|
|
tlb_flush(CPU(cpu));
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* If the ASID changes (with a 64-bit write), we must flush the TLB. */
|
|
if (cpreg_field_is_64bit(ri) &&
|
|
extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* If we are running with E2&0 regime, then an ASID is active.
|
|
* Flush if that might be changing. Note we're not checking
|
|
* TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
|
|
* holds the active ASID, only checking the field that might.
|
|
*/
|
|
if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
|
|
(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
uint16_t mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
tlb_flush_by_mmuidx(env_cpu(env), mask);
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
/*
|
|
* A change in VMID to the stage2 page table (Stage2) invalidates
|
|
* the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
|
|
*/
|
|
if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
|
|
tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
|
|
offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
|
|
{ .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
|
|
offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
|
|
{ .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
|
|
offsetof(CPUARMState, cp15.dfar_ns) } },
|
|
{ .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_FAR_EL1,
|
|
.nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
|
|
.resetvalue = 0, },
|
|
};
|
|
|
|
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
|
|
{ .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_ESR_EL1,
|
|
.nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
|
|
{ .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TTBR0_EL1,
|
|
.nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) } },
|
|
{ .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TTBR1_EL1,
|
|
.nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) } },
|
|
{ .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TCR_EL1,
|
|
.nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_tcr_el12_write,
|
|
.raw_writefn = raw_write,
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
|
|
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
|
|
.raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
|
|
offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
|
|
};
|
|
|
|
/*
|
|
* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
|
|
* qemu tlbs nor adjusting cached masks.
|
|
*/
|
|
static const ARMCPRegInfo ttbcr2_reginfo = {
|
|
.name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = {
|
|
offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
|
|
offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
|
|
},
|
|
};
|
|
|
|
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_ticonfig = value & 0xe7;
|
|
/* The OS_TYPE bit in this register changes the reported CPUID! */
|
|
env->cp15.c0_cpuid = (value & (1 << 5)) ?
|
|
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
|
|
}
|
|
|
|
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_threadid = value & 0xffff;
|
|
}
|
|
|
|
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Wait-for-interrupt (deprecated) */
|
|
cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
|
|
}
|
|
|
|
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* On OMAP there are registers indicating the max/min index of dcache lines
|
|
* containing a dirty line; cache flush operations have to reset these.
|
|
*/
|
|
env->cp15.c15_i_max = 0x000;
|
|
env->cp15.c15_i_min = 0xff0;
|
|
}
|
|
|
|
static const ARMCPRegInfo omap_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
|
|
.resetvalue = 0, },
|
|
{ .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
|
|
.writefn = omap_ticonfig_write },
|
|
{ .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
|
|
{ .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0xff0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
|
|
{ .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
|
|
.writefn = omap_threadid_write },
|
|
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
|
|
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.type = ARM_CP_NO_RAW,
|
|
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
|
|
/*
|
|
* TODO: Peripheral port remap register:
|
|
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
|
|
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
|
|
* when MMU is off.
|
|
*/
|
|
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
|
|
.writefn = omap_cachemaint_write },
|
|
{ .name = "C9", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
|
|
};
|
|
|
|
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_cpar = value & 0x3fff;
|
|
}
|
|
|
|
static const ARMCPRegInfo xscale_cp_reginfo[] = {
|
|
{ .name = "XSCALE_CPAR",
|
|
.cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
|
|
.writefn = xscale_cpar_write, },
|
|
{ .name = "XSCALE_AUXCR",
|
|
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
|
|
.resetvalue = 0, },
|
|
/*
|
|
* XScale specific cache-lockdown: since we have no cache we NOP these
|
|
* and hope the guest does not really rely on cache behaviour.
|
|
*/
|
|
{ .name = "XSCALE_LOCK_ICACHE_LINE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_ICACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_DCACHE_LOCK",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_DCACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
|
|
/*
|
|
* RAZ/WI the whole crn=15 space, when we don't have a more specific
|
|
* implementation of this implementation-defined space.
|
|
* Ideally this should eventually disappear in favour of actually
|
|
* implementing the correct behaviour for all cores.
|
|
*/
|
|
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
|
|
/* Cache status: RAZ because we have no cache so it's always clean */
|
|
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
|
|
/* We never have a block transfer operation in progress */
|
|
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/* The cache ops themselves: these all NOP for QEMU */
|
|
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
|
|
/*
|
|
* The cache test-and-clean instructions always return (1 << 30)
|
|
* to indicate that there are no dirty cache lines.
|
|
*/
|
|
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
};
|
|
|
|
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
|
|
/* Ignore ReadBuffer accesses */
|
|
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
|
|
};
|
|
|
|
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
|
|
if (arm_is_el2_enabled(env) && cur_el == 1) {
|
|
return env->cp15.vpidr_el2;
|
|
}
|
|
return raw_read(env, ri);
|
|
}
|
|
|
|
static uint64_t mpidr_read_val(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t mpidr = cpu->mp_affinity;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V7MP)) {
|
|
mpidr |= (1U << 31);
|
|
/*
|
|
* Cores which are uniprocessor (non-coherent)
|
|
* but still implement the MP extensions set
|
|
* bit 30. (For instance, Cortex-R5).
|
|
*/
|
|
if (cpu->mp_is_up) {
|
|
mpidr |= (1u << 30);
|
|
}
|
|
}
|
|
return mpidr;
|
|
}
|
|
|
|
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
|
|
if (arm_is_el2_enabled(env) && cur_el == 1) {
|
|
return env->cp15.vmpidr_el2;
|
|
}
|
|
return mpidr_read_val(env);
|
|
}
|
|
|
|
static const ARMCPRegInfo lpae_cp_reginfo[] = {
|
|
/* NOP AMAIR0/1 */
|
|
{ .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AMAIR_EL1,
|
|
.nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* AMAIR1 is mapped to AMAIR_EL1[63:32] */
|
|
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
|
|
offsetof(CPUARMState, cp15.par_ns)} },
|
|
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) },
|
|
.writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
|
|
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) },
|
|
.writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
|
|
};
|
|
|
|
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpcr(env);
|
|
}
|
|
|
|
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpcr(env, value);
|
|
}
|
|
|
|
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpsr(env);
|
|
}
|
|
|
|
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpsr(env, value);
|
|
}
|
|
|
|
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->daif = value & PSTATE_DAIF;
|
|
}
|
|
|
|
static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_PAN;
|
|
}
|
|
|
|
static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
|
|
}
|
|
|
|
static const ARMCPRegInfo pan_reginfo = {
|
|
.name = "PAN", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_RW,
|
|
.readfn = aa64_pan_read, .writefn = aa64_pan_write
|
|
};
|
|
|
|
static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_UAO;
|
|
}
|
|
|
|
static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
|
|
}
|
|
|
|
static const ARMCPRegInfo uao_reginfo = {
|
|
.name = "UAO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_RW,
|
|
.readfn = aa64_uao_read, .writefn = aa64_uao_write
|
|
};
|
|
|
|
static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_DIT;
|
|
}
|
|
|
|
static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
|
|
}
|
|
|
|
static const ARMCPRegInfo dit_reginfo = {
|
|
.name = "DIT", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL0_RW,
|
|
.readfn = aa64_dit_read, .writefn = aa64_dit_write
|
|
};
|
|
|
|
static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_SSBS;
|
|
}
|
|
|
|
static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
|
|
}
|
|
|
|
static const ARMCPRegInfo ssbs_reginfo = {
|
|
.name = "SSBS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
|
|
.type = ARM_CP_NO_RAW, .access = PL0_RW,
|
|
.readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
|
|
};
|
|
|
|
static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* Cache invalidate/clean to Point of Coherency or Persistence... */
|
|
switch (arm_current_el(env)) {
|
|
case 0:
|
|
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
|
|
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
|
|
if (arm_hcr_el2_eff(env) & HCR_TPCP) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
|
|
{
|
|
/* Cache invalidate/clean to Point of Unification... */
|
|
switch (arm_current_el(env)) {
|
|
case 0:
|
|
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
|
|
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
|
|
if (arm_hcr_el2_eff(env) & hcrflags) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
|
|
}
|
|
|
|
static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
|
|
}
|
|
|
|
/*
|
|
* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
|
|
* Page D4-1736 (DDI0487A.b)
|
|
*/
|
|
|
|
static int vae1_tlbmask(CPUARMState *env)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
uint16_t mask;
|
|
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
} else {
|
|
mask = ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E10_0;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
static int vae2_tlbmask(CPUARMState *env)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
uint16_t mask;
|
|
|
|
if (hcr & HCR_E2H) {
|
|
mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
} else {
|
|
mask = ARMMMUIdxBit_E2;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/* Return 56 if TBI is enabled, 64 otherwise. */
|
|
static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
|
|
uint64_t addr)
|
|
{
|
|
uint64_t tcr = regime_tcr(env, mmu_idx);
|
|
int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
|
|
int select = extract64(addr, 55, 1);
|
|
|
|
return (tbi >> select) & 1 ? 56 : 64;
|
|
}
|
|
|
|
static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
ARMMMUIdx mmu_idx;
|
|
|
|
/* Only the regime of the mmu_idx below is significant. */
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
mmu_idx = ARMMMUIdx_E20_0;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
}
|
|
|
|
return tlbbits_for_regime(env, mmu_idx, addr);
|
|
}
|
|
|
|
static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
ARMMMUIdx mmu_idx;
|
|
|
|
/*
|
|
* Only the regime of the mmu_idx below is significant.
|
|
* Regime EL2&0 has two ranges with separate TBI configuration, while EL2
|
|
* only has one.
|
|
*/
|
|
if (hcr & HCR_E2H) {
|
|
mmu_idx = ARMMMUIdx_E20_2;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_E2;
|
|
}
|
|
|
|
return tlbbits_for_regime(env, mmu_idx, addr);
|
|
}
|
|
|
|
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
} else {
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
}
|
|
|
|
static int e2_tlbmask(CPUARMState *env)
|
|
{
|
|
return (ARMMMUIdxBit_E20_0 |
|
|
ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = alle1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = e2_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = alle1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = e2_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL2
|
|
* Currently handles both VAE2 and VALE2, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae2_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae2_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL3
|
|
* Currently handles both VAE3 and VALE3, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae1_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL1&0 (AArch64 version).
|
|
* Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae1_tlbbits(env, pageaddr);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
} else {
|
|
tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae2_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae2_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
|
|
ARMMMUIdxBit_E3, bits);
|
|
}
|
|
|
|
static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
|
|
{
|
|
/*
|
|
* The MSB of value is the NS field, which only applies if SEL2
|
|
* is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
|
|
*/
|
|
return (value >= 0
|
|
&& cpu_isar_feature(aa64_sel2, env_archcpu(env))
|
|
&& arm_is_secure_below_el3(env)
|
|
? ARMMMUIdxBit_Stage2_S
|
|
: ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = ipas2e1_tlbmask(env, value);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
|
|
} else {
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = ipas2e1_tlbmask(env, value);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
typedef struct {
|
|
uint64_t base;
|
|
uint64_t length;
|
|
} TLBIRange;
|
|
|
|
static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
|
|
{
|
|
/*
|
|
* Note that the TLBI range TG field encoding differs from both
|
|
* TG0 and TG1 encodings.
|
|
*/
|
|
switch (tg) {
|
|
case 1:
|
|
return Gran4K;
|
|
case 2:
|
|
return Gran16K;
|
|
case 3:
|
|
return Gran64K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
|
|
uint64_t value)
|
|
{
|
|
unsigned int page_size_granule, page_shift, num, scale, exponent;
|
|
/* Extract one bit to represent the va selector in use. */
|
|
uint64_t select = sextract64(value, 36, 1);
|
|
ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
|
|
TLBIRange ret = { };
|
|
ARMGranuleSize gran;
|
|
|
|
page_size_granule = extract64(value, 46, 2);
|
|
gran = tlbi_range_tg_to_gran_size(page_size_granule);
|
|
|
|
/* The granule encoded in value must match the granule in use. */
|
|
if (gran != param.gran) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
|
|
page_size_granule);
|
|
return ret;
|
|
}
|
|
|
|
page_shift = arm_granule_bits(gran);
|
|
num = extract64(value, 39, 5);
|
|
scale = extract64(value, 44, 2);
|
|
exponent = (5 * scale) + 1;
|
|
|
|
ret.length = (num + 1) << (exponent + page_shift);
|
|
|
|
if (param.select) {
|
|
ret.base = sextract64(value, 0, 37);
|
|
} else {
|
|
ret.base = extract64(value, 0, 37);
|
|
}
|
|
if (param.ds) {
|
|
/*
|
|
* With DS=1, BaseADDR is always shifted 16 so that it is able
|
|
* to address all 52 va bits. The input address is perforce
|
|
* aligned on a 64k boundary regardless of translation granule.
|
|
*/
|
|
page_shift = 16;
|
|
}
|
|
ret.base <<= page_shift;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_rvae_write(CPUARMState *env, uint64_t value,
|
|
int idxmap, bool synced)
|
|
{
|
|
ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
|
|
TLBIRange range;
|
|
int bits;
|
|
|
|
range = tlbi_aa64_get_range(env, one_idx, value);
|
|
bits = tlbbits_for_regime(env, one_idx, range.base);
|
|
|
|
if (synced) {
|
|
tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
|
|
range.base,
|
|
range.length,
|
|
idxmap,
|
|
bits);
|
|
} else {
|
|
tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
|
|
range.length, idxmap, bits);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_rvae1_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL1&0.
|
|
* Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae1_tlbmask(env),
|
|
tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_rvae1is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, Inner/Outer Shareable EL1&0.
|
|
* Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
|
|
* RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
|
|
* flush-for-specific-ASID-only, flush-last-level-only or inner/outer
|
|
* shareable specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae1_tlbmask(env), true);
|
|
}
|
|
|
|
static void tlbi_aa64_rvae2_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL2.
|
|
* Currently handles all of RVAE2 and RVALE2,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae2_tlbmask(env),
|
|
tlb_force_broadcast(env));
|
|
|
|
|
|
}
|
|
|
|
static void tlbi_aa64_rvae2is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, Inner/Outer Shareable, EL2.
|
|
* Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
|
|
* since we don't support flush-for-specific-ASID-only,
|
|
* flush-last-level-only or inner/outer shareable specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae2_tlbmask(env), true);
|
|
|
|
}
|
|
|
|
static void tlbi_aa64_rvae3_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL3.
|
|
* Currently handles all of RVAE3 and RVALE3,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_rvae3is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL3, Inner/Outer Shareable.
|
|
* Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
|
|
* since we don't support flush-for-specific-ASID-only,
|
|
* flush-last-level-only or inner/outer specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
|
|
}
|
|
|
|
static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
|
|
tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
|
|
}
|
|
#endif
|
|
|
|
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
|
|
if (cur_el < 2) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
if (cur_el == 0) {
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (hcr & HCR_TDZ) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
} else if (hcr & HCR_TDZ) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
int dzp_bit = 1 << 4;
|
|
|
|
/* DZP indicates whether DC ZVA access is allowed */
|
|
if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
|
|
dzp_bit = 0;
|
|
}
|
|
return cpu->dcz_blocksize | dzp_bit;
|
|
}
|
|
|
|
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (!(env->pstate & PSTATE_SP)) {
|
|
/*
|
|
* Access to SP_EL0 is undefined if it's being used as
|
|
* the stack pointer.
|
|
*/
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_SP;
|
|
}
|
|
|
|
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
update_spsel(env, val);
|
|
}
|
|
|
|
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
|
|
/* M bit is RAZ/WI for PMSA with no MPU implemented */
|
|
value &= ~SCTLR_M;
|
|
}
|
|
|
|
/* ??? Lots of these bits are not implemented. */
|
|
|
|
if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
|
|
if (ri->opc1 == 6) { /* SCTLR_EL3 */
|
|
value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
|
|
} else {
|
|
value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
|
|
SCTLR_ATA0 | SCTLR_ATA);
|
|
}
|
|
}
|
|
|
|
if (raw_read(env, ri) == value) {
|
|
/*
|
|
* Skip the TLB flush if nothing actually changed; Linux likes
|
|
* to do a lot of pointless SCTLR writes.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
|
|
/* This may enable/disable the MMU, so do a TLB flush. */
|
|
tlb_flush(CPU(cpu));
|
|
|
|
if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
|
|
/*
|
|
* Normally we would always end the TB on an SCTLR write; see the
|
|
* comment in ARMCPRegInfo sctlr initialization below for why Xscale
|
|
* is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
|
|
* of hflags from the translator, so do it here.
|
|
*/
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Some MDCR_EL3 bits affect whether PMU counters are running:
|
|
* if we are trying to change any of those then we must
|
|
* bracket this update with PMU start/finish calls.
|
|
*/
|
|
bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
|
|
|
|
if (pmu_op) {
|
|
pmu_op_start(env);
|
|
}
|
|
env->cp15.mdcr_el3 = value;
|
|
if (pmu_op) {
|
|
pmu_op_finish(env);
|
|
}
|
|
}
|
|
|
|
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
|
|
mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
|
|
}
|
|
|
|
static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Some MDCR_EL2 bits affect whether PMU counters are running:
|
|
* if we are trying to change any of those then we must
|
|
* bracket this update with PMU start/finish calls.
|
|
*/
|
|
bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
|
|
|
|
if (pmu_op) {
|
|
pmu_op_start(env);
|
|
}
|
|
env->cp15.mdcr_el2 = value;
|
|
if (pmu_op) {
|
|
pmu_op_finish(env);
|
|
}
|
|
}
|
|
|
|
static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
|
|
|
|
if (hcr_nv == (HCR_NV | HCR_NV1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* `IC IVAU` is handled to improve compatibility with JITs that dual-map their
|
|
* code to get around W^X restrictions, where one region is writable and the
|
|
* other is executable.
|
|
*
|
|
* Since the executable region is never written to we cannot detect code
|
|
* changes when running in user mode, and rely on the emulated JIT telling us
|
|
* that the code has changed by executing this instruction.
|
|
*/
|
|
static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t icache_line_mask, start_address, end_address;
|
|
const ARMCPU *cpu;
|
|
|
|
cpu = env_archcpu(env);
|
|
|
|
icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
|
|
start_address = value & ~icache_line_mask;
|
|
end_address = value | icache_line_mask;
|
|
|
|
mmap_lock();
|
|
|
|
tb_invalidate_phys_range(start_address, end_address);
|
|
|
|
mmap_unlock();
|
|
}
|
|
#endif
|
|
|
|
static const ARMCPRegInfo v8_cp_reginfo[] = {
|
|
/*
|
|
* Minimal set of EL0-visible registers. This will need to be expanded
|
|
* significantly for system emulation of AArch64 CPUs.
|
|
*/
|
|
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NZCV },
|
|
{ .name = "DAIF", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL0_RW, .accessfn = aa64_daif_access,
|
|
.fieldoffset = offsetof(CPUARMState, daif),
|
|
.writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
|
|
{ .name = "FPCR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
|
|
.readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
|
|
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
|
|
.readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
|
|
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_DCZID_EL0,
|
|
.readfn = aa64_dczid_read },
|
|
{ .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_DC_ZVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
{ .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
|
|
.access = PL1_R, .type = ARM_CP_CURRENTEL },
|
|
/*
|
|
* Instruction cache ops. All of these except `IC IVAU` NOP because we
|
|
* don't emulate caches.
|
|
*/
|
|
{ .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_ICIALLUIS,
|
|
.accessfn = access_ticab },
|
|
{ .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_ICIALLU,
|
|
.accessfn = access_tocu },
|
|
{ .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.access = PL0_W,
|
|
.fgt = FGT_ICIVAU,
|
|
.accessfn = access_tocu,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_NO_RAW,
|
|
.writefn = ic_ivau_write
|
|
#else
|
|
.type = ARM_CP_NOP
|
|
#endif
|
|
},
|
|
/* Cache ops: all NOPs since we don't emulate caches */
|
|
{ .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = aa64_cacheop_poc_access,
|
|
.fgt = FGT_DCIVAC,
|
|
.type = ARM_CP_NOP },
|
|
{ .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.fgt = FGT_DCISW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.fgt = FGT_DCCSW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCVAU,
|
|
.accessfn = access_tocu },
|
|
{ .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.fgt = FGT_DCCISW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
/* TLBI operations */
|
|
{ .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1IS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1IS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1_write },
|
|
{ .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* 64 bit address translation operations */
|
|
{ .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1R,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1W,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E0R,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E0W,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
/* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
|
|
{ .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write64 },
|
|
{ .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write64 },
|
|
{ .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fgt = FGT_PAR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
|
|
.writefn = par_write },
|
|
#endif
|
|
/* TLB invalidate last level of translation table walk */
|
|
{ .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimva_is_write },
|
|
{ .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimvaa_is_write },
|
|
{ .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimvaa_write },
|
|
{ .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_write },
|
|
{ .name = "TLBIMVALHIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_is_write },
|
|
{ .name = "TLBIIPAS2",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2_hyp_write },
|
|
{ .name = "TLBIIPAS2IS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2is_hyp_write },
|
|
{ .name = "TLBIIPAS2L",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2_hyp_write },
|
|
{ .name = "TLBIIPAS2LIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2is_hyp_write },
|
|
/* 32 bit cache operations */
|
|
{ .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
|
|
{ .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
{ .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_nv1,
|
|
.nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[1]) },
|
|
{ .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_nv1,
|
|
.nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
|
|
/*
|
|
* We rely on the access checks not allowing the guest to write to the
|
|
* state field when SPSel indicates that it's being used as the stack
|
|
* pointer.
|
|
*/
|
|
{ .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = sp_el0_access,
|
|
.type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[0]) },
|
|
{ .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.nv2_redirect_offset = 0x240,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[1]) },
|
|
{ .name = "SPSel", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
|
|
{ .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
|
|
{ .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
|
|
{ .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
|
|
{ .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
|
|
{ .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
|
|
.resetvalue = 0,
|
|
.access = PL3_RW,
|
|
.writefn = mdcr_el3_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
|
|
{ .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.writefn = sdcr_write,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
|
|
};
|
|
|
|
/* These are present only when EL1 supports AArch32 */
|
|
static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
|
|
{ .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
|
|
{ .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
|
|
{ .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
|
|
};
|
|
|
|
static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
|
|
} else {
|
|
valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
valid_mask &= ~HCR_HCD;
|
|
} else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
|
|
/*
|
|
* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
|
|
* However, if we're using the SMC PSCI conduit then QEMU is
|
|
* effectively acting like EL3 firmware and so the guest at
|
|
* EL2 should retain the ability to prevent EL1 from being
|
|
* able to make SMC calls into the ersatz firmware, so in
|
|
* that case HCR.TSC should be read/write.
|
|
*/
|
|
valid_mask &= ~HCR_TSC;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
if (cpu_isar_feature(aa64_vh, cpu)) {
|
|
valid_mask |= HCR_E2H;
|
|
}
|
|
if (cpu_isar_feature(aa64_ras, cpu)) {
|
|
valid_mask |= HCR_TERR | HCR_TEA;
|
|
}
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
valid_mask |= HCR_TLOR;
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
valid_mask |= HCR_API | HCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
|
|
}
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
valid_mask |= HCR_ENSCXT;
|
|
}
|
|
if (cpu_isar_feature(aa64_fwb, cpu)) {
|
|
valid_mask |= HCR_FWB;
|
|
}
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= HCR_GPF;
|
|
}
|
|
if (cpu_isar_feature(aa64_nv, cpu)) {
|
|
valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
|
|
}
|
|
if (cpu_isar_feature(aa64_nv2, cpu)) {
|
|
valid_mask |= HCR_NV2;
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(any_evt, cpu)) {
|
|
valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
|
|
} else if (cpu_isar_feature(any_half_evt, cpu)) {
|
|
valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
|
|
}
|
|
|
|
/* Clear RES0 bits. */
|
|
value &= valid_mask;
|
|
|
|
/*
|
|
* These bits change the MMU setup:
|
|
* HCR_VM enables stage 2 translation
|
|
* HCR_PTW forbids certain page-table setups
|
|
* HCR_DC disables stage1 and enables stage2 translation
|
|
* HCR_DCT enables tagging on (disabled) stage1 translation
|
|
* HCR_FWB changes the interpretation of stage2 descriptor bits
|
|
* HCR_NV and HCR_NV1 affect interpretation of descriptor bits
|
|
*/
|
|
if ((env->cp15.hcr_el2 ^ value) &
|
|
(HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
env->cp15.hcr_el2 = value;
|
|
|
|
/*
|
|
* Updates to VI and VF require us to update the status of
|
|
* virtual interrupts, which are the logical OR of these bits
|
|
* and the state of the input lines from the GIC. (This requires
|
|
* that we have the BQL, which is done by marking the
|
|
* reginfo structs as ARM_CP_IO.)
|
|
* Note that if a write to HCR pends a VIRQ or VFIQ it is never
|
|
* possible for it to be taken immediately, because VIRQ and
|
|
* VFIQ are masked unless running at EL0 or EL1, and HCR
|
|
* can only be written at EL2.
|
|
*/
|
|
g_assert(bql_locked());
|
|
arm_cpu_update_virq(cpu);
|
|
arm_cpu_update_vfiq(cpu);
|
|
arm_cpu_update_vserr(cpu);
|
|
}
|
|
|
|
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
do_hcr_write(env, value, 0);
|
|
}
|
|
|
|
static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
|
|
value = deposit64(env->cp15.hcr_el2, 32, 32, value);
|
|
do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
|
|
}
|
|
|
|
static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Handle HCR write, i.e. write to low half of HCR_EL2 */
|
|
value = deposit64(env->cp15.hcr_el2, 0, 32, value);
|
|
do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
|
|
}
|
|
|
|
/*
|
|
* Return the effective value of HCR_EL2, at the given security state.
|
|
* Bits that are not included here:
|
|
* RW (read from SCR_EL3.RW as needed)
|
|
*/
|
|
uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
|
|
{
|
|
uint64_t ret = env->cp15.hcr_el2;
|
|
|
|
assert(space != ARMSS_Root);
|
|
|
|
if (!arm_is_el2_enabled_secstate(env, space)) {
|
|
/*
|
|
* "This register has no effect if EL2 is not enabled in the
|
|
* current Security state". This is ARMv8.4-SecEL2 speak for
|
|
* !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
|
|
*
|
|
* Prior to that, the language was "In an implementation that
|
|
* includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
|
|
* as if this field is 0 for all purposes other than a direct
|
|
* read or write access of HCR_EL2". With lots of enumeration
|
|
* on a per-field basis. In current QEMU, this is condition
|
|
* is arm_is_secure_below_el3.
|
|
*
|
|
* Since the v8.4 language applies to the entire register, and
|
|
* appears to be backward compatible, use that.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For a cpu that supports both aarch64 and aarch32, we can set bits
|
|
* in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
|
|
* Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
|
|
*/
|
|
if (!arm_el_is_aa64(env, 2)) {
|
|
uint64_t aa32_valid;
|
|
|
|
/*
|
|
* These bits are up-to-date as of ARMv8.6.
|
|
* For HCR, it's easiest to list just the 2 bits that are invalid.
|
|
* For HCR2, list those that are valid.
|
|
*/
|
|
aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
|
|
aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
|
|
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
|
|
ret &= aa32_valid;
|
|
}
|
|
|
|
if (ret & HCR_TGE) {
|
|
/* These bits are up-to-date as of ARMv8.6. */
|
|
if (ret & HCR_E2H) {
|
|
ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
|
|
HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
|
|
HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
|
|
HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
|
|
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
|
|
HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
|
|
} else {
|
|
ret |= HCR_FMO | HCR_IMO | HCR_AMO;
|
|
}
|
|
ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
|
|
HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
|
|
HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
|
|
HCR_TLOR);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t arm_hcr_el2_eff(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return 0;
|
|
}
|
|
return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
|
|
}
|
|
|
|
/*
|
|
* Corresponds to ARM pseudocode function ELIsInHost().
|
|
*/
|
|
bool el_is_in_host(CPUARMState *env, int el)
|
|
{
|
|
uint64_t mask;
|
|
|
|
/*
|
|
* Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
|
|
* Perform the simplest bit tests first, and validate EL2 afterward.
|
|
*/
|
|
if (el & 1) {
|
|
return false; /* EL1 or EL3 */
|
|
}
|
|
|
|
/*
|
|
* Note that hcr_write() checks isar_feature_aa64_vh(),
|
|
* aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
|
|
*/
|
|
mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
|
|
if ((env->cp15.hcr_el2 & mask) != mask) {
|
|
return false;
|
|
}
|
|
|
|
/* TGE and/or E2H set: double check those bits are currently legal. */
|
|
return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
|
|
}
|
|
|
|
static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t valid_mask = 0;
|
|
|
|
/* FEAT_MOPS adds MSCEn and MCE2 */
|
|
if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
|
|
valid_mask |= HCRX_MSCEN | HCRX_MCE2;
|
|
}
|
|
|
|
/* Clear RES0 bits. */
|
|
env->cp15.hcrx_el2 = value & valid_mask;
|
|
}
|
|
|
|
static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_HXEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo hcrx_el2_reginfo = {
|
|
.name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
|
|
.access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
|
|
.nv2_redirect_offset = 0xa0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
|
|
};
|
|
|
|
/* Return the effective value of HCRX_EL2. */
|
|
uint64_t arm_hcrx_el2_eff(CPUARMState *env)
|
|
{
|
|
/*
|
|
* The bits in this register behave as 0 for all purposes other than
|
|
* direct reads of the register if SCR_EL3.HXEn is 0.
|
|
* If EL2 is not enabled in the current security state, then the
|
|
* bit may behave as if 0, or as if 1, depending on the bit.
|
|
* For the moment, we treat the EL2-disabled case as taking
|
|
* priority over the HXEn-disabled case. This is true for the only
|
|
* bit for a feature which we implement where the answer is different
|
|
* for the two cases (MSCEn for FEAT_MOPS).
|
|
* This may need to be revisited for future bits.
|
|
*/
|
|
if (!arm_is_el2_enabled(env)) {
|
|
uint64_t hcrx = 0;
|
|
if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
|
|
/* MSCEn behaves as 1 if EL2 is not enabled */
|
|
hcrx |= HCRX_MSCEN;
|
|
}
|
|
return hcrx;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
|
|
return 0;
|
|
}
|
|
return env->cp15.hcrx_el2;
|
|
}
|
|
|
|
static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3, if NSACR.CP10
|
|
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
|
|
value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
|
|
}
|
|
env->cp15.cptr_el[2] = value;
|
|
}
|
|
|
|
static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3, if NSACR.CP10
|
|
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
|
|
*/
|
|
uint64_t value = env->cp15.cptr_el[2];
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static const ARMCPRegInfo el2_cp_reginfo[] = {
|
|
{ .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
|
|
.nv2_redirect_offset = 0x78,
|
|
.writefn = hcr_write, .raw_writefn = raw_write },
|
|
{ .name = "HCR", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
|
|
.writefn = hcr_writelow },
|
|
{ .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[2]) },
|
|
{ .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
|
|
{ .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
|
|
{ .name = "HIFAR", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
|
|
{ .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
|
|
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[2]) },
|
|
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
|
|
.readfn = cptr_el2_read, .writefn = cptr_el2_write },
|
|
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
|
|
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
/* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
|
|
{ .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .writefn = vmsa_tcr_el12_write,
|
|
.raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
|
|
{ .name = "VTCR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.nv2_redirect_offset = 0x40,
|
|
/* no .writefn needed as this can't cause an ASID change */
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 6, .crm = 2,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
|
|
.writefn = vttbr_write, .raw_writefn = raw_write },
|
|
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
|
|
.nv2_redirect_offset = 0x20,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
|
|
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
|
|
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.nv2_redirect_offset = 0x90,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
|
|
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "TLBIALLNSNH",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_nsnh_write },
|
|
{ .name = "TLBIALLNSNHIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_nsnh_is_write },
|
|
{ .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_hyp_write },
|
|
{ .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_hyp_is_write },
|
|
{ .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_write },
|
|
{ .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_is_write },
|
|
{ .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2_write },
|
|
{ .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2is_write },
|
|
{ .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* Unlike the other EL2-related AT operations, these must
|
|
* UNDEF from EL3 if EL2 is not implemented, which is why we
|
|
* define them here rather than with the rest of the AT ops.
|
|
*/
|
|
{ .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = ats_write64 },
|
|
{ .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = ats_write64 },
|
|
/*
|
|
* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
|
|
* if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
|
|
* with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
|
|
* to behave as if SCR.NS was 1.
|
|
*/
|
|
{ .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
{ .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
|
|
/*
|
|
* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
|
|
* reset values as IMPDEF. We choose to reset to 3 to comply with
|
|
* both ARMv7 and ARMv8.
|
|
*/
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
|
|
.writefn = gt_cnthctl_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
|
|
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
|
|
.writefn = gt_cntvoff_write,
|
|
.nv2_redirect_offset = 0x60,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
|
|
.writefn = gt_cntvoff_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
|
|
.resetfn = gt_hyp_timer_reset,
|
|
.readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
|
|
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
|
|
#endif
|
|
{ .name = "HPFAR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
|
|
{ .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
|
|
{ .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
|
|
.access = PL2_RW,
|
|
.nv2_redirect_offset = 0x80,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
|
|
};
|
|
|
|
static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
|
|
{ .name = "HCR2", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
|
|
.writefn = hcr_writehigh },
|
|
};
|
|
|
|
static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
|
|
{ .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = sel2_access,
|
|
.nv2_redirect_offset = 0x30,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
|
|
{ .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = sel2_access,
|
|
.nv2_redirect_offset = 0x48,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
|
|
};
|
|
|
|
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
|
|
* At Secure EL1 it traps to EL3 or EL2.
|
|
*/
|
|
if (arm_current_el(env) == 3) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
/* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
|
|
if (isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
static const ARMCPRegInfo el3_cp_reginfo[] = {
|
|
{ .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
|
|
.resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
|
|
{ .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
|
|
.writefn = scr_write, .raw_writefn = raw_write },
|
|
{ .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sder) },
|
|
{ .name = "SDER",
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
|
|
{ .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.writefn = vbar_write, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
|
|
{ .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
|
|
{ .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW,
|
|
/* no .writefn needed as this can't cause an ASID change */
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
|
|
{ .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[3]) },
|
|
{ .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
|
|
{ .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
|
|
{ .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
|
|
{ .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
|
|
.resetvalue = 0 },
|
|
{ .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
|
|
{ .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
|
|
{ .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3is_write },
|
|
{ .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3_write },
|
|
{ .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
{ .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access */
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access with NVx == 101 */
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return e2h_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access with NVx == 101 */
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return e2h_access(env, ri, isread);
|
|
}
|
|
|
|
/* Test if system register redirection is to occur in the current state. */
|
|
static bool redirect_for_e2h(CPUARMState *env)
|
|
{
|
|
return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
|
|
}
|
|
|
|
static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
CPReadFn *readfn;
|
|
|
|
if (redirect_for_e2h(env)) {
|
|
/* Switch to the saved EL2 version of the register. */
|
|
ri = ri->opaque;
|
|
readfn = ri->readfn;
|
|
} else {
|
|
readfn = ri->orig_readfn;
|
|
}
|
|
if (readfn == NULL) {
|
|
readfn = raw_read;
|
|
}
|
|
return readfn(env, ri);
|
|
}
|
|
|
|
static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPWriteFn *writefn;
|
|
|
|
if (redirect_for_e2h(env)) {
|
|
/* Switch to the saved EL2 version of the register. */
|
|
ri = ri->opaque;
|
|
writefn = ri->writefn;
|
|
} else {
|
|
writefn = ri->orig_writefn;
|
|
}
|
|
if (writefn == NULL) {
|
|
writefn = raw_write;
|
|
}
|
|
writefn(env, ri, value);
|
|
}
|
|
|
|
static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Pass the EL1 register accessor its ri, not the EL12 alias ri */
|
|
return ri->orig_readfn(env, ri->opaque);
|
|
}
|
|
|
|
static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Pass the EL1 register accessor its ri, not the EL12 alias ri */
|
|
return ri->orig_writefn(env, ri->opaque, value);
|
|
}
|
|
|
|
static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/*
|
|
* This must be a FEAT_NV access (will either trap or redirect
|
|
* to memory). None of the registers with _EL12 aliases want to
|
|
* apply their trap controls for this kind of access, so don't
|
|
* call the orig_accessfn or do the "UNDEF when E2H is 0" check.
|
|
*/
|
|
return CP_ACCESS_OK;
|
|
}
|
|
/* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
|
|
if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
if (ri->orig_accessfn) {
|
|
return ri->orig_accessfn(env, ri->opaque, isread);
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
|
|
{
|
|
struct E2HAlias {
|
|
uint32_t src_key, dst_key, new_key;
|
|
const char *src_name, *dst_name, *new_name;
|
|
bool (*feature)(const ARMISARegisters *id);
|
|
};
|
|
|
|
#define K(op0, op1, crn, crm, op2) \
|
|
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
|
|
|
|
static const struct E2HAlias aliases[] = {
|
|
{ K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
|
|
"SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
|
|
{ K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
|
|
"CPACR", "CPTR_EL2", "CPACR_EL12" },
|
|
{ K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
|
|
"TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
|
|
{ K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
|
|
"TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
|
|
{ K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
|
|
"TCR_EL1", "TCR_EL2", "TCR_EL12" },
|
|
{ K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
|
|
"SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
|
|
{ K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
|
|
"ELR_EL1", "ELR_EL2", "ELR_EL12" },
|
|
{ K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
|
|
"AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
|
|
{ K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
|
|
"AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
|
|
{ K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
|
|
"ESR_EL1", "ESR_EL2", "ESR_EL12" },
|
|
{ K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
|
|
"FAR_EL1", "FAR_EL2", "FAR_EL12" },
|
|
{ K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
|
|
"MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
|
|
{ K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
|
|
"AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
|
|
{ K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
|
|
"VBAR", "VBAR_EL2", "VBAR_EL12" },
|
|
{ K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
|
|
"CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
|
|
{ K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
|
|
"CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
|
|
|
|
/*
|
|
* Note that redirection of ZCR is mentioned in the description
|
|
* of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
|
|
* not in the summary table.
|
|
*/
|
|
{ K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
|
|
"ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
|
|
{ K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
|
|
"SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
|
|
|
|
{ K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
|
|
"TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
|
|
|
|
{ K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
|
|
"SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
|
|
isar_feature_aa64_scxtnum },
|
|
|
|
/* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
|
|
/* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
|
|
};
|
|
#undef K
|
|
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aliases); i++) {
|
|
const struct E2HAlias *a = &aliases[i];
|
|
ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
|
|
bool ok;
|
|
|
|
if (a->feature && !a->feature(&cpu->isar)) {
|
|
continue;
|
|
}
|
|
|
|
src_reg = g_hash_table_lookup(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->src_key);
|
|
dst_reg = g_hash_table_lookup(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->dst_key);
|
|
g_assert(src_reg != NULL);
|
|
g_assert(dst_reg != NULL);
|
|
|
|
/* Cross-compare names to detect typos in the keys. */
|
|
g_assert(strcmp(src_reg->name, a->src_name) == 0);
|
|
g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
|
|
|
|
/* None of the core system registers use opaque; we will. */
|
|
g_assert(src_reg->opaque == NULL);
|
|
|
|
/* Create alias before redirection so we dup the right data. */
|
|
new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
|
|
|
|
new_reg->name = a->new_name;
|
|
new_reg->type |= ARM_CP_ALIAS;
|
|
/* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
|
|
new_reg->access &= PL2_RW | PL3_RW;
|
|
/* The new_reg op fields are as per new_key, not the target reg */
|
|
new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
|
|
>> CP_REG_ARM64_SYSREG_CRN_SHIFT;
|
|
new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
|
|
>> CP_REG_ARM64_SYSREG_CRM_SHIFT;
|
|
new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP0_SHIFT;
|
|
new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP1_SHIFT;
|
|
new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP2_SHIFT;
|
|
new_reg->opaque = src_reg;
|
|
new_reg->orig_readfn = src_reg->readfn ?: raw_read;
|
|
new_reg->orig_writefn = src_reg->writefn ?: raw_write;
|
|
new_reg->orig_accessfn = src_reg->accessfn;
|
|
if (!new_reg->raw_readfn) {
|
|
new_reg->raw_readfn = raw_read;
|
|
}
|
|
if (!new_reg->raw_writefn) {
|
|
new_reg->raw_writefn = raw_write;
|
|
}
|
|
new_reg->readfn = el2_e2h_e12_read;
|
|
new_reg->writefn = el2_e2h_e12_write;
|
|
new_reg->accessfn = el2_e2h_e12_access;
|
|
|
|
/*
|
|
* If the _EL1 register is redirected to memory by FEAT_NV2,
|
|
* then it shares the offset with the _EL12 register,
|
|
* and which one is redirected depends on HCR_EL2.NV1.
|
|
*/
|
|
if (new_reg->nv2_redirect_offset) {
|
|
assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
|
|
new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
|
|
new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
|
|
}
|
|
|
|
ok = g_hash_table_insert(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->new_key, new_reg);
|
|
g_assert(ok);
|
|
|
|
src_reg->opaque = dst_reg;
|
|
src_reg->orig_readfn = src_reg->readfn ?: raw_read;
|
|
src_reg->orig_writefn = src_reg->writefn ?: raw_write;
|
|
if (!src_reg->raw_readfn) {
|
|
src_reg->raw_readfn = raw_read;
|
|
}
|
|
if (!src_reg->raw_writefn) {
|
|
src_reg->raw_writefn = raw_write;
|
|
}
|
|
src_reg->readfn = el2_e2h_read;
|
|
src_reg->writefn = el2_e2h_write;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
|
|
if (cur_el < 2) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
if (cur_el == 0) {
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (hcr & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
} else if (hcr & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
|
|
if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/*
|
|
* Check for traps to RAS registers, which are controlled
|
|
* by HCR_EL2.TERR and SCR_EL3.TERR.
|
|
*/
|
|
static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
|
|
return env->cp15.vdisr_el2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
|
|
return 0; /* RAZ/WI */
|
|
}
|
|
return env->cp15.disr_el1;
|
|
}
|
|
|
|
static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
|
|
env->cp15.vdisr_el2 = val;
|
|
return;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
|
|
return; /* RAZ/WI */
|
|
}
|
|
env->cp15.disr_el1 = val;
|
|
}
|
|
|
|
/*
|
|
* Minimal RAS implementation with no Error Records.
|
|
* Which means that all of the Error Record registers:
|
|
* ERXADDR_EL1
|
|
* ERXCTLR_EL1
|
|
* ERXFR_EL1
|
|
* ERXMISC0_EL1
|
|
* ERXMISC1_EL1
|
|
* ERXMISC2_EL1
|
|
* ERXMISC3_EL1
|
|
* ERXPFGCDN_EL1 (RASv1p1)
|
|
* ERXPFGCTL_EL1 (RASv1p1)
|
|
* ERXPFGF_EL1 (RASv1p1)
|
|
* ERXSTATUS_EL1
|
|
* and
|
|
* ERRSELR_EL1
|
|
* may generate UNDEFINED, which is the effect we get by not
|
|
* listing them at all.
|
|
*
|
|
* These registers have fine-grained trap bits, but UNDEF-to-EL1
|
|
* is higher priority than FGT-to-EL2 so we do not need to list them
|
|
* in order to check for an FGT.
|
|
*/
|
|
static const ARMCPRegInfo minimal_ras_reginfo[] = {
|
|
{ .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
|
|
.readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
|
|
{ .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .accessfn = access_terr,
|
|
.fgt = FGT_ERRIDR_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
|
|
.nv2_redirect_offset = 0x500,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
|
|
{ .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
|
|
.nv2_redirect_offset = 0x508,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
|
|
};
|
|
|
|
/*
|
|
* Return the exception level to which exceptions should be taken
|
|
* via SVEAccessTrap. This excludes the check for whether the exception
|
|
* should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
|
|
* be found by testing 0 < fp_exception_el < sve_exception_el.
|
|
*
|
|
* C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
|
|
* pseudocode does *not* separate out the FP trap checks, but has them
|
|
* all in one function.
|
|
*/
|
|
int sve_exception_el(CPUARMState *env, int el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
|
|
case 1:
|
|
if (el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
/* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
|
|
if (env->cp15.hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
|
|
case 1:
|
|
if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3. Since EZ is negative we must check for EL3. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the exception level to which exceptions should be taken for SME.
|
|
* C.f. the ARM pseudocode function CheckSMEAccess.
|
|
*/
|
|
int sme_exception_el(CPUARMState *env, int el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
|
|
case 1:
|
|
if (el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
/* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
|
|
if (env->cp15.hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
|
|
case 1:
|
|
if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3. Since ESM is negative we must check for EL3. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given that SVE is enabled, return the vector length for EL.
|
|
*/
|
|
uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t *cr = env->vfp.zcr_el;
|
|
uint32_t map = cpu->sve_vq.map;
|
|
uint32_t len = ARM_MAX_VQ - 1;
|
|
|
|
if (sm) {
|
|
cr = env->vfp.smcr_el;
|
|
map = cpu->sme_vq.map;
|
|
}
|
|
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[1]);
|
|
}
|
|
if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[2]);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[3]);
|
|
}
|
|
|
|
map &= MAKE_64BIT_MASK(0, len + 1);
|
|
if (map != 0) {
|
|
return 31 - clz32(map);
|
|
}
|
|
|
|
/* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
|
|
assert(sm);
|
|
return ctz32(cpu->sme_vq.map);
|
|
}
|
|
|
|
uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
|
|
{
|
|
return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
|
|
}
|
|
|
|
static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
int old_len = sve_vqm1_for_el(env, cur_el);
|
|
int new_len;
|
|
|
|
/* Bits other than [3:0] are RAZ/WI. */
|
|
QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
|
|
raw_write(env, ri, value & 0xf);
|
|
|
|
/*
|
|
* Because we arrived here, we know both FP and SVE are enabled;
|
|
* otherwise we would have trapped access to the ZCR_ELn register.
|
|
*/
|
|
new_len = sve_vqm1_for_el(env, cur_el);
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo zcr_reginfo[] = {
|
|
{ .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
{ .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
{ .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
};
|
|
|
|
#ifdef TARGET_AARCH64
|
|
static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0) {
|
|
uint64_t sctlr = arm_sctlr(env, el);
|
|
if (!(sctlr & SCTLR_EnTP2)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
}
|
|
/* TODO: FEAT_FGT */
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ENTP2)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
|
|
if (arm_current_el(env) == 2
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* ResetSVEState */
|
|
static void arm_reset_sve_state(CPUARMState *env)
|
|
{
|
|
memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
|
|
/* Recall that FFR is stored as pregs[16]. */
|
|
memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
|
|
vfp_set_fpcr(env, 0x0800009f);
|
|
}
|
|
|
|
void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
|
|
{
|
|
uint64_t change = (env->svcr ^ new) & mask;
|
|
|
|
if (change == 0) {
|
|
return;
|
|
}
|
|
env->svcr ^= change;
|
|
|
|
if (change & R_SVCR_SM_MASK) {
|
|
arm_reset_sve_state(env);
|
|
}
|
|
|
|
/*
|
|
* ResetSMEState.
|
|
*
|
|
* SetPSTATE_ZA zeros on enable and disable. We can zero this only
|
|
* on enable: while disabled, the storage is inaccessible and the
|
|
* value does not matter. We're not saving the storage in vmstate
|
|
* when disabled either.
|
|
*/
|
|
if (change & new & R_SVCR_ZA_MASK) {
|
|
memset(env->zarray, 0, sizeof(env->zarray));
|
|
}
|
|
|
|
if (tcg_enabled()) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
aarch64_set_svcr(env, value, -1);
|
|
}
|
|
|
|
static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
int old_len = sve_vqm1_for_el(env, cur_el);
|
|
int new_len;
|
|
|
|
QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
|
|
value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
|
|
raw_write(env, ri, value);
|
|
|
|
/*
|
|
* Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
|
|
* when SVL is widened (old values kept, or zeros). Choose to keep the
|
|
* current values for simplicity. But for QEMU internals, we must still
|
|
* apply the narrower SVL to the Zregs and Pregs -- see the comment
|
|
* above aarch64_sve_narrow_vq.
|
|
*/
|
|
new_len = sve_vqm1_for_el(env, cur_el);
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo sme_reginfo[] = {
|
|
{ .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
|
|
.access = PL0_RW, .accessfn = access_tpidr2,
|
|
.fgt = FGT_NTPIDR2_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
|
|
{ .name = "SVCR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, svcr),
|
|
.writefn = svcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.access = PL2_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.access = PL3_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
|
|
.access = PL1_R, .accessfn = access_aa64_tid1,
|
|
/*
|
|
* IMPLEMENTOR = 0 (software)
|
|
* REVISION = 0 (implementation defined)
|
|
* SMPS = 0 (no streaming execution priority in QEMU)
|
|
* AFFINITY = 0 (streaming sve mode not shared with other PEs)
|
|
*/
|
|
.type = ARM_CP_CONST, .resetvalue = 0, },
|
|
/*
|
|
* Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
|
|
*/
|
|
{ .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
|
|
.access = PL1_RW, .accessfn = access_smpri,
|
|
.fgt = FGT_NSMPRI_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1f8,
|
|
.access = PL2_RW, .accessfn = access_smprimap,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush(cs);
|
|
}
|
|
|
|
static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* L0GPTSZ is RO; other bits not mentioned are RES0. */
|
|
uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
|
|
R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
|
|
R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
|
|
|
|
env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
|
|
}
|
|
|
|
static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
|
|
env_archcpu(env)->reset_l0gptsz);
|
|
}
|
|
|
|
static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static const ARMCPRegInfo rme_reginfo[] = {
|
|
{ .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
|
|
.access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
|
|
{ .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
|
|
{ .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
|
|
{ .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paall_write },
|
|
{ .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
/*
|
|
* QEMU does not have a way to invalidate by physical address, thus
|
|
* invalidating a range of physical addresses is accomplished by
|
|
* flushing all tlb entries in the outer shareable domain,
|
|
* just like PAALLOS.
|
|
*/
|
|
{ .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
{ .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
{ .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static const ARMCPRegInfo rme_mte_reginfo[] = {
|
|
{ .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NOP },
|
|
};
|
|
#endif /* TARGET_AARCH64 */
|
|
|
|
static void define_pmu_regs(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* v7 performance monitor control register: same implementor
|
|
* field as main ID register, and we implement four counters in
|
|
* addition to the cycle count register.
|
|
*/
|
|
unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
|
|
ARMCPRegInfo pmcr = {
|
|
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_PMCR_EL0,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
|
|
.accessfn = pmreg_access,
|
|
.readfn = pmcr_read, .raw_readfn = raw_read,
|
|
.writefn = pmcr_write, .raw_writefn = raw_write,
|
|
};
|
|
ARMCPRegInfo pmcr64 = {
|
|
.name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
|
|
.resetvalue = cpu->isar.reset_pmcr_el0,
|
|
.readfn = pmcr_read, .raw_readfn = raw_read,
|
|
.writefn = pmcr_write, .raw_writefn = raw_write,
|
|
};
|
|
|
|
define_one_arm_cp_reg(cpu, &pmcr);
|
|
define_one_arm_cp_reg(cpu, &pmcr64);
|
|
for (i = 0; i < pmcrn; i++) {
|
|
char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
|
|
char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
|
|
char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
|
|
char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
|
|
ARMCPRegInfo pmev_regs[] = {
|
|
{ .name = pmevcntr_name, .cp = 15, .crn = 14,
|
|
.crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
|
|
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
|
|
.accessfn = pmreg_access_xevcntr },
|
|
{ .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
|
|
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
|
|
.type = ARM_CP_IO,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
|
|
.raw_readfn = pmevcntr_rawread,
|
|
.raw_writefn = pmevcntr_rawwrite },
|
|
{ .name = pmevtyper_name, .cp = 15, .crn = 14,
|
|
.crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
|
|
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
|
|
.accessfn = pmreg_access },
|
|
{ .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
|
|
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.type = ARM_CP_IO,
|
|
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
|
|
.raw_writefn = pmevtyper_rawwrite },
|
|
};
|
|
define_arm_cp_regs(cpu, pmev_regs);
|
|
g_free(pmevcntr_name);
|
|
g_free(pmevcntr_el0_name);
|
|
g_free(pmevtyper_name);
|
|
g_free(pmevtyper_el0_name);
|
|
}
|
|
if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
|
|
ARMCPRegInfo v81_pmu_regs[] = {
|
|
{ .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid0, 32, 32) },
|
|
{ .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid1, 32, 32) },
|
|
};
|
|
define_arm_cp_regs(cpu, v81_pmu_regs);
|
|
}
|
|
if (cpu_isar_feature(any_pmuv3p4, cpu)) {
|
|
static const ARMCPRegInfo v84_pmmir = {
|
|
.name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
|
|
.access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMMIR_EL1,
|
|
.resetvalue = 0
|
|
};
|
|
define_one_arm_cp_reg(cpu, &v84_pmmir);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* We don't know until after realize whether there's a GICv3
|
|
* attached, and that is what registers the gicv3 sysregs.
|
|
* So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
|
|
* at runtime.
|
|
*/
|
|
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t pfr1 = cpu->isar.id_pfr1;
|
|
|
|
if (env->gicv3state) {
|
|
pfr1 |= 1 << 28;
|
|
}
|
|
return pfr1;
|
|
}
|
|
|
|
static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t pfr0 = cpu->isar.id_aa64pfr0;
|
|
|
|
if (env->gicv3state) {
|
|
pfr0 |= 1 << 24;
|
|
}
|
|
return pfr0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Shared logic between LORID and the rest of the LOR* registers.
|
|
* Secure state exclusion has already been dealt with.
|
|
*/
|
|
static CPAccessResult access_lor_ns(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_lor_other(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
if (arm_is_secure_below_el3(env)) {
|
|
/* Access denied in secure mode. */
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return access_lor_ns(env, ri, isread);
|
|
}
|
|
|
|
/*
|
|
* A trivial implementation of ARMv8.1-LOR leaves all of these
|
|
* registers fixed at 0, which indicates that there are zero
|
|
* supported Limited Ordering regions.
|
|
*/
|
|
static const ARMCPRegInfo lor_reginfo[] = {
|
|
{ .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORSA_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LOREA_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORN_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORC_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
|
|
.access = PL1_R, .accessfn = access_lor_ns,
|
|
.fgt = FGT_LORID_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
#ifdef TARGET_AARCH64
|
|
static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 &&
|
|
arm_is_el2_enabled(env) &&
|
|
!(arm_hcr_el2_eff(env) & HCR_APK)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_APK)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo pauth_reginfo[] = {
|
|
{ .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
|
|
{ .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
|
|
{ .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
|
|
{ .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
|
|
{ .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APGAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
|
|
{ .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APGAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
|
|
{ .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
|
|
{ .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
|
|
{ .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
|
|
{ .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
|
|
};
|
|
|
|
static const ARMCPRegInfo tlbirange_reginfo[] = {
|
|
{ .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1is_write },
|
|
{ .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1is_write },
|
|
{ .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1_write },
|
|
{ .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1_write },
|
|
{ .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2_write },
|
|
{ .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2_write },
|
|
{ .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3_write },
|
|
{ .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo tlbios_reginfo[] = {
|
|
{ .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1OS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.fgt = FGT_TLBIVAE1OS,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1OS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2is_write },
|
|
{ .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3is_write },
|
|
{ .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
};
|
|
|
|
static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
Error *err = NULL;
|
|
uint64_t ret;
|
|
|
|
/* Success sets NZCV = 0000. */
|
|
env->NF = env->CF = env->VF = 0, env->ZF = 1;
|
|
|
|
if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
|
|
/*
|
|
* ??? Failed, for unknown reasons in the crypto subsystem.
|
|
* The best we can do is log the reason and return the
|
|
* timed-out indication to the guest. There is no reason
|
|
* we know to expect this failure to be transitory, so the
|
|
* guest may well hang retrying the operation.
|
|
*/
|
|
qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
|
|
ri->name, error_get_pretty(err));
|
|
error_free(err);
|
|
|
|
env->ZF = 0; /* NZCF = 0100 */
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* We do not support re-seeding, so the two registers operate the same. */
|
|
static const ARMCPRegInfo rndr_reginfo[] = {
|
|
{ .name = "RNDR", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
|
|
.access = PL0_R, .readfn = rndr_readfn },
|
|
{ .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
|
|
.access = PL0_R, .readfn = rndr_readfn },
|
|
};
|
|
|
|
static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
/* CTR_EL0 System register -> DminLine, bits [19:16] */
|
|
uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
|
|
uint64_t vaddr_in = (uint64_t) value;
|
|
uint64_t vaddr = vaddr_in & ~(dline_size - 1);
|
|
void *haddr;
|
|
int mem_idx = arm_env_mmu_index(env);
|
|
|
|
/* This won't be crossing page boundaries */
|
|
haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
|
|
if (haddr) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
ram_addr_t offset;
|
|
MemoryRegion *mr;
|
|
|
|
/* RCU lock is already being held */
|
|
mr = memory_region_from_host(haddr, &offset);
|
|
|
|
if (mr) {
|
|
memory_region_writeback(mr, offset, dline_size);
|
|
}
|
|
#endif /*CONFIG_USER_ONLY*/
|
|
}
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static const ARMCPRegInfo dcpop_reg[] = {
|
|
{ .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
|
|
};
|
|
|
|
static const ARMCPRegInfo dcpodp_reg[] = {
|
|
{ .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
|
|
};
|
|
|
|
static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
CPAccessResult nv1 = access_nv1(env, ri, isread);
|
|
|
|
if (nv1 != CP_ACCESS_OK) {
|
|
return nv1;
|
|
}
|
|
return access_mte(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* TFSR_EL2: similar to generic access_mte(), but we need to
|
|
* account for FEAT_NV. At EL1 this must be a FEAT_NV access;
|
|
* if NV2 is enabled then we will redirect this to TFSR_EL1
|
|
* after doing the HCR and SCR ATA traps; otherwise this will
|
|
* be a trap to EL2 and the HCR/SCR traps do not apply.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_TCO;
|
|
}
|
|
|
|
static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
|
|
}
|
|
|
|
static const ARMCPRegInfo mte_reginfo[] = {
|
|
{ .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
|
|
{ .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tfsr_el1,
|
|
.nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
|
|
{ .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_tfsr_el2,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
|
|
{ .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
|
|
{ .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
|
|
{ .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
|
|
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
|
|
{ .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL1_W,
|
|
.fgt = FGT_DCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
|
|
.fgt = FGT_DCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL1_W,
|
|
.fgt = FGT_DCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
|
|
.fgt = FGT_DCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
|
|
.fgt = FGT_DCCSW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
|
|
.fgt = FGT_DCCSW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
|
|
.fgt = FGT_DCCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
|
|
.fgt = FGT_DCCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
};
|
|
|
|
static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
|
|
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
|
|
.type = ARM_CP_CONST, .access = PL0_RW, },
|
|
};
|
|
|
|
static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
|
|
{ .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
|
|
.access = PL0_W, .type = ARM_CP_DC_GVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
{ .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_DC_GZVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
|
|
if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
|
|
if (hcr & HCR_TGE) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
} else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ENSCXT)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_scxtnum_el1(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
CPAccessResult nv1 = access_nv1(env, ri, isread);
|
|
|
|
if (nv1 != CP_ACCESS_OK) {
|
|
return nv1;
|
|
}
|
|
return access_scxtnum(env, ri, isread);
|
|
}
|
|
|
|
static const ARMCPRegInfo scxtnum_reginfo[] = {
|
|
{ .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL0_RW, .accessfn = access_scxtnum,
|
|
.fgt = FGT_SCXTNUM_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
|
|
{ .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL1_RW, .accessfn = access_scxtnum_el1,
|
|
.fgt = FGT_SCXTNUM_EL1,
|
|
.nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
|
|
{ .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL2_RW, .accessfn = access_scxtnum,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
|
|
{ .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
|
|
};
|
|
|
|
static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo fgt_reginfo[] = {
|
|
{ .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
|
|
.nv2_redirect_offset = 0x1b8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
|
|
{ .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1c0,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
|
|
{ .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
|
|
.nv2_redirect_offset = 0x1d0,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
|
|
{ .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1d8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
|
|
{ .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
|
|
.nv2_redirect_offset = 0x1c8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
|
|
};
|
|
|
|
static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
|
|
* that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
|
|
* about the RESS bits at the top -- we choose the "generate an EL2
|
|
* translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
|
|
* the ptw.c code detect the resulting invalid address).
|
|
*/
|
|
env->cp15.vncr_el2 = value & ~0xfffULL;
|
|
}
|
|
|
|
static const ARMCPRegInfo nv2_reginfo[] = {
|
|
{ .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.writefn = vncr_write,
|
|
.nv2_redirect_offset = 0xb0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
|
|
};
|
|
|
|
#endif /* TARGET_AARCH64 */
|
|
|
|
static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0) {
|
|
uint64_t sctlr = arm_sctlr(env, el);
|
|
if (!(sctlr & SCTLR_EnRCTX)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
} else if (el == 1) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (hcr & HCR_NV) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo predinv_reginfo[] = {
|
|
{ .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
|
|
.fgt = FGT_CFPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
|
|
.fgt = FGT_DVPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
|
|
.fgt = FGT_CPPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
/*
|
|
* Note the AArch32 opcodes have a different OPC1.
|
|
*/
|
|
{ .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
|
|
.fgt = FGT_CFPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
|
|
.fgt = FGT_DVPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
|
|
.fgt = FGT_CPPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
};
|
|
|
|
static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Read the high 32 bits of the current CCSIDR */
|
|
return extract64(ccsidr_read(env, ri), 32, 32);
|
|
}
|
|
|
|
static const ARMCPRegInfo ccsidr2_reginfo[] = {
|
|
{ .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.accessfn = access_tid4,
|
|
.readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
|
|
};
|
|
|
|
static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return access_aa64_tid3(env, ri, isread);
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_joscr_jmcr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
/*
|
|
* HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
|
|
* in v7A, not in v8A.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V8) &&
|
|
arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
|
|
(env->cp15.hstr_el2 & HSTR_TJDBX)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo jazelle_regs[] = {
|
|
{ .name = "JIDR",
|
|
.cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.access = PL1_R, .accessfn = access_jazelle,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "JOSCR",
|
|
.cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.accessfn = access_joscr_jmcr,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "JMCR",
|
|
.cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.accessfn = access_joscr_jmcr,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo contextidr_el2 = {
|
|
.name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
|
|
};
|
|
|
|
static const ARMCPRegInfo vhe_reginfo[] = {
|
|
{ .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
|
|
.raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
|
|
#ifndef CONFIG_USER_ONLY
|
|
{ .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.fieldoffset =
|
|
offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.writefn = gt_hv_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
|
|
.resetfn = gt_hv_timer_reset,
|
|
.readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
|
|
{ .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
|
|
.writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el1nvpct,
|
|
.nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el1nvvct,
|
|
.nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = e2h_access,
|
|
.readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
|
|
{ .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = e2h_access,
|
|
.readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
|
|
{ .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
|
|
.access = PL2_RW, .accessfn = access_el1nvpct,
|
|
.writefn = gt_phys_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.access = PL2_RW, .accessfn = access_el1nvvct,
|
|
.writefn = gt_virt_cval_write, .raw_writefn = raw_write },
|
|
#endif
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static const ARMCPRegInfo ats1e1_reginfo[] = {
|
|
{ .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1RP,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1WP,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
};
|
|
|
|
static const ARMCPRegInfo ats1cp_reginfo[] = {
|
|
{ .name = "ATS1CPRP",
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write },
|
|
{ .name = "ATS1CPWP",
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write },
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
|
|
* ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
|
|
* is non-zero, which is never for ARMv7, optionally in ARMv8
|
|
* and mandatorily for ARMv8.2 and up.
|
|
* ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
|
|
* implementation is RAZ/WI we can ignore this detail, as we
|
|
* do for ACTLR.
|
|
*/
|
|
static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
|
|
{ .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_tacr,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
void register_cp_regs_for_features(ARMCPU *cpu)
|
|
{
|
|
/* Register all the coprocessor registers based on feature bits */
|
|
CPUARMState *env = &cpu->env;
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* M profile has no coprocessor registers */
|
|
return;
|
|
}
|
|
|
|
define_arm_cp_regs(cpu, cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* Must go early as it is full of wildcards that may be
|
|
* overridden by later definitions.
|
|
*/
|
|
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* The ID registers all have impdef reset values */
|
|
ARMCPRegInfo v6_idregs[] = {
|
|
{ .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_pfr0 },
|
|
/*
|
|
* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
|
|
* the value of the GIC field until after we define these regs.
|
|
*/
|
|
{ .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa32_tid3,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_CONST,
|
|
.resetvalue = cpu->isar.id_pfr1,
|
|
#else
|
|
.type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa32_tid3,
|
|
.readfn = id_pfr1_read,
|
|
.writefn = arm_cp_write_ignore
|
|
#endif
|
|
},
|
|
{ .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_dfr0 },
|
|
{ .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->id_afr0 },
|
|
{ .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr0 },
|
|
{ .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr1 },
|
|
{ .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr2 },
|
|
{ .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr3 },
|
|
{ .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar0 },
|
|
{ .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar1 },
|
|
{ .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar2 },
|
|
{ .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar3 },
|
|
{ .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar4 },
|
|
{ .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar5 },
|
|
{ .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr4 },
|
|
{ .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar6 },
|
|
};
|
|
define_arm_cp_regs(cpu, v6_idregs);
|
|
define_arm_cp_regs(cpu, v6_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6K)) {
|
|
define_arm_cp_regs(cpu, v6k_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7MP) &&
|
|
!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_arm_cp_regs(cpu, v7mp_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7VE)) {
|
|
define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
ARMCPRegInfo clidr = {
|
|
.name = "CLIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CLIDR_EL1,
|
|
.resetvalue = cpu->clidr
|
|
};
|
|
define_one_arm_cp_reg(cpu, &clidr);
|
|
define_arm_cp_regs(cpu, v7_cp_reginfo);
|
|
define_debug_regs(cpu);
|
|
define_pmu_regs(cpu);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* v8 ID registers, which all have impdef reset values.
|
|
* Note that within the ID register ranges the unused slots
|
|
* must all RAZ, not UNDEF; future architecture versions may
|
|
* define new registers here.
|
|
* ID registers which are AArch64 views of the AArch32 ID registers
|
|
* which already existed in v6 and v7 are handled elsewhere,
|
|
* in v6_idregs[].
|
|
*/
|
|
int i;
|
|
ARMCPRegInfo v8_idregs[] = {
|
|
/*
|
|
* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
|
|
* emulation because we don't know the right value for the
|
|
* GIC field until after we define these regs.
|
|
*/
|
|
{ .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
|
|
.access = PL1_R,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_CONST,
|
|
.resetvalue = cpu->isar.id_aa64pfr0
|
|
#else
|
|
.type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa64_tid3,
|
|
.readfn = id_aa64pfr0_read,
|
|
.writefn = arm_cp_write_ignore
|
|
#endif
|
|
},
|
|
{ .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64pfr1},
|
|
{ .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64zfr0 },
|
|
{ .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64smfr0 },
|
|
{ .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64dfr0 },
|
|
{ .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64dfr1 },
|
|
{ .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->id_aa64afr0 },
|
|
{ .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->id_aa64afr1 },
|
|
{ .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar0 },
|
|
{ .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar1 },
|
|
{ .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar2 },
|
|
{ .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr0 },
|
|
{ .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr1 },
|
|
{ .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr2 },
|
|
{ .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr0 },
|
|
{ .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr1 },
|
|
{ .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr2 },
|
|
/*
|
|
* "0, c0, c3, {0,1,2}" are the encodings corresponding to
|
|
* AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
|
|
* as RAZ, since it is in the "reserved for future ID
|
|
* registers, RAZ" part of the AArch32 encoding space.
|
|
*/
|
|
{ .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* Other encodings in "0, c0, c3, ..." are STATE_BOTH because
|
|
* they're also RAZ for AArch64, and in v8 are gradually
|
|
* being filled with AArch64-view-of-AArch32-ID-register
|
|
* for new ID registers.
|
|
*/
|
|
{ .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_pfr2 },
|
|
{ .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_dfr1 },
|
|
{ .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr5 },
|
|
{ .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid0, 0, 32) },
|
|
{ .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = cpu->pmceid0 },
|
|
{ .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid1, 0, 32) },
|
|
{ .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = cpu->pmceid1 },
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
|
|
{ .name = "ID_AA64PFR0_EL1",
|
|
.exported_bits = R_ID_AA64PFR0_FP_MASK |
|
|
R_ID_AA64PFR0_ADVSIMD_MASK |
|
|
R_ID_AA64PFR0_SVE_MASK |
|
|
R_ID_AA64PFR0_DIT_MASK,
|
|
.fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
|
|
(0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
|
|
{ .name = "ID_AA64PFR1_EL1",
|
|
.exported_bits = R_ID_AA64PFR1_BT_MASK |
|
|
R_ID_AA64PFR1_SSBS_MASK |
|
|
R_ID_AA64PFR1_MTE_MASK |
|
|
R_ID_AA64PFR1_SME_MASK },
|
|
{ .name = "ID_AA64PFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64ZFR0_EL1",
|
|
.exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
|
|
R_ID_AA64ZFR0_AES_MASK |
|
|
R_ID_AA64ZFR0_BITPERM_MASK |
|
|
R_ID_AA64ZFR0_BFLOAT16_MASK |
|
|
R_ID_AA64ZFR0_B16B16_MASK |
|
|
R_ID_AA64ZFR0_SHA3_MASK |
|
|
R_ID_AA64ZFR0_SM4_MASK |
|
|
R_ID_AA64ZFR0_I8MM_MASK |
|
|
R_ID_AA64ZFR0_F32MM_MASK |
|
|
R_ID_AA64ZFR0_F64MM_MASK },
|
|
{ .name = "ID_AA64SMFR0_EL1",
|
|
.exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
|
|
R_ID_AA64SMFR0_BI32I32_MASK |
|
|
R_ID_AA64SMFR0_B16F32_MASK |
|
|
R_ID_AA64SMFR0_F16F32_MASK |
|
|
R_ID_AA64SMFR0_I8I32_MASK |
|
|
R_ID_AA64SMFR0_F16F16_MASK |
|
|
R_ID_AA64SMFR0_B16B16_MASK |
|
|
R_ID_AA64SMFR0_I16I32_MASK |
|
|
R_ID_AA64SMFR0_F64F64_MASK |
|
|
R_ID_AA64SMFR0_I16I64_MASK |
|
|
R_ID_AA64SMFR0_SMEVER_MASK |
|
|
R_ID_AA64SMFR0_FA64_MASK },
|
|
{ .name = "ID_AA64MMFR0_EL1",
|
|
.exported_bits = R_ID_AA64MMFR0_ECV_MASK,
|
|
.fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
|
|
(0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
|
|
{ .name = "ID_AA64MMFR1_EL1",
|
|
.exported_bits = R_ID_AA64MMFR1_AFP_MASK },
|
|
{ .name = "ID_AA64MMFR2_EL1",
|
|
.exported_bits = R_ID_AA64MMFR2_AT_MASK },
|
|
{ .name = "ID_AA64MMFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64DFR0_EL1",
|
|
.fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
|
|
{ .name = "ID_AA64DFR1_EL1" },
|
|
{ .name = "ID_AA64DFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64AFR*",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64ISAR0_EL1",
|
|
.exported_bits = R_ID_AA64ISAR0_AES_MASK |
|
|
R_ID_AA64ISAR0_SHA1_MASK |
|
|
R_ID_AA64ISAR0_SHA2_MASK |
|
|
R_ID_AA64ISAR0_CRC32_MASK |
|
|
R_ID_AA64ISAR0_ATOMIC_MASK |
|
|
R_ID_AA64ISAR0_RDM_MASK |
|
|
R_ID_AA64ISAR0_SHA3_MASK |
|
|
R_ID_AA64ISAR0_SM3_MASK |
|
|
R_ID_AA64ISAR0_SM4_MASK |
|
|
R_ID_AA64ISAR0_DP_MASK |
|
|
R_ID_AA64ISAR0_FHM_MASK |
|
|
R_ID_AA64ISAR0_TS_MASK |
|
|
R_ID_AA64ISAR0_RNDR_MASK },
|
|
{ .name = "ID_AA64ISAR1_EL1",
|
|
.exported_bits = R_ID_AA64ISAR1_DPB_MASK |
|
|
R_ID_AA64ISAR1_APA_MASK |
|
|
R_ID_AA64ISAR1_API_MASK |
|
|
R_ID_AA64ISAR1_JSCVT_MASK |
|
|
R_ID_AA64ISAR1_FCMA_MASK |
|
|
R_ID_AA64ISAR1_LRCPC_MASK |
|
|
R_ID_AA64ISAR1_GPA_MASK |
|
|
R_ID_AA64ISAR1_GPI_MASK |
|
|
R_ID_AA64ISAR1_FRINTTS_MASK |
|
|
R_ID_AA64ISAR1_SB_MASK |
|
|
R_ID_AA64ISAR1_BF16_MASK |
|
|
R_ID_AA64ISAR1_DGH_MASK |
|
|
R_ID_AA64ISAR1_I8MM_MASK },
|
|
{ .name = "ID_AA64ISAR2_EL1",
|
|
.exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
|
|
R_ID_AA64ISAR2_RPRES_MASK |
|
|
R_ID_AA64ISAR2_GPA3_MASK |
|
|
R_ID_AA64ISAR2_APA3_MASK |
|
|
R_ID_AA64ISAR2_MOPS_MASK |
|
|
R_ID_AA64ISAR2_BC_MASK |
|
|
R_ID_AA64ISAR2_RPRFM_MASK |
|
|
R_ID_AA64ISAR2_CSSC_MASK },
|
|
{ .name = "ID_AA64ISAR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
};
|
|
modify_arm_cp_regs(v8_idregs, v8_user_idregs);
|
|
#endif
|
|
/*
|
|
* RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
|
|
* TODO: For RMR, a write with bit 1 set should do something with
|
|
* cpu_reset(). In the meantime, "the bit is strictly a request",
|
|
* so we are in spec just ignoring writes.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
ARMCPRegInfo el1_reset_regs[] = {
|
|
{ .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL1_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
|
|
};
|
|
define_arm_cp_regs(cpu, el1_reset_regs);
|
|
}
|
|
define_arm_cp_regs(cpu, v8_idregs);
|
|
define_arm_cp_regs(cpu, v8_cp_reginfo);
|
|
if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
|
|
define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
|
|
}
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
/*
|
|
* Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
|
|
* For pre-v8 cores there are RAZ patterns for these in
|
|
* id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
|
|
* v8 extends the "must RAZ" part of the ID register space
|
|
* to also cover c0, 0, c{8-15}, {0-7}.
|
|
* These are STATE_AA32 because in the AArch64 sysreg space
|
|
* c4-c7 is where the AArch64 ID registers live (and we've
|
|
* already defined those in v8_idregs[]), and c8-c15 are not
|
|
* "must RAZ" for AArch64.
|
|
*/
|
|
g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
|
|
ARMCPRegInfo v8_aa32_raz_idregs = {
|
|
.name = name,
|
|
.state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 };
|
|
define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register the base EL2 cpregs.
|
|
* Pre v8, these registers are implemented only as part of the
|
|
* Virtualization Extensions (EL2 present). Beginning with v8,
|
|
* if EL2 is missing but EL3 is enabled, mostly these become
|
|
* RES0 from EL3, with some specific exceptions.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2)
|
|
|| (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& arm_feature(env, ARM_FEATURE_V8))) {
|
|
uint64_t vmpidr_def = mpidr_read_val(env);
|
|
ARMCPRegInfo vpidr_regs[] = {
|
|
{ .name = "VPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = cpu->midr,
|
|
.type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = cpu->midr,
|
|
.type = ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.nv2_redirect_offset = 0x88,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = vmpidr_def,
|
|
.type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
|
|
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .resetvalue = vmpidr_def,
|
|
.type = ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.nv2_redirect_offset = 0x50,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
|
|
};
|
|
/*
|
|
* The only field of MDCR_EL2 that has a defined architectural reset
|
|
* value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
|
|
*/
|
|
ARMCPRegInfo mdcr_el2 = {
|
|
.name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.writefn = mdcr_el2_write,
|
|
.access = PL2_RW, .resetvalue = pmu_num_counters(env),
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
|
|
};
|
|
define_one_arm_cp_reg(cpu, &mdcr_el2);
|
|
define_arm_cp_regs(cpu, vpidr_regs);
|
|
define_arm_cp_regs(cpu, el2_cp_reginfo);
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_sel2, cpu)) {
|
|
define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
|
|
}
|
|
/*
|
|
* RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
|
|
* See commentary near RMR_EL1.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
static const ARMCPRegInfo el2_reset_regs[] = {
|
|
{ .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL2_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RVBAR", .type = ARM_CP_ALIAS,
|
|
.cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL2_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
|
|
};
|
|
define_arm_cp_regs(cpu, el2_reset_regs);
|
|
}
|
|
}
|
|
|
|
/* Register the base EL3 cpregs. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
define_arm_cp_regs(cpu, el3_cp_reginfo);
|
|
ARMCPRegInfo el3_regs[] = {
|
|
{ .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL3_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
|
|
{ .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
|
|
{ .name = "RMR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
|
|
{ .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
|
|
.resetvalue = cpu->reset_sctlr },
|
|
};
|
|
|
|
define_arm_cp_regs(cpu, el3_regs);
|
|
}
|
|
/*
|
|
* The behaviour of NSACR is sufficiently various that we don't
|
|
* try to describe it in a single reginfo:
|
|
* if EL3 is 64 bit, then trap to EL3 from S EL1,
|
|
* reads as constant 0xc00 from NS EL1 and NS EL2
|
|
* if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
|
|
* if v7 without EL3, register doesn't exist
|
|
* if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR", .type = ARM_CP_CONST,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = nsacr_access,
|
|
.resetvalue = 0xc00
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
} else {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR",
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_RW | PL1_R,
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.nsacr)
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
}
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR", .type = ARM_CP_CONST,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.resetvalue = 0xc00
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* PMSAv6 not implemented */
|
|
assert(arm_feature(env, ARM_FEATURE_V7));
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
|
|
}
|
|
} else {
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
|
|
/* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
|
|
if (cpu_isar_feature(aa32_hpd, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
|
|
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
|
|
define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
|
|
}
|
|
#endif
|
|
if (arm_feature(env, ARM_FEATURE_VAPA)) {
|
|
ARMCPRegInfo vapa_cp_reginfo[] = {
|
|
{ .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
|
|
offsetoflow32(CPUARMState, cp15.par_ns) },
|
|
.writefn = par_write},
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* This underdecoding is safe because the reginfo is NO_RAW. */
|
|
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_W, .accessfn = ats_access,
|
|
.writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* When LPAE exists this 32-bit PAR register is an alias of the
|
|
* 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
|
|
}
|
|
define_arm_cp_regs(cpu, vapa_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
|
|
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
|
|
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
|
|
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
define_arm_cp_regs(cpu, omap_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
define_arm_cp_regs(cpu, xscale_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
|
|
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
define_arm_cp_regs(cpu, lpae_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa32_jazelle, cpu)) {
|
|
define_arm_cp_regs(cpu, jazelle_regs);
|
|
}
|
|
/*
|
|
* Slightly awkwardly, the OMAP and StrongARM cores need all of
|
|
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
|
|
* be read-only (ie write causes UNDEF exception).
|
|
*/
|
|
{
|
|
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
|
|
/*
|
|
* Pre-v8 MIDR space.
|
|
* Note that the MIDR isn't a simple constant register because
|
|
* of the TI925 behaviour where writes to another register can
|
|
* cause the MIDR value to change.
|
|
*
|
|
* Unimplemented registers in the c15 0 0 0 space default to
|
|
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
|
|
* and friends override accordingly.
|
|
*/
|
|
{ .name = "MIDR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .resetvalue = cpu->midr,
|
|
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
|
|
.readfn = midr_read,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.type = ARM_CP_OVERRIDE },
|
|
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
|
|
{ .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
|
|
.fgt = FGT_MIDR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.readfn = midr_read },
|
|
/* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
|
|
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
|
|
.access = PL1_R, .resetvalue = cpu->midr },
|
|
{ .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa64_tid1,
|
|
.fgt = FGT_REVIDR_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->revidr },
|
|
};
|
|
ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
|
|
.name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .resetvalue = cpu->midr
|
|
};
|
|
ARMCPRegInfo id_cp_reginfo[] = {
|
|
/* These are common to v8 and pre-v8 */
|
|
{ .name = "CTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_R, .accessfn = ctr_el0_access,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
{ .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .accessfn = ctr_el0_access,
|
|
.fgt = FGT_CTR_EL0,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
/* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
|
|
{ .name = "TCMTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa32_tid1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
/* TLBTR is specific to VMSA */
|
|
ARMCPRegInfo id_tlbtr_reginfo = {
|
|
.name = "TLBTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa32_tid1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0,
|
|
};
|
|
/* MPUIR is specific to PMSA V6+ */
|
|
ARMCPRegInfo id_mpuir_reginfo = {
|
|
.name = "MPUIR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->pmsav7_dregion << 8
|
|
};
|
|
/* HMPUIR is specific to PMSA V8 */
|
|
ARMCPRegInfo id_hmpuir_reginfo = {
|
|
.name = "HMPUIR",
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
|
|
.access = PL2_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->pmsav8r_hdregion
|
|
};
|
|
static const ARMCPRegInfo crn0_wi_reginfo = {
|
|
.name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
|
|
{ .name = "MIDR_EL1",
|
|
.exported_bits = R_MIDR_EL1_REVISION_MASK |
|
|
R_MIDR_EL1_PARTNUM_MASK |
|
|
R_MIDR_EL1_ARCHITECTURE_MASK |
|
|
R_MIDR_EL1_VARIANT_MASK |
|
|
R_MIDR_EL1_IMPLEMENTER_MASK },
|
|
{ .name = "REVIDR_EL1" },
|
|
};
|
|
modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
|
|
#endif
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
|
|
arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
size_t i;
|
|
/*
|
|
* Register the blanket "writes ignored" value first to cover the
|
|
* whole space. Then update the specific ID registers to allow write
|
|
* access, so that they ignore writes rather than causing them to
|
|
* UNDEF.
|
|
*/
|
|
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
|
|
for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
|
|
id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
|
|
id_cp_reginfo[i].access = PL1_RW;
|
|
}
|
|
id_mpuir_reginfo.access = PL1_RW;
|
|
id_tlbtr_reginfo.access = PL1_RW;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
|
|
}
|
|
} else {
|
|
define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
|
|
}
|
|
define_arm_cp_regs(cpu, id_cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
|
|
} else if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
uint32_t i = 0;
|
|
char *tmp_string;
|
|
|
|
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
|
|
define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
|
|
define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
|
|
uint8_t crm = 0b1000 | extract32(i, 1, 3);
|
|
uint8_t opc1 = extract32(i, 4, 1);
|
|
uint8_t opc2 = extract32(i, 0, 1) << 2;
|
|
|
|
tmp_string = g_strdup_printf("PRBAR%u", i);
|
|
ARMCPRegInfo tmp_prbarn_reginfo = {
|
|
.name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.accessfn = access_tvm_trvm,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
|
|
g_free(tmp_string);
|
|
|
|
opc2 = extract32(i, 0, 1) << 2 | 0x1;
|
|
tmp_string = g_strdup_printf("PRLAR%u", i);
|
|
ARMCPRegInfo tmp_prlarn_reginfo = {
|
|
.name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.accessfn = access_tvm_trvm,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
|
|
g_free(tmp_string);
|
|
}
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
|
|
uint8_t crm = 0b1000 | extract32(i, 1, 3);
|
|
uint8_t opc1 = 0b100 | extract32(i, 4, 1);
|
|
uint8_t opc2 = extract32(i, 0, 1) << 2;
|
|
|
|
tmp_string = g_strdup_printf("HPRBAR%u", i);
|
|
ARMCPRegInfo tmp_hprbarn_reginfo = {
|
|
.name = tmp_string,
|
|
.type = ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
|
|
g_free(tmp_string);
|
|
|
|
opc2 = extract32(i, 0, 1) << 2 | 0x1;
|
|
tmp_string = g_strdup_printf("HPRLAR%u", i);
|
|
ARMCPRegInfo tmp_hprlarn_reginfo = {
|
|
.name = tmp_string,
|
|
.type = ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
|
|
g_free(tmp_string);
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
|
|
ARMCPRegInfo mpidr_cp_reginfo[] = {
|
|
{ .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
|
|
.fgt = FGT_MPIDR_EL1,
|
|
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
|
|
{ .name = "MPIDR_EL1",
|
|
.fixed_bits = 0x0000000080000000 },
|
|
};
|
|
modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
|
|
#endif
|
|
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
|
|
ARMCPRegInfo auxcr_reginfo[] = {
|
|
{ .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tacr,
|
|
.nv2_redirect_offset = 0x118,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
|
|
{ .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
};
|
|
define_arm_cp_regs(cpu, auxcr_reginfo);
|
|
if (cpu_isar_feature(aa32_ac2, cpu)) {
|
|
define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_CBAR)) {
|
|
/*
|
|
* CBAR is IMPDEF, but common on Arm Cortex-A implementations.
|
|
* There are two flavours:
|
|
* (1) older 32-bit only cores have a simple 32-bit CBAR
|
|
* (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
|
|
* 32-bit register visible to AArch32 at a different encoding
|
|
* to the "flavour 1" register and with the bits rearranged to
|
|
* be able to squash a 64-bit address into the 32-bit view.
|
|
* We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
|
|
* in future if we support AArch32-only configs of some of the
|
|
* AArch64 cores we might need to add a specific feature flag
|
|
* to indicate cores with "flavour 2" CBAR.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* 32 bit view is [31:18] 0...0 [43:32]. */
|
|
uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
|
|
| extract64(cpu->reset_cbar, 32, 12);
|
|
ARMCPRegInfo cbar_reginfo[] = {
|
|
{ .name = "CBAR",
|
|
.type = ARM_CP_CONST,
|
|
.cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cbar32 },
|
|
{ .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_CONST,
|
|
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cpu->reset_cbar },
|
|
};
|
|
/* We don't implement a r/w 64 bit CBAR currently */
|
|
assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
|
|
define_arm_cp_regs(cpu, cbar_reginfo);
|
|
} else {
|
|
ARMCPRegInfo cbar = {
|
|
.name = "CBAR",
|
|
.cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
|
|
.access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
|
|
.fieldoffset = offsetof(CPUARMState,
|
|
cp15.c15_config_base_address)
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
|
|
cbar.access = PL1_R;
|
|
cbar.fieldoffset = 0;
|
|
cbar.type = ARM_CP_CONST;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &cbar);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_VBAR)) {
|
|
static const ARMCPRegInfo vbar_cp_reginfo[] = {
|
|
{ .name = "VBAR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .writefn = vbar_write,
|
|
.accessfn = access_nv1,
|
|
.fgt = FGT_VBAR_EL1,
|
|
.nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
|
|
offsetof(CPUARMState, cp15.vbar_ns) },
|
|
.resetvalue = 0 },
|
|
};
|
|
define_arm_cp_regs(cpu, vbar_cp_reginfo);
|
|
}
|
|
|
|
/* Generic registers whose values depend on the implementation */
|
|
{
|
|
ARMCPRegInfo sctlr = {
|
|
.name = "SCTLR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_SCTLR_EL1,
|
|
.nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
|
|
offsetof(CPUARMState, cp15.sctlr_ns) },
|
|
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
|
|
.raw_writefn = raw_write,
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
/*
|
|
* Normally we would always end the TB on an SCTLR write, but Linux
|
|
* arch/arm/mach-pxa/sleep.S expects two instructions following
|
|
* an MMU enable to execute from cache. Imitate this behaviour.
|
|
*/
|
|
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &sctlr);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
ARMCPRegInfo vsctlr = {
|
|
.name = "VSCTLR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0x0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
|
|
};
|
|
define_one_arm_cp_reg(cpu, &vsctlr);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
define_arm_cp_regs(cpu, lor_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_pan, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &pan_reginfo);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu_isar_feature(aa64_ats1e1, cpu)) {
|
|
define_arm_cp_regs(cpu, ats1e1_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa32_ats1e1, cpu)) {
|
|
define_arm_cp_regs(cpu, ats1cp_reginfo);
|
|
}
|
|
#endif
|
|
if (cpu_isar_feature(aa64_uao, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &uao_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_dit, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &dit_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_ssbs, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &ssbs_reginfo);
|
|
}
|
|
if (cpu_isar_feature(any_ras, cpu)) {
|
|
define_arm_cp_regs(cpu, minimal_ras_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_vh, cpu) ||
|
|
cpu_isar_feature(aa64_debugv8p2, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &contextidr_el2);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
|
|
define_arm_cp_regs(cpu, vhe_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
define_arm_cp_regs(cpu, zcr_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
define_arm_cp_regs(cpu, sme_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
define_arm_cp_regs(cpu, pauth_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_rndr, cpu)) {
|
|
define_arm_cp_regs(cpu, rndr_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_tlbirange, cpu)) {
|
|
define_arm_cp_regs(cpu, tlbirange_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_tlbios, cpu)) {
|
|
define_arm_cp_regs(cpu, tlbios_reginfo);
|
|
}
|
|
/* Data Cache clean instructions up to PoP */
|
|
if (cpu_isar_feature(aa64_dcpop, cpu)) {
|
|
define_one_arm_cp_reg(cpu, dcpop_reg);
|
|
|
|
if (cpu_isar_feature(aa64_dcpodp, cpu)) {
|
|
define_one_arm_cp_reg(cpu, dcpodp_reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If full MTE is enabled, add all of the system registers.
|
|
* If only "instructions available at EL0" are enabled,
|
|
* then define only a RAZ/WI version of PSTATE.TCO.
|
|
*/
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
ARMCPRegInfo gmid_reginfo = {
|
|
.name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
|
|
.access = PL1_R, .accessfn = access_aa64_tid5,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
|
|
};
|
|
define_one_arm_cp_reg(cpu, &gmid_reginfo);
|
|
define_arm_cp_regs(cpu, mte_reginfo);
|
|
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
|
|
} else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
|
|
define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
|
|
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
define_arm_cp_regs(cpu, scxtnum_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
define_arm_cp_regs(cpu, fgt_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
define_arm_cp_regs(cpu, rme_reginfo);
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
define_arm_cp_regs(cpu, rme_mte_reginfo);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_nv2, cpu)) {
|
|
define_arm_cp_regs(cpu, nv2_reginfo);
|
|
}
|
|
#endif
|
|
|
|
if (cpu_isar_feature(any_predinv, cpu)) {
|
|
define_arm_cp_regs(cpu, predinv_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(any_ccidx, cpu)) {
|
|
define_arm_cp_regs(cpu, ccsidr2_reginfo);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* Register redirections and aliases must be done last,
|
|
* after the registers from the other extensions have been defined.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
|
|
define_arm_vh_e2h_redirects_aliases(cpu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Private utility function for define_one_arm_cp_reg_with_opaque():
|
|
* add a single reginfo struct to the hash table.
|
|
*/
|
|
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
|
|
void *opaque, CPState state,
|
|
CPSecureState secstate,
|
|
int crm, int opc1, int opc2,
|
|
const char *name)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t key;
|
|
ARMCPRegInfo *r2;
|
|
bool is64 = r->type & ARM_CP_64BIT;
|
|
bool ns = secstate & ARM_CP_SECSTATE_NS;
|
|
int cp = r->cp;
|
|
size_t name_len;
|
|
bool make_const;
|
|
|
|
switch (state) {
|
|
case ARM_CP_STATE_AA32:
|
|
/* We assume it is a cp15 register if the .cp field is left unset. */
|
|
if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
|
|
cp = 15;
|
|
}
|
|
key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
|
|
break;
|
|
case ARM_CP_STATE_AA64:
|
|
/*
|
|
* To allow abbreviation of ARMCPRegInfo definitions, we treat
|
|
* cp == 0 as equivalent to the value for "standard guest-visible
|
|
* sysreg". STATE_BOTH definitions are also always "standard sysreg"
|
|
* in their AArch64 view (the .cp value may be non-zero for the
|
|
* benefit of the AArch32 view).
|
|
*/
|
|
if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
|
|
cp = CP_REG_ARM64_SYSREG_CP;
|
|
}
|
|
key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Overriding of an existing definition must be explicitly requested. */
|
|
if (!(r->type & ARM_CP_OVERRIDE)) {
|
|
const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
|
|
if (oldreg) {
|
|
assert(oldreg->type & ARM_CP_OVERRIDE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Eliminate registers that are not present because the EL is missing.
|
|
* Doing this here makes it easier to put all registers for a given
|
|
* feature into the same ARMCPRegInfo array and define them all at once.
|
|
*/
|
|
make_const = false;
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/*
|
|
* An EL2 register without EL2 but with EL3 is (usually) RES0.
|
|
* See rule RJFFP in section D1.1.3 of DDI0487H.a.
|
|
*/
|
|
int min_el = ctz32(r->access) / 2;
|
|
if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
|
|
if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
|
|
return;
|
|
}
|
|
make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
|
|
}
|
|
} else {
|
|
CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
|
|
? PL2_RW : PL1_RW);
|
|
if ((r->access & max_el) == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Combine cpreg and name into one allocation. */
|
|
name_len = strlen(name) + 1;
|
|
r2 = g_malloc(sizeof(*r2) + name_len);
|
|
*r2 = *r;
|
|
r2->name = memcpy(r2 + 1, name, name_len);
|
|
|
|
/*
|
|
* Update fields to match the instantiation, overwiting wildcards
|
|
* such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
|
|
*/
|
|
r2->cp = cp;
|
|
r2->crm = crm;
|
|
r2->opc1 = opc1;
|
|
r2->opc2 = opc2;
|
|
r2->state = state;
|
|
r2->secure = secstate;
|
|
if (opaque) {
|
|
r2->opaque = opaque;
|
|
}
|
|
|
|
if (make_const) {
|
|
/* This should not have been a very special register to begin. */
|
|
int old_special = r2->type & ARM_CP_SPECIAL_MASK;
|
|
assert(old_special == 0 || old_special == ARM_CP_NOP);
|
|
/*
|
|
* Set the special function to CONST, retaining the other flags.
|
|
* This is important for e.g. ARM_CP_SVE so that we still
|
|
* take the SVE trap if CPTR_EL3.EZ == 0.
|
|
*/
|
|
r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
|
|
/*
|
|
* Usually, these registers become RES0, but there are a few
|
|
* special cases like VPIDR_EL2 which have a constant non-zero
|
|
* value with writes ignored.
|
|
*/
|
|
if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
|
|
r2->resetvalue = 0;
|
|
}
|
|
/*
|
|
* ARM_CP_CONST has precedence, so removing the callbacks and
|
|
* offsets are not strictly necessary, but it is potentially
|
|
* less confusing to debug later.
|
|
*/
|
|
r2->readfn = NULL;
|
|
r2->writefn = NULL;
|
|
r2->raw_readfn = NULL;
|
|
r2->raw_writefn = NULL;
|
|
r2->resetfn = NULL;
|
|
r2->fieldoffset = 0;
|
|
r2->bank_fieldoffsets[0] = 0;
|
|
r2->bank_fieldoffsets[1] = 0;
|
|
} else {
|
|
bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
|
|
|
|
if (isbanked) {
|
|
/*
|
|
* Register is banked (using both entries in array).
|
|
* Overwriting fieldoffset as the array is only used to define
|
|
* banked registers but later only fieldoffset is used.
|
|
*/
|
|
r2->fieldoffset = r->bank_fieldoffsets[ns];
|
|
}
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
if (isbanked) {
|
|
/*
|
|
* If the register is banked then we don't need to migrate or
|
|
* reset the 32-bit instance in certain cases:
|
|
*
|
|
* 1) If the register has both 32-bit and 64-bit instances
|
|
* then we can count on the 64-bit instance taking care
|
|
* of the non-secure bank.
|
|
* 2) If ARMv8 is enabled then we can count on a 64-bit
|
|
* version taking care of the secure bank. This requires
|
|
* that separate 32 and 64-bit definitions are provided.
|
|
*/
|
|
if ((r->state == ARM_CP_STATE_BOTH && ns) ||
|
|
(arm_feature(env, ARM_FEATURE_V8) && !ns)) {
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
} else if ((secstate != r->secure) && !ns) {
|
|
/*
|
|
* The register is not banked so we only want to allow
|
|
* migration of the non-secure instance.
|
|
*/
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
|
|
if (HOST_BIG_ENDIAN &&
|
|
r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
|
|
r2->fieldoffset += sizeof(uint32_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By convention, for wildcarded registers only the first
|
|
* entry is used for migration; the others are marked as
|
|
* ALIAS so we don't try to transfer the register
|
|
* multiple times. Special registers (ie NOP/WFI) are
|
|
* never migratable and not even raw-accessible.
|
|
*/
|
|
if (r2->type & ARM_CP_SPECIAL_MASK) {
|
|
r2->type |= ARM_CP_NO_RAW;
|
|
}
|
|
if (((r->crm == CP_ANY) && crm != 0) ||
|
|
((r->opc1 == CP_ANY) && opc1 != 0) ||
|
|
((r->opc2 == CP_ANY) && opc2 != 0)) {
|
|
r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
|
|
}
|
|
|
|
/*
|
|
* Check that raw accesses are either forbidden or handled. Note that
|
|
* we can't assert this earlier because the setup of fieldoffset for
|
|
* banked registers has to be done first.
|
|
*/
|
|
if (!(r2->type & ARM_CP_NO_RAW)) {
|
|
assert(!raw_accessors_invalid(r2));
|
|
}
|
|
|
|
g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
|
|
}
|
|
|
|
|
|
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *r, void *opaque)
|
|
{
|
|
/*
|
|
* Define implementations of coprocessor registers.
|
|
* We store these in a hashtable because typically
|
|
* there are less than 150 registers in a space which
|
|
* is 16*16*16*8*8 = 262144 in size.
|
|
* Wildcarding is supported for the crm, opc1 and opc2 fields.
|
|
* If a register is defined twice then the second definition is
|
|
* used, so this can be used to define some generic registers and
|
|
* then override them with implementation specific variations.
|
|
* At least one of the original and the second definition should
|
|
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
|
|
* against accidental use.
|
|
*
|
|
* The state field defines whether the register is to be
|
|
* visible in the AArch32 or AArch64 execution state. If the
|
|
* state is set to ARM_CP_STATE_BOTH then we synthesise a
|
|
* reginfo structure for the AArch32 view, which sees the lower
|
|
* 32 bits of the 64 bit register.
|
|
*
|
|
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
|
|
* be wildcarded. AArch64 registers are always considered to be 64
|
|
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
|
|
* the register, if any.
|
|
*/
|
|
int crm, opc1, opc2;
|
|
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
|
|
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
|
|
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
|
|
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
|
|
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
|
|
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
|
|
CPState state;
|
|
|
|
/* 64 bit registers have only CRm and Opc1 fields */
|
|
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
|
|
/* op0 only exists in the AArch64 encodings */
|
|
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
|
|
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
|
|
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
|
|
/*
|
|
* This API is only for Arm's system coprocessors (14 and 15) or
|
|
* (M-profile or v7A-and-earlier only) for implementation defined
|
|
* coprocessors in the range 0..7. Our decode assumes this, since
|
|
* 8..13 can be used for other insns including VFP and Neon. See
|
|
* valid_cp() in translate.c. Assert here that we haven't tried
|
|
* to use an invalid coprocessor number.
|
|
*/
|
|
switch (r->state) {
|
|
case ARM_CP_STATE_BOTH:
|
|
/* 0 has a special meaning, but otherwise the same rules as AA32. */
|
|
if (r->cp == 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case ARM_CP_STATE_AA32:
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
|
|
!arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
assert(r->cp >= 14 && r->cp <= 15);
|
|
} else {
|
|
assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
|
|
}
|
|
break;
|
|
case ARM_CP_STATE_AA64:
|
|
assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
/*
|
|
* The AArch64 pseudocode CheckSystemAccess() specifies that op1
|
|
* encodes a minimum access level for the register. We roll this
|
|
* runtime check into our general permission check code, so check
|
|
* here that the reginfo's specified permissions are strict enough
|
|
* to encompass the generic architectural permission check.
|
|
*/
|
|
if (r->state != ARM_CP_STATE_AA32) {
|
|
CPAccessRights mask;
|
|
switch (r->opc1) {
|
|
case 0:
|
|
/* min_EL EL1, but some accessible to EL0 via kernel ABI */
|
|
mask = PL0U_R | PL1_RW;
|
|
break;
|
|
case 1: case 2:
|
|
/* min_EL EL1 */
|
|
mask = PL1_RW;
|
|
break;
|
|
case 3:
|
|
/* min_EL EL0 */
|
|
mask = PL0_RW;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
/* min_EL EL2 */
|
|
mask = PL2_RW;
|
|
break;
|
|
case 6:
|
|
/* min_EL EL3 */
|
|
mask = PL3_RW;
|
|
break;
|
|
case 7:
|
|
/* min_EL EL1, secure mode only (we don't check the latter) */
|
|
mask = PL1_RW;
|
|
break;
|
|
default:
|
|
/* broken reginfo with out-of-range opc1 */
|
|
g_assert_not_reached();
|
|
}
|
|
/* assert our permissions are not too lax (stricter is fine) */
|
|
assert((r->access & ~mask) == 0);
|
|
}
|
|
|
|
/*
|
|
* Check that the register definition has enough info to handle
|
|
* reads and writes if they are permitted.
|
|
*/
|
|
if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
|
|
if (r->access & PL3_R) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->readfn);
|
|
}
|
|
if (r->access & PL3_W) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->writefn);
|
|
}
|
|
}
|
|
|
|
for (crm = crmmin; crm <= crmmax; crm++) {
|
|
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
|
|
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
|
|
for (state = ARM_CP_STATE_AA32;
|
|
state <= ARM_CP_STATE_AA64; state++) {
|
|
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
|
|
continue;
|
|
}
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
/*
|
|
* Under AArch32 CP registers can be common
|
|
* (same for secure and non-secure world) or banked.
|
|
*/
|
|
char *name;
|
|
|
|
switch (r->secure) {
|
|
case ARM_CP_SECSTATE_S:
|
|
case ARM_CP_SECSTATE_NS:
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
r->secure, crm, opc1, opc2,
|
|
r->name);
|
|
break;
|
|
case ARM_CP_SECSTATE_BOTH:
|
|
name = g_strdup_printf("%s_S", r->name);
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_S,
|
|
crm, opc1, opc2, name);
|
|
g_free(name);
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2, r->name);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
/*
|
|
* AArch64 registers get mapped to non-secure instance
|
|
* of AArch32
|
|
*/
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2, r->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Define a whole list of registers */
|
|
void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
|
|
void *opaque, size_t len)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < len; ++i) {
|
|
define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Modify ARMCPRegInfo for access from userspace.
|
|
*
|
|
* This is a data driven modification directed by
|
|
* ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
|
|
* user-space cannot alter any values and dynamic values pertaining to
|
|
* execution state are hidden from user space view anyway.
|
|
*/
|
|
void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
|
|
const ARMCPRegUserSpaceInfo *mods,
|
|
size_t mods_len)
|
|
{
|
|
for (size_t mi = 0; mi < mods_len; ++mi) {
|
|
const ARMCPRegUserSpaceInfo *m = mods + mi;
|
|
GPatternSpec *pat = NULL;
|
|
|
|
if (m->is_glob) {
|
|
pat = g_pattern_spec_new(m->name);
|
|
}
|
|
for (size_t ri = 0; ri < regs_len; ++ri) {
|
|
ARMCPRegInfo *r = regs + ri;
|
|
|
|
if (pat && g_pattern_match_string(pat, r->name)) {
|
|
r->type = ARM_CP_CONST;
|
|
r->access = PL0U_R;
|
|
r->resetvalue = 0;
|
|
/* continue */
|
|
} else if (strcmp(r->name, m->name) == 0) {
|
|
r->type = ARM_CP_CONST;
|
|
r->access = PL0U_R;
|
|
r->resetvalue &= m->exported_bits;
|
|
r->resetvalue |= m->fixed_bits;
|
|
break;
|
|
}
|
|
}
|
|
if (pat) {
|
|
g_pattern_spec_free(pat);
|
|
}
|
|
}
|
|
}
|
|
|
|
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
|
|
{
|
|
return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
|
|
}
|
|
|
|
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Helper coprocessor write function for write-ignore registers */
|
|
}
|
|
|
|
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Helper coprocessor write function for read-as-zero registers */
|
|
return 0;
|
|
}
|
|
|
|
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
|
|
{
|
|
/* Helper coprocessor reset function for do-nothing-on-reset registers */
|
|
}
|
|
|
|
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
|
|
{
|
|
/*
|
|
* Return true if it is not valid for us to switch to
|
|
* this CPU mode (ie all the UNPREDICTABLE cases in
|
|
* the ARM ARM CPSRWriteByInstr pseudocode).
|
|
*/
|
|
|
|
/* Changes to or from Hyp via MSR and CPS are illegal. */
|
|
if (write_type == CPSRWriteByInstr &&
|
|
((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
|
|
mode == ARM_CPU_MODE_HYP)) {
|
|
return 1;
|
|
}
|
|
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
return 0;
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_FIQ:
|
|
/*
|
|
* Note that we don't implement the IMPDEF NSACR.RFR which in v7
|
|
* allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
|
|
*/
|
|
/*
|
|
* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
|
|
* and CPS are treated as illegal mode changes.
|
|
*/
|
|
if (write_type == CPSRWriteByInstr &&
|
|
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
|
|
(arm_hcr_el2_eff(env) & HCR_TGE)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
case ARM_CPU_MODE_HYP:
|
|
return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
|
|
case ARM_CPU_MODE_MON:
|
|
return arm_current_el(env) < 3;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
uint32_t cpsr_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
ZF = (env->ZF == 0);
|
|
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
|
|
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
|
|
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
|
|
| ((env->condexec_bits & 0xfc) << 8)
|
|
| (env->GE << 16) | (env->daif & CPSR_AIF);
|
|
}
|
|
|
|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
|
|
CPSRWriteType write_type)
|
|
{
|
|
uint32_t changed_daif;
|
|
bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
|
|
(mask & (CPSR_M | CPSR_E | CPSR_IL));
|
|
|
|
if (mask & CPSR_NZCV) {
|
|
env->ZF = (~val) & CPSR_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
}
|
|
if (mask & CPSR_Q) {
|
|
env->QF = ((val & CPSR_Q) != 0);
|
|
}
|
|
if (mask & CPSR_T) {
|
|
env->thumb = ((val & CPSR_T) != 0);
|
|
}
|
|
if (mask & CPSR_IT_0_1) {
|
|
env->condexec_bits &= ~3;
|
|
env->condexec_bits |= (val >> 25) & 3;
|
|
}
|
|
if (mask & CPSR_IT_2_7) {
|
|
env->condexec_bits &= 3;
|
|
env->condexec_bits |= (val >> 8) & 0xfc;
|
|
}
|
|
if (mask & CPSR_GE) {
|
|
env->GE = (val >> 16) & 0xf;
|
|
}
|
|
|
|
/*
|
|
* In a V7 implementation that includes the security extensions but does
|
|
* not include Virtualization Extensions the SCR.FW and SCR.AW bits control
|
|
* whether non-secure software is allowed to change the CPSR_F and CPSR_A
|
|
* bits respectively.
|
|
*
|
|
* In a V8 implementation, it is permitted for privileged software to
|
|
* change the CPSR A/F bits regardless of the SCR.AW/FW bits.
|
|
*/
|
|
if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2) &&
|
|
!arm_is_secure(env)) {
|
|
|
|
changed_daif = (env->daif ^ val) & mask;
|
|
|
|
if (changed_daif & CPSR_A) {
|
|
/*
|
|
* Check to see if we are allowed to change the masking of async
|
|
* abort exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_AW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_A flag from "
|
|
"non-secure world with SCR.AW bit clear\n");
|
|
mask &= ~CPSR_A;
|
|
}
|
|
}
|
|
|
|
if (changed_daif & CPSR_F) {
|
|
/*
|
|
* Check to see if we are allowed to change the masking of FIQ
|
|
* exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_FW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_F flag from "
|
|
"non-secure world with SCR.FW bit clear\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
|
|
/*
|
|
* Check whether non-maskable FIQ (NMFI) support is enabled.
|
|
* If this bit is set software is not allowed to mask
|
|
* FIQs, but is allowed to set CPSR_F to 0.
|
|
*/
|
|
if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
|
|
(val & CPSR_F)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to enable CPSR_F flag "
|
|
"(non-maskable FIQ [NMFI] support enabled)\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
}
|
|
}
|
|
|
|
env->daif &= ~(CPSR_AIF & mask);
|
|
env->daif |= val & CPSR_AIF & mask;
|
|
|
|
if (write_type != CPSRWriteRaw &&
|
|
((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
|
|
/*
|
|
* Note that we can only get here in USR mode if this is a
|
|
* gdb stub write; for this case we follow the architectural
|
|
* behaviour for guest writes in USR mode of ignoring an attempt
|
|
* to switch mode. (Those are caught by translate.c for writes
|
|
* triggered by guest instructions.)
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
} else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
|
|
/*
|
|
* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
|
|
* v7, and has defined behaviour in v8:
|
|
* + leave CPSR.M untouched
|
|
* + allow changes to the other CPSR fields
|
|
* + set PSTATE.IL
|
|
* For user changes via the GDB stub, we don't set PSTATE.IL,
|
|
* as this would be unnecessarily harsh for a user error.
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
if (write_type != CPSRWriteByGDBStub &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
mask |= CPSR_IL;
|
|
val |= CPSR_IL;
|
|
}
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Illegal AArch32 mode switch attempt from %s to %s\n",
|
|
aarch32_mode_name(env->uncached_cpsr),
|
|
aarch32_mode_name(val));
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
|
|
write_type == CPSRWriteExceptionReturn ?
|
|
"Exception return from AArch32" :
|
|
"AArch32 mode switch from",
|
|
aarch32_mode_name(env->uncached_cpsr),
|
|
aarch32_mode_name(val), env->regs[15]);
|
|
switch_mode(env, val & CPSR_M);
|
|
}
|
|
}
|
|
mask &= ~CACHED_CPSR_BITS;
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
|
|
if (tcg_enabled() && rebuild_hflags) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
static void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (mode != ARM_CPU_MODE_USR) {
|
|
cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
|
|
}
|
|
}
|
|
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#else
|
|
|
|
static void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
int old_mode;
|
|
int i;
|
|
|
|
old_mode = env->uncached_cpsr & CPSR_M;
|
|
if (mode == old_mode) {
|
|
return;
|
|
}
|
|
|
|
if (old_mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
} else if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
|
|
i = bank_number(old_mode);
|
|
env->banked_r13[i] = env->regs[13];
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
i = bank_number(mode);
|
|
env->regs[13] = env->banked_r13[i];
|
|
env->spsr = env->banked_spsr[i];
|
|
|
|
env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
|
|
env->regs[14] = env->banked_r14[r14_bank_number(mode)];
|
|
}
|
|
|
|
/*
|
|
* Physical Interrupt Target EL Lookup Table
|
|
*
|
|
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
|
|
*
|
|
* The below multi-dimensional table is used for looking up the target
|
|
* exception level given numerous condition criteria. Specifically, the
|
|
* target EL is based on SCR and HCR routing controls as well as the
|
|
* currently executing EL and secure state.
|
|
*
|
|
* Dimensions:
|
|
* target_el_table[2][2][2][2][2][4]
|
|
* | | | | | +--- Current EL
|
|
* | | | | +------ Non-secure(0)/Secure(1)
|
|
* | | | +--------- HCR mask override
|
|
* | | +------------ SCR exec state control
|
|
* | +--------------- SCR mask override
|
|
* +------------------ 32-bit(0)/64-bit(1) EL3
|
|
*
|
|
* The table values are as such:
|
|
* 0-3 = EL0-EL3
|
|
* -1 = Cannot occur
|
|
*
|
|
* The ARM ARM target EL table includes entries indicating that an "exception
|
|
* is not taken". The two cases where this is applicable are:
|
|
* 1) An exception is taken from EL3 but the SCR does not have the exception
|
|
* routed to EL3.
|
|
* 2) An exception is taken from EL2 but the HCR does not have the exception
|
|
* routed to EL2.
|
|
* In these two cases, the below table contain a target of EL1. This value is
|
|
* returned as it is expected that the consumer of the table data will check
|
|
* for "target EL >= current EL" to ensure the exception is not taken.
|
|
*
|
|
* SCR HCR
|
|
* 64 EA AMO From
|
|
* BIT IRQ IMO Non-secure Secure
|
|
* EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
|
|
*/
|
|
static const int8_t target_el_table[2][2][2][2][2][4] = {
|
|
{{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
|
|
{{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
|
|
{{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
|
|
{/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
|
|
{{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
|
|
{/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
|
|
{{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
|
|
{/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
|
|
{{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
|
|
{/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
|
|
};
|
|
|
|
/*
|
|
* Determine the target EL for physical exceptions
|
|
*/
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
CPUARMState *env = cpu_env(cs);
|
|
bool rw;
|
|
bool scr;
|
|
bool hcr;
|
|
int target_el;
|
|
/* Is the highest EL AArch64? */
|
|
bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
|
|
uint64_t hcr_el2;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
|
|
} else {
|
|
/*
|
|
* Either EL2 is the highest EL (and so the EL2 register width
|
|
* is given by is64); or there is no EL2 or EL3, in which case
|
|
* the value of 'rw' does not affect the table lookup anyway.
|
|
*/
|
|
rw = is64;
|
|
}
|
|
|
|
hcr_el2 = arm_hcr_el2_eff(env);
|
|
switch (excp_idx) {
|
|
case EXCP_IRQ:
|
|
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
|
|
hcr = hcr_el2 & HCR_IMO;
|
|
break;
|
|
case EXCP_FIQ:
|
|
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
|
|
hcr = hcr_el2 & HCR_FMO;
|
|
break;
|
|
default:
|
|
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
|
|
hcr = hcr_el2 & HCR_AMO;
|
|
break;
|
|
};
|
|
|
|
/*
|
|
* For these purposes, TGE and AMO/IMO/FMO both force the
|
|
* interrupt to EL2. Fold TGE into the bit extracted above.
|
|
*/
|
|
hcr |= (hcr_el2 & HCR_TGE) != 0;
|
|
|
|
/* Perform a table-lookup for the target EL given the current state */
|
|
target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
|
|
|
|
assert(target_el > 0);
|
|
|
|
return target_el;
|
|
}
|
|
|
|
void arm_log_exception(CPUState *cs)
|
|
{
|
|
int idx = cs->exception_index;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)) {
|
|
const char *exc = NULL;
|
|
static const char * const excnames[] = {
|
|
[EXCP_UDEF] = "Undefined Instruction",
|
|
[EXCP_SWI] = "SVC",
|
|
[EXCP_PREFETCH_ABORT] = "Prefetch Abort",
|
|
[EXCP_DATA_ABORT] = "Data Abort",
|
|
[EXCP_IRQ] = "IRQ",
|
|
[EXCP_FIQ] = "FIQ",
|
|
[EXCP_BKPT] = "Breakpoint",
|
|
[EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
|
|
[EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
|
|
[EXCP_HVC] = "Hypervisor Call",
|
|
[EXCP_HYP_TRAP] = "Hypervisor Trap",
|
|
[EXCP_SMC] = "Secure Monitor Call",
|
|
[EXCP_VIRQ] = "Virtual IRQ",
|
|
[EXCP_VFIQ] = "Virtual FIQ",
|
|
[EXCP_SEMIHOST] = "Semihosting call",
|
|
[EXCP_NOCP] = "v7M NOCP UsageFault",
|
|
[EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
|
|
[EXCP_STKOF] = "v8M STKOF UsageFault",
|
|
[EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
|
|
[EXCP_LSERR] = "v8M LSERR UsageFault",
|
|
[EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
|
|
[EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
|
|
[EXCP_VSERR] = "Virtual SERR",
|
|
[EXCP_GPC] = "Granule Protection Check",
|
|
};
|
|
|
|
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
|
|
exc = excnames[idx];
|
|
}
|
|
if (!exc) {
|
|
exc = "unknown";
|
|
}
|
|
qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
|
|
idx, exc, cs->cpu_index);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function used to synchronize QEMU's AArch64 register set with AArch32
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_32_to_64(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy R[0:7] to X[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
|
|
/*
|
|
* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
|
|
* Otherwise, they come from the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->usr_regs[i - 8];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Registers x13-x23 are the various mode SP and FP registers. Registers
|
|
* r13 and r14 are only copied if we are in that mode, otherwise we copy
|
|
* from the mode banked register.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->xregs[13] = env->regs[13];
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
|
|
/* HYP is an exception in that it is copied from r14 */
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[15] = env->regs[13];
|
|
} else {
|
|
env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->xregs[16] = env->regs[14];
|
|
env->xregs[17] = env->regs[13];
|
|
} else {
|
|
env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
|
|
env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->xregs[18] = env->regs[14];
|
|
env->xregs[19] = env->regs[13];
|
|
} else {
|
|
env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
|
|
env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->xregs[20] = env->regs[14];
|
|
env->xregs[21] = env->regs[13];
|
|
} else {
|
|
env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
|
|
env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->xregs[22] = env->regs[14];
|
|
env->xregs[23] = env->regs[13];
|
|
} else {
|
|
env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
|
|
env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
|
|
}
|
|
|
|
/*
|
|
* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy from r8-r14. Otherwise, we copy from the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->xregs[i] = env->fiq_regs[i - 24];
|
|
}
|
|
env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
|
|
env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
|
|
}
|
|
|
|
env->pc = env->regs[15];
|
|
}
|
|
|
|
/*
|
|
* Function used to synchronize QEMU's AArch32 register set with AArch64
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy X[0:7] to R[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
|
|
/*
|
|
* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
|
|
* Otherwise, we copy x8-x12 into the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->usr_regs[i - 8] = env->xregs[i];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Registers r13 & r14 depend on the current mode.
|
|
* If we are in a given mode, we copy the corresponding x registers to r13
|
|
* and r14. Otherwise, we copy the x register to the banked r13 and r14
|
|
* for the mode.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->regs[13] = env->xregs[13];
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
|
|
|
|
/*
|
|
* HYP is an exception in that it does not have its own banked r14 but
|
|
* shares the USR r14
|
|
*/
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[13] = env->xregs[15];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->regs[14] = env->xregs[16];
|
|
env->regs[13] = env->xregs[17];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->regs[14] = env->xregs[18];
|
|
env->regs[13] = env->xregs[19];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->regs[14] = env->xregs[20];
|
|
env->regs[13] = env->xregs[21];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->regs[14] = env->xregs[22];
|
|
env->regs[13] = env->xregs[23];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
|
|
}
|
|
|
|
/*
|
|
* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy to r8-r14. Otherwise, we copy to the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->fiq_regs[i - 24] = env->xregs[i];
|
|
}
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
|
|
}
|
|
|
|
env->regs[15] = env->pc;
|
|
}
|
|
|
|
static void take_aarch32_exception(CPUARMState *env, int new_mode,
|
|
uint32_t mask, uint32_t offset,
|
|
uint32_t newpc)
|
|
{
|
|
int new_el;
|
|
|
|
/* Change the CPU state so as to actually take the exception. */
|
|
switch_mode(env, new_mode);
|
|
|
|
/*
|
|
* For exceptions taken to AArch32 we must clear the SS bit in both
|
|
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
|
|
*/
|
|
env->pstate &= ~PSTATE_SS;
|
|
env->spsr = cpsr_read(env);
|
|
/* Clear IT bits. */
|
|
env->condexec_bits = 0;
|
|
/* Switch to the new mode, and to the correct instruction set. */
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
|
|
|
|
/* This must be after mode switching. */
|
|
new_el = arm_current_el(env);
|
|
|
|
/* Set new mode endianness */
|
|
env->uncached_cpsr &= ~CPSR_E;
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
|
|
env->uncached_cpsr |= CPSR_E;
|
|
}
|
|
/* J and IL must always be cleared for exception entry */
|
|
env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
|
|
env->daif |= mask;
|
|
|
|
if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
|
|
env->uncached_cpsr |= CPSR_SSBS;
|
|
} else {
|
|
env->uncached_cpsr &= ~CPSR_SSBS;
|
|
}
|
|
}
|
|
|
|
if (new_mode == ARM_CPU_MODE_HYP) {
|
|
env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
|
|
env->elr_el[2] = env->regs[15];
|
|
} else {
|
|
/* CPSR.PAN is normally preserved preserved unless... */
|
|
if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
|
|
switch (new_el) {
|
|
case 3:
|
|
if (!arm_is_secure_below_el3(env)) {
|
|
/* ... the target is EL3, from non-secure state. */
|
|
env->uncached_cpsr &= ~CPSR_PAN;
|
|
break;
|
|
}
|
|
/* ... the target is EL3, from secure state ... */
|
|
/* fall through */
|
|
case 1:
|
|
/* ... the target is EL1 and SCTLR.SPAN is 0. */
|
|
if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
|
|
env->uncached_cpsr |= CPSR_PAN;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* this is a lie, as there was no c1_sys on V4T/V5, but who cares
|
|
* and we should just guard the thumb mode on V4
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V4T)) {
|
|
env->thumb =
|
|
(A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
|
|
}
|
|
env->regs[14] = env->regs[15] + offset;
|
|
}
|
|
env->regs[15] = newpc;
|
|
|
|
if (tcg_enabled()) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
|
|
{
|
|
/*
|
|
* Handle exception entry to Hyp mode; this is sufficiently
|
|
* different to entry to other AArch32 modes that we handle it
|
|
* separately here.
|
|
*
|
|
* The vector table entry used is always the 0x14 Hyp mode entry point,
|
|
* unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
|
|
* The offset applied to the preferred return address is always zero
|
|
* (see DDI0487C.a section G1.12.3).
|
|
* PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
|
|
*/
|
|
uint32_t addr, mask;
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
addr = 0x04;
|
|
break;
|
|
case EXCP_SWI:
|
|
addr = 0x08;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
env->cp15.ifar_s = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
|
|
(uint32_t)env->exception.vaddress);
|
|
addr = 0x0c;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
env->cp15.dfar_s = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
|
|
(uint32_t)env->exception.vaddress);
|
|
addr = 0x10;
|
|
break;
|
|
case EXCP_IRQ:
|
|
addr = 0x18;
|
|
break;
|
|
case EXCP_FIQ:
|
|
addr = 0x1c;
|
|
break;
|
|
case EXCP_HVC:
|
|
addr = 0x08;
|
|
break;
|
|
case EXCP_HYP_TRAP:
|
|
addr = 0x14;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
}
|
|
|
|
if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* QEMU syndrome values are v8-style. v7 has the IL bit
|
|
* UNK/SBZP for "field not valid" cases, where v8 uses RES1.
|
|
* If this is a v7 CPU, squash the IL bit in those cases.
|
|
*/
|
|
if (cs->exception_index == EXCP_PREFETCH_ABORT ||
|
|
(cs->exception_index == EXCP_DATA_ABORT &&
|
|
!(env->exception.syndrome & ARM_EL_ISV)) ||
|
|
syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
|
|
env->exception.syndrome &= ~ARM_EL_IL;
|
|
}
|
|
}
|
|
env->cp15.esr_el[2] = env->exception.syndrome;
|
|
}
|
|
|
|
if (arm_current_el(env) != 2 && addr < 0x14) {
|
|
addr = 0x14;
|
|
}
|
|
|
|
mask = 0;
|
|
if (!(env->cp15.scr_el3 & SCR_EA)) {
|
|
mask |= CPSR_A;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_IRQ)) {
|
|
mask |= CPSR_I;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_FIQ)) {
|
|
mask |= CPSR_F;
|
|
}
|
|
|
|
addr += env->cp15.hvbar;
|
|
|
|
take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
|
|
}
|
|
|
|
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t addr;
|
|
uint32_t mask;
|
|
int new_mode;
|
|
uint32_t offset;
|
|
uint32_t moe;
|
|
|
|
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_BREAKPOINT:
|
|
case EC_BREAKPOINT_SAME_EL:
|
|
moe = 1;
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
case EC_WATCHPOINT_SAME_EL:
|
|
moe = 10;
|
|
break;
|
|
case EC_AA32_BKPT:
|
|
moe = 3;
|
|
break;
|
|
case EC_VECTORCATCH:
|
|
moe = 5;
|
|
break;
|
|
default:
|
|
moe = 0;
|
|
break;
|
|
}
|
|
|
|
if (moe) {
|
|
env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
|
|
}
|
|
|
|
if (env->exception.target_el == 2) {
|
|
/* Debug exceptions are reported differently on AArch32 */
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_BREAKPOINT:
|
|
case EC_BREAKPOINT_SAME_EL:
|
|
case EC_AA32_BKPT:
|
|
case EC_VECTORCATCH:
|
|
env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
|
|
0, 0, 0x22);
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
env->exception.syndrome = syn_set_ec(env->exception.syndrome,
|
|
EC_DATAABORT);
|
|
break;
|
|
case EC_WATCHPOINT_SAME_EL:
|
|
env->exception.syndrome = syn_set_ec(env->exception.syndrome,
|
|
EC_DATAABORT_SAME_EL);
|
|
break;
|
|
}
|
|
arm_cpu_do_interrupt_aarch32_hyp(cs);
|
|
return;
|
|
}
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
new_mode = ARM_CPU_MODE_UND;
|
|
addr = 0x04;
|
|
mask = CPSR_I;
|
|
if (env->thumb) {
|
|
offset = 2;
|
|
} else {
|
|
offset = 4;
|
|
}
|
|
break;
|
|
case EXCP_SWI:
|
|
new_mode = ARM_CPU_MODE_SVC;
|
|
addr = 0x08;
|
|
mask = CPSR_I;
|
|
/* The PC already points to the next instruction. */
|
|
offset = 0;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
|
|
env->exception.fsr, (uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x0c;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
|
|
env->exception.fsr,
|
|
(uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
break;
|
|
case EXCP_IRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
if (env->cp15.scr_el3 & SCR_IRQ) {
|
|
/* IRQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
mask |= CPSR_F;
|
|
}
|
|
break;
|
|
case EXCP_FIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
if (env->cp15.scr_el3 & SCR_FIQ) {
|
|
/* FIQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
}
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VIRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VFIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VSERR:
|
|
{
|
|
/*
|
|
* Note that this is reported as a data abort, but the DFAR
|
|
* has an UNKNOWN value. Construct the SError syndrome from
|
|
* AET and ExT fields.
|
|
*/
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
|
|
|
|
if (extended_addresses_enabled(env)) {
|
|
env->exception.fsr = arm_fi_to_lfsc(&fi);
|
|
} else {
|
|
env->exception.fsr = arm_fi_to_sfsc(&fi);
|
|
}
|
|
env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
|
|
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
|
|
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
|
|
env->exception.fsr);
|
|
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
}
|
|
break;
|
|
case EXCP_SMC:
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
addr = 0x08;
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 0;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
if (new_mode == ARM_CPU_MODE_MON) {
|
|
addr += env->cp15.mvbar;
|
|
} else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
|
|
/* High vectors. When enabled, base address cannot be remapped. */
|
|
addr += 0xffff0000;
|
|
} else {
|
|
/*
|
|
* ARM v7 architectures provide a vector base address register to remap
|
|
* the interrupt vector table.
|
|
* This register is only followed in non-monitor mode, and is banked.
|
|
* Note: only bits 31:5 are valid.
|
|
*/
|
|
addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
|
|
}
|
|
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
env->cp15.scr_el3 &= ~SCR_NS;
|
|
}
|
|
|
|
take_aarch32_exception(env, new_mode, mask, offset, addr);
|
|
}
|
|
|
|
static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
|
|
{
|
|
/*
|
|
* Return the register number of the AArch64 view of the AArch32
|
|
* register @aarch32_reg. The CPUARMState CPSR is assumed to still
|
|
* be that of the AArch32 mode the exception came from.
|
|
*/
|
|
int mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
switch (aarch32_reg) {
|
|
case 0 ... 7:
|
|
return aarch32_reg;
|
|
case 8 ... 12:
|
|
return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
|
|
case 13:
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return 13;
|
|
case ARM_CPU_MODE_HYP:
|
|
return 15;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 17;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 19;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 21;
|
|
case ARM_CPU_MODE_UND:
|
|
return 23;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 29;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
case 14:
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_HYP:
|
|
return 14;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 16;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 18;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 20;
|
|
case ARM_CPU_MODE_UND:
|
|
return 22;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 30;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
case 15:
|
|
return 31;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
|
|
{
|
|
uint32_t ret = cpsr_read(env);
|
|
|
|
/* Move DIT to the correct location for SPSR_ELx */
|
|
if (ret & CPSR_DIT) {
|
|
ret &= ~CPSR_DIT;
|
|
ret |= PSTATE_DIT;
|
|
}
|
|
/* Merge PSTATE.SS into SPSR_ELx */
|
|
ret |= env->pstate & PSTATE_SS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool syndrome_is_sync_extabt(uint32_t syndrome)
|
|
{
|
|
/* Return true if this syndrome value is a synchronous external abort */
|
|
switch (syn_get_ec(syndrome)) {
|
|
case EC_INSNABORT:
|
|
case EC_INSNABORT_SAME_EL:
|
|
case EC_DATAABORT:
|
|
case EC_DATAABORT_SAME_EL:
|
|
/* Look at fault status code for all the synchronous ext abort cases */
|
|
switch (syndrome & 0x3f) {
|
|
case 0x10:
|
|
case 0x13:
|
|
case 0x14:
|
|
case 0x15:
|
|
case 0x16:
|
|
case 0x17:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Handle exception entry to a target EL which is using AArch64 */
|
|
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
unsigned int new_el = env->exception.target_el;
|
|
target_ulong addr = env->cp15.vbar_el[new_el];
|
|
unsigned int new_mode = aarch64_pstate_mode(new_el, true);
|
|
unsigned int old_mode;
|
|
unsigned int cur_el = arm_current_el(env);
|
|
int rt;
|
|
|
|
if (tcg_enabled()) {
|
|
/*
|
|
* Note that new_el can never be 0. If cur_el is 0, then
|
|
* el0_a64 is is_a64(), else el0_a64 is ignored.
|
|
*/
|
|
aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
|
|
}
|
|
|
|
if (cur_el < new_el) {
|
|
/*
|
|
* Entry vector offset depends on whether the implemented EL
|
|
* immediately lower than the target level is using AArch32 or AArch64
|
|
*/
|
|
bool is_aa64;
|
|
uint64_t hcr;
|
|
|
|
switch (new_el) {
|
|
case 3:
|
|
is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
|
|
break;
|
|
case 2:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
is_aa64 = (hcr & HCR_RW) != 0;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
is_aa64 = is_a64(env);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (is_aa64) {
|
|
addr += 0x400;
|
|
} else {
|
|
addr += 0x600;
|
|
}
|
|
} else if (pstate_read(env) & PSTATE_SP) {
|
|
addr += 0x200;
|
|
}
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_GPC:
|
|
qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
|
|
env->cp15.mfar_el3);
|
|
/* fall through */
|
|
case EXCP_PREFETCH_ABORT:
|
|
case EXCP_DATA_ABORT:
|
|
/*
|
|
* FEAT_DoubleFault allows synchronous external aborts taken to EL3
|
|
* to be taken to the SError vector entrypoint.
|
|
*/
|
|
if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
|
|
syndrome_is_sync_extabt(env->exception.syndrome)) {
|
|
addr += 0x180;
|
|
}
|
|
env->cp15.far_el[new_el] = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
|
|
env->cp15.far_el[new_el]);
|
|
/* fall through */
|
|
case EXCP_BKPT:
|
|
case EXCP_UDEF:
|
|
case EXCP_SWI:
|
|
case EXCP_HVC:
|
|
case EXCP_HYP_TRAP:
|
|
case EXCP_SMC:
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_ADVSIMDFPACCESSTRAP:
|
|
/*
|
|
* QEMU internal FP/SIMD syndromes from AArch32 include the
|
|
* TA and coproc fields which are only exposed if the exception
|
|
* is taken to AArch32 Hyp mode. Mask them out to get a valid
|
|
* AArch64 format syndrome.
|
|
*/
|
|
env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
|
|
break;
|
|
case EC_CP14RTTRAP:
|
|
case EC_CP15RTTRAP:
|
|
case EC_CP14DTTRAP:
|
|
/*
|
|
* For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
|
|
* the raw register field from the insn; when taking this to
|
|
* AArch64 we must convert it to the AArch64 view of the register
|
|
* number. Notice that we read a 4-bit AArch32 register number and
|
|
* write back a 5-bit AArch64 one.
|
|
*/
|
|
rt = extract32(env->exception.syndrome, 5, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
5, 5, rt);
|
|
break;
|
|
case EC_CP15RRTTRAP:
|
|
case EC_CP14RRTTRAP:
|
|
/* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
|
|
rt = extract32(env->exception.syndrome, 5, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
5, 5, rt);
|
|
rt = extract32(env->exception.syndrome, 10, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
10, 5, rt);
|
|
break;
|
|
}
|
|
env->cp15.esr_el[new_el] = env->exception.syndrome;
|
|
break;
|
|
case EXCP_IRQ:
|
|
case EXCP_VIRQ:
|
|
addr += 0x80;
|
|
break;
|
|
case EXCP_FIQ:
|
|
case EXCP_VFIQ:
|
|
addr += 0x100;
|
|
break;
|
|
case EXCP_VSERR:
|
|
addr += 0x180;
|
|
/* Construct the SError syndrome from IDS and ISS fields. */
|
|
env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
|
|
env->cp15.esr_el[new_el] = env->exception.syndrome;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
}
|
|
|
|
if (is_a64(env)) {
|
|
old_mode = pstate_read(env);
|
|
aarch64_save_sp(env, arm_current_el(env));
|
|
env->elr_el[new_el] = env->pc;
|
|
|
|
if (cur_el == 1 && new_el == 1) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
|
|
(hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
|
|
/*
|
|
* FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
|
|
* by setting M[3:2] to 0b10.
|
|
* If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
|
|
* If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
|
|
*/
|
|
old_mode = deposit32(old_mode, 2, 2, 2);
|
|
}
|
|
}
|
|
} else {
|
|
old_mode = cpsr_read_for_spsr_elx(env);
|
|
env->elr_el[new_el] = env->regs[15];
|
|
|
|
aarch64_sync_32_to_64(env);
|
|
|
|
env->condexec_bits = 0;
|
|
}
|
|
env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
|
|
qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
|
|
env->elr_el[new_el]);
|
|
|
|
if (cpu_isar_feature(aa64_pan, cpu)) {
|
|
/* The value of PSTATE.PAN is normally preserved, except when ... */
|
|
new_mode |= old_mode & PSTATE_PAN;
|
|
switch (new_el) {
|
|
case 2:
|
|
/* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
|
|
if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
|
|
!= (HCR_E2H | HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... the target is EL1 ... */
|
|
/* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
|
|
if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
|
|
new_mode |= PSTATE_PAN;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
new_mode |= PSTATE_TCO;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_ssbs, cpu)) {
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
|
|
new_mode |= PSTATE_SSBS;
|
|
} else {
|
|
new_mode &= ~PSTATE_SSBS;
|
|
}
|
|
}
|
|
|
|
pstate_write(env, PSTATE_DAIF | new_mode);
|
|
env->aarch64 = true;
|
|
aarch64_restore_sp(env, new_el);
|
|
|
|
if (tcg_enabled()) {
|
|
helper_rebuild_hflags_a64(env, new_el);
|
|
}
|
|
|
|
env->pc = addr;
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
|
|
new_el, env->pc, pstate_read(env));
|
|
}
|
|
|
|
/*
|
|
* Do semihosting call and set the appropriate return value. All the
|
|
* permission and validity checks have been done at translate time.
|
|
*
|
|
* We only see semihosting exceptions in TCG only as they are not
|
|
* trapped to the hypervisor in KVM.
|
|
*/
|
|
#ifdef CONFIG_TCG
|
|
static void tcg_handle_semihosting(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (is_a64(env)) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%" PRIx64 "\n",
|
|
env->xregs[0]);
|
|
do_common_semihosting(cs);
|
|
env->pc += 4;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
do_common_semihosting(cs);
|
|
env->regs[15] += env->thumb ? 2 : 4;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Handle a CPU exception for A and R profile CPUs.
|
|
* Do any appropriate logging, handle PSCI calls, and then hand off
|
|
* to the AArch64-entry or AArch32-entry function depending on the
|
|
* target exception level's register width.
|
|
*
|
|
* Note: this is used for both TCG (as the do_interrupt tcg op),
|
|
* and KVM to re-inject guest debug exceptions, and to
|
|
* inject a Synchronous-External-Abort.
|
|
*/
|
|
void arm_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
unsigned int new_el = env->exception.target_el;
|
|
|
|
assert(!arm_feature(env, ARM_FEATURE_M));
|
|
|
|
arm_log_exception(cs);
|
|
qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
|
|
new_el);
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)
|
|
&& !excp_is_internal(cs->exception_index)) {
|
|
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
|
|
syn_get_ec(env->exception.syndrome),
|
|
env->exception.syndrome);
|
|
}
|
|
|
|
if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
|
|
arm_handle_psci_call(cpu);
|
|
qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Semihosting semantics depend on the register width of the code
|
|
* that caused the exception, not the target exception level, so
|
|
* must be handled here.
|
|
*/
|
|
#ifdef CONFIG_TCG
|
|
if (cs->exception_index == EXCP_SEMIHOST) {
|
|
tcg_handle_semihosting(cs);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Hooks may change global state so BQL should be held, also the
|
|
* BQL needs to be held for any modification of
|
|
* cs->interrupt_request.
|
|
*/
|
|
g_assert(bql_locked());
|
|
|
|
arm_call_pre_el_change_hook(cpu);
|
|
|
|
assert(!excp_is_internal(cs->exception_index));
|
|
if (arm_el_is_aa64(env, new_el)) {
|
|
arm_cpu_do_interrupt_aarch64(cs);
|
|
} else {
|
|
arm_cpu_do_interrupt_aarch32(cs);
|
|
}
|
|
|
|
arm_call_el_change_hook(cpu);
|
|
|
|
if (!kvm_enabled()) {
|
|
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
uint64_t arm_sctlr(CPUARMState *env, int el)
|
|
{
|
|
/* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
|
|
if (el == 0) {
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
|
|
el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
|
|
}
|
|
return env->cp15.sctlr_el[el];
|
|
}
|
|
|
|
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 37, 2);
|
|
} else if (regime_is_stage2(mmu_idx)) {
|
|
return 0; /* VTCR_EL2 */
|
|
} else {
|
|
/* Replicate the single TBI bit so we always have 2 bits. */
|
|
return extract32(tcr, 20, 1) * 3;
|
|
}
|
|
}
|
|
|
|
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 51, 2);
|
|
} else if (regime_is_stage2(mmu_idx)) {
|
|
return 0; /* VTCR_EL2 */
|
|
} else {
|
|
/* Replicate the single TBID bit so we always have 2 bits. */
|
|
return extract32(tcr, 29, 1) * 3;
|
|
}
|
|
}
|
|
|
|
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 57, 2);
|
|
} else {
|
|
/* Replicate the single TCMA bit so we always have 2 bits. */
|
|
return extract32(tcr, 30, 1) * 3;
|
|
}
|
|
}
|
|
|
|
static ARMGranuleSize tg0_to_gran_size(int tg)
|
|
{
|
|
switch (tg) {
|
|
case 0:
|
|
return Gran4K;
|
|
case 1:
|
|
return Gran64K;
|
|
case 2:
|
|
return Gran16K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static ARMGranuleSize tg1_to_gran_size(int tg)
|
|
{
|
|
switch (tg) {
|
|
case 1:
|
|
return Gran16K;
|
|
case 2:
|
|
return Gran4K;
|
|
case 3:
|
|
return Gran64K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static inline bool have4k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran4, cpu);
|
|
}
|
|
|
|
static inline bool have16k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran16, cpu);
|
|
}
|
|
|
|
static inline bool have64k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran64, cpu);
|
|
}
|
|
|
|
static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
|
|
bool stage2)
|
|
{
|
|
switch (gran) {
|
|
case Gran4K:
|
|
if (have4k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case Gran16K:
|
|
if (have16k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case Gran64K:
|
|
if (have64k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case GranInvalid:
|
|
break;
|
|
}
|
|
/*
|
|
* If the guest selects a granule size that isn't implemented,
|
|
* the architecture requires that we behave as if it selected one
|
|
* that is (with an IMPDEF choice of which one to pick). We choose
|
|
* to implement the smallest supported granule size.
|
|
*/
|
|
if (have4k(cpu, stage2)) {
|
|
return Gran4K;
|
|
}
|
|
if (have16k(cpu, stage2)) {
|
|
return Gran16K;
|
|
}
|
|
assert(have64k(cpu, stage2));
|
|
return Gran64K;
|
|
}
|
|
|
|
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
|
|
ARMMMUIdx mmu_idx, bool data,
|
|
bool el1_is_aa32)
|
|
{
|
|
uint64_t tcr = regime_tcr(env, mmu_idx);
|
|
bool epd, hpd, tsz_oob, ds, ha, hd;
|
|
int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
|
|
ARMGranuleSize gran;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
bool stage2 = regime_is_stage2(mmu_idx);
|
|
|
|
if (!regime_has_2_ranges(mmu_idx)) {
|
|
select = 0;
|
|
tsz = extract32(tcr, 0, 6);
|
|
gran = tg0_to_gran_size(extract32(tcr, 14, 2));
|
|
if (stage2) {
|
|
/* VTCR_EL2 */
|
|
hpd = false;
|
|
} else {
|
|
hpd = extract32(tcr, 24, 1);
|
|
}
|
|
epd = false;
|
|
sh = extract32(tcr, 12, 2);
|
|
ps = extract32(tcr, 16, 3);
|
|
ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
|
|
hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
|
|
ds = extract64(tcr, 32, 1);
|
|
} else {
|
|
bool e0pd;
|
|
|
|
/*
|
|
* Bit 55 is always between the two regions, and is canonical for
|
|
* determining if address tagging is enabled.
|
|
*/
|
|
select = extract64(va, 55, 1);
|
|
if (!select) {
|
|
tsz = extract32(tcr, 0, 6);
|
|
gran = tg0_to_gran_size(extract32(tcr, 14, 2));
|
|
epd = extract32(tcr, 7, 1);
|
|
sh = extract32(tcr, 12, 2);
|
|
hpd = extract64(tcr, 41, 1);
|
|
e0pd = extract64(tcr, 55, 1);
|
|
} else {
|
|
tsz = extract32(tcr, 16, 6);
|
|
gran = tg1_to_gran_size(extract32(tcr, 30, 2));
|
|
epd = extract32(tcr, 23, 1);
|
|
sh = extract32(tcr, 28, 2);
|
|
hpd = extract64(tcr, 42, 1);
|
|
e0pd = extract64(tcr, 56, 1);
|
|
}
|
|
ps = extract64(tcr, 32, 3);
|
|
ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
|
|
hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
|
|
ds = extract64(tcr, 59, 1);
|
|
|
|
if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
|
|
regime_is_user(env, mmu_idx)) {
|
|
epd = true;
|
|
}
|
|
}
|
|
|
|
gran = sanitize_gran_size(cpu, gran, stage2);
|
|
|
|
if (cpu_isar_feature(aa64_st, cpu)) {
|
|
max_tsz = 48 - (gran == Gran64K);
|
|
} else {
|
|
max_tsz = 39;
|
|
}
|
|
|
|
/*
|
|
* DS is RES0 unless FEAT_LPA2 is supported for the given page size;
|
|
* adjust the effective value of DS, as documented.
|
|
*/
|
|
min_tsz = 16;
|
|
if (gran == Gran64K) {
|
|
if (cpu_isar_feature(aa64_lva, cpu)) {
|
|
min_tsz = 12;
|
|
}
|
|
ds = false;
|
|
} else if (ds) {
|
|
if (regime_is_stage2(mmu_idx)) {
|
|
if (gran == Gran16K) {
|
|
ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
|
|
} else {
|
|
ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
|
|
}
|
|
} else {
|
|
if (gran == Gran16K) {
|
|
ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
|
|
} else {
|
|
ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
|
|
}
|
|
}
|
|
if (ds) {
|
|
min_tsz = 12;
|
|
}
|
|
}
|
|
|
|
if (stage2 && el1_is_aa32) {
|
|
/*
|
|
* For AArch32 EL1 the min txsz (and thus max IPA size) requirements
|
|
* are loosened: a configured IPA of 40 bits is permitted even if
|
|
* the implemented PA is less than that (and so a 40 bit IPA would
|
|
* fault for an AArch64 EL1). See R_DTLMN.
|
|
*/
|
|
min_tsz = MIN(min_tsz, 24);
|
|
}
|
|
|
|
if (tsz > max_tsz) {
|
|
tsz = max_tsz;
|
|
tsz_oob = true;
|
|
} else if (tsz < min_tsz) {
|
|
tsz = min_tsz;
|
|
tsz_oob = true;
|
|
} else {
|
|
tsz_oob = false;
|
|
}
|
|
|
|
/* Present TBI as a composite with TBID. */
|
|
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
|
|
if (!data) {
|
|
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
|
|
}
|
|
tbi = (tbi >> select) & 1;
|
|
|
|
return (ARMVAParameters) {
|
|
.tsz = tsz,
|
|
.ps = ps,
|
|
.sh = sh,
|
|
.select = select,
|
|
.tbi = tbi,
|
|
.epd = epd,
|
|
.hpd = hpd,
|
|
.tsz_oob = tsz_oob,
|
|
.ds = ds,
|
|
.ha = ha,
|
|
.hd = ha && hd,
|
|
.gran = gran,
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Note that signed overflow is undefined in C. The following routines are
|
|
* careful to use unsigned types where modulo arithmetic is required.
|
|
* Failure to do so _will_ break on newer gcc.
|
|
*/
|
|
|
|
/* Signed saturating arithmetic. */
|
|
|
|
/* Perform 16-bit signed saturating addition. */
|
|
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000) {
|
|
res = 0x8000;
|
|
} else {
|
|
res = 0x7fff;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating addition. */
|
|
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
|
|
if (a & 0x80) {
|
|
res = 0x80;
|
|
} else {
|
|
res = 0x7f;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 16-bit signed saturating subtraction. */
|
|
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000) {
|
|
res = 0x8000;
|
|
} else {
|
|
res = 0x7fff;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating subtraction. */
|
|
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
|
|
if (a & 0x80) {
|
|
res = 0x80;
|
|
} else {
|
|
res = 0x7f;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
|
|
#define PFX q
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned saturating arithmetic. */
|
|
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
res = a + b;
|
|
if (res < a) {
|
|
res = 0xffff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
res = a + b;
|
|
if (res < a) {
|
|
res = 0xff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
|
|
#define PFX uq
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Signed modulo arithmetic. */
|
|
#define SARITH16(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if (sum >= 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define SARITH8(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if (sum >= 0) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
|
|
#define ADD16(a, b, n) SARITH16(a, b, n, +)
|
|
#define SUB16(a, b, n) SARITH16(a, b, n, -)
|
|
#define ADD8(a, b, n) SARITH8(a, b, n, +)
|
|
#define SUB8(a, b, n) SARITH8(a, b, n, -)
|
|
#define PFX s
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned modulo arithmetic. */
|
|
#define ADD16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 1) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define ADD8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 1) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
#define SUB16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define SUB8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 0) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
#define PFX u
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved signed arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define PFX sh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved unsigned arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define PFX uh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
static inline uint8_t do_usad(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return b - a;
|
|
}
|
|
}
|
|
|
|
/* Unsigned sum of absolute byte differences. */
|
|
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t sum;
|
|
sum = do_usad(a, b);
|
|
sum += do_usad(a >> 8, b >> 8);
|
|
sum += do_usad(a >> 16, b >> 16);
|
|
sum += do_usad(a >> 24, b >> 24);
|
|
return sum;
|
|
}
|
|
|
|
/* For ARMv6 SEL instruction. */
|
|
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = 0;
|
|
if (flags & 1) {
|
|
mask |= 0xff;
|
|
}
|
|
if (flags & 2) {
|
|
mask |= 0xff00;
|
|
}
|
|
if (flags & 4) {
|
|
mask |= 0xff0000;
|
|
}
|
|
if (flags & 8) {
|
|
mask |= 0xff000000;
|
|
}
|
|
return (a & mask) | (b & ~mask);
|
|
}
|
|
|
|
/*
|
|
* CRC helpers.
|
|
* The upper bytes of val (above the number specified by 'bytes') must have
|
|
* been zeroed out by the caller.
|
|
*/
|
|
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* zlib crc32 converts the accumulator and output to one's complement. */
|
|
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* Linux crc32c converts the output to one's complement. */
|
|
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
/*
|
|
* Return the exception level to which FP-disabled exceptions should
|
|
* be taken, or 0 if FP is enabled.
|
|
*/
|
|
int fp_exception_el(CPUARMState *env, int cur_el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint64_t hcr_el2;
|
|
|
|
/*
|
|
* CPACR and the CPTR registers don't exist before v6, so FP is
|
|
* always accessible
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V6)) {
|
|
return 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* CPACR can cause a NOCP UsageFault taken to current security state */
|
|
if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
|
|
return 1;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
|
|
if (!extract32(env->v7m.nsacr, 10, 1)) {
|
|
/* FP insns cause a NOCP UsageFault taken to Secure */
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
hcr_el2 = arm_hcr_el2_eff(env);
|
|
|
|
/*
|
|
* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
|
|
* 0, 2 : trap EL0 and EL1/PL1 accesses
|
|
* 1 : trap only EL0 accesses
|
|
* 3 : trap no accesses
|
|
* This register is ignored if E2H+TGE are both set.
|
|
*/
|
|
if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
|
|
|
|
switch (fpen) {
|
|
case 1:
|
|
if (cur_el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
/* Trap from Secure PL0 or PL1 to Secure PL1. */
|
|
if (!arm_el_is_aa64(env, 3)
|
|
&& (cur_el == 3 || arm_is_secure_below_el3(env))) {
|
|
return 3;
|
|
}
|
|
if (cur_el <= 1) {
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
|
|
* to control non-secure access to the FPU. It doesn't have any
|
|
* effect if EL3 is AArch64 or if EL3 doesn't exist at all.
|
|
*/
|
|
if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
cur_el <= 2 && !arm_is_secure_below_el3(env))) {
|
|
if (!extract32(env->cp15.nsacr, 10, 1)) {
|
|
/* FP insns act as UNDEF */
|
|
return cur_el == 2 ? 2 : 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CPTR_EL2 is present in v7VE or v8, and changes format
|
|
* with HCR_EL2.E2H (regardless of TGE).
|
|
*/
|
|
if (cur_el <= 2) {
|
|
if (hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
|
|
case 1:
|
|
if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else if (arm_is_el2_enabled(env)) {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3 : present in v8 */
|
|
if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
|
|
/* Trap all FP ops to EL3 */
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Return the exception level we're running at if this is our mmu_idx */
|
|
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx & ARM_MMU_IDX_M) {
|
|
return mmu_idx & ARM_MMU_IDX_M_PRIV;
|
|
}
|
|
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E20_0:
|
|
return 0;
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
return 1;
|
|
case ARMMMUIdx_E2:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return 2;
|
|
case ARMMMUIdx_E3:
|
|
return 3;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_TCG
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#endif
|
|
|
|
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
|
|
{
|
|
ARMMMUIdx idx;
|
|
uint64_t hcr;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
|
|
}
|
|
|
|
/* See ARM pseudo-function ELIsInHost. */
|
|
switch (el) {
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
idx = ARMMMUIdx_E20_0;
|
|
} else {
|
|
idx = ARMMMUIdx_E10_0;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (arm_pan_enabled(env)) {
|
|
idx = ARMMMUIdx_E10_1_PAN;
|
|
} else {
|
|
idx = ARMMMUIdx_E10_1;
|
|
}
|
|
break;
|
|
case 2:
|
|
/* Note that TGE does not apply at EL2. */
|
|
if (arm_hcr_el2_eff(env) & HCR_E2H) {
|
|
if (arm_pan_enabled(env)) {
|
|
idx = ARMMMUIdx_E20_2_PAN;
|
|
} else {
|
|
idx = ARMMMUIdx_E20_2;
|
|
}
|
|
} else {
|
|
idx = ARMMMUIdx_E2;
|
|
}
|
|
break;
|
|
case 3:
|
|
return ARMMMUIdx_E3;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
ARMMMUIdx arm_mmu_idx(CPUARMState *env)
|
|
{
|
|
return arm_mmu_idx_el(env, arm_current_el(env));
|
|
}
|
|
|
|
static bool mve_no_pred(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Return true if there is definitely no predication of MVE
|
|
* instructions by VPR or LTPSIZE. (Returning false even if there
|
|
* isn't any predication is OK; generated code will just be
|
|
* a little worse.)
|
|
* If the CPU does not implement MVE then this TB flag is always 0.
|
|
*
|
|
* NOTE: if you change this logic, the "recalculate s->mve_no_pred"
|
|
* logic in gen_update_fp_context() needs to be updated to match.
|
|
*
|
|
* We do not include the effect of the ECI bits here -- they are
|
|
* tracked in other TB flags. This simplifies the logic for
|
|
* "when did we emit code that changes the MVE_NO_PRED TB flag
|
|
* and thus need to end the TB?".
|
|
*/
|
|
if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
|
|
return false;
|
|
}
|
|
if (env->v7m.vpr) {
|
|
return false;
|
|
}
|
|
if (env->v7m.ltpsize < 4) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
|
|
uint64_t *cs_base, uint32_t *pflags)
|
|
{
|
|
CPUARMTBFlags flags;
|
|
|
|
assert_hflags_rebuild_correctly(env);
|
|
flags = env->hflags;
|
|
|
|
if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
|
|
*pc = env->pc;
|
|
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
|
|
DP_TBFLAG_A64(flags, BTYPE, env->btype);
|
|
}
|
|
} else {
|
|
*pc = env->regs[15];
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
|
|
!= env->v7m.secure) {
|
|
DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
|
|
}
|
|
|
|
if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
|
|
(!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
|
|
(env->v7m.secure &&
|
|
!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
|
|
/*
|
|
* ASPEN is set, but FPCA/SFPA indicate that there is no
|
|
* active FP context; we must create a new FP context before
|
|
* executing any FP insn.
|
|
*/
|
|
DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
|
|
}
|
|
|
|
bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
|
|
if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
|
|
DP_TBFLAG_M32(flags, LSPACT, 1);
|
|
}
|
|
|
|
if (mve_no_pred(env)) {
|
|
DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* Note that XSCALE_CPAR shares bits with VECSTRIDE.
|
|
* Note that VECLEN+VECSTRIDE are RES0 for M-profile.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
|
|
} else {
|
|
DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
|
|
DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
|
|
}
|
|
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
|
|
DP_TBFLAG_A32(flags, VFPEN, 1);
|
|
}
|
|
}
|
|
|
|
DP_TBFLAG_AM32(flags, THUMB, env->thumb);
|
|
DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
|
|
}
|
|
|
|
/*
|
|
* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
|
|
* states defined in the ARM ARM for software singlestep:
|
|
* SS_ACTIVE PSTATE.SS State
|
|
* 0 x Inactive (the TB flag for SS is always 0)
|
|
* 1 0 Active-pending
|
|
* 1 1 Active-not-pending
|
|
* SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
|
|
*/
|
|
if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
|
|
DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
|
|
}
|
|
|
|
*pflags = flags.flags;
|
|
*cs_base = flags.flags2;
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
/*
|
|
* The manual says that when SVE is enabled and VQ is widened the
|
|
* implementation is allowed to zero the previously inaccessible
|
|
* portion of the registers. The corollary to that is that when
|
|
* SVE is enabled and VQ is narrowed we are also allowed to zero
|
|
* the now inaccessible portion of the registers.
|
|
*
|
|
* The intent of this is that no predicate bit beyond VQ is ever set.
|
|
* Which means that some operations on predicate registers themselves
|
|
* may operate on full uint64_t or even unrolled across the maximum
|
|
* uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
|
|
* may well be cheaper than conditionals to restrict the operation
|
|
* to the relevant portion of a uint16_t[16].
|
|
*/
|
|
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
|
|
{
|
|
int i, j;
|
|
uint64_t pmask;
|
|
|
|
assert(vq >= 1 && vq <= ARM_MAX_VQ);
|
|
assert(vq <= env_archcpu(env)->sve_max_vq);
|
|
|
|
/* Zap the high bits of the zregs. */
|
|
for (i = 0; i < 32; i++) {
|
|
memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
|
|
}
|
|
|
|
/* Zap the high bits of the pregs and ffr. */
|
|
pmask = 0;
|
|
if (vq & 3) {
|
|
pmask = ~(-1ULL << (16 * (vq & 3)));
|
|
}
|
|
for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
|
|
for (i = 0; i < 17; ++i) {
|
|
env->vfp.pregs[i].p[j] &= pmask;
|
|
}
|
|
pmask = 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
|
|
{
|
|
int exc_el;
|
|
|
|
if (sm) {
|
|
exc_el = sme_exception_el(env, el);
|
|
} else {
|
|
exc_el = sve_exception_el(env, el);
|
|
}
|
|
if (exc_el) {
|
|
return 0; /* disabled */
|
|
}
|
|
return sve_vqm1_for_el_sm(env, el, sm);
|
|
}
|
|
|
|
/*
|
|
* Notice a change in SVE vector size when changing EL.
|
|
*/
|
|
void aarch64_sve_change_el(CPUARMState *env, int old_el,
|
|
int new_el, bool el0_a64)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
int old_len, new_len;
|
|
bool old_a64, new_a64, sm;
|
|
|
|
/* Nothing to do if no SVE. */
|
|
if (!cpu_isar_feature(aa64_sve, cpu)) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if FP is disabled in either EL. */
|
|
if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
|
|
return;
|
|
}
|
|
|
|
old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
|
|
new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
|
|
|
|
/*
|
|
* Both AArch64.TakeException and AArch64.ExceptionReturn
|
|
* invoke ResetSVEState when taking an exception from, or
|
|
* returning to, AArch32 state when PSTATE.SM is enabled.
|
|
*/
|
|
sm = FIELD_EX64(env->svcr, SVCR, SM);
|
|
if (old_a64 != new_a64 && sm) {
|
|
arm_reset_sve_state(env);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
|
|
* at ELx, or not available because the EL is in AArch32 state, then
|
|
* for all purposes other than a direct read, the ZCR_ELx.LEN field
|
|
* has an effective value of 0".
|
|
*
|
|
* Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
|
|
* If we ignore aa32 state, we would fail to see the vq4->vq0 transition
|
|
* from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
|
|
* we already have the correct register contents when encountering the
|
|
* vq0->vq0 transition between EL0->EL1.
|
|
*/
|
|
old_len = new_len = 0;
|
|
if (old_a64) {
|
|
old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
|
|
}
|
|
if (new_a64) {
|
|
new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
|
|
}
|
|
|
|
/* When changing vector length, clear inaccessible state. */
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
ARMSecuritySpace arm_security_space(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return arm_secure_to_space(env->v7m.secure);
|
|
}
|
|
|
|
/*
|
|
* If EL3 is not supported then the secure state is implementation
|
|
* defined, in which case QEMU defaults to non-secure.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
|
|
/* Check for AArch64 EL3 or AArch32 Mon. */
|
|
if (is_a64(env)) {
|
|
if (extract32(env->pstate, 2, 2) == 3) {
|
|
if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
|
|
return ARMSS_Root;
|
|
} else {
|
|
return ARMSS_Secure;
|
|
}
|
|
}
|
|
} else {
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
return ARMSS_Secure;
|
|
}
|
|
}
|
|
|
|
return arm_security_space_below_el3(env);
|
|
}
|
|
|
|
ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
|
|
{
|
|
assert(!arm_feature(env, ARM_FEATURE_M));
|
|
|
|
/*
|
|
* If EL3 is not supported then the secure state is implementation
|
|
* defined, in which case QEMU defaults to non-secure.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
|
|
/*
|
|
* Note NSE cannot be set without RME, and NSE & !NS is Reserved.
|
|
* Ignoring NSE when !NS retains consistency without having to
|
|
* modify other predicates.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_NS)) {
|
|
return ARMSS_Secure;
|
|
} else if (env->cp15.scr_el3 & SCR_NSE) {
|
|
return ARMSS_Realm;
|
|
} else {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|