597610eb39
Check the v8M stack limits when pushing the frame for a non-secure function call via BLXNS. In order to be able to generate the exception we need to promote raise_exception() from being local to op_helper.c so we can call it from helper.c. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20181002163556.10279-8-peter.maydell@linaro.org
844 lines
26 KiB
C
844 lines
26 KiB
C
/*
|
|
* QEMU ARM CPU -- internal functions and types
|
|
*
|
|
* Copyright (c) 2014 Linaro Ltd
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
*
|
|
* This header defines functions, types, etc which need to be shared
|
|
* between different source files within target/arm/ but which are
|
|
* private to it and not required by the rest of QEMU.
|
|
*/
|
|
|
|
#ifndef TARGET_ARM_INTERNALS_H
|
|
#define TARGET_ARM_INTERNALS_H
|
|
|
|
#include "hw/registerfields.h"
|
|
|
|
/* register banks for CPU modes */
|
|
#define BANK_USRSYS 0
|
|
#define BANK_SVC 1
|
|
#define BANK_ABT 2
|
|
#define BANK_UND 3
|
|
#define BANK_IRQ 4
|
|
#define BANK_FIQ 5
|
|
#define BANK_HYP 6
|
|
#define BANK_MON 7
|
|
|
|
static inline bool excp_is_internal(int excp)
|
|
{
|
|
/* Return true if this exception number represents a QEMU-internal
|
|
* exception that will not be passed to the guest.
|
|
*/
|
|
return excp == EXCP_INTERRUPT
|
|
|| excp == EXCP_HLT
|
|
|| excp == EXCP_DEBUG
|
|
|| excp == EXCP_HALTED
|
|
|| excp == EXCP_EXCEPTION_EXIT
|
|
|| excp == EXCP_KERNEL_TRAP
|
|
|| excp == EXCP_SEMIHOST;
|
|
}
|
|
|
|
/* Scale factor for generic timers, ie number of ns per tick.
|
|
* This gives a 62.5MHz timer.
|
|
*/
|
|
#define GTIMER_SCALE 16
|
|
|
|
/* Bit definitions for the v7M CONTROL register */
|
|
FIELD(V7M_CONTROL, NPRIV, 0, 1)
|
|
FIELD(V7M_CONTROL, SPSEL, 1, 1)
|
|
FIELD(V7M_CONTROL, FPCA, 2, 1)
|
|
FIELD(V7M_CONTROL, SFPA, 3, 1)
|
|
|
|
/* Bit definitions for v7M exception return payload */
|
|
FIELD(V7M_EXCRET, ES, 0, 1)
|
|
FIELD(V7M_EXCRET, RES0, 1, 1)
|
|
FIELD(V7M_EXCRET, SPSEL, 2, 1)
|
|
FIELD(V7M_EXCRET, MODE, 3, 1)
|
|
FIELD(V7M_EXCRET, FTYPE, 4, 1)
|
|
FIELD(V7M_EXCRET, DCRS, 5, 1)
|
|
FIELD(V7M_EXCRET, S, 6, 1)
|
|
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
|
|
|
|
/* Minimum value which is a magic number for exception return */
|
|
#define EXC_RETURN_MIN_MAGIC 0xff000000
|
|
/* Minimum number which is a magic number for function or exception return
|
|
* when using v8M security extension
|
|
*/
|
|
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
|
|
|
|
/* We use a few fake FSR values for internal purposes in M profile.
|
|
* M profile cores don't have A/R format FSRs, but currently our
|
|
* get_phys_addr() code assumes A/R profile and reports failures via
|
|
* an A/R format FSR value. We then translate that into the proper
|
|
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
|
|
* Mostly the FSR values we use for this are those defined for v7PMSA,
|
|
* since we share some of that codepath. A few kinds of fault are
|
|
* only for M profile and have no A/R equivalent, though, so we have
|
|
* to pick a value from the reserved range (which we never otherwise
|
|
* generate) to use for these.
|
|
* These values will never be visible to the guest.
|
|
*/
|
|
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
|
|
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
|
|
|
|
/**
|
|
* raise_exception: Raise the specified exception.
|
|
* Raise a guest exception with the specified value, syndrome register
|
|
* and target exception level. This should be called from helper functions,
|
|
* and never returns because we will longjump back up to the CPU main loop.
|
|
*/
|
|
void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el);
|
|
|
|
/*
|
|
* For AArch64, map a given EL to an index in the banked_spsr array.
|
|
* Note that this mapping and the AArch32 mapping defined in bank_number()
|
|
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
|
|
* mandated mapping between each other.
|
|
*/
|
|
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
|
|
{
|
|
static const unsigned int map[4] = {
|
|
[1] = BANK_SVC, /* EL1. */
|
|
[2] = BANK_HYP, /* EL2. */
|
|
[3] = BANK_MON, /* EL3. */
|
|
};
|
|
assert(el >= 1 && el <= 3);
|
|
return map[el];
|
|
}
|
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
static inline int bank_number(int mode)
|
|
{
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return BANK_USRSYS;
|
|
case ARM_CPU_MODE_SVC:
|
|
return BANK_SVC;
|
|
case ARM_CPU_MODE_ABT:
|
|
return BANK_ABT;
|
|
case ARM_CPU_MODE_UND:
|
|
return BANK_UND;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return BANK_IRQ;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return BANK_FIQ;
|
|
case ARM_CPU_MODE_HYP:
|
|
return BANK_HYP;
|
|
case ARM_CPU_MODE_MON:
|
|
return BANK_MON;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void switch_mode(CPUARMState *, int);
|
|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
|
|
void arm_translate_init(void);
|
|
|
|
enum arm_fprounding {
|
|
FPROUNDING_TIEEVEN,
|
|
FPROUNDING_POSINF,
|
|
FPROUNDING_NEGINF,
|
|
FPROUNDING_ZERO,
|
|
FPROUNDING_TIEAWAY,
|
|
FPROUNDING_ODD
|
|
};
|
|
|
|
int arm_rmode_to_sf(int rmode);
|
|
|
|
static inline void aarch64_save_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->sp_el[el] = env->xregs[31];
|
|
} else {
|
|
env->sp_el[0] = env->xregs[31];
|
|
}
|
|
}
|
|
|
|
static inline void aarch64_restore_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->xregs[31] = env->sp_el[el];
|
|
} else {
|
|
env->xregs[31] = env->sp_el[0];
|
|
}
|
|
}
|
|
|
|
static inline void update_spsel(CPUARMState *env, uint32_t imm)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
/* Update PSTATE SPSel bit; this requires us to update the
|
|
* working stack pointer in xregs[31].
|
|
*/
|
|
if (!((imm ^ env->pstate) & PSTATE_SP)) {
|
|
return;
|
|
}
|
|
aarch64_save_sp(env, cur_el);
|
|
env->pstate = deposit32(env->pstate, 0, 1, imm);
|
|
|
|
/* We rely on illegal updates to SPsel from EL0 to get trapped
|
|
* at translation time.
|
|
*/
|
|
assert(cur_el >= 1 && cur_el <= 3);
|
|
aarch64_restore_sp(env, cur_el);
|
|
}
|
|
|
|
/*
|
|
* arm_pamax
|
|
* @cpu: ARMCPU
|
|
*
|
|
* Returns the implementation defined bit-width of physical addresses.
|
|
* The ARMv8 reference manuals refer to this as PAMax().
|
|
*/
|
|
static inline unsigned int arm_pamax(ARMCPU *cpu)
|
|
{
|
|
static const unsigned int pamax_map[] = {
|
|
[0] = 32,
|
|
[1] = 36,
|
|
[2] = 40,
|
|
[3] = 42,
|
|
[4] = 44,
|
|
[5] = 48,
|
|
};
|
|
unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
|
|
|
|
/* id_aa64mmfr0 is a read-only register so values outside of the
|
|
* supported mappings can be considered an implementation error. */
|
|
assert(parange < ARRAY_SIZE(pamax_map));
|
|
return pamax_map[parange];
|
|
}
|
|
|
|
/* Return true if extended addresses are enabled.
|
|
* This is always the case if our translation regime is 64 bit,
|
|
* but depends on TTBCR.EAE for 32 bit.
|
|
*/
|
|
static inline bool extended_addresses_enabled(CPUARMState *env)
|
|
{
|
|
TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
|
|
return arm_el_is_aa64(env, 1) ||
|
|
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
|
|
}
|
|
|
|
/* Valid Syndrome Register EC field values */
|
|
enum arm_exception_class {
|
|
EC_UNCATEGORIZED = 0x00,
|
|
EC_WFX_TRAP = 0x01,
|
|
EC_CP15RTTRAP = 0x03,
|
|
EC_CP15RRTTRAP = 0x04,
|
|
EC_CP14RTTRAP = 0x05,
|
|
EC_CP14DTTRAP = 0x06,
|
|
EC_ADVSIMDFPACCESSTRAP = 0x07,
|
|
EC_FPIDTRAP = 0x08,
|
|
EC_CP14RRTTRAP = 0x0c,
|
|
EC_ILLEGALSTATE = 0x0e,
|
|
EC_AA32_SVC = 0x11,
|
|
EC_AA32_HVC = 0x12,
|
|
EC_AA32_SMC = 0x13,
|
|
EC_AA64_SVC = 0x15,
|
|
EC_AA64_HVC = 0x16,
|
|
EC_AA64_SMC = 0x17,
|
|
EC_SYSTEMREGISTERTRAP = 0x18,
|
|
EC_SVEACCESSTRAP = 0x19,
|
|
EC_INSNABORT = 0x20,
|
|
EC_INSNABORT_SAME_EL = 0x21,
|
|
EC_PCALIGNMENT = 0x22,
|
|
EC_DATAABORT = 0x24,
|
|
EC_DATAABORT_SAME_EL = 0x25,
|
|
EC_SPALIGNMENT = 0x26,
|
|
EC_AA32_FPTRAP = 0x28,
|
|
EC_AA64_FPTRAP = 0x2c,
|
|
EC_SERROR = 0x2f,
|
|
EC_BREAKPOINT = 0x30,
|
|
EC_BREAKPOINT_SAME_EL = 0x31,
|
|
EC_SOFTWARESTEP = 0x32,
|
|
EC_SOFTWARESTEP_SAME_EL = 0x33,
|
|
EC_WATCHPOINT = 0x34,
|
|
EC_WATCHPOINT_SAME_EL = 0x35,
|
|
EC_AA32_BKPT = 0x38,
|
|
EC_VECTORCATCH = 0x3a,
|
|
EC_AA64_BKPT = 0x3c,
|
|
};
|
|
|
|
#define ARM_EL_EC_SHIFT 26
|
|
#define ARM_EL_IL_SHIFT 25
|
|
#define ARM_EL_ISV_SHIFT 24
|
|
#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
|
|
#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
|
|
|
|
/* Utility functions for constructing various kinds of syndrome value.
|
|
* Note that in general we follow the AArch64 syndrome values; in a
|
|
* few cases the value in HSR for exceptions taken to AArch32 Hyp
|
|
* mode differs slightly, so if we ever implemented Hyp mode then the
|
|
* syndrome value would need some massaging on exception entry.
|
|
* (One example of this is that AArch64 defaults to IL bit set for
|
|
* exceptions which don't specifically indicate information about the
|
|
* trapping instruction, whereas AArch32 defaults to IL bit clear.)
|
|
*/
|
|
static inline uint32_t syn_uncategorized(void)
|
|
{
|
|
return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
|
|
}
|
|
|
|
static inline uint32_t syn_aa64_svc(uint32_t imm16)
|
|
{
|
|
return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
|
|
}
|
|
|
|
static inline uint32_t syn_aa64_hvc(uint32_t imm16)
|
|
{
|
|
return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
|
|
}
|
|
|
|
static inline uint32_t syn_aa64_smc(uint32_t imm16)
|
|
{
|
|
return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
|
|
}
|
|
|
|
static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
|
|
{
|
|
return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
|
|
| (is_16bit ? 0 : ARM_EL_IL);
|
|
}
|
|
|
|
static inline uint32_t syn_aa32_hvc(uint32_t imm16)
|
|
{
|
|
return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
|
|
}
|
|
|
|
static inline uint32_t syn_aa32_smc(void)
|
|
{
|
|
return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
|
|
}
|
|
|
|
static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
|
|
{
|
|
return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
|
|
}
|
|
|
|
static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
|
|
{
|
|
return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
|
|
| (is_16bit ? 0 : ARM_EL_IL);
|
|
}
|
|
|
|
static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
|
|
int crn, int crm, int rt,
|
|
int isread)
|
|
{
|
|
return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
|
|
| (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
|
|
| (crm << 1) | isread;
|
|
}
|
|
|
|
static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
|
|
int crn, int crm, int rt, int isread,
|
|
bool is_16bit)
|
|
{
|
|
return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
|
|
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
|
|
}
|
|
|
|
static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
|
|
int crn, int crm, int rt, int isread,
|
|
bool is_16bit)
|
|
{
|
|
return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
|
|
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
|
|
}
|
|
|
|
static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
|
|
int rt, int rt2, int isread,
|
|
bool is_16bit)
|
|
{
|
|
return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| (cv << 24) | (cond << 20) | (opc1 << 16)
|
|
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
|
|
}
|
|
|
|
static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
|
|
int rt, int rt2, int isread,
|
|
bool is_16bit)
|
|
{
|
|
return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| (cv << 24) | (cond << 20) | (opc1 << 16)
|
|
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
|
|
}
|
|
|
|
static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
|
|
{
|
|
return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| (cv << 24) | (cond << 20);
|
|
}
|
|
|
|
static inline uint32_t syn_sve_access_trap(void)
|
|
{
|
|
return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
|
|
}
|
|
|
|
static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
|
|
{
|
|
return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
|
|
}
|
|
|
|
static inline uint32_t syn_data_abort_no_iss(int same_el,
|
|
int ea, int cm, int s1ptw,
|
|
int wnr, int fsc)
|
|
{
|
|
return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| ARM_EL_IL
|
|
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
|
|
}
|
|
|
|
static inline uint32_t syn_data_abort_with_iss(int same_el,
|
|
int sas, int sse, int srt,
|
|
int sf, int ar,
|
|
int ea, int cm, int s1ptw,
|
|
int wnr, int fsc,
|
|
bool is_16bit)
|
|
{
|
|
return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| (is_16bit ? 0 : ARM_EL_IL)
|
|
| ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
|
|
| (sf << 15) | (ar << 14)
|
|
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
|
|
}
|
|
|
|
static inline uint32_t syn_swstep(int same_el, int isv, int ex)
|
|
{
|
|
return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
|
|
}
|
|
|
|
static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
|
|
{
|
|
return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
|
|
}
|
|
|
|
static inline uint32_t syn_breakpoint(int same_el)
|
|
{
|
|
return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
|
|
| ARM_EL_IL | 0x22;
|
|
}
|
|
|
|
static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
|
|
{
|
|
return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
|
|
(is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
|
|
(cv << 24) | (cond << 20) | ti;
|
|
}
|
|
|
|
/* Update a QEMU watchpoint based on the information the guest has set in the
|
|
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
|
|
*/
|
|
void hw_watchpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU watchpoints for every guest watchpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU watchpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_watchpoint_update_all(ARMCPU *cpu);
|
|
/* Update a QEMU breakpoint based on the information the guest has set in the
|
|
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
|
|
*/
|
|
void hw_breakpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU breakpoints for every guest breakpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU breakpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_breakpoint_update_all(ARMCPU *cpu);
|
|
|
|
/* Callback function for checking if a watchpoint should trigger. */
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
|
|
|
|
/* Adjust addresses (in BE32 mode) before testing against watchpoint
|
|
* addresses.
|
|
*/
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
|
|
|
|
/* Callback function for when a watchpoint or breakpoint triggers. */
|
|
void arm_debug_excp_handler(CPUState *cs);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
|
|
{
|
|
return false;
|
|
}
|
|
#else
|
|
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
|
|
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
|
|
/* Actually handle a PSCI call */
|
|
void arm_handle_psci_call(ARMCPU *cpu);
|
|
#endif
|
|
|
|
/**
|
|
* arm_clear_exclusive: clear the exclusive monitor
|
|
* @env: CPU env
|
|
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
|
|
*/
|
|
static inline void arm_clear_exclusive(CPUARMState *env)
|
|
{
|
|
env->exclusive_addr = -1;
|
|
}
|
|
|
|
/**
|
|
* ARMFaultType: type of an ARM MMU fault
|
|
* This corresponds to the v8A pseudocode's Fault enumeration,
|
|
* with extensions for QEMU internal conditions.
|
|
*/
|
|
typedef enum ARMFaultType {
|
|
ARMFault_None,
|
|
ARMFault_AccessFlag,
|
|
ARMFault_Alignment,
|
|
ARMFault_Background,
|
|
ARMFault_Domain,
|
|
ARMFault_Permission,
|
|
ARMFault_Translation,
|
|
ARMFault_AddressSize,
|
|
ARMFault_SyncExternal,
|
|
ARMFault_SyncExternalOnWalk,
|
|
ARMFault_SyncParity,
|
|
ARMFault_SyncParityOnWalk,
|
|
ARMFault_AsyncParity,
|
|
ARMFault_AsyncExternal,
|
|
ARMFault_Debug,
|
|
ARMFault_TLBConflict,
|
|
ARMFault_Lockdown,
|
|
ARMFault_Exclusive,
|
|
ARMFault_ICacheMaint,
|
|
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
|
|
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
|
|
} ARMFaultType;
|
|
|
|
/**
|
|
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
|
|
* @type: Type of fault
|
|
* @level: Table walk level (for translation, access flag and permission faults)
|
|
* @domain: Domain of the fault address (for non-LPAE CPUs only)
|
|
* @s2addr: Address that caused a fault at stage 2
|
|
* @stage2: True if we faulted at stage 2
|
|
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
|
|
* @ea: True if we should set the EA (external abort type) bit in syndrome
|
|
*/
|
|
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
|
|
struct ARMMMUFaultInfo {
|
|
ARMFaultType type;
|
|
target_ulong s2addr;
|
|
int level;
|
|
int domain;
|
|
bool stage2;
|
|
bool s1ptw;
|
|
bool ea;
|
|
};
|
|
|
|
/**
|
|
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
|
|
* Compare pseudocode EncodeSDFSC(), though unlike that function
|
|
* we set up a whole FSR-format code including domain field and
|
|
* putting the high bit of the FSC into bit 10.
|
|
*/
|
|
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AccessFlag:
|
|
fsc = fi->level == 1 ? 0x3 : 0x6;
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x1;
|
|
break;
|
|
case ARMFault_Permission:
|
|
fsc = fi->level == 1 ? 0xd : 0xf;
|
|
break;
|
|
case ARMFault_Domain:
|
|
fsc = fi->level == 1 ? 0x9 : 0xb;
|
|
break;
|
|
case ARMFault_Translation:
|
|
fsc = fi->level == 1 ? 0x5 : 0x7;
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x8 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
fsc = fi->level == 1 ? 0xc : 0xe;
|
|
fsc |= (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x409;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
fsc = fi->level == 1 ? 0x40c : 0x40e;
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x408;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x406 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x2;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x400;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x404;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x405;
|
|
break;
|
|
case ARMFault_ICacheMaint:
|
|
fsc = 0x4;
|
|
break;
|
|
case ARMFault_Background:
|
|
fsc = 0x0;
|
|
break;
|
|
case ARMFault_QEMU_NSCExec:
|
|
fsc = M_FAKE_FSR_NSC_EXEC;
|
|
break;
|
|
case ARMFault_QEMU_SFault:
|
|
fsc = M_FAKE_FSR_SFAULT;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* short-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= (fi->domain << 4);
|
|
return fsc;
|
|
}
|
|
|
|
/**
|
|
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
|
|
* Compare pseudocode EncodeLDFSC(), though unlike that function
|
|
* we fill in also the LPAE bit 9 of a DFSR format.
|
|
*/
|
|
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AddressSize:
|
|
fsc = fi->level & 3;
|
|
break;
|
|
case ARMFault_AccessFlag:
|
|
fsc = (fi->level & 3) | (0x2 << 2);
|
|
break;
|
|
case ARMFault_Permission:
|
|
fsc = (fi->level & 3) | (0x3 << 2);
|
|
break;
|
|
case ARMFault_Translation:
|
|
fsc = (fi->level & 3) | (0x1 << 2);
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x10 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x18;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
fsc = (fi->level & 3) | (0x7 << 2);
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x19;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x11 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x21;
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x22;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x30;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x34;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x35;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* long-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= 1 << 9;
|
|
return fsc;
|
|
}
|
|
|
|
static inline bool arm_extabort_type(MemTxResult result)
|
|
{
|
|
/* The EA bit in syndromes and fault status registers is an
|
|
* IMPDEF classification of external aborts. ARM implementations
|
|
* usually use this to indicate AXI bus Decode error (0) or
|
|
* Slave error (1); in QEMU we follow that.
|
|
*/
|
|
return result != MEMTX_DECODE_ERROR;
|
|
}
|
|
|
|
/* Do a page table walk and add page to TLB if possible */
|
|
bool arm_tlb_fill(CPUState *cpu, vaddr address,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
ARMMMUFaultInfo *fi);
|
|
|
|
/* Return true if the stage 1 translation regime is using LPAE format page
|
|
* tables */
|
|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr);
|
|
|
|
/* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
* exception
|
|
*/
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr);
|
|
|
|
/* Call any registered EL change hooks */
|
|
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
static inline void arm_call_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
|
|
/* Return true if this address translation regime is secure */
|
|
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_S12NSE0:
|
|
case ARMMMUIdx_S12NSE1:
|
|
case ARMMMUIdx_S1NSE0:
|
|
case ARMMMUIdx_S1NSE1:
|
|
case ARMMMUIdx_S1E2:
|
|
case ARMMMUIdx_S2NS:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPriv:
|
|
case ARMMMUIdx_MUser:
|
|
return false;
|
|
case ARMMMUIdx_S1E3:
|
|
case ARMMMUIdx_S1SE0:
|
|
case ARMMMUIdx_S1SE1:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPriv:
|
|
case ARMMMUIdx_MSUser:
|
|
return true;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return the FSR value for a debug exception (watchpoint, hardware
|
|
* breakpoint or BKPT insn) targeting the specified exception level.
|
|
*/
|
|
static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
|
|
{
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
|
|
int target_el = arm_debug_target_el(env);
|
|
bool using_lpae = false;
|
|
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
|
|
using_lpae = true;
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) &&
|
|
(env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
|
|
using_lpae = true;
|
|
}
|
|
}
|
|
|
|
if (using_lpae) {
|
|
return arm_fi_to_lfsc(&fi);
|
|
} else {
|
|
return arm_fi_to_sfsc(&fi);
|
|
}
|
|
}
|
|
|
|
/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
|
|
* Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
|
|
*/
|
|
#define MEMOPIDX_SHIFT 8
|
|
|
|
/**
|
|
* v7m_using_psp: Return true if using process stack pointer
|
|
* Return true if the CPU is currently using the process stack
|
|
* pointer, or false if it is using the main stack pointer.
|
|
*/
|
|
static inline bool v7m_using_psp(CPUARMState *env)
|
|
{
|
|
/* Handler mode always uses the main stack; for thread mode
|
|
* the CONTROL.SPSEL bit determines the answer.
|
|
* Note that in v7M it is not possible to be in Handler mode with
|
|
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
|
|
*/
|
|
return !arm_v7m_is_handler_mode(env) &&
|
|
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
|
|
}
|
|
|
|
/**
|
|
* v7m_sp_limit: Return SP limit for current CPU state
|
|
* Return the SP limit value for the current CPU security state
|
|
* and stack pointer.
|
|
*/
|
|
static inline uint32_t v7m_sp_limit(CPUARMState *env)
|
|
{
|
|
if (v7m_using_psp(env)) {
|
|
return env->v7m.psplim[env->v7m.secure];
|
|
} else {
|
|
return env->v7m.msplim[env->v7m.secure];
|
|
}
|
|
}
|
|
|
|
#endif
|