qemu-e2k/hw/imx_timer.c
Avi Kivity a8170e5e97 Rename target_phys_addr_t to hwaddr
target_phys_addr_t is unwieldly, violates the C standard (_t suffixes are
reserved) and its purpose doesn't match the name (most target_phys_addr_t
addresses are not target specific).  Replace it with a finger-friendly,
standards conformant hwaddr.

Outstanding patchsets can be fixed up with the command

  git rebase -i --exec 'find -name "*.[ch]"
                        | xargs s/target_phys_addr_t/hwaddr/g' origin

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-10-23 08:58:25 -05:00

690 lines
18 KiB
C

/*
* IMX31 Timer
*
* Copyright (c) 2008 OK Labs
* Copyright (c) 2011 NICTA Pty Ltd
* Originally written by Hans Jiang
* Updated by Peter Chubb
*
* This code is licensed under GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#include "hw.h"
#include "qemu-timer.h"
#include "ptimer.h"
#include "sysbus.h"
#include "imx.h"
//#define DEBUG_TIMER 1
#ifdef DEBUG_TIMER
# define DPRINTF(fmt, args...) \
do { printf("imx_timer: " fmt , ##args); } while (0)
#else
# define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Define to 1 for messages about attempts to
* access unimplemented registers or similar.
*/
#define DEBUG_IMPLEMENTATION 1
#if DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \
do { fprintf(stderr, "imx_timer: " fmt, ##args); } while (0)
#else
# define IPRINTF(fmt, args...) do {} while (0)
#endif
/*
* GPT : General purpose timer
*
* This timer counts up continuously while it is enabled, resetting itself
* to 0 when it reaches TIMER_MAX (in freerun mode) or when it
* reaches the value of ocr1 (in periodic mode). WE simulate this using a
* QEMU ptimer counting down from ocr1 and reloading from ocr1 in
* periodic mode, or counting from ocr1 to zero, then TIMER_MAX - ocr1.
* waiting_rov is set when counting from TIMER_MAX.
*
* In the real hardware, there are three comparison registers that can
* trigger interrupts, and compare channel 1 can be used to
* force-reset the timer. However, this is a `bare-bones'
* implementation: only what Linux 3.x uses has been implemented
* (free-running timer from 0 to OCR1 or TIMER_MAX) .
*/
#define TIMER_MAX 0XFFFFFFFFUL
/* Control register. Not all of these bits have any effect (yet) */
#define GPT_CR_EN (1 << 0) /* GPT Enable */
#define GPT_CR_ENMOD (1 << 1) /* GPT Enable Mode */
#define GPT_CR_DBGEN (1 << 2) /* GPT Debug mode enable */
#define GPT_CR_WAITEN (1 << 3) /* GPT Wait Mode Enable */
#define GPT_CR_DOZEN (1 << 4) /* GPT Doze mode enable */
#define GPT_CR_STOPEN (1 << 5) /* GPT Stop Mode Enable */
#define GPT_CR_CLKSRC_SHIFT (6)
#define GPT_CR_CLKSRC_MASK (0x7)
#define GPT_CR_FRR (1 << 9) /* Freerun or Restart */
#define GPT_CR_SWR (1 << 15) /* Software Reset */
#define GPT_CR_IM1 (3 << 16) /* Input capture channel 1 mode (2 bits) */
#define GPT_CR_IM2 (3 << 18) /* Input capture channel 2 mode (2 bits) */
#define GPT_CR_OM1 (7 << 20) /* Output Compare Channel 1 Mode (3 bits) */
#define GPT_CR_OM2 (7 << 23) /* Output Compare Channel 2 Mode (3 bits) */
#define GPT_CR_OM3 (7 << 26) /* Output Compare Channel 3 Mode (3 bits) */
#define GPT_CR_FO1 (1 << 29) /* Force Output Compare Channel 1 */
#define GPT_CR_FO2 (1 << 30) /* Force Output Compare Channel 2 */
#define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */
#define GPT_SR_OF1 (1 << 0)
#define GPT_SR_ROV (1 << 5)
#define GPT_IR_OF1IE (1 << 0)
#define GPT_IR_ROVIE (1 << 5)
typedef struct {
SysBusDevice busdev;
ptimer_state *timer;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t pr;
uint32_t sr;
uint32_t ir;
uint32_t ocr1;
uint32_t cnt;
uint32_t waiting_rov;
qemu_irq irq;
} IMXTimerGState;
static const VMStateDescription vmstate_imx_timerg = {
.name = "imx-timerg",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerGState),
VMSTATE_UINT32(pr, IMXTimerGState),
VMSTATE_UINT32(sr, IMXTimerGState),
VMSTATE_UINT32(ir, IMXTimerGState),
VMSTATE_UINT32(ocr1, IMXTimerGState),
VMSTATE_UINT32(cnt, IMXTimerGState),
VMSTATE_UINT32(waiting_rov, IMXTimerGState),
VMSTATE_PTIMER(timer, IMXTimerGState),
VMSTATE_END_OF_LIST()
}
};
static const IMXClk imx_timerg_clocks[] = {
NOCLK, /* 000 No clock source */
IPG, /* 001 ipg_clk, 532MHz*/
IPG, /* 010 ipg_clk_highfreq */
NOCLK, /* 011 not defined */
CLK_32k, /* 100 ipg_clk_32k */
NOCLK, /* 101 not defined */
NOCLK, /* 110 not defined */
NOCLK, /* 111 not defined */
};
static void imx_timerg_set_freq(IMXTimerGState *s)
{
int clksrc;
uint32_t freq;
clksrc = (s->cr >> GPT_CR_CLKSRC_SHIFT) & GPT_CR_CLKSRC_MASK;
freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr);
DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq);
if (freq) {
ptimer_set_freq(s->timer, freq);
}
}
static void imx_timerg_update(IMXTimerGState *s)
{
uint32_t flags = s->sr & s->ir & (GPT_SR_OF1 | GPT_SR_ROV);
DPRINTF("g-timer SR: %s %s IR=%s %s, %s\n",
s->sr & GPT_SR_OF1 ? "OF1" : "",
s->sr & GPT_SR_ROV ? "ROV" : "",
s->ir & GPT_SR_OF1 ? "OF1" : "",
s->ir & GPT_SR_ROV ? "ROV" : "",
s->cr & GPT_CR_EN ? "CR_EN" : "Not Enabled");
qemu_set_irq(s->irq, (s->cr & GPT_CR_EN) && flags);
}
static uint32_t imx_timerg_update_counts(IMXTimerGState *s)
{
uint64_t target = s->waiting_rov ? TIMER_MAX : s->ocr1;
uint64_t cnt = ptimer_get_count(s->timer);
s->cnt = target - cnt;
return s->cnt;
}
static void imx_timerg_reload(IMXTimerGState *s, uint32_t timeout)
{
uint64_t diff_cnt;
if (!(s->cr & GPT_CR_FRR)) {
IPRINTF("IMX_timerg_reload --- called in reset-mode\n");
return;
}
/*
* For small timeouts, qemu sometimes runs too slow.
* Better deliver a late interrupt than none.
*
* In Reset mode (FRR bit clear)
* the ptimer reloads itself from OCR1;
* in free-running mode we need to fake
* running from 0 to ocr1 to TIMER_MAX
*/
if (timeout > s->cnt) {
diff_cnt = timeout - s->cnt;
} else {
diff_cnt = 0;
}
ptimer_set_count(s->timer, diff_cnt);
}
static uint64_t imx_timerg_read(void *opaque, hwaddr offset,
unsigned size)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("g-read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* Control Register */
DPRINTF(" cr = %x\n", s->cr);
return s->cr;
case 1: /* prescaler */
DPRINTF(" pr = %x\n", s->pr);
return s->pr;
case 2: /* Status Register */
DPRINTF(" sr = %x\n", s->sr);
return s->sr;
case 3: /* Interrupt Register */
DPRINTF(" ir = %x\n", s->ir);
return s->ir;
case 4: /* Output Compare Register 1 */
DPRINTF(" ocr1 = %x\n", s->ocr1);
return s->ocr1;
case 9: /* cnt */
imx_timerg_update_counts(s);
DPRINTF(" cnt = %x\n", s->cnt);
return s->cnt;
}
IPRINTF("imx_timerg_read: Bad offset %x\n",
(int)offset >> 2);
return 0;
}
static void imx_timerg_reset(DeviceState *dev)
{
IMXTimerGState *s = container_of(dev, IMXTimerGState, busdev.qdev);
/*
* Soft reset doesn't touch some bits; hard reset clears them
*/
s->cr &= ~(GPT_CR_EN|GPT_CR_DOZEN|GPT_CR_WAITEN|GPT_CR_DBGEN);
s->sr = 0;
s->pr = 0;
s->ir = 0;
s->cnt = 0;
s->ocr1 = TIMER_MAX;
ptimer_stop(s->timer);
ptimer_set_limit(s->timer, TIMER_MAX, 1);
imx_timerg_set_freq(s);
}
static void imx_timerg_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2,
(unsigned int)value);
switch (offset >> 2) {
case 0: {
uint32_t oldcr = s->cr;
/* CR */
if (value & GPT_CR_SWR) { /* force reset */
value &= ~GPT_CR_SWR;
imx_timerg_reset(&s->busdev.qdev);
imx_timerg_update(s);
}
s->cr = value & ~0x7c00;
imx_timerg_set_freq(s);
if ((oldcr ^ value) & GPT_CR_EN) {
if (value & GPT_CR_EN) {
if (value & GPT_CR_ENMOD) {
ptimer_set_count(s->timer, s->ocr1);
s->cnt = 0;
}
ptimer_run(s->timer,
(value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX));
} else {
ptimer_stop(s->timer);
};
}
return;
}
case 1: /* Prescaler */
s->pr = value & 0xfff;
imx_timerg_set_freq(s);
return;
case 2: /* SR */
/*
* No point in implementing the status register bits to do with
* external interrupt sources.
*/
value &= GPT_SR_OF1 | GPT_SR_ROV;
s->sr &= ~value;
imx_timerg_update(s);
return;
case 3: /* IR -- interrupt register */
s->ir = value & 0x3f;
imx_timerg_update(s);
return;
case 4: /* OCR1 -- output compare register */
/* In non-freerun mode, reset count when this register is written */
if (!(s->cr & GPT_CR_FRR)) {
s->waiting_rov = 0;
ptimer_set_limit(s->timer, value, 1);
} else {
imx_timerg_update_counts(s);
if (value > s->cnt) {
s->waiting_rov = 0;
imx_timerg_reload(s, value);
} else {
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX - s->cnt);
}
}
s->ocr1 = value;
return;
default:
IPRINTF("imx_timerg_write: Bad offset %x\n",
(int)offset >> 2);
}
}
static void imx_timerg_timeout(void *opaque)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("imx_timerg_timeout, waiting rov=%d\n", s->waiting_rov);
if (s->cr & GPT_CR_FRR) {
/*
* Free running timer from 0 -> TIMERMAX
* Generates interrupt at TIMER_MAX and at cnt==ocr1
* If ocr1 == TIMER_MAX, then no need to reload timer.
*/
if (s->ocr1 == TIMER_MAX) {
DPRINTF("s->ocr1 == TIMER_MAX, FRR\n");
s->sr |= GPT_SR_OF1 | GPT_SR_ROV;
imx_timerg_update(s);
return;
}
if (s->waiting_rov) {
/*
* We were waiting for cnt==TIMER_MAX
*/
s->sr |= GPT_SR_ROV;
s->waiting_rov = 0;
s->cnt = 0;
imx_timerg_reload(s, s->ocr1);
} else {
/* Must have got a cnt==ocr1 timeout. */
s->sr |= GPT_SR_OF1;
s->cnt = s->ocr1;
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX);
}
imx_timerg_update(s);
return;
}
s->sr |= GPT_SR_OF1;
imx_timerg_update(s);
}
static const MemoryRegionOps imx_timerg_ops = {
.read = imx_timerg_read,
.write = imx_timerg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int imx_timerg_init(SysBusDevice *dev)
{
IMXTimerGState *s = FROM_SYSBUS(IMXTimerGState, dev);
QEMUBH *bh;
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerg_ops,
s, "imxg-timer",
0x00001000);
sysbus_init_mmio(dev, &s->iomem);
bh = qemu_bh_new(imx_timerg_timeout, s);
s->timer = ptimer_init(bh);
/* Hard reset resets extra bits in CR */
s->cr = 0;
return 0;
}
/*
* EPIT: Enhanced periodic interrupt timer
*/
#define CR_EN (1 << 0)
#define CR_ENMOD (1 << 1)
#define CR_OCIEN (1 << 2)
#define CR_RLD (1 << 3)
#define CR_PRESCALE_SHIFT (4)
#define CR_PRESCALE_MASK (0xfff)
#define CR_SWR (1 << 16)
#define CR_IOVW (1 << 17)
#define CR_DBGEN (1 << 18)
#define CR_EPIT (1 << 19)
#define CR_DOZEN (1 << 20)
#define CR_STOPEN (1 << 21)
#define CR_CLKSRC_SHIFT (24)
#define CR_CLKSRC_MASK (0x3 << CR_CLKSRC_SHIFT)
/*
* Exact clock frequencies vary from board to board.
* These are typical.
*/
static const IMXClk imx_timerp_clocks[] = {
0, /* disabled */
IPG, /* ipg_clk, ~532MHz */
IPG, /* ipg_clk_highfreq */
CLK_32k, /* ipg_clk_32k -- ~32kHz */
};
typedef struct {
SysBusDevice busdev;
ptimer_state *timer;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t lr;
uint32_t cmp;
uint32_t freq;
int int_level;
qemu_irq irq;
} IMXTimerPState;
/*
* Update interrupt status
*/
static void imx_timerp_update(IMXTimerPState *s)
{
if (s->int_level && (s->cr & CR_OCIEN)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void imx_timerp_reset(DeviceState *dev)
{
IMXTimerPState *s = container_of(dev, IMXTimerPState, busdev.qdev);
s->cr = 0;
s->lr = TIMER_MAX;
s->int_level = 0;
s->cmp = 0;
ptimer_stop(s->timer);
ptimer_set_count(s->timer, TIMER_MAX);
}
static uint64_t imx_timerp_read(void *opaque, hwaddr offset,
unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* Control Register */
DPRINTF("cr %x\n", s->cr);
return s->cr;
case 1: /* Status Register */
DPRINTF("int_level %x\n", s->int_level);
return s->int_level;
case 2: /* LR - ticks*/
DPRINTF("lr %x\n", s->lr);
return s->lr;
case 3: /* CMP */
DPRINTF("cmp %x\n", s->cmp);
return s->cmp;
case 4: /* CNT */
return ptimer_get_count(s->timer);
}
IPRINTF("imx_timerp_read: Bad offset %x\n",
(int)offset >> 2);
return 0;
}
static void set_timerp_freq(IMXTimerPState *s)
{
int clksrc;
unsigned prescaler;
uint32_t freq;
clksrc = (s->cr & CR_CLKSRC_MASK) >> CR_CLKSRC_SHIFT;
prescaler = 1 + ((s->cr >> CR_PRESCALE_SHIFT) & CR_PRESCALE_MASK);
freq = imx_clock_frequency(s->ccm, imx_timerp_clocks[clksrc]) / prescaler;
s->freq = freq;
DPRINTF("Setting ptimer frequency to %u\n", freq);
if (freq) {
ptimer_set_freq(s->timer, freq);
}
}
static void imx_timerp_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-write(offset=%x, value = %x)\n", (unsigned int)offset >> 2,
(unsigned int)value);
switch (offset >> 2) {
case 0: /* CR */
if (value & CR_SWR) {
imx_timerp_reset(&s->busdev.qdev);
value &= ~CR_SWR;
}
s->cr = value & 0x03ffffff;
set_timerp_freq(s);
if (s->freq && (s->cr & CR_EN)) {
if (!(s->cr & CR_ENMOD)) {
ptimer_set_count(s->timer, s->lr);
}
ptimer_run(s->timer, 0);
} else {
ptimer_stop(s->timer);
}
break;
case 1: /* SR - ACK*/
s->int_level = 0;
imx_timerp_update(s);
break;
case 2: /* LR - set ticks */
s->lr = value;
ptimer_set_limit(s->timer, value, !!(s->cr & CR_IOVW));
break;
case 3: /* CMP */
s->cmp = value;
if (value) {
IPRINTF(
"Values for EPIT comparison other than zero not supported\n"
);
}
break;
default:
IPRINTF("imx_timerp_write: Bad offset %x\n",
(int)offset >> 2);
}
}
static void imx_timerp_tick(void *opaque)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("imxp tick\n");
if (!(s->cr & CR_RLD)) {
ptimer_set_count(s->timer, TIMER_MAX);
}
s->int_level = 1;
imx_timerp_update(s);
}
void imx_timerp_create(const hwaddr addr,
qemu_irq irq,
DeviceState *ccm)
{
IMXTimerPState *pp;
DeviceState *dev;
dev = sysbus_create_simple("imx_timerp", addr, irq);
pp = container_of(dev, IMXTimerPState, busdev.qdev);
pp->ccm = ccm;
}
static const MemoryRegionOps imx_timerp_ops = {
.read = imx_timerp_read,
.write = imx_timerp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_imx_timerp = {
.name = "imx-timerp",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerPState),
VMSTATE_UINT32(lr, IMXTimerPState),
VMSTATE_UINT32(cmp, IMXTimerPState),
VMSTATE_UINT32(freq, IMXTimerPState),
VMSTATE_INT32(int_level, IMXTimerPState),
VMSTATE_PTIMER(timer, IMXTimerPState),
VMSTATE_END_OF_LIST()
}
};
static int imx_timerp_init(SysBusDevice *dev)
{
IMXTimerPState *s = FROM_SYSBUS(IMXTimerPState, dev);
QEMUBH *bh;
DPRINTF("imx_timerp_init\n");
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerp_ops,
s, "imxp-timer",
0x00001000);
sysbus_init_mmio(dev, &s->iomem);
bh = qemu_bh_new(imx_timerp_tick, s);
s->timer = ptimer_init(bh);
return 0;
}
void imx_timerg_create(const hwaddr addr,
qemu_irq irq,
DeviceState *ccm)
{
IMXTimerGState *pp;
DeviceState *dev;
dev = sysbus_create_simple("imx_timerg", addr, irq);
pp = container_of(dev, IMXTimerGState, busdev.qdev);
pp->ccm = ccm;
}
static void imx_timerg_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerg_init;
dc->vmsd = &vmstate_imx_timerg;
dc->reset = imx_timerg_reset;
dc->desc = "i.MX general timer";
}
static void imx_timerp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerp_init;
dc->vmsd = &vmstate_imx_timerp;
dc->reset = imx_timerp_reset;
dc->desc = "i.MX periodic timer";
}
static const TypeInfo imx_timerp_info = {
.name = "imx_timerp",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerPState),
.class_init = imx_timerp_class_init,
};
static const TypeInfo imx_timerg_info = {
.name = "imx_timerg",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerGState),
.class_init = imx_timerg_class_init,
};
static void imx_timer_register_types(void)
{
type_register_static(&imx_timerp_info);
type_register_static(&imx_timerg_info);
}
type_init(imx_timer_register_types)