qemu-e2k/hw/ppc405_boards.c
Blue Swirl 90e189ece1 Replace local ADDRX/PADDRX macros with TARGET_FMT_lx/plx
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2009-08-16 11:13:18 +00:00

651 lines
20 KiB
C

/*
* QEMU PowerPC 405 evaluation boards emulation
*
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc.h"
#include "ppc405.h"
#include "nvram.h"
#include "flash.h"
#include "sysemu.h"
#include "block.h"
#include "boards.h"
#include "qemu-log.h"
#define BIOS_FILENAME "ppc405_rom.bin"
#define BIOS_SIZE (2048 * 1024)
#define KERNEL_LOAD_ADDR 0x00000000
#define INITRD_LOAD_ADDR 0x01800000
#define USE_FLASH_BIOS
#define DEBUG_BOARD_INIT
/*****************************************************************************/
/* PPC405EP reference board (IBM) */
/* Standalone board with:
* - PowerPC 405EP CPU
* - SDRAM (0x00000000)
* - Flash (0xFFF80000)
* - SRAM (0xFFF00000)
* - NVRAM (0xF0000000)
* - FPGA (0xF0300000)
*/
typedef struct ref405ep_fpga_t ref405ep_fpga_t;
struct ref405ep_fpga_t {
uint8_t reg0;
uint8_t reg1;
};
static uint32_t ref405ep_fpga_readb (void *opaque, target_phys_addr_t addr)
{
ref405ep_fpga_t *fpga;
uint32_t ret;
fpga = opaque;
switch (addr) {
case 0x0:
ret = fpga->reg0;
break;
case 0x1:
ret = fpga->reg1;
break;
default:
ret = 0;
break;
}
return ret;
}
static void ref405ep_fpga_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ref405ep_fpga_t *fpga;
fpga = opaque;
switch (addr) {
case 0x0:
/* Read only */
break;
case 0x1:
fpga->reg1 = value;
break;
default:
break;
}
}
static uint32_t ref405ep_fpga_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t ret;
ret = ref405ep_fpga_readb(opaque, addr) << 8;
ret |= ref405ep_fpga_readb(opaque, addr + 1);
return ret;
}
static void ref405ep_fpga_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ref405ep_fpga_writeb(opaque, addr, (value >> 8) & 0xFF);
ref405ep_fpga_writeb(opaque, addr + 1, value & 0xFF);
}
static uint32_t ref405ep_fpga_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t ret;
ret = ref405ep_fpga_readb(opaque, addr) << 24;
ret |= ref405ep_fpga_readb(opaque, addr + 1) << 16;
ret |= ref405ep_fpga_readb(opaque, addr + 2) << 8;
ret |= ref405ep_fpga_readb(opaque, addr + 3);
return ret;
}
static void ref405ep_fpga_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ref405ep_fpga_writeb(opaque, addr, (value >> 24) & 0xFF);
ref405ep_fpga_writeb(opaque, addr + 1, (value >> 16) & 0xFF);
ref405ep_fpga_writeb(opaque, addr + 2, (value >> 8) & 0xFF);
ref405ep_fpga_writeb(opaque, addr + 3, value & 0xFF);
}
static CPUReadMemoryFunc *ref405ep_fpga_read[] = {
&ref405ep_fpga_readb,
&ref405ep_fpga_readw,
&ref405ep_fpga_readl,
};
static CPUWriteMemoryFunc *ref405ep_fpga_write[] = {
&ref405ep_fpga_writeb,
&ref405ep_fpga_writew,
&ref405ep_fpga_writel,
};
static void ref405ep_fpga_reset (void *opaque)
{
ref405ep_fpga_t *fpga;
fpga = opaque;
fpga->reg0 = 0x00;
fpga->reg1 = 0x0F;
}
static void ref405ep_fpga_init (uint32_t base)
{
ref405ep_fpga_t *fpga;
int fpga_memory;
fpga = qemu_mallocz(sizeof(ref405ep_fpga_t));
fpga_memory = cpu_register_io_memory(ref405ep_fpga_read,
ref405ep_fpga_write, fpga);
cpu_register_physical_memory(base, 0x00000100, fpga_memory);
ref405ep_fpga_reset(fpga);
qemu_register_reset(&ref405ep_fpga_reset, fpga);
}
static void ref405ep_init (ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
char *filename;
ppc4xx_bd_info_t bd;
CPUPPCState *env;
qemu_irq *pic;
ram_addr_t sram_offset, bios_offset, bdloc;
target_phys_addr_t ram_bases[2], ram_sizes[2];
target_ulong sram_size, bios_size;
//int phy_addr = 0;
//static int phy_addr = 1;
target_ulong kernel_base, kernel_size, initrd_base, initrd_size;
int linux_boot;
int fl_idx, fl_sectors, len;
int ppc_boot_device = boot_device[0];
DriveInfo *dinfo;
/* XXX: fix this */
ram_bases[0] = qemu_ram_alloc(0x08000000);
ram_sizes[0] = 0x08000000;
ram_bases[1] = 0x00000000;
ram_sizes[1] = 0x00000000;
ram_size = 128 * 1024 * 1024;
#ifdef DEBUG_BOARD_INIT
printf("%s: register cpu\n", __func__);
#endif
env = ppc405ep_init(ram_bases, ram_sizes, 33333333, &pic,
kernel_filename == NULL ? 0 : 1);
/* allocate SRAM */
sram_size = 512 * 1024;
sram_offset = qemu_ram_alloc(sram_size);
#ifdef DEBUG_BOARD_INIT
printf("%s: register SRAM at offset %08lx\n", __func__, sram_offset);
#endif
cpu_register_physical_memory(0xFFF00000, sram_size,
sram_offset | IO_MEM_RAM);
/* allocate and load BIOS */
#ifdef DEBUG_BOARD_INIT
printf("%s: register BIOS\n", __func__);
#endif
fl_idx = 0;
#ifdef USE_FLASH_BIOS
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
bios_size = bdrv_getlength(dinfo->bdrv);
bios_offset = qemu_ram_alloc(bios_size);
fl_sectors = (bios_size + 65535) >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size " TARGET_FMT_lx
" at offset %08lx addr " TARGET_FMT_lx " '%s' %d\n",
fl_idx, bios_size, bios_offset, -bios_size,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
#endif
pflash_cfi02_register((uint32_t)(-bios_size), bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
2, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
fl_idx++;
} else
#endif
{
#ifdef DEBUG_BOARD_INIT
printf("Load BIOS from file\n");
#endif
bios_offset = qemu_ram_alloc(BIOS_SIZE);
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = load_image(filename, qemu_get_ram_ptr(bios_offset));
qemu_free(filename);
} else {
bios_size = -1;
}
if (bios_size < 0 || bios_size > BIOS_SIZE) {
fprintf(stderr, "qemu: could not load PowerPC bios '%s'\n",
bios_name);
exit(1);
}
bios_size = (bios_size + 0xfff) & ~0xfff;
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
}
/* Register FPGA */
#ifdef DEBUG_BOARD_INIT
printf("%s: register FPGA\n", __func__);
#endif
ref405ep_fpga_init(0xF0300000);
/* Register NVRAM */
#ifdef DEBUG_BOARD_INIT
printf("%s: register NVRAM\n", __func__);
#endif
m48t59_init(NULL, 0xF0000000, 0, 8192, 8);
/* Load kernel */
linux_boot = (kernel_filename != NULL);
if (linux_boot) {
#ifdef DEBUG_BOARD_INIT
printf("%s: load kernel\n", __func__);
#endif
memset(&bd, 0, sizeof(bd));
bd.bi_memstart = 0x00000000;
bd.bi_memsize = ram_size;
bd.bi_flashstart = -bios_size;
bd.bi_flashsize = -bios_size;
bd.bi_flashoffset = 0;
bd.bi_sramstart = 0xFFF00000;
bd.bi_sramsize = sram_size;
bd.bi_bootflags = 0;
bd.bi_intfreq = 133333333;
bd.bi_busfreq = 33333333;
bd.bi_baudrate = 115200;
bd.bi_s_version[0] = 'Q';
bd.bi_s_version[1] = 'M';
bd.bi_s_version[2] = 'U';
bd.bi_s_version[3] = '\0';
bd.bi_r_version[0] = 'Q';
bd.bi_r_version[1] = 'E';
bd.bi_r_version[2] = 'M';
bd.bi_r_version[3] = 'U';
bd.bi_r_version[4] = '\0';
bd.bi_procfreq = 133333333;
bd.bi_plb_busfreq = 33333333;
bd.bi_pci_busfreq = 33333333;
bd.bi_opbfreq = 33333333;
bdloc = ppc405_set_bootinfo(env, &bd, 0x00000001);
env->gpr[3] = bdloc;
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image_targphys(kernel_filename, kernel_base,
ram_size - kernel_base);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
printf("Load kernel size " TARGET_FMT_ld " at " TARGET_FMT_lx,
kernel_size, kernel_base);
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
env->gpr[4] = initrd_base;
env->gpr[5] = initrd_size;
ppc_boot_device = 'm';
if (kernel_cmdline != NULL) {
len = strlen(kernel_cmdline);
bdloc -= ((len + 255) & ~255);
cpu_physical_memory_write(bdloc, (void *)kernel_cmdline, len + 1);
env->gpr[6] = bdloc;
env->gpr[7] = bdloc + len;
} else {
env->gpr[6] = 0;
env->gpr[7] = 0;
}
env->nip = KERNEL_LOAD_ADDR;
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
bdloc = 0;
}
#ifdef DEBUG_BOARD_INIT
printf("%s: Done\n", __func__);
#endif
printf("bdloc %016lx\n", (unsigned long)bdloc);
}
static QEMUMachine ref405ep_machine = {
.name = "ref405ep",
.desc = "ref405ep",
.init = ref405ep_init,
};
/*****************************************************************************/
/* AMCC Taihu evaluation board */
/* - PowerPC 405EP processor
* - SDRAM 128 MB at 0x00000000
* - Boot flash 2 MB at 0xFFE00000
* - Application flash 32 MB at 0xFC000000
* - 2 serial ports
* - 2 ethernet PHY
* - 1 USB 1.1 device 0x50000000
* - 1 LCD display 0x50100000
* - 1 CPLD 0x50100000
* - 1 I2C EEPROM
* - 1 I2C thermal sensor
* - a set of LEDs
* - bit-bang SPI port using GPIOs
* - 1 EBC interface connector 0 0x50200000
* - 1 cardbus controller + expansion slot.
* - 1 PCI expansion slot.
*/
typedef struct taihu_cpld_t taihu_cpld_t;
struct taihu_cpld_t {
uint8_t reg0;
uint8_t reg1;
};
static uint32_t taihu_cpld_readb (void *opaque, target_phys_addr_t addr)
{
taihu_cpld_t *cpld;
uint32_t ret;
cpld = opaque;
switch (addr) {
case 0x0:
ret = cpld->reg0;
break;
case 0x1:
ret = cpld->reg1;
break;
default:
ret = 0;
break;
}
return ret;
}
static void taihu_cpld_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
taihu_cpld_t *cpld;
cpld = opaque;
switch (addr) {
case 0x0:
/* Read only */
break;
case 0x1:
cpld->reg1 = value;
break;
default:
break;
}
}
static uint32_t taihu_cpld_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t ret;
ret = taihu_cpld_readb(opaque, addr) << 8;
ret |= taihu_cpld_readb(opaque, addr + 1);
return ret;
}
static void taihu_cpld_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
taihu_cpld_writeb(opaque, addr, (value >> 8) & 0xFF);
taihu_cpld_writeb(opaque, addr + 1, value & 0xFF);
}
static uint32_t taihu_cpld_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t ret;
ret = taihu_cpld_readb(opaque, addr) << 24;
ret |= taihu_cpld_readb(opaque, addr + 1) << 16;
ret |= taihu_cpld_readb(opaque, addr + 2) << 8;
ret |= taihu_cpld_readb(opaque, addr + 3);
return ret;
}
static void taihu_cpld_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
taihu_cpld_writel(opaque, addr, (value >> 24) & 0xFF);
taihu_cpld_writel(opaque, addr + 1, (value >> 16) & 0xFF);
taihu_cpld_writel(opaque, addr + 2, (value >> 8) & 0xFF);
taihu_cpld_writeb(opaque, addr + 3, value & 0xFF);
}
static CPUReadMemoryFunc *taihu_cpld_read[] = {
&taihu_cpld_readb,
&taihu_cpld_readw,
&taihu_cpld_readl,
};
static CPUWriteMemoryFunc *taihu_cpld_write[] = {
&taihu_cpld_writeb,
&taihu_cpld_writew,
&taihu_cpld_writel,
};
static void taihu_cpld_reset (void *opaque)
{
taihu_cpld_t *cpld;
cpld = opaque;
cpld->reg0 = 0x01;
cpld->reg1 = 0x80;
}
static void taihu_cpld_init (uint32_t base)
{
taihu_cpld_t *cpld;
int cpld_memory;
cpld = qemu_mallocz(sizeof(taihu_cpld_t));
cpld_memory = cpu_register_io_memory(taihu_cpld_read,
taihu_cpld_write, cpld);
cpu_register_physical_memory(base, 0x00000100, cpld_memory);
taihu_cpld_reset(cpld);
qemu_register_reset(&taihu_cpld_reset, cpld);
}
static void taihu_405ep_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
char *filename;
CPUPPCState *env;
qemu_irq *pic;
ram_addr_t bios_offset;
target_phys_addr_t ram_bases[2], ram_sizes[2];
target_ulong bios_size;
target_ulong kernel_base, kernel_size, initrd_base, initrd_size;
int linux_boot;
int fl_idx, fl_sectors;
int ppc_boot_device = boot_device[0];
DriveInfo *dinfo;
/* RAM is soldered to the board so the size cannot be changed */
ram_bases[0] = qemu_ram_alloc(0x04000000);
ram_sizes[0] = 0x04000000;
ram_bases[1] = qemu_ram_alloc(0x04000000);
ram_sizes[1] = 0x04000000;
ram_size = 0x08000000;
#ifdef DEBUG_BOARD_INIT
printf("%s: register cpu\n", __func__);
#endif
env = ppc405ep_init(ram_bases, ram_sizes, 33333333, &pic,
kernel_filename == NULL ? 0 : 1);
/* allocate and load BIOS */
#ifdef DEBUG_BOARD_INIT
printf("%s: register BIOS\n", __func__);
#endif
fl_idx = 0;
#if defined(USE_FLASH_BIOS)
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
bios_size = bdrv_getlength(dinfo->bdrv);
/* XXX: should check that size is 2MB */
// bios_size = 2 * 1024 * 1024;
fl_sectors = (bios_size + 65535) >> 16;
bios_offset = qemu_ram_alloc(bios_size);
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size " TARGET_FMT_lx
" at offset %08lx addr " TARGET_FMT_lx " '%s' %d\n",
fl_idx, bios_size, bios_offset, -bios_size,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
#endif
pflash_cfi02_register((uint32_t)(-bios_size), bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
fl_idx++;
} else
#endif
{
#ifdef DEBUG_BOARD_INIT
printf("Load BIOS from file\n");
#endif
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
bios_offset = qemu_ram_alloc(BIOS_SIZE);
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = load_image(filename, qemu_get_ram_ptr(bios_offset));
} else {
bios_size = -1;
}
if (bios_size < 0 || bios_size > BIOS_SIZE) {
fprintf(stderr, "qemu: could not load PowerPC bios '%s'\n",
bios_name);
exit(1);
}
bios_size = (bios_size + 0xfff) & ~0xfff;
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
}
/* Register Linux flash */
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
bios_size = bdrv_getlength(dinfo->bdrv);
/* XXX: should check that size is 32MB */
bios_size = 32 * 1024 * 1024;
fl_sectors = (bios_size + 65535) >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size " TARGET_FMT_lx
" at offset %08lx addr " TARGET_FMT_lx " '%s'\n",
fl_idx, bios_size, bios_offset, (target_ulong)0xfc000000,
bdrv_get_device_name(dinfo->bdrv));
#endif
bios_offset = qemu_ram_alloc(bios_size);
pflash_cfi02_register(0xfc000000, bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
fl_idx++;
}
/* Register CLPD & LCD display */
#ifdef DEBUG_BOARD_INIT
printf("%s: register CPLD\n", __func__);
#endif
taihu_cpld_init(0x50100000);
/* Load kernel */
linux_boot = (kernel_filename != NULL);
if (linux_boot) {
#ifdef DEBUG_BOARD_INIT
printf("%s: load kernel\n", __func__);
#endif
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image_targphys(kernel_filename, kernel_base,
ram_size - kernel_base);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr,
"qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
ppc_boot_device = 'm';
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
}
#ifdef DEBUG_BOARD_INIT
printf("%s: Done\n", __func__);
#endif
}
static QEMUMachine taihu_machine = {
.name = "taihu",
.desc = "taihu",
.init = taihu_405ep_init,
};
static void ppc405_machine_init(void)
{
qemu_register_machine(&ref405ep_machine);
qemu_register_machine(&taihu_machine);
}
machine_init(ppc405_machine_init);