qemu-e2k/hw/integratorcp.c
ths 1235fc066a Spelling fixes, by Stefan Weil.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4655 c046a42c-6fe2-441c-8c8c-71466251a162
2008-06-03 19:51:57 +00:00

548 lines
15 KiB
C

/*
* ARM Integrator CP System emulation.
*
* Copyright (c) 2005-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the GPL
*/
#include "hw.h"
#include "primecell.h"
#include "devices.h"
#include "sysemu.h"
#include "boards.h"
#include "arm-misc.h"
#include "net.h"
void DMA_run (void)
{
}
typedef struct {
uint32_t flash_offset;
uint32_t cm_osc;
uint32_t cm_ctrl;
uint32_t cm_lock;
uint32_t cm_auxosc;
uint32_t cm_sdram;
uint32_t cm_init;
uint32_t cm_flags;
uint32_t cm_nvflags;
uint32_t int_level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
} integratorcm_state;
static uint8_t integrator_spd[128] = {
128, 8, 4, 11, 9, 1, 64, 0, 2, 0xa0, 0xa0, 0, 0, 8, 0, 1,
0xe, 4, 0x1c, 1, 2, 0x20, 0xc0, 0, 0, 0, 0, 0x30, 0x28, 0x30, 0x28, 0x40
};
static uint32_t integratorcm_read(void *opaque, target_phys_addr_t offset)
{
integratorcm_state *s = (integratorcm_state *)opaque;
offset -= 0x10000000;
if (offset >= 0x100 && offset < 0x200) {
/* CM_SPD */
if (offset >= 0x180)
return 0;
return integrator_spd[offset >> 2];
}
switch (offset >> 2) {
case 0: /* CM_ID */
return 0x411a3001;
case 1: /* CM_PROC */
return 0;
case 2: /* CM_OSC */
return s->cm_osc;
case 3: /* CM_CTRL */
return s->cm_ctrl;
case 4: /* CM_STAT */
return 0x00100000;
case 5: /* CM_LOCK */
if (s->cm_lock == 0xa05f) {
return 0x1a05f;
} else {
return s->cm_lock;
}
case 6: /* CM_LMBUSCNT */
/* ??? High frequency timer. */
cpu_abort(cpu_single_env, "integratorcm_read: CM_LMBUSCNT");
case 7: /* CM_AUXOSC */
return s->cm_auxosc;
case 8: /* CM_SDRAM */
return s->cm_sdram;
case 9: /* CM_INIT */
return s->cm_init;
case 10: /* CM_REFCT */
/* ??? High frequency timer. */
cpu_abort(cpu_single_env, "integratorcm_read: CM_REFCT");
case 12: /* CM_FLAGS */
return s->cm_flags;
case 14: /* CM_NVFLAGS */
return s->cm_nvflags;
case 16: /* CM_IRQ_STAT */
return s->int_level & s->irq_enabled;
case 17: /* CM_IRQ_RSTAT */
return s->int_level;
case 18: /* CM_IRQ_ENSET */
return s->irq_enabled;
case 20: /* CM_SOFT_INTSET */
return s->int_level & 1;
case 24: /* CM_FIQ_STAT */
return s->int_level & s->fiq_enabled;
case 25: /* CM_FIQ_RSTAT */
return s->int_level;
case 26: /* CM_FIQ_ENSET */
return s->fiq_enabled;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
return 0;
default:
cpu_abort (cpu_single_env,
"integratorcm_read: Unimplemented offset 0x%x\n", (int)offset);
return 0;
}
}
static void integratorcm_do_remap(integratorcm_state *s, int flash)
{
if (flash) {
cpu_register_physical_memory(0, 0x100000, IO_MEM_RAM);
} else {
cpu_register_physical_memory(0, 0x100000, s->flash_offset | IO_MEM_RAM);
}
//??? tlb_flush (cpu_single_env, 1);
}
static void integratorcm_set_ctrl(integratorcm_state *s, uint32_t value)
{
if (value & 8) {
cpu_abort(cpu_single_env, "Board reset\n");
}
if ((s->cm_init ^ value) & 4) {
integratorcm_do_remap(s, (value & 4) == 0);
}
if ((s->cm_init ^ value) & 1) {
printf("Green LED %s\n", (value & 1) ? "on" : "off");
}
s->cm_init = (s->cm_init & ~ 5) | (value ^ 5);
}
static void integratorcm_update(integratorcm_state *s)
{
/* ??? The CPU irq/fiq is raised when either the core module or base PIC
are active. */
if (s->int_level & (s->irq_enabled | s->fiq_enabled))
cpu_abort(cpu_single_env, "Core module interrupt\n");
}
static void integratorcm_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
integratorcm_state *s = (integratorcm_state *)opaque;
offset -= 0x10000000;
switch (offset >> 2) {
case 2: /* CM_OSC */
if (s->cm_lock == 0xa05f)
s->cm_osc = value;
break;
case 3: /* CM_CTRL */
integratorcm_set_ctrl(s, value);
break;
case 5: /* CM_LOCK */
s->cm_lock = value & 0xffff;
break;
case 7: /* CM_AUXOSC */
if (s->cm_lock == 0xa05f)
s->cm_auxosc = value;
break;
case 8: /* CM_SDRAM */
s->cm_sdram = value;
break;
case 9: /* CM_INIT */
/* ??? This can change the memory bus frequency. */
s->cm_init = value;
break;
case 12: /* CM_FLAGSS */
s->cm_flags |= value;
break;
case 13: /* CM_FLAGSC */
s->cm_flags &= ~value;
break;
case 14: /* CM_NVFLAGSS */
s->cm_nvflags |= value;
break;
case 15: /* CM_NVFLAGSS */
s->cm_nvflags &= ~value;
break;
case 18: /* CM_IRQ_ENSET */
s->irq_enabled |= value;
integratorcm_update(s);
break;
case 19: /* CM_IRQ_ENCLR */
s->irq_enabled &= ~value;
integratorcm_update(s);
break;
case 20: /* CM_SOFT_INTSET */
s->int_level |= (value & 1);
integratorcm_update(s);
break;
case 21: /* CM_SOFT_INTCLR */
s->int_level &= ~(value & 1);
integratorcm_update(s);
break;
case 26: /* CM_FIQ_ENSET */
s->fiq_enabled |= value;
integratorcm_update(s);
break;
case 27: /* CM_FIQ_ENCLR */
s->fiq_enabled &= ~value;
integratorcm_update(s);
break;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
break;
default:
cpu_abort (cpu_single_env,
"integratorcm_write: Unimplemented offset 0x%x\n", (int)offset);
break;
}
}
/* Integrator/CM control registers. */
static CPUReadMemoryFunc *integratorcm_readfn[] = {
integratorcm_read,
integratorcm_read,
integratorcm_read
};
static CPUWriteMemoryFunc *integratorcm_writefn[] = {
integratorcm_write,
integratorcm_write,
integratorcm_write
};
static void integratorcm_init(int memsz)
{
int iomemtype;
integratorcm_state *s;
s = (integratorcm_state *)qemu_mallocz(sizeof(integratorcm_state));
s->cm_osc = 0x01000048;
/* ??? What should the high bits of this value be? */
s->cm_auxosc = 0x0007feff;
s->cm_sdram = 0x00011122;
if (memsz >= 256) {
integrator_spd[31] = 64;
s->cm_sdram |= 0x10;
} else if (memsz >= 128) {
integrator_spd[31] = 32;
s->cm_sdram |= 0x0c;
} else if (memsz >= 64) {
integrator_spd[31] = 16;
s->cm_sdram |= 0x08;
} else if (memsz >= 32) {
integrator_spd[31] = 4;
s->cm_sdram |= 0x04;
} else {
integrator_spd[31] = 2;
}
memcpy(integrator_spd + 73, "QEMU-MEMORY", 11);
s->cm_init = 0x00000112;
s->flash_offset = qemu_ram_alloc(0x100000);
iomemtype = cpu_register_io_memory(0, integratorcm_readfn,
integratorcm_writefn, s);
cpu_register_physical_memory(0x10000000, 0x00800000, iomemtype);
integratorcm_do_remap(s, 1);
/* ??? Save/restore. */
}
/* Integrator/CP hardware emulation. */
/* Primary interrupt controller. */
typedef struct icp_pic_state
{
uint32_t base;
uint32_t level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
qemu_irq parent_irq;
qemu_irq parent_fiq;
} icp_pic_state;
static void icp_pic_update(icp_pic_state *s)
{
uint32_t flags;
flags = (s->level & s->irq_enabled);
qemu_set_irq(s->parent_irq, flags != 0);
flags = (s->level & s->fiq_enabled);
qemu_set_irq(s->parent_fiq, flags != 0);
}
static void icp_pic_set_irq(void *opaque, int irq, int level)
{
icp_pic_state *s = (icp_pic_state *)opaque;
if (level)
s->level |= 1 << irq;
else
s->level &= ~(1 << irq);
icp_pic_update(s);
}
static uint32_t icp_pic_read(void *opaque, target_phys_addr_t offset)
{
icp_pic_state *s = (icp_pic_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 0: /* IRQ_STATUS */
return s->level & s->irq_enabled;
case 1: /* IRQ_RAWSTAT */
return s->level;
case 2: /* IRQ_ENABLESET */
return s->irq_enabled;
case 4: /* INT_SOFTSET */
return s->level & 1;
case 8: /* FRQ_STATUS */
return s->level & s->fiq_enabled;
case 9: /* FRQ_RAWSTAT */
return s->level;
case 10: /* FRQ_ENABLESET */
return s->fiq_enabled;
case 3: /* IRQ_ENABLECLR */
case 5: /* INT_SOFTCLR */
case 11: /* FRQ_ENABLECLR */
default:
printf ("icp_pic_read: Bad register offset 0x%x\n", (int)offset);
return 0;
}
}
static void icp_pic_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_pic_state *s = (icp_pic_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 2: /* IRQ_ENABLESET */
s->irq_enabled |= value;
break;
case 3: /* IRQ_ENABLECLR */
s->irq_enabled &= ~value;
break;
case 4: /* INT_SOFTSET */
if (value & 1)
icp_pic_set_irq(s, 0, 1);
break;
case 5: /* INT_SOFTCLR */
if (value & 1)
icp_pic_set_irq(s, 0, 0);
break;
case 10: /* FRQ_ENABLESET */
s->fiq_enabled |= value;
break;
case 11: /* FRQ_ENABLECLR */
s->fiq_enabled &= ~value;
break;
case 0: /* IRQ_STATUS */
case 1: /* IRQ_RAWSTAT */
case 8: /* FRQ_STATUS */
case 9: /* FRQ_RAWSTAT */
default:
printf ("icp_pic_write: Bad register offset 0x%x\n", (int)offset);
return;
}
icp_pic_update(s);
}
static CPUReadMemoryFunc *icp_pic_readfn[] = {
icp_pic_read,
icp_pic_read,
icp_pic_read
};
static CPUWriteMemoryFunc *icp_pic_writefn[] = {
icp_pic_write,
icp_pic_write,
icp_pic_write
};
static qemu_irq *icp_pic_init(uint32_t base,
qemu_irq parent_irq, qemu_irq parent_fiq)
{
icp_pic_state *s;
int iomemtype;
qemu_irq *qi;
s = (icp_pic_state *)qemu_mallocz(sizeof(icp_pic_state));
if (!s)
return NULL;
qi = qemu_allocate_irqs(icp_pic_set_irq, s, 32);
s->base = base;
s->parent_irq = parent_irq;
s->parent_fiq = parent_fiq;
iomemtype = cpu_register_io_memory(0, icp_pic_readfn,
icp_pic_writefn, s);
cpu_register_physical_memory(base, 0x00800000, iomemtype);
/* ??? Save/restore. */
return qi;
}
/* CP control registers. */
typedef struct {
uint32_t base;
} icp_control_state;
static uint32_t icp_control_read(void *opaque, target_phys_addr_t offset)
{
icp_control_state *s = (icp_control_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 0: /* CP_IDFIELD */
return 0x41034003;
case 1: /* CP_FLASHPROG */
return 0;
case 2: /* CP_INTREG */
return 0;
case 3: /* CP_DECODE */
return 0x11;
default:
cpu_abort (cpu_single_env, "icp_control_read: Bad offset %x\n",
(int)offset);
return 0;
}
}
static void icp_control_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_control_state *s = (icp_control_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 1: /* CP_FLASHPROG */
case 2: /* CP_INTREG */
case 3: /* CP_DECODE */
/* Nothing interesting implemented yet. */
break;
default:
cpu_abort (cpu_single_env, "icp_control_write: Bad offset %x\n",
(int)offset);
}
}
static CPUReadMemoryFunc *icp_control_readfn[] = {
icp_control_read,
icp_control_read,
icp_control_read
};
static CPUWriteMemoryFunc *icp_control_writefn[] = {
icp_control_write,
icp_control_write,
icp_control_write
};
static void icp_control_init(uint32_t base)
{
int iomemtype;
icp_control_state *s;
s = (icp_control_state *)qemu_mallocz(sizeof(icp_control_state));
iomemtype = cpu_register_io_memory(0, icp_control_readfn,
icp_control_writefn, s);
cpu_register_physical_memory(base, 0x00800000, iomemtype);
s->base = base;
/* ??? Save/restore. */
}
/* Board init. */
static struct arm_boot_info integrator_binfo = {
.loader_start = 0x0,
.board_id = 0x113,
};
static void integratorcp_init(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
uint32_t ram_offset;
qemu_irq *pic;
qemu_irq *cpu_pic;
int sd;
if (!cpu_model)
cpu_model = "arm926";
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
ram_offset = qemu_ram_alloc(ram_size);
/* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
/* ??? RAM should repeat to fill physical memory space. */
/* SDRAM at address zero*/
cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
/* And again at address 0x80000000 */
cpu_register_physical_memory(0x80000000, ram_size, ram_offset | IO_MEM_RAM);
integratorcm_init(ram_size >> 20);
cpu_pic = arm_pic_init_cpu(env);
pic = icp_pic_init(0x14000000, cpu_pic[ARM_PIC_CPU_IRQ],
cpu_pic[ARM_PIC_CPU_FIQ]);
icp_pic_init(0xca000000, pic[26], NULL);
icp_pit_init(0x13000000, pic, 5);
pl031_init(0x15000000, pic[8]);
pl011_init(0x16000000, pic[1], serial_hds[0], PL011_ARM);
pl011_init(0x17000000, pic[2], serial_hds[1], PL011_ARM);
icp_control_init(0xcb000000);
pl050_init(0x18000000, pic[3], 0);
pl050_init(0x19000000, pic[4], 1);
sd = drive_get_index(IF_SD, 0, 0);
if (sd == -1) {
fprintf(stderr, "qemu: missing SecureDigital card\n");
exit(1);
}
pl181_init(0x1c000000, drives_table[sd].bdrv, pic[23], pic[24]);
if (nd_table[0].vlan) {
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "smc91c111") == 0) {
smc91c111_init(&nd_table[0], 0xc8000000, pic[27]);
} else if (strcmp(nd_table[0].model, "?") == 0) {
fprintf(stderr, "qemu: Supported NICs: smc91c111\n");
exit (1);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
}
}
pl110_init(ds, 0xc0000000, pic[22], 0);
integrator_binfo.ram_size = ram_size;
integrator_binfo.kernel_filename = kernel_filename;
integrator_binfo.kernel_cmdline = kernel_cmdline;
integrator_binfo.initrd_filename = initrd_filename;
arm_load_kernel(env, &integrator_binfo);
}
QEMUMachine integratorcp_machine = {
"integratorcp",
"ARM Integrator/CP (ARM926EJ-S)",
integratorcp_init,
0x100000,
};