9f81e43f10
The FPGA LEDs/ASCII display is mostly used by the bootloader to show very low-level debug info. QEMU connects its output to a character device backend, which is not very practical to correlate with ASM instruction executed, interrupts or MMIO accesses. Also, the display discard the previous states. To ease bootloader debugging experience, add a pair of trace events. Such events can be analyzed over time or diff-ed between different runs. Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230104133935.4639-4-philmd@linaro.org>
1485 lines
48 KiB
C
1485 lines
48 KiB
C
/*
|
|
* QEMU Malta board support
|
|
*
|
|
* Copyright (c) 2006 Aurelien Jarno
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/guest-random.h"
|
|
#include "hw/clock.h"
|
|
#include "hw/southbridge/piix.h"
|
|
#include "hw/isa/superio.h"
|
|
#include "hw/char/serial.h"
|
|
#include "net/net.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/i2c/smbus_eeprom.h"
|
|
#include "hw/block/flash.h"
|
|
#include "hw/mips/mips.h"
|
|
#include "hw/mips/bootloader.h"
|
|
#include "hw/mips/cpudevs.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "qemu/log.h"
|
|
#include "hw/mips/bios.h"
|
|
#include "hw/ide/pci.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/loader.h"
|
|
#include "elf.h"
|
|
#include "qom/object.h"
|
|
#include "hw/sysbus.h" /* SysBusDevice */
|
|
#include "qemu/host-utils.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/misc/empty_slot.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "semihosting/semihost.h"
|
|
#include "hw/mips/cps.h"
|
|
#include "hw/qdev-clock.h"
|
|
#include "trace.h"
|
|
|
|
#define ENVP_PADDR 0x2000
|
|
#define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
|
|
#define ENVP_NB_ENTRIES 16
|
|
#define ENVP_ENTRY_SIZE 256
|
|
|
|
/* Hardware addresses */
|
|
#define FLASH_ADDRESS 0x1e000000ULL
|
|
#define FPGA_ADDRESS 0x1f000000ULL
|
|
#define RESET_ADDRESS 0x1fc00000ULL
|
|
|
|
#define FLASH_SIZE 0x400000
|
|
|
|
typedef struct {
|
|
MemoryRegion iomem;
|
|
MemoryRegion iomem_lo; /* 0 - 0x900 */
|
|
MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
|
|
uint32_t leds;
|
|
uint32_t brk;
|
|
uint32_t gpout;
|
|
uint32_t i2cin;
|
|
uint32_t i2coe;
|
|
uint32_t i2cout;
|
|
uint32_t i2csel;
|
|
CharBackend display;
|
|
char display_text[9];
|
|
SerialMM *uart;
|
|
bool display_inited;
|
|
} MaltaFPGAState;
|
|
|
|
#define TYPE_MIPS_MALTA "mips-malta"
|
|
OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
|
|
|
|
struct MaltaState {
|
|
SysBusDevice parent_obj;
|
|
|
|
Clock *cpuclk;
|
|
MIPSCPSState cps;
|
|
};
|
|
|
|
static struct _loaderparams {
|
|
int ram_size, ram_low_size;
|
|
const char *kernel_filename;
|
|
const char *kernel_cmdline;
|
|
const char *initrd_filename;
|
|
} loaderparams;
|
|
|
|
/* Malta FPGA */
|
|
static void malta_fpga_update_display_leds(MaltaFPGAState *s)
|
|
{
|
|
char leds_text[9];
|
|
int i;
|
|
|
|
for (i = 7 ; i >= 0 ; i--) {
|
|
if (s->leds & (1 << i)) {
|
|
leds_text[i] = '#';
|
|
} else {
|
|
leds_text[i] = ' ';
|
|
}
|
|
}
|
|
leds_text[8] = '\0';
|
|
|
|
trace_malta_fpga_leds(leds_text);
|
|
qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
|
|
leds_text);
|
|
}
|
|
|
|
static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
|
|
{
|
|
trace_malta_fpga_display(s->display_text);
|
|
qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
|
|
s->display_text);
|
|
}
|
|
|
|
/*
|
|
* EEPROM 24C01 / 24C02 emulation.
|
|
*
|
|
* Emulation for serial EEPROMs:
|
|
* 24C01 - 1024 bit (128 x 8)
|
|
* 24C02 - 2048 bit (256 x 8)
|
|
*
|
|
* Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
|
|
*/
|
|
|
|
#if defined(DEBUG)
|
|
# define logout(fmt, ...) \
|
|
fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
|
|
#else
|
|
# define logout(fmt, ...) ((void)0)
|
|
#endif
|
|
|
|
struct _eeprom24c0x_t {
|
|
uint8_t tick;
|
|
uint8_t address;
|
|
uint8_t command;
|
|
uint8_t ack;
|
|
uint8_t scl;
|
|
uint8_t sda;
|
|
uint8_t data;
|
|
/* uint16_t size; */
|
|
uint8_t contents[256];
|
|
};
|
|
|
|
typedef struct _eeprom24c0x_t eeprom24c0x_t;
|
|
|
|
static eeprom24c0x_t spd_eeprom = {
|
|
.contents = {
|
|
/* 00000000: */
|
|
0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
|
|
/* 00000008: */
|
|
0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
|
|
/* 00000010: */
|
|
0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
|
|
/* 00000018: */
|
|
0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
|
|
/* 00000020: */
|
|
0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000028: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000030: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000038: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
|
|
/* 00000040: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000048: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000050: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000058: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000060: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000068: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000070: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
/* 00000078: */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
|
|
},
|
|
};
|
|
|
|
static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
|
|
{
|
|
enum { SDR = 0x4, DDR2 = 0x8 } type;
|
|
uint8_t *spd = spd_eeprom.contents;
|
|
uint8_t nbanks = 0;
|
|
uint16_t density = 0;
|
|
int i;
|
|
|
|
/* work in terms of MB */
|
|
ram_size /= MiB;
|
|
|
|
while ((ram_size >= 4) && (nbanks <= 2)) {
|
|
int sz_log2 = MIN(31 - clz32(ram_size), 14);
|
|
nbanks++;
|
|
density |= 1 << (sz_log2 - 2);
|
|
ram_size -= 1 << sz_log2;
|
|
}
|
|
|
|
/* split to 2 banks if possible */
|
|
if ((nbanks == 1) && (density > 1)) {
|
|
nbanks++;
|
|
density >>= 1;
|
|
}
|
|
|
|
if (density & 0xff00) {
|
|
density = (density & 0xe0) | ((density >> 8) & 0x1f);
|
|
type = DDR2;
|
|
} else if (!(density & 0x1f)) {
|
|
type = DDR2;
|
|
} else {
|
|
type = SDR;
|
|
}
|
|
|
|
if (ram_size) {
|
|
warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
|
|
" of SDRAM", ram_size);
|
|
}
|
|
|
|
/* fill in SPD memory information */
|
|
spd[2] = type;
|
|
spd[5] = nbanks;
|
|
spd[31] = density;
|
|
|
|
/* checksum */
|
|
spd[63] = 0;
|
|
for (i = 0; i < 63; i++) {
|
|
spd[63] += spd[i];
|
|
}
|
|
|
|
/* copy for SMBUS */
|
|
memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
|
|
}
|
|
|
|
static void generate_eeprom_serial(uint8_t *eeprom)
|
|
{
|
|
int i, pos = 0;
|
|
uint8_t mac[6] = { 0x00 };
|
|
uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
|
|
|
|
/* version */
|
|
eeprom[pos++] = 0x01;
|
|
|
|
/* count */
|
|
eeprom[pos++] = 0x02;
|
|
|
|
/* MAC address */
|
|
eeprom[pos++] = 0x01; /* MAC */
|
|
eeprom[pos++] = 0x06; /* length */
|
|
memcpy(&eeprom[pos], mac, sizeof(mac));
|
|
pos += sizeof(mac);
|
|
|
|
/* serial number */
|
|
eeprom[pos++] = 0x02; /* serial */
|
|
eeprom[pos++] = 0x05; /* length */
|
|
memcpy(&eeprom[pos], sn, sizeof(sn));
|
|
pos += sizeof(sn);
|
|
|
|
/* checksum */
|
|
eeprom[pos] = 0;
|
|
for (i = 0; i < pos; i++) {
|
|
eeprom[pos] += eeprom[i];
|
|
}
|
|
}
|
|
|
|
static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
|
|
{
|
|
logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
|
|
eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
|
|
return eeprom->sda;
|
|
}
|
|
|
|
static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
|
|
{
|
|
if (eeprom->scl && scl && (eeprom->sda != sda)) {
|
|
logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
|
|
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
|
|
sda ? "stop" : "start");
|
|
if (!sda) {
|
|
eeprom->tick = 1;
|
|
eeprom->command = 0;
|
|
}
|
|
} else if (eeprom->tick == 0 && !eeprom->ack) {
|
|
/* Waiting for start. */
|
|
logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
|
|
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
|
|
} else if (!eeprom->scl && scl) {
|
|
logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
|
|
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
|
|
if (eeprom->ack) {
|
|
logout("\ti2c ack bit = 0\n");
|
|
sda = 0;
|
|
eeprom->ack = 0;
|
|
} else if (eeprom->sda == sda) {
|
|
uint8_t bit = (sda != 0);
|
|
logout("\ti2c bit = %d\n", bit);
|
|
if (eeprom->tick < 9) {
|
|
eeprom->command <<= 1;
|
|
eeprom->command += bit;
|
|
eeprom->tick++;
|
|
if (eeprom->tick == 9) {
|
|
logout("\tcommand 0x%04x, %s\n", eeprom->command,
|
|
bit ? "read" : "write");
|
|
eeprom->ack = 1;
|
|
}
|
|
} else if (eeprom->tick < 17) {
|
|
if (eeprom->command & 1) {
|
|
sda = ((eeprom->data & 0x80) != 0);
|
|
}
|
|
eeprom->address <<= 1;
|
|
eeprom->address += bit;
|
|
eeprom->tick++;
|
|
eeprom->data <<= 1;
|
|
if (eeprom->tick == 17) {
|
|
eeprom->data = eeprom->contents[eeprom->address];
|
|
logout("\taddress 0x%04x, data 0x%02x\n",
|
|
eeprom->address, eeprom->data);
|
|
eeprom->ack = 1;
|
|
eeprom->tick = 0;
|
|
}
|
|
} else if (eeprom->tick >= 17) {
|
|
sda = 0;
|
|
}
|
|
} else {
|
|
logout("\tsda changed with raising scl\n");
|
|
}
|
|
} else {
|
|
logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
|
|
scl, eeprom->sda, sda);
|
|
}
|
|
eeprom->scl = scl;
|
|
eeprom->sda = sda;
|
|
}
|
|
|
|
static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
MaltaFPGAState *s = opaque;
|
|
uint32_t val = 0;
|
|
uint32_t saddr;
|
|
|
|
saddr = (addr & 0xfffff);
|
|
|
|
switch (saddr) {
|
|
|
|
/* SWITCH Register */
|
|
case 0x00200:
|
|
val = 0x00000000;
|
|
break;
|
|
|
|
/* STATUS Register */
|
|
case 0x00208:
|
|
#if TARGET_BIG_ENDIAN
|
|
val = 0x00000012;
|
|
#else
|
|
val = 0x00000010;
|
|
#endif
|
|
break;
|
|
|
|
/* JMPRS Register */
|
|
case 0x00210:
|
|
val = 0x00;
|
|
break;
|
|
|
|
/* LEDBAR Register */
|
|
case 0x00408:
|
|
val = s->leds;
|
|
break;
|
|
|
|
/* BRKRES Register */
|
|
case 0x00508:
|
|
val = s->brk;
|
|
break;
|
|
|
|
/* UART Registers are handled directly by the serial device */
|
|
|
|
/* GPOUT Register */
|
|
case 0x00a00:
|
|
val = s->gpout;
|
|
break;
|
|
|
|
/* XXX: implement a real I2C controller */
|
|
|
|
/* GPINP Register */
|
|
case 0x00a08:
|
|
/* IN = OUT until a real I2C control is implemented */
|
|
if (s->i2csel) {
|
|
val = s->i2cout;
|
|
} else {
|
|
val = 0x00;
|
|
}
|
|
break;
|
|
|
|
/* I2CINP Register */
|
|
case 0x00b00:
|
|
val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
|
|
break;
|
|
|
|
/* I2COE Register */
|
|
case 0x00b08:
|
|
val = s->i2coe;
|
|
break;
|
|
|
|
/* I2COUT Register */
|
|
case 0x00b10:
|
|
val = s->i2cout;
|
|
break;
|
|
|
|
/* I2CSEL Register */
|
|
case 0x00b18:
|
|
val = s->i2csel;
|
|
break;
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
|
|
addr);
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void malta_fpga_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
MaltaFPGAState *s = opaque;
|
|
uint32_t saddr;
|
|
|
|
saddr = (addr & 0xfffff);
|
|
|
|
switch (saddr) {
|
|
|
|
/* SWITCH Register */
|
|
case 0x00200:
|
|
break;
|
|
|
|
/* JMPRS Register */
|
|
case 0x00210:
|
|
break;
|
|
|
|
/* LEDBAR Register */
|
|
case 0x00408:
|
|
s->leds = val & 0xff;
|
|
malta_fpga_update_display_leds(s);
|
|
break;
|
|
|
|
/* ASCIIWORD Register */
|
|
case 0x00410:
|
|
snprintf(s->display_text, 9, "%08X", (uint32_t)val);
|
|
malta_fpga_update_display_ascii(s);
|
|
break;
|
|
|
|
/* ASCIIPOS0 to ASCIIPOS7 Registers */
|
|
case 0x00418:
|
|
case 0x00420:
|
|
case 0x00428:
|
|
case 0x00430:
|
|
case 0x00438:
|
|
case 0x00440:
|
|
case 0x00448:
|
|
case 0x00450:
|
|
s->display_text[(saddr - 0x00418) >> 3] = (char) val;
|
|
malta_fpga_update_display_ascii(s);
|
|
break;
|
|
|
|
/* SOFTRES Register */
|
|
case 0x00500:
|
|
if (val == 0x42) {
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
}
|
|
break;
|
|
|
|
/* BRKRES Register */
|
|
case 0x00508:
|
|
s->brk = val & 0xff;
|
|
break;
|
|
|
|
/* UART Registers are handled directly by the serial device */
|
|
|
|
/* GPOUT Register */
|
|
case 0x00a00:
|
|
s->gpout = val & 0xff;
|
|
break;
|
|
|
|
/* I2COE Register */
|
|
case 0x00b08:
|
|
s->i2coe = val & 0x03;
|
|
break;
|
|
|
|
/* I2COUT Register */
|
|
case 0x00b10:
|
|
eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
|
|
s->i2cout = val;
|
|
break;
|
|
|
|
/* I2CSEL Register */
|
|
case 0x00b18:
|
|
s->i2csel = val & 0x01;
|
|
break;
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
|
|
addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps malta_fpga_ops = {
|
|
.read = malta_fpga_read,
|
|
.write = malta_fpga_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void malta_fpga_reset(void *opaque)
|
|
{
|
|
MaltaFPGAState *s = opaque;
|
|
|
|
s->leds = 0x00;
|
|
s->brk = 0x0a;
|
|
s->gpout = 0x00;
|
|
s->i2cin = 0x3;
|
|
s->i2coe = 0x0;
|
|
s->i2cout = 0x3;
|
|
s->i2csel = 0x1;
|
|
|
|
s->display_text[8] = '\0';
|
|
snprintf(s->display_text, 9, " ");
|
|
}
|
|
|
|
static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
|
|
{
|
|
MaltaFPGAState *s = opaque;
|
|
|
|
if (event == CHR_EVENT_OPENED && !s->display_inited) {
|
|
qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+ +\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
|
|
qemu_chr_fe_printf(&s->display, "\n");
|
|
qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+ +\r\n");
|
|
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
|
|
s->display_inited = true;
|
|
}
|
|
}
|
|
|
|
static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
|
|
hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
|
|
{
|
|
MaltaFPGAState *s;
|
|
Chardev *chr;
|
|
|
|
s = g_new0(MaltaFPGAState, 1);
|
|
|
|
memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
|
|
"malta-fpga", 0x100000);
|
|
memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
|
|
&s->iomem, 0, 0x900);
|
|
memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
|
|
&s->iomem, 0xa00, 0x100000 - 0xa00);
|
|
|
|
memory_region_add_subregion(address_space, base, &s->iomem_lo);
|
|
memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
|
|
|
|
chr = qemu_chr_new("fpga", "vc:320x200", NULL);
|
|
qemu_chr_fe_init(&s->display, chr, NULL);
|
|
qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
|
|
malta_fgpa_display_event, NULL, s, NULL, true);
|
|
|
|
s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
|
|
230400, uart_chr, DEVICE_NATIVE_ENDIAN);
|
|
|
|
malta_fpga_reset(s);
|
|
qemu_register_reset(malta_fpga_reset, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* Network support */
|
|
static void network_init(PCIBus *pci_bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nb_nics; i++) {
|
|
NICInfo *nd = &nd_table[i];
|
|
const char *default_devaddr = NULL;
|
|
|
|
if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
|
|
/* The malta board has a PCNet card using PCI SLOT 11 */
|
|
default_devaddr = "0b";
|
|
|
|
pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
|
|
}
|
|
}
|
|
|
|
static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
|
|
uint64_t kernel_entry)
|
|
{
|
|
uint16_t *p;
|
|
|
|
/* Small bootloader */
|
|
p = (uint16_t *)base;
|
|
|
|
#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
|
|
#define NM_HI2(VAL) \
|
|
(((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
|
|
#define NM_LO(VAL) ((VAL) & 0xfff)
|
|
|
|
stw_p(p++, 0x2800); stw_p(p++, 0x001c);
|
|
/* bc to_here */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
|
|
/* to_here: */
|
|
if (semihosting_get_argc()) {
|
|
/* Preserve a0 content as arguments have been passed */
|
|
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
|
|
/* nop */
|
|
} else {
|
|
stw_p(p++, 0x0080); stw_p(p++, 0x0002);
|
|
/* li a0,2 */
|
|
}
|
|
|
|
stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
|
|
|
|
stw_p(p++, NM_HI2(ENVP_VADDR - 64));
|
|
/* lui sp,%hi(ENVP_VADDR - 64) */
|
|
|
|
stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
|
|
/* ori sp,sp,%lo(ENVP_VADDR - 64) */
|
|
|
|
stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
|
|
|
|
stw_p(p++, NM_HI2(ENVP_VADDR));
|
|
/* lui a1,%hi(ENVP_VADDR) */
|
|
|
|
stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
|
|
/* ori a1,a1,%lo(ENVP_VADDR) */
|
|
|
|
stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
|
|
|
|
stw_p(p++, NM_HI2(ENVP_VADDR + 8));
|
|
/* lui a2,%hi(ENVP_VADDR + 8) */
|
|
|
|
stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
|
|
/* ori a2,a2,%lo(ENVP_VADDR + 8) */
|
|
|
|
stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
|
|
|
|
stw_p(p++, NM_HI2(loaderparams.ram_low_size));
|
|
/* lui a3,%hi(loaderparams.ram_low_size) */
|
|
|
|
stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
|
|
/* ori a3,a3,%lo(loaderparams.ram_low_size) */
|
|
|
|
/*
|
|
* Load BAR registers as done by YAMON:
|
|
*
|
|
* - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
|
|
* - set up PCI0 MEM0 at 0x10000000, size 0x8000000
|
|
* - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
|
|
*
|
|
*/
|
|
stw_p(p++, 0xe040); stw_p(p++, 0x0681);
|
|
/* lui t1, %hi(0xb4000000) */
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
|
|
/* lui t0, %hi(0xdf000000) */
|
|
|
|
/* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9068);
|
|
/* sw t0, 0x68(t1) */
|
|
|
|
stw_p(p++, 0xe040); stw_p(p++, 0x077d);
|
|
/* lui t1, %hi(0xbbe00000) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0801);
|
|
/* lui t0, %hi(0xc0000000) */
|
|
|
|
/* 0x48 corresponds to GT_PCI0IOLD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9048);
|
|
/* sw t0, 0x48(t1) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0800);
|
|
/* lui t0, %hi(0x40000000) */
|
|
|
|
/* 0x50 corresponds to GT_PCI0IOHD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9050);
|
|
/* sw t0, 0x50(t1) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0001);
|
|
/* lui t0, %hi(0x80000000) */
|
|
|
|
/* 0x58 corresponds to GT_PCI0M0LD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9058);
|
|
/* sw t0, 0x58(t1) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
|
|
/* lui t0, %hi(0x3f000000) */
|
|
|
|
/* 0x60 corresponds to GT_PCI0M0HD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9060);
|
|
/* sw t0, 0x60(t1) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0821);
|
|
/* lui t0, %hi(0xc1000000) */
|
|
|
|
/* 0x80 corresponds to GT_PCI0M1LD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9080);
|
|
/* sw t0, 0x80(t1) */
|
|
|
|
stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
|
|
/* lui t0, %hi(0x5e000000) */
|
|
|
|
#else
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x00df);
|
|
/* addiu[32] t0, $0, 0xdf */
|
|
|
|
/* 0x68 corresponds to GT_ISD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9068);
|
|
/* sw t0, 0x68(t1) */
|
|
|
|
/* Use kseg2 remapped address 0x1be00000 */
|
|
stw_p(p++, 0xe040); stw_p(p++, 0x077d);
|
|
/* lui t1, %hi(0xbbe00000) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
|
|
/* addiu[32] t0, $0, 0xc0 */
|
|
|
|
/* 0x48 corresponds to GT_PCI0IOLD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9048);
|
|
/* sw t0, 0x48(t1) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x0040);
|
|
/* addiu[32] t0, $0, 0x40 */
|
|
|
|
/* 0x50 corresponds to GT_PCI0IOHD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9050);
|
|
/* sw t0, 0x50(t1) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x0080);
|
|
/* addiu[32] t0, $0, 0x80 */
|
|
|
|
/* 0x58 corresponds to GT_PCI0M0LD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9058);
|
|
/* sw t0, 0x58(t1) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x003f);
|
|
/* addiu[32] t0, $0, 0x3f */
|
|
|
|
/* 0x60 corresponds to GT_PCI0M0HD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9060);
|
|
/* sw t0, 0x60(t1) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
|
|
/* addiu[32] t0, $0, 0xc1 */
|
|
|
|
/* 0x80 corresponds to GT_PCI0M1LD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9080);
|
|
/* sw t0, 0x80(t1) */
|
|
|
|
stw_p(p++, 0x0020); stw_p(p++, 0x005e);
|
|
/* addiu[32] t0, $0, 0x5e */
|
|
|
|
#endif
|
|
|
|
/* 0x88 corresponds to GT_PCI0M1HD */
|
|
stw_p(p++, 0x8422); stw_p(p++, 0x9088);
|
|
/* sw t0, 0x88(t1) */
|
|
|
|
stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
|
|
|
|
stw_p(p++, NM_HI2(kernel_entry));
|
|
/* lui t9,%hi(kernel_entry) */
|
|
|
|
stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
|
|
/* ori t9,t9,%lo(kernel_entry) */
|
|
|
|
stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
|
|
/* jalrc t8 */
|
|
}
|
|
|
|
/*
|
|
* ROM and pseudo bootloader
|
|
*
|
|
* The following code implements a very very simple bootloader. It first
|
|
* loads the registers a0 to a3 to the values expected by the OS, and
|
|
* then jump at the kernel address.
|
|
*
|
|
* The bootloader should pass the locations of the kernel arguments and
|
|
* environment variables tables. Those tables contain the 32-bit address
|
|
* of NULL terminated strings. The environment variables table should be
|
|
* terminated by a NULL address.
|
|
*
|
|
* For a simpler implementation, the number of kernel arguments is fixed
|
|
* to two (the name of the kernel and the command line), and the two
|
|
* tables are actually the same one.
|
|
*
|
|
* The registers a0 to a3 should contain the following values:
|
|
* a0 - number of kernel arguments
|
|
* a1 - 32-bit address of the kernel arguments table
|
|
* a2 - 32-bit address of the environment variables table
|
|
* a3 - RAM size in bytes
|
|
*/
|
|
static void write_bootloader(uint8_t *base, uint64_t run_addr,
|
|
uint64_t kernel_entry)
|
|
{
|
|
uint32_t *p;
|
|
|
|
/* Small bootloader */
|
|
p = (uint32_t *)base;
|
|
|
|
stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
|
|
((run_addr + 0x580) & 0x0fffffff) >> 2);
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
|
|
/* YAMON service vector */
|
|
stl_p(base + 0x500, run_addr + 0x0580); /* start: */
|
|
stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
|
|
stl_p(base + 0x520, run_addr + 0x0580); /* start: */
|
|
stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
|
|
stl_p(base + 0x534, run_addr + 0x0808); /* print: */
|
|
stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
|
|
stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
|
|
stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
|
|
stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
|
|
stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
|
|
stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
|
|
stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
|
|
stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
|
|
|
|
|
|
/* Second part of the bootloader */
|
|
p = (uint32_t *) (base + 0x580);
|
|
|
|
/*
|
|
* Load BAR registers as done by YAMON:
|
|
*
|
|
* - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
|
|
* - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
|
|
* - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
|
|
*
|
|
*/
|
|
|
|
/* Bus endianess is always reversed */
|
|
#if TARGET_BIG_ENDIAN
|
|
#define cpu_to_gt32 cpu_to_le32
|
|
#else
|
|
#define cpu_to_gt32 cpu_to_be32
|
|
#endif
|
|
|
|
/* move GT64120 registers from 0x14000000 to 0x1be00000 */
|
|
bl_gen_write_u32(&p, /* GT_ISD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
|
|
cpu_to_gt32(0x1be00000 << 3));
|
|
|
|
/* setup MEM-to-PCI0 mapping */
|
|
/* setup PCI0 io window to 0x18000000-0x181fffff */
|
|
bl_gen_write_u32(&p, /* GT_PCI0IOLD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
|
|
cpu_to_gt32(0x18000000 << 3));
|
|
bl_gen_write_u32(&p, /* GT_PCI0IOHD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
|
|
cpu_to_gt32(0x08000000 << 3));
|
|
/* setup PCI0 mem windows */
|
|
bl_gen_write_u32(&p, /* GT_PCI0M0LD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
|
|
cpu_to_gt32(0x10000000 << 3));
|
|
bl_gen_write_u32(&p, /* GT_PCI0M0HD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
|
|
cpu_to_gt32(0x07e00000 << 3));
|
|
|
|
bl_gen_write_u32(&p, /* GT_PCI0M1LD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
|
|
cpu_to_gt32(0x18200000 << 3));
|
|
bl_gen_write_u32(&p, /* GT_PCI0M1HD */
|
|
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
|
|
cpu_to_gt32(0x0bc00000 << 3));
|
|
|
|
#undef cpu_to_gt32
|
|
|
|
bl_gen_jump_kernel(&p,
|
|
true, ENVP_VADDR - 64,
|
|
/*
|
|
* If semihosting is used, arguments have already been
|
|
* passed, so we preserve $a0.
|
|
*/
|
|
!semihosting_get_argc(), 2,
|
|
true, ENVP_VADDR,
|
|
true, ENVP_VADDR + 8,
|
|
true, loaderparams.ram_low_size,
|
|
kernel_entry);
|
|
|
|
/* YAMON subroutines */
|
|
p = (uint32_t *) (base + 0x800);
|
|
stl_p(p++, 0x03e00009); /* jalr ra */
|
|
stl_p(p++, 0x24020000); /* li v0,0 */
|
|
/* 808 YAMON print */
|
|
stl_p(p++, 0x03e06821); /* move t5,ra */
|
|
stl_p(p++, 0x00805821); /* move t3,a0 */
|
|
stl_p(p++, 0x00a05021); /* move t2,a1 */
|
|
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
|
|
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
|
|
stl_p(p++, 0x10800005); /* beqz a0,834 */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x0ff0021c); /* jal 870 */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x1000fff9); /* b 814 */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x01a00009); /* jalr t5 */
|
|
stl_p(p++, 0x01602021); /* move a0,t3 */
|
|
/* 0x83c YAMON print_count */
|
|
stl_p(p++, 0x03e06821); /* move t5,ra */
|
|
stl_p(p++, 0x00805821); /* move t3,a0 */
|
|
stl_p(p++, 0x00a05021); /* move t2,a1 */
|
|
stl_p(p++, 0x00c06021); /* move t4,a2 */
|
|
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
|
|
stl_p(p++, 0x0ff0021c); /* jal 870 */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
|
|
stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
|
|
stl_p(p++, 0x1580fffa); /* bnez t4,84c */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x01a00009); /* jalr t5 */
|
|
stl_p(p++, 0x01602021); /* move a0,t3 */
|
|
/* 0x870 */
|
|
stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
|
|
stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
|
|
stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
|
|
stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
|
|
stl_p(p++, 0x00000000); /* nop */
|
|
stl_p(p++, 0x03e00009); /* jalr ra */
|
|
stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
|
|
|
|
}
|
|
|
|
static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
|
|
const char *string, ...)
|
|
{
|
|
va_list ap;
|
|
uint32_t table_addr;
|
|
|
|
if (index >= ENVP_NB_ENTRIES) {
|
|
return;
|
|
}
|
|
|
|
if (string == NULL) {
|
|
prom_buf[index] = 0;
|
|
return;
|
|
}
|
|
|
|
table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
|
|
prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
|
|
|
|
va_start(ap, string);
|
|
vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static void reinitialize_rng_seed(void *opaque)
|
|
{
|
|
char *rng_seed_hex = opaque;
|
|
uint8_t rng_seed[32];
|
|
|
|
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
|
|
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
|
|
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
|
|
}
|
|
}
|
|
|
|
/* Kernel */
|
|
static uint64_t load_kernel(void)
|
|
{
|
|
uint64_t kernel_entry, kernel_high, initrd_size;
|
|
long kernel_size;
|
|
ram_addr_t initrd_offset;
|
|
int big_endian;
|
|
uint32_t *prom_buf;
|
|
long prom_size;
|
|
int prom_index = 0;
|
|
uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
|
|
uint8_t rng_seed[32];
|
|
char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
|
|
size_t rng_seed_prom_offset;
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
big_endian = 1;
|
|
#else
|
|
big_endian = 0;
|
|
#endif
|
|
|
|
kernel_size = load_elf(loaderparams.kernel_filename, NULL,
|
|
cpu_mips_kseg0_to_phys, NULL,
|
|
&kernel_entry, NULL,
|
|
&kernel_high, NULL, big_endian, EM_MIPS,
|
|
1, 0);
|
|
if (kernel_size < 0) {
|
|
error_report("could not load kernel '%s': %s",
|
|
loaderparams.kernel_filename,
|
|
load_elf_strerror(kernel_size));
|
|
exit(1);
|
|
}
|
|
|
|
/* Check where the kernel has been linked */
|
|
if (kernel_entry & 0x80000000ll) {
|
|
if (kvm_enabled()) {
|
|
error_report("KVM guest kernels must be linked in useg. "
|
|
"Did you forget to enable CONFIG_KVM_GUEST?");
|
|
exit(1);
|
|
}
|
|
|
|
xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
|
|
} else {
|
|
/* if kernel entry is in useg it is probably a KVM T&E kernel */
|
|
mips_um_ksegs_enable();
|
|
|
|
xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
|
|
}
|
|
|
|
/* load initrd */
|
|
initrd_size = 0;
|
|
initrd_offset = 0;
|
|
if (loaderparams.initrd_filename) {
|
|
initrd_size = get_image_size(loaderparams.initrd_filename);
|
|
if (initrd_size > 0) {
|
|
/*
|
|
* The kernel allocates the bootmap memory in the low memory after
|
|
* the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
|
|
* pages.
|
|
*/
|
|
initrd_offset = ROUND_UP(loaderparams.ram_low_size
|
|
- (initrd_size + 128 * KiB),
|
|
INITRD_PAGE_SIZE);
|
|
if (kernel_high >= initrd_offset) {
|
|
error_report("memory too small for initial ram disk '%s'",
|
|
loaderparams.initrd_filename);
|
|
exit(1);
|
|
}
|
|
initrd_size = load_image_targphys(loaderparams.initrd_filename,
|
|
initrd_offset,
|
|
loaderparams.ram_size - initrd_offset);
|
|
}
|
|
if (initrd_size == (target_ulong) -1) {
|
|
error_report("could not load initial ram disk '%s'",
|
|
loaderparams.initrd_filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Setup prom parameters. */
|
|
prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
|
|
prom_buf = g_malloc(prom_size);
|
|
|
|
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
|
|
if (initrd_size > 0) {
|
|
prom_set(prom_buf, prom_index++,
|
|
"rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
|
|
xlate_to_kseg0(NULL, initrd_offset),
|
|
initrd_size, loaderparams.kernel_cmdline);
|
|
} else {
|
|
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
|
|
}
|
|
|
|
prom_set(prom_buf, prom_index++, "memsize");
|
|
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
|
|
|
|
prom_set(prom_buf, prom_index++, "ememsize");
|
|
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
|
|
|
|
prom_set(prom_buf, prom_index++, "modetty0");
|
|
prom_set(prom_buf, prom_index++, "38400n8r");
|
|
|
|
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
|
|
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
|
|
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
|
|
}
|
|
prom_set(prom_buf, prom_index++, "rngseed");
|
|
rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
|
|
sizeof(uint32_t) * ENVP_NB_ENTRIES;
|
|
prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
|
|
|
|
prom_set(prom_buf, prom_index++, NULL);
|
|
|
|
rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
|
|
qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
|
|
rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
|
|
|
|
g_free(prom_buf);
|
|
return kernel_entry;
|
|
}
|
|
|
|
static void malta_mips_config(MIPSCPU *cpu)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
unsigned int smp_cpus = ms->smp.cpus;
|
|
CPUMIPSState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
if (ase_mt_available(env)) {
|
|
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
|
|
CP0MVPC0_PTC, 8,
|
|
smp_cpus * cs->nr_threads - 1);
|
|
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
|
|
CP0MVPC0_PVPE, 4, smp_cpus - 1);
|
|
}
|
|
}
|
|
|
|
static void main_cpu_reset(void *opaque)
|
|
{
|
|
MIPSCPU *cpu = opaque;
|
|
CPUMIPSState *env = &cpu->env;
|
|
|
|
cpu_reset(CPU(cpu));
|
|
|
|
/*
|
|
* The bootloader does not need to be rewritten as it is located in a
|
|
* read only location. The kernel location and the arguments table
|
|
* location does not change.
|
|
*/
|
|
if (loaderparams.kernel_filename) {
|
|
env->CP0_Status &= ~(1 << CP0St_ERL);
|
|
}
|
|
|
|
malta_mips_config(cpu);
|
|
|
|
if (kvm_enabled()) {
|
|
/* Start running from the bootloader we wrote to end of RAM */
|
|
env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
|
|
}
|
|
}
|
|
|
|
static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
|
|
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
|
|
{
|
|
CPUMIPSState *env;
|
|
MIPSCPU *cpu;
|
|
int i;
|
|
|
|
for (i = 0; i < ms->smp.cpus; i++) {
|
|
cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
|
|
|
|
/* Init internal devices */
|
|
cpu_mips_irq_init_cpu(cpu);
|
|
cpu_mips_clock_init(cpu);
|
|
qemu_register_reset(main_cpu_reset, cpu);
|
|
}
|
|
|
|
cpu = MIPS_CPU(first_cpu);
|
|
env = &cpu->env;
|
|
*i8259_irq = env->irq[2];
|
|
*cbus_irq = env->irq[4];
|
|
}
|
|
|
|
static void create_cps(MachineState *ms, MaltaState *s,
|
|
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
|
|
{
|
|
object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
|
|
object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
|
|
&error_fatal);
|
|
object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
|
|
&error_fatal);
|
|
qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
|
|
|
|
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
|
|
|
|
*i8259_irq = get_cps_irq(&s->cps, 3);
|
|
*cbus_irq = NULL;
|
|
}
|
|
|
|
static void mips_create_cpu(MachineState *ms, MaltaState *s,
|
|
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
|
|
{
|
|
if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
|
|
create_cps(ms, s, cbus_irq, i8259_irq);
|
|
} else {
|
|
create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
|
|
}
|
|
}
|
|
|
|
static
|
|
void mips_malta_init(MachineState *machine)
|
|
{
|
|
ram_addr_t ram_size = machine->ram_size;
|
|
ram_addr_t ram_low_size;
|
|
const char *kernel_filename = machine->kernel_filename;
|
|
const char *kernel_cmdline = machine->kernel_cmdline;
|
|
const char *initrd_filename = machine->initrd_filename;
|
|
char *filename;
|
|
PFlashCFI01 *fl;
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
|
|
MemoryRegion *ram_low_postio;
|
|
MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
|
|
const size_t smbus_eeprom_size = 8 * 256;
|
|
uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
|
|
uint64_t kernel_entry, bootloader_run_addr;
|
|
PCIBus *pci_bus;
|
|
ISABus *isa_bus;
|
|
qemu_irq cbus_irq, i8259_irq;
|
|
I2CBus *smbus;
|
|
DriveInfo *dinfo;
|
|
int fl_idx = 0;
|
|
int be;
|
|
MaltaState *s;
|
|
PCIDevice *piix4;
|
|
DeviceState *dev;
|
|
|
|
s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
|
|
|
|
/* create CPU */
|
|
mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
|
|
|
|
/* allocate RAM */
|
|
if (ram_size > 2 * GiB) {
|
|
error_report("Too much memory for this machine: %" PRId64 "MB,"
|
|
" maximum 2048MB", ram_size / MiB);
|
|
exit(1);
|
|
}
|
|
|
|
/* register RAM at high address where it is undisturbed by IO */
|
|
memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
|
|
|
|
/* alias for pre IO hole access */
|
|
memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
|
|
machine->ram, 0, MIN(ram_size, 256 * MiB));
|
|
memory_region_add_subregion(system_memory, 0, ram_low_preio);
|
|
|
|
/* alias for post IO hole access, if there is enough RAM */
|
|
if (ram_size > 512 * MiB) {
|
|
ram_low_postio = g_new(MemoryRegion, 1);
|
|
memory_region_init_alias(ram_low_postio, NULL,
|
|
"mips_malta_low_postio.ram",
|
|
machine->ram, 512 * MiB,
|
|
ram_size - 512 * MiB);
|
|
memory_region_add_subregion(system_memory, 512 * MiB,
|
|
ram_low_postio);
|
|
}
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
be = 1;
|
|
#else
|
|
be = 0;
|
|
#endif
|
|
|
|
/* FPGA */
|
|
|
|
/* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
|
|
malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
|
|
|
|
/* Load firmware in flash / BIOS. */
|
|
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
|
|
fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
|
|
FLASH_SIZE,
|
|
dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
|
|
65536,
|
|
4, 0x0000, 0x0000, 0x0000, 0x0000, be);
|
|
bios = pflash_cfi01_get_memory(fl);
|
|
fl_idx++;
|
|
if (kernel_filename) {
|
|
ram_low_size = MIN(ram_size, 256 * MiB);
|
|
/* For KVM we reserve 1MB of RAM for running bootloader */
|
|
if (kvm_enabled()) {
|
|
ram_low_size -= 0x100000;
|
|
bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
|
|
} else {
|
|
bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
|
|
}
|
|
|
|
/* Write a small bootloader to the flash location. */
|
|
loaderparams.ram_size = ram_size;
|
|
loaderparams.ram_low_size = ram_low_size;
|
|
loaderparams.kernel_filename = kernel_filename;
|
|
loaderparams.kernel_cmdline = kernel_cmdline;
|
|
loaderparams.initrd_filename = initrd_filename;
|
|
kernel_entry = load_kernel();
|
|
|
|
if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
|
|
write_bootloader(memory_region_get_ram_ptr(bios),
|
|
bootloader_run_addr, kernel_entry);
|
|
} else {
|
|
write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
|
|
bootloader_run_addr, kernel_entry);
|
|
}
|
|
if (kvm_enabled()) {
|
|
/* Write the bootloader code @ the end of RAM, 1MB reserved */
|
|
write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
|
|
ram_low_size,
|
|
bootloader_run_addr, kernel_entry);
|
|
}
|
|
} else {
|
|
target_long bios_size = FLASH_SIZE;
|
|
/* The flash region isn't executable from a KVM guest */
|
|
if (kvm_enabled()) {
|
|
error_report("KVM enabled but no -kernel argument was specified. "
|
|
"Booting from flash is not supported with KVM.");
|
|
exit(1);
|
|
}
|
|
/* Load firmware from flash. */
|
|
if (!dinfo) {
|
|
/* Load a BIOS image. */
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
|
|
machine->firmware ?: BIOS_FILENAME);
|
|
if (filename) {
|
|
bios_size = load_image_targphys(filename, FLASH_ADDRESS,
|
|
BIOS_SIZE);
|
|
g_free(filename);
|
|
} else {
|
|
bios_size = -1;
|
|
}
|
|
if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
|
|
machine->firmware && !qtest_enabled()) {
|
|
error_report("Could not load MIPS bios '%s'", machine->firmware);
|
|
exit(1);
|
|
}
|
|
}
|
|
/*
|
|
* In little endian mode the 32bit words in the bios are swapped,
|
|
* a neat trick which allows bi-endian firmware.
|
|
*/
|
|
#if !TARGET_BIG_ENDIAN
|
|
{
|
|
uint32_t *end, *addr;
|
|
const size_t swapsize = MIN(bios_size, 0x3e0000);
|
|
addr = rom_ptr(FLASH_ADDRESS, swapsize);
|
|
if (!addr) {
|
|
addr = memory_region_get_ram_ptr(bios);
|
|
}
|
|
end = (void *)addr + swapsize;
|
|
while (addr < end) {
|
|
bswap32s(addr);
|
|
addr++;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Map the BIOS at a 2nd physical location, as on the real board.
|
|
* Copy it so that we can patch in the MIPS revision, which cannot be
|
|
* handled by an overlapping region as the resulting ROM code subpage
|
|
* regions are not executable.
|
|
*/
|
|
memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
|
|
&error_fatal);
|
|
if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
|
|
FLASH_ADDRESS, BIOS_SIZE)) {
|
|
memcpy(memory_region_get_ram_ptr(bios_copy),
|
|
memory_region_get_ram_ptr(bios), BIOS_SIZE);
|
|
}
|
|
memory_region_set_readonly(bios_copy, true);
|
|
memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
|
|
|
|
/* Board ID = 0x420 (Malta Board with CoreLV) */
|
|
stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
|
|
|
|
/* Northbridge */
|
|
dev = sysbus_create_simple("gt64120", -1, NULL);
|
|
pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
|
|
/*
|
|
* The whole address space decoded by the GT-64120A doesn't generate
|
|
* exception when accessing invalid memory. Create an empty slot to
|
|
* emulate this feature.
|
|
*/
|
|
empty_slot_init("GT64120", 0, 0x20000000);
|
|
|
|
/* Southbridge */
|
|
piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true,
|
|
TYPE_PIIX4_PCI_DEVICE);
|
|
isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
|
|
|
|
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
|
|
pci_ide_create_devs(PCI_DEVICE(dev));
|
|
|
|
/* Interrupt controller */
|
|
qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
|
|
|
|
/* generate SPD EEPROM data */
|
|
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
|
|
smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
|
|
generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
|
|
generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
|
|
smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
|
|
g_free(smbus_eeprom_buf);
|
|
|
|
/* Super I/O: SMS FDC37M817 */
|
|
isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
|
|
|
|
/* Network card */
|
|
network_init(pci_bus);
|
|
|
|
/* Optional PCI video card */
|
|
pci_vga_init(pci_bus);
|
|
}
|
|
|
|
static void mips_malta_instance_init(Object *obj)
|
|
{
|
|
MaltaState *s = MIPS_MALTA(obj);
|
|
|
|
s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
|
|
clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
|
|
}
|
|
|
|
static const TypeInfo mips_malta_device = {
|
|
.name = TYPE_MIPS_MALTA,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(MaltaState),
|
|
.instance_init = mips_malta_instance_init,
|
|
};
|
|
|
|
GlobalProperty malta_compat[] = {
|
|
{ "PIIX4_PM", "memory-hotplug-support", "off" },
|
|
{ "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
|
|
{ "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
|
|
{ "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
|
|
};
|
|
const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
|
|
|
|
static void mips_malta_machine_init(MachineClass *mc)
|
|
{
|
|
mc->desc = "MIPS Malta Core LV";
|
|
mc->init = mips_malta_init;
|
|
mc->block_default_type = IF_IDE;
|
|
mc->max_cpus = 16;
|
|
mc->is_default = true;
|
|
#ifdef TARGET_MIPS64
|
|
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
|
|
#else
|
|
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
|
|
#endif
|
|
mc->default_ram_id = "mips_malta.ram";
|
|
compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
|
|
}
|
|
|
|
DEFINE_MACHINE("malta", mips_malta_machine_init)
|
|
|
|
static void mips_malta_register_types(void)
|
|
{
|
|
type_register_static(&mips_malta_device);
|
|
}
|
|
|
|
type_init(mips_malta_register_types)
|