qemu-e2k/hw/xen_pt_msi.c
Avi Kivity a8170e5e97 Rename target_phys_addr_t to hwaddr
target_phys_addr_t is unwieldly, violates the C standard (_t suffixes are
reserved) and its purpose doesn't match the name (most target_phys_addr_t
addresses are not target specific).  Replace it with a finger-friendly,
standards conformant hwaddr.

Outstanding patchsets can be fixed up with the command

  git rebase -i --exec 'find -name "*.[ch]"
                        | xargs s/target_phys_addr_t/hwaddr/g' origin

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-10-23 08:58:25 -05:00

621 lines
17 KiB
C

/*
* Copyright (c) 2007, Intel Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Jiang Yunhong <yunhong.jiang@intel.com>
*
* This file implements direct PCI assignment to a HVM guest
*/
#include <sys/mman.h>
#include "xen_backend.h"
#include "xen_pt.h"
#include "apic-msidef.h"
#define XEN_PT_AUTO_ASSIGN -1
/* shift count for gflags */
#define XEN_PT_GFLAGS_SHIFT_DEST_ID 0
#define XEN_PT_GFLAGS_SHIFT_RH 8
#define XEN_PT_GFLAGS_SHIFT_DM 9
#define XEN_PT_GFLAGSSHIFT_DELIV_MODE 12
#define XEN_PT_GFLAGSSHIFT_TRG_MODE 15
/*
* Helpers
*/
static inline uint8_t msi_vector(uint32_t data)
{
return (data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
}
static inline uint8_t msi_dest_id(uint32_t addr)
{
return (addr & MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
}
static inline uint32_t msi_ext_dest_id(uint32_t addr_hi)
{
return addr_hi & 0xffffff00;
}
static uint32_t msi_gflags(uint32_t data, uint64_t addr)
{
uint32_t result = 0;
int rh, dm, dest_id, deliv_mode, trig_mode;
rh = (addr >> MSI_ADDR_REDIRECTION_SHIFT) & 0x1;
dm = (addr >> MSI_ADDR_DEST_MODE_SHIFT) & 0x1;
dest_id = msi_dest_id(addr);
deliv_mode = (data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 0x7;
trig_mode = (data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
result = dest_id | (rh << XEN_PT_GFLAGS_SHIFT_RH)
| (dm << XEN_PT_GFLAGS_SHIFT_DM)
| (deliv_mode << XEN_PT_GFLAGSSHIFT_DELIV_MODE)
| (trig_mode << XEN_PT_GFLAGSSHIFT_TRG_MODE);
return result;
}
static inline uint64_t msi_addr64(XenPTMSI *msi)
{
return (uint64_t)msi->addr_hi << 32 | msi->addr_lo;
}
static int msi_msix_enable(XenPCIPassthroughState *s,
uint32_t address,
uint16_t flag,
bool enable)
{
uint16_t val = 0;
if (!address) {
return -1;
}
xen_host_pci_get_word(&s->real_device, address, &val);
if (enable) {
val |= flag;
} else {
val &= ~flag;
}
xen_host_pci_set_word(&s->real_device, address, val);
return 0;
}
static int msi_msix_setup(XenPCIPassthroughState *s,
uint64_t addr,
uint32_t data,
int *ppirq,
bool is_msix,
int msix_entry,
bool is_not_mapped)
{
uint8_t gvec = msi_vector(data);
int rc = 0;
assert((!is_msix && msix_entry == 0) || is_msix);
if (gvec == 0) {
/* if gvec is 0, the guest is asking for a particular pirq that
* is passed as dest_id */
*ppirq = msi_ext_dest_id(addr >> 32) | msi_dest_id(addr);
if (!*ppirq) {
/* this probably identifies an misconfiguration of the guest,
* try the emulated path */
*ppirq = XEN_PT_UNASSIGNED_PIRQ;
} else {
XEN_PT_LOG(&s->dev, "requested pirq %d for MSI%s"
" (vec: %#x, entry: %#x)\n",
*ppirq, is_msix ? "-X" : "", gvec, msix_entry);
}
}
if (is_not_mapped) {
uint64_t table_base = 0;
if (is_msix) {
table_base = s->msix->table_base;
}
rc = xc_physdev_map_pirq_msi(xen_xc, xen_domid, XEN_PT_AUTO_ASSIGN,
ppirq, PCI_DEVFN(s->real_device.dev,
s->real_device.func),
s->real_device.bus,
msix_entry, table_base);
if (rc) {
XEN_PT_ERR(&s->dev,
"Mapping of MSI%s (rc: %i, vec: %#x, entry %#x)\n",
is_msix ? "-X" : "", rc, gvec, msix_entry);
return rc;
}
}
return 0;
}
static int msi_msix_update(XenPCIPassthroughState *s,
uint64_t addr,
uint32_t data,
int pirq,
bool is_msix,
int msix_entry,
int *old_pirq)
{
PCIDevice *d = &s->dev;
uint8_t gvec = msi_vector(data);
uint32_t gflags = msi_gflags(data, addr);
int rc = 0;
uint64_t table_addr = 0;
XEN_PT_LOG(d, "Updating MSI%s with pirq %d gvec %#x gflags %#x"
" (entry: %#x)\n",
is_msix ? "-X" : "", pirq, gvec, gflags, msix_entry);
if (is_msix) {
table_addr = s->msix->mmio_base_addr;
}
rc = xc_domain_update_msi_irq(xen_xc, xen_domid, gvec,
pirq, gflags, table_addr);
if (rc) {
XEN_PT_ERR(d, "Updating of MSI%s failed. (rc: %d)\n",
is_msix ? "-X" : "", rc);
if (xc_physdev_unmap_pirq(xen_xc, xen_domid, *old_pirq)) {
XEN_PT_ERR(d, "Unmapping of MSI%s pirq %d failed.\n",
is_msix ? "-X" : "", *old_pirq);
}
*old_pirq = XEN_PT_UNASSIGNED_PIRQ;
}
return rc;
}
static int msi_msix_disable(XenPCIPassthroughState *s,
uint64_t addr,
uint32_t data,
int pirq,
bool is_msix,
bool is_binded)
{
PCIDevice *d = &s->dev;
uint8_t gvec = msi_vector(data);
uint32_t gflags = msi_gflags(data, addr);
int rc = 0;
if (pirq == XEN_PT_UNASSIGNED_PIRQ) {
return 0;
}
if (is_binded) {
XEN_PT_LOG(d, "Unbind MSI%s with pirq %d, gvec %#x\n",
is_msix ? "-X" : "", pirq, gvec);
rc = xc_domain_unbind_msi_irq(xen_xc, xen_domid, gvec, pirq, gflags);
if (rc) {
XEN_PT_ERR(d, "Unbinding of MSI%s failed. (pirq: %d, gvec: %#x)\n",
is_msix ? "-X" : "", pirq, gvec);
return rc;
}
}
XEN_PT_LOG(d, "Unmap MSI%s pirq %d\n", is_msix ? "-X" : "", pirq);
rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, pirq);
if (rc) {
XEN_PT_ERR(d, "Unmapping of MSI%s pirq %d failed. (rc: %i)\n",
is_msix ? "-X" : "", pirq, rc);
return rc;
}
return 0;
}
/*
* MSI virtualization functions
*/
int xen_pt_msi_set_enable(XenPCIPassthroughState *s, bool enable)
{
XEN_PT_LOG(&s->dev, "%s MSI.\n", enable ? "enabling" : "disabling");
if (!s->msi) {
return -1;
}
return msi_msix_enable(s, s->msi->ctrl_offset, PCI_MSI_FLAGS_ENABLE,
enable);
}
/* setup physical msi, but don't enable it */
int xen_pt_msi_setup(XenPCIPassthroughState *s)
{
int pirq = XEN_PT_UNASSIGNED_PIRQ;
int rc = 0;
XenPTMSI *msi = s->msi;
if (msi->initialized) {
XEN_PT_ERR(&s->dev,
"Setup physical MSI when it has been properly initialized.\n");
return -1;
}
rc = msi_msix_setup(s, msi_addr64(msi), msi->data, &pirq, false, 0, true);
if (rc) {
return rc;
}
if (pirq < 0) {
XEN_PT_ERR(&s->dev, "Invalid pirq number: %d.\n", pirq);
return -1;
}
msi->pirq = pirq;
XEN_PT_LOG(&s->dev, "MSI mapped with pirq %d.\n", pirq);
return 0;
}
int xen_pt_msi_update(XenPCIPassthroughState *s)
{
XenPTMSI *msi = s->msi;
return msi_msix_update(s, msi_addr64(msi), msi->data, msi->pirq,
false, 0, &msi->pirq);
}
void xen_pt_msi_disable(XenPCIPassthroughState *s)
{
XenPTMSI *msi = s->msi;
if (!msi) {
return;
}
xen_pt_msi_set_enable(s, false);
msi_msix_disable(s, msi_addr64(msi), msi->data, msi->pirq, false,
msi->initialized);
/* clear msi info */
msi->flags = 0;
msi->mapped = false;
msi->pirq = XEN_PT_UNASSIGNED_PIRQ;
}
/*
* MSI-X virtualization functions
*/
static int msix_set_enable(XenPCIPassthroughState *s, bool enabled)
{
XEN_PT_LOG(&s->dev, "%s MSI-X.\n", enabled ? "enabling" : "disabling");
if (!s->msix) {
return -1;
}
return msi_msix_enable(s, s->msix->ctrl_offset, PCI_MSIX_FLAGS_ENABLE,
enabled);
}
static int xen_pt_msix_update_one(XenPCIPassthroughState *s, int entry_nr)
{
XenPTMSIXEntry *entry = NULL;
int pirq;
int rc;
if (entry_nr < 0 || entry_nr >= s->msix->total_entries) {
return -EINVAL;
}
entry = &s->msix->msix_entry[entry_nr];
if (!entry->updated) {
return 0;
}
pirq = entry->pirq;
rc = msi_msix_setup(s, entry->data, entry->data, &pirq, true, entry_nr,
entry->pirq == XEN_PT_UNASSIGNED_PIRQ);
if (rc) {
return rc;
}
if (entry->pirq == XEN_PT_UNASSIGNED_PIRQ) {
entry->pirq = pirq;
}
rc = msi_msix_update(s, entry->addr, entry->data, pirq, true,
entry_nr, &entry->pirq);
if (!rc) {
entry->updated = false;
}
return rc;
}
int xen_pt_msix_update(XenPCIPassthroughState *s)
{
XenPTMSIX *msix = s->msix;
int i;
for (i = 0; i < msix->total_entries; i++) {
xen_pt_msix_update_one(s, i);
}
return 0;
}
void xen_pt_msix_disable(XenPCIPassthroughState *s)
{
int i = 0;
msix_set_enable(s, false);
for (i = 0; i < s->msix->total_entries; i++) {
XenPTMSIXEntry *entry = &s->msix->msix_entry[i];
msi_msix_disable(s, entry->addr, entry->data, entry->pirq, true, true);
/* clear MSI-X info */
entry->pirq = XEN_PT_UNASSIGNED_PIRQ;
entry->updated = false;
}
}
int xen_pt_msix_update_remap(XenPCIPassthroughState *s, int bar_index)
{
XenPTMSIXEntry *entry;
int i, ret;
if (!(s->msix && s->msix->bar_index == bar_index)) {
return 0;
}
for (i = 0; i < s->msix->total_entries; i++) {
entry = &s->msix->msix_entry[i];
if (entry->pirq != XEN_PT_UNASSIGNED_PIRQ) {
ret = xc_domain_unbind_pt_irq(xen_xc, xen_domid, entry->pirq,
PT_IRQ_TYPE_MSI, 0, 0, 0, 0);
if (ret) {
XEN_PT_ERR(&s->dev, "unbind MSI-X entry %d failed\n",
entry->pirq);
}
entry->updated = true;
}
}
return xen_pt_msix_update(s);
}
static uint32_t get_entry_value(XenPTMSIXEntry *e, int offset)
{
switch (offset) {
case PCI_MSIX_ENTRY_LOWER_ADDR:
return e->addr & UINT32_MAX;
case PCI_MSIX_ENTRY_UPPER_ADDR:
return e->addr >> 32;
case PCI_MSIX_ENTRY_DATA:
return e->data;
case PCI_MSIX_ENTRY_VECTOR_CTRL:
return e->vector_ctrl;
default:
return 0;
}
}
static void set_entry_value(XenPTMSIXEntry *e, int offset, uint32_t val)
{
switch (offset) {
case PCI_MSIX_ENTRY_LOWER_ADDR:
e->addr = (e->addr & ((uint64_t)UINT32_MAX << 32)) | val;
break;
case PCI_MSIX_ENTRY_UPPER_ADDR:
e->addr = (uint64_t)val << 32 | (e->addr & UINT32_MAX);
break;
case PCI_MSIX_ENTRY_DATA:
e->data = val;
break;
case PCI_MSIX_ENTRY_VECTOR_CTRL:
e->vector_ctrl = val;
break;
}
}
static void pci_msix_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
XenPCIPassthroughState *s = opaque;
XenPTMSIX *msix = s->msix;
XenPTMSIXEntry *entry;
int entry_nr, offset;
entry_nr = addr / PCI_MSIX_ENTRY_SIZE;
if (entry_nr < 0 || entry_nr >= msix->total_entries) {
XEN_PT_ERR(&s->dev, "asked MSI-X entry '%i' invalid!\n", entry_nr);
return;
}
entry = &msix->msix_entry[entry_nr];
offset = addr % PCI_MSIX_ENTRY_SIZE;
if (offset != PCI_MSIX_ENTRY_VECTOR_CTRL) {
const volatile uint32_t *vec_ctrl;
if (get_entry_value(entry, offset) == val) {
return;
}
/*
* If Xen intercepts the mask bit access, entry->vec_ctrl may not be
* up-to-date. Read from hardware directly.
*/
vec_ctrl = s->msix->phys_iomem_base + entry_nr * PCI_MSIX_ENTRY_SIZE
+ PCI_MSIX_ENTRY_VECTOR_CTRL;
if (msix->enabled && !(*vec_ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT)) {
XEN_PT_ERR(&s->dev, "Can't update msix entry %d since MSI-X is"
" already enabled.\n", entry_nr);
return;
}
entry->updated = true;
}
set_entry_value(entry, offset, val);
if (offset == PCI_MSIX_ENTRY_VECTOR_CTRL) {
if (msix->enabled && !(val & PCI_MSIX_ENTRY_CTRL_MASKBIT)) {
xen_pt_msix_update_one(s, entry_nr);
}
}
}
static uint64_t pci_msix_read(void *opaque, hwaddr addr,
unsigned size)
{
XenPCIPassthroughState *s = opaque;
XenPTMSIX *msix = s->msix;
int entry_nr, offset;
entry_nr = addr / PCI_MSIX_ENTRY_SIZE;
if (entry_nr < 0) {
XEN_PT_ERR(&s->dev, "asked MSI-X entry '%i' invalid!\n", entry_nr);
return 0;
}
offset = addr % PCI_MSIX_ENTRY_SIZE;
if (addr < msix->total_entries * PCI_MSIX_ENTRY_SIZE) {
return get_entry_value(&msix->msix_entry[entry_nr], offset);
} else {
/* Pending Bit Array (PBA) */
return *(uint32_t *)(msix->phys_iomem_base + addr);
}
}
static const MemoryRegionOps pci_msix_ops = {
.read = pci_msix_read,
.write = pci_msix_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
int xen_pt_msix_init(XenPCIPassthroughState *s, uint32_t base)
{
uint8_t id = 0;
uint16_t control = 0;
uint32_t table_off = 0;
int i, total_entries, bar_index;
XenHostPCIDevice *hd = &s->real_device;
PCIDevice *d = &s->dev;
int fd = -1;
XenPTMSIX *msix = NULL;
int rc = 0;
rc = xen_host_pci_get_byte(hd, base + PCI_CAP_LIST_ID, &id);
if (rc) {
return rc;
}
if (id != PCI_CAP_ID_MSIX) {
XEN_PT_ERR(d, "Invalid id %#x base %#x\n", id, base);
return -1;
}
xen_host_pci_get_word(hd, base + PCI_MSIX_FLAGS, &control);
total_entries = control & PCI_MSIX_FLAGS_QSIZE;
total_entries += 1;
s->msix = g_malloc0(sizeof (XenPTMSIX)
+ total_entries * sizeof (XenPTMSIXEntry));
msix = s->msix;
msix->total_entries = total_entries;
for (i = 0; i < total_entries; i++) {
msix->msix_entry[i].pirq = XEN_PT_UNASSIGNED_PIRQ;
}
memory_region_init_io(&msix->mmio, &pci_msix_ops, s, "xen-pci-pt-msix",
(total_entries * PCI_MSIX_ENTRY_SIZE
+ XC_PAGE_SIZE - 1)
& XC_PAGE_MASK);
xen_host_pci_get_long(hd, base + PCI_MSIX_TABLE, &table_off);
bar_index = msix->bar_index = table_off & PCI_MSIX_FLAGS_BIRMASK;
table_off = table_off & ~PCI_MSIX_FLAGS_BIRMASK;
msix->table_base = s->real_device.io_regions[bar_index].base_addr;
XEN_PT_LOG(d, "get MSI-X table BAR base 0x%"PRIx64"\n", msix->table_base);
fd = open("/dev/mem", O_RDWR);
if (fd == -1) {
rc = -errno;
XEN_PT_ERR(d, "Can't open /dev/mem: %s\n", strerror(errno));
goto error_out;
}
XEN_PT_LOG(d, "table_off = %#x, total_entries = %d\n",
table_off, total_entries);
msix->table_offset_adjust = table_off & 0x0fff;
msix->phys_iomem_base =
mmap(NULL,
total_entries * PCI_MSIX_ENTRY_SIZE + msix->table_offset_adjust,
PROT_READ,
MAP_SHARED | MAP_LOCKED,
fd,
msix->table_base + table_off - msix->table_offset_adjust);
close(fd);
if (msix->phys_iomem_base == MAP_FAILED) {
rc = -errno;
XEN_PT_ERR(d, "Can't map physical MSI-X table: %s\n", strerror(errno));
goto error_out;
}
msix->phys_iomem_base = (char *)msix->phys_iomem_base
+ msix->table_offset_adjust;
XEN_PT_LOG(d, "mapping physical MSI-X table to %p\n",
msix->phys_iomem_base);
memory_region_add_subregion_overlap(&s->bar[bar_index], table_off,
&msix->mmio,
2); /* Priority: pci default + 1 */
return 0;
error_out:
memory_region_destroy(&msix->mmio);
g_free(s->msix);
s->msix = NULL;
return rc;
}
void xen_pt_msix_delete(XenPCIPassthroughState *s)
{
XenPTMSIX *msix = s->msix;
if (!msix) {
return;
}
/* unmap the MSI-X memory mapped register area */
if (msix->phys_iomem_base) {
XEN_PT_LOG(&s->dev, "unmapping physical MSI-X table from %p\n",
msix->phys_iomem_base);
munmap(msix->phys_iomem_base, msix->total_entries * PCI_MSIX_ENTRY_SIZE
+ msix->table_offset_adjust);
}
memory_region_del_subregion(&s->bar[msix->bar_index], &msix->mmio);
memory_region_destroy(&msix->mmio);
g_free(s->msix);
s->msix = NULL;
}