qemu-e2k/hw/intc/pnv_xive.c
Markus Armbruster 668f62ec62 error: Eliminate error_propagate() with Coccinelle, part 1
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away.  Convert

    if (!foo(..., &err)) {
        ...
        error_propagate(errp, err);
        ...
        return ...
    }

to

    if (!foo(..., errp)) {
        ...
        ...
        return ...
    }

where nothing else needs @err.  Coccinelle script:

    @rule1 forall@
    identifier fun, err, errp, lbl;
    expression list args, args2;
    binary operator op;
    constant c1, c2;
    symbol false;
    @@
         if (
    (
    -        fun(args, &err, args2)
    +        fun(args, errp, args2)
    |
    -        !fun(args, &err, args2)
    +        !fun(args, errp, args2)
    |
    -        fun(args, &err, args2) op c1
    +        fun(args, errp, args2) op c1
    )
            )
         {
             ... when != err
                 when != lbl:
                 when strict
    -        error_propagate(errp, err);
             ... when != err
    (
             return;
    |
             return c2;
    |
             return false;
    )
         }

    @rule2 forall@
    identifier fun, err, errp, lbl;
    expression list args, args2;
    expression var;
    binary operator op;
    constant c1, c2;
    symbol false;
    @@
    -    var = fun(args, &err, args2);
    +    var = fun(args, errp, args2);
         ... when != err
         if (
    (
             var
    |
             !var
    |
             var op c1
    )
            )
         {
             ... when != err
                 when != lbl:
                 when strict
    -        error_propagate(errp, err);
             ... when != err
    (
             return;
    |
             return c2;
    |
             return false;
    |
             return var;
    )
         }

    @depends on rule1 || rule2@
    identifier err;
    @@
    -    Error *err = NULL;
         ... when != err

Not exactly elegant, I'm afraid.

The "when != lbl:" is necessary to avoid transforming

         if (fun(args, &err)) {
             goto out
         }
         ...
     out:
         error_propagate(errp, err);

even though other paths to label out still need the error_propagate().
For an actual example, see sclp_realize().

Without the "when strict", Coccinelle transforms vfio_msix_setup(),
incorrectly.  I don't know what exactly "when strict" does, only that
it helps here.

The match of return is narrower than what I want, but I can't figure
out how to express "return where the operand doesn't use @err".  For
an example where it's too narrow, see vfio_intx_enable().

Silently fails to convert hw/arm/armsse.c, because Coccinelle gets
confused by ARMSSE being used both as typedef and function-like macro
there.  Converted manually.

Line breaks tidied up manually.  One nested declaration of @local_err
deleted manually.  Preexisting unwanted blank line dropped in
hw/riscv/sifive_e.c.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-35-armbru@redhat.com>
2020-07-10 15:18:08 +02:00

1985 lines
58 KiB
C

/*
* QEMU PowerPC XIVE interrupt controller model
*
* Copyright (c) 2017-2019, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/dma.h"
#include "sysemu/reset.h"
#include "monitor/monitor.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_core.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_xive.h"
#include "hw/ppc/xive_regs.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/ppc.h"
#include <libfdt.h>
#include "pnv_xive_regs.h"
#undef XIVE_DEBUG
/*
* Virtual structures table (VST)
*/
#define SBE_PER_BYTE 4
typedef struct XiveVstInfo {
const char *name;
uint32_t size;
uint32_t max_blocks;
} XiveVstInfo;
static const XiveVstInfo vst_infos[] = {
[VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
[VST_TSEL_SBE] = { "SBE", 1, 16 },
[VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
[VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
/*
* Interrupt fifo backing store table (not modeled) :
*
* 0 - IPI,
* 1 - HWD,
* 2 - First escalate,
* 3 - Second escalate,
* 4 - Redistribution,
* 5 - IPI cascaded queue ?
*/
[VST_TSEL_IRQ] = { "IRQ", 1, 6 },
};
#define xive_error(xive, fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
(xive)->chip->chip_id, ## __VA_ARGS__);
/*
* QEMU version of the GETFIELD/SETFIELD macros
*
* TODO: It might be better to use the existing extract64() and
* deposit64() but this means that all the register definitions will
* change and become incompatible with the ones found in skiboot.
*
* Keep it as it is for now until we find a common ground.
*/
static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
{
return (word & mask) >> ctz64(mask);
}
static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
uint64_t value)
{
return (word & ~mask) | ((value << ctz64(mask)) & mask);
}
/*
* When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
* field overrides the hardwired chip ID in the Powerbus operations
* and for CAM compares
*/
static uint8_t pnv_xive_block_id(PnvXive *xive)
{
uint8_t blk = xive->chip->chip_id;
uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
}
return blk;
}
/*
* Remote access to controllers. HW uses MMIOs. For now, a simple scan
* of the chips is good enough.
*
* TODO: Block scope support
*/
static PnvXive *pnv_xive_get_remote(uint8_t blk)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
int i;
for (i = 0; i < pnv->num_chips; i++) {
Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
PnvXive *xive = &chip9->xive;
if (pnv_xive_block_id(xive) == blk) {
return xive;
}
}
return NULL;
}
/*
* VST accessors for SBE, EAT, ENDT, NVT
*
* Indirect VST tables are arrays of VSDs pointing to a page (of same
* size). Each page is a direct VST table.
*/
#define XIVE_VSD_SIZE 8
/* Indirect page size can be 4K, 64K, 2M, 16M. */
static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
{
return page_shift == 12 || page_shift == 16 ||
page_shift == 21 || page_shift == 24;
}
static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
uint64_t vsd, uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
uint32_t idx_max;
idx_max = vst_tsize / info->size - 1;
if (idx > idx_max) {
#ifdef XIVE_DEBUG
xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
info->name, idx, idx_max);
#endif
return 0;
}
return vst_addr + idx * info->size;
}
static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
uint64_t vsd, uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd_addr;
uint32_t vsd_idx;
uint32_t page_shift;
uint32_t vst_per_page;
/* Get the page size of the indirect table. */
vsd_addr = vsd & VSD_ADDRESS_MASK;
vsd = ldq_be_dma(&address_space_memory, vsd_addr);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE_DEBUG
xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
#endif
return 0;
}
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
if (!pnv_xive_vst_page_size_allowed(page_shift)) {
xive_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return 0;
}
vst_per_page = (1ull << page_shift) / info->size;
vsd_idx = idx / vst_per_page;
/* Load the VSD we are looking for, if not already done */
if (vsd_idx) {
vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
vsd = ldq_be_dma(&address_space_memory, vsd_addr);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE_DEBUG
xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
#endif
return 0;
}
/*
* Check that the pages have a consistent size across the
* indirect table
*/
if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
xive_error(xive, "VST: %s entry %x indirect page size differ !?",
info->name, idx);
return 0;
}
}
return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
}
static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd;
if (blk >= info->max_blocks) {
xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
blk, info->name, idx);
return 0;
}
vsd = xive->vsds[type][blk];
/* Remote VST access */
if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
xive = pnv_xive_get_remote(blk);
return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
}
if (VSD_INDIRECT & vsd) {
return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
}
return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
}
static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
uint32_t idx, void *data)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
if (!addr) {
return -1;
}
cpu_physical_memory_read(addr, data, info->size);
return 0;
}
#define XIVE_VST_WORD_ALL -1
static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
uint32_t idx, void *data, uint32_t word_number)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
if (!addr) {
return -1;
}
if (word_number == XIVE_VST_WORD_ALL) {
cpu_physical_memory_write(addr, data, info->size);
} else {
cpu_physical_memory_write(addr + word_number * 4,
data + word_number * 4, 4);
}
return 0;
}
static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
XiveEND *end)
{
return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
}
static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
XiveEND *end, uint8_t word_number)
{
return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
word_number);
}
static int pnv_xive_end_update(PnvXive *xive)
{
uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
int i;
uint64_t eqc_watch[4];
for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
}
return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
XIVE_VST_WORD_ALL);
}
static void pnv_xive_end_cache_load(PnvXive *xive)
{
uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
uint64_t eqc_watch[4] = { 0 };
int i;
if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
}
for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
}
}
static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
XiveNVT *nvt)
{
return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
}
static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
XiveNVT *nvt, uint8_t word_number)
{
return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
word_number);
}
static int pnv_xive_nvt_update(PnvXive *xive)
{
uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
int i;
uint64_t vpc_watch[8];
for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
}
return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
XIVE_VST_WORD_ALL);
}
static void pnv_xive_nvt_cache_load(PnvXive *xive)
{
uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
uint64_t vpc_watch[8] = { 0 };
int i;
if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
}
for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
}
}
static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
XiveEAS *eas)
{
PnvXive *xive = PNV_XIVE(xrtr);
/*
* EAT lookups should be local to the IC
*/
if (pnv_xive_block_id(xive) != blk) {
xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
return -1;
}
return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
}
/*
* One bit per thread id. The first register PC_THREAD_EN_REG0 covers
* the first cores 0-15 (normal) of the chip or 0-7 (fused). The
* second register covers cores 16-23 (normal) or 8-11 (fused).
*/
static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
{
int pir = ppc_cpu_pir(cpu);
uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
uint32_t bit = pir & 0x3f;
return xive->regs[reg >> 3] & PPC_BIT(bit);
}
static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv, XiveTCTXMatch *match)
{
PnvXive *xive = PNV_XIVE(xptr);
PnvChip *chip = xive->chip;
int count = 0;
int i, j;
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pc = chip->cores[i];
CPUCore *cc = CPU_CORE(pc);
for (j = 0; j < cc->nr_threads; j++) {
PowerPCCPU *cpu = pc->threads[j];
XiveTCTX *tctx;
int ring;
if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
continue;
}
tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
/*
* Check the thread context CAM lines and record matches.
*/
ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
nvt_idx, cam_ignore, logic_serv);
/*
* Save the context and follow on to catch duplicates, that we
* don't support yet.
*/
if (ring != -1) {
if (match->tctx) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
"thread context NVT %x/%x\n",
nvt_blk, nvt_idx);
return -1;
}
match->ring = ring;
match->tctx = tctx;
count++;
}
}
}
return count;
}
static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
{
return pnv_xive_block_id(PNV_XIVE(xrtr));
}
/*
* The TIMA MMIO space is shared among the chips and to identify the
* chip from which the access is being done, we extract the chip id
* from the PIR.
*/
static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
{
int pir = ppc_cpu_pir(cpu);
XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
PnvXive *xive = PNV_XIVE(xptr);
if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
xive_error(xive, "IC: CPU %x is not enabled", pir);
}
return xive;
}
/*
* The internal sources (IPIs) of the interrupt controller have no
* knowledge of the XIVE chip on which they reside. Encode the block
* id in the source interrupt number before forwarding the source
* event notification to the Router. This is required on a multichip
* system.
*/
static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
{
PnvXive *xive = PNV_XIVE(xn);
uint8_t blk = pnv_xive_block_id(xive);
xive_router_notify(xn, XIVE_EAS(blk, srcno));
}
/*
* XIVE helpers
*/
static uint64_t pnv_xive_vc_size(PnvXive *xive)
{
return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
}
static uint64_t pnv_xive_edt_shift(PnvXive *xive)
{
return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
}
static uint64_t pnv_xive_pc_size(PnvXive *xive)
{
return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
}
static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
{
uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
}
/*
* Compute the number of entries per indirect subpage.
*/
static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
{
uint8_t blk = pnv_xive_block_id(xive);
uint64_t vsd = xive->vsds[type][blk];
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd_addr;
uint32_t page_shift;
/* For direct tables, fake a valid value */
if (!(VSD_INDIRECT & vsd)) {
return 1;
}
/* Get the page size of the indirect table. */
vsd_addr = vsd & VSD_ADDRESS_MASK;
vsd = ldq_be_dma(&address_space_memory, vsd_addr);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE_DEBUG
xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
#endif
return 0;
}
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
if (!pnv_xive_vst_page_size_allowed(page_shift)) {
xive_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return 0;
}
return (1ull << page_shift) / info->size;
}
/*
* EDT Table
*
* The Virtualization Controller MMIO region containing the IPI ESB
* pages and END ESB pages is sub-divided into "sets" which map
* portions of the VC region to the different ESB pages. It is
* configured at runtime through the EDT "Domain Table" to let the
* firmware decide how to split the VC address space between IPI ESB
* pages and END ESB pages.
*/
/*
* Computes the overall size of the IPI or the END ESB pages
*/
static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
{
uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
uint64_t size = 0;
int i;
for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
if (edt_type == type) {
size += edt_size;
}
}
return size;
}
/*
* Maps an offset of the VC region in the IPI or END region using the
* layout defined by the EDT "Domaine Table"
*/
static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
uint64_t type)
{
int i;
uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
uint64_t edt_offset = vc_offset;
for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
if (edt_type != type) {
edt_offset -= edt_size;
}
}
return edt_offset;
}
static void pnv_xive_edt_resize(PnvXive *xive)
{
uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
}
/*
* XIVE Table configuration. Only EDT is supported.
*/
static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
{
uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
uint64_t *xive_table;
uint8_t max_index;
switch (tsel) {
case CQ_TAR_TSEL_BLK:
max_index = ARRAY_SIZE(xive->blk);
xive_table = xive->blk;
break;
case CQ_TAR_TSEL_MIG:
max_index = ARRAY_SIZE(xive->mig);
xive_table = xive->mig;
break;
case CQ_TAR_TSEL_EDT:
max_index = ARRAY_SIZE(xive->edt);
xive_table = xive->edt;
break;
case CQ_TAR_TSEL_VDT:
max_index = ARRAY_SIZE(xive->vdt);
xive_table = xive->vdt;
break;
default:
xive_error(xive, "IC: invalid table %d", (int) tsel);
return -1;
}
if (tsel_index >= max_index) {
xive_error(xive, "IC: invalid index %d", (int) tsel_index);
return -1;
}
xive_table[tsel_index] = val;
if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
xive->regs[CQ_TAR >> 3] =
SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
}
/*
* EDT configuration is complete. Resize the MMIO windows exposing
* the IPI and the END ESBs in the VC region.
*/
if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
pnv_xive_edt_resize(xive);
}
return 0;
}
/*
* Virtual Structure Tables (VST) configuration
*/
static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
uint8_t blk, uint64_t vsd)
{
XiveENDSource *end_xsrc = &xive->end_source;
XiveSource *xsrc = &xive->ipi_source;
const XiveVstInfo *info = &vst_infos[type];
uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
uint64_t vst_tsize = 1ull << page_shift;
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
/* Basic checks */
if (VSD_INDIRECT & vsd) {
if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
xive_error(xive, "VST: %s indirect tables are not enabled",
info->name);
return;
}
if (!pnv_xive_vst_page_size_allowed(page_shift)) {
xive_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return;
}
}
if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
" page shift %d", info->name, vst_addr, page_shift);
return;
}
/* Record the table configuration (in SRAM on HW) */
xive->vsds[type][blk] = vsd;
/* Now tune the models with the configuration provided by the FW */
switch (type) {
case VST_TSEL_IVT: /* Nothing to be done */
break;
case VST_TSEL_EQDT:
/*
* Backing store pages for the END.
*
* If the table is direct, we can compute the number of PQ
* entries provisioned by FW (such as skiboot) and resize the
* END ESB window accordingly.
*/
if (!(VSD_INDIRECT & vsd)) {
memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
* (1ull << xsrc->esb_shift));
}
memory_region_add_subregion(&xive->end_edt_mmio, 0,
&end_xsrc->esb_mmio);
break;
case VST_TSEL_SBE:
/*
* Backing store pages for the source PQ bits. The model does
* not use these PQ bits backed in RAM because the XiveSource
* model has its own.
*
* If the table is direct, we can compute the number of PQ
* entries provisioned by FW (such as skiboot) and resize the
* ESB window accordingly.
*/
if (!(VSD_INDIRECT & vsd)) {
memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
* (1ull << xsrc->esb_shift));
}
memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
break;
case VST_TSEL_VPDT: /* Not modeled */
case VST_TSEL_IRQ: /* Not modeled */
/*
* These tables contains the backing store pages for the
* interrupt fifos of the VC sub-engine in case of overflow.
*/
break;
default:
g_assert_not_reached();
}
}
/*
* Both PC and VC sub-engines are configured as each use the Virtual
* Structure Tables : SBE, EAS, END and NVT.
*/
static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
{
uint8_t mode = GETFIELD(VSD_MODE, vsd);
uint8_t type = GETFIELD(VST_TABLE_SELECT,
xive->regs[VC_VSD_TABLE_ADDR >> 3]);
uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
xive->regs[VC_VSD_TABLE_ADDR >> 3]);
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
if (type > VST_TSEL_IRQ) {
xive_error(xive, "VST: invalid table type %d", type);
return;
}
if (blk >= vst_infos[type].max_blocks) {
xive_error(xive, "VST: invalid block id %d for"
" %s table", blk, vst_infos[type].name);
return;
}
/*
* Only take the VC sub-engine configuration into account because
* the XiveRouter model combines both VC and PC sub-engines
*/
if (pc_engine) {
return;
}
if (!vst_addr) {
xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
return;
}
switch (mode) {
case VSD_MODE_FORWARD:
xive->vsds[type][blk] = vsd;
break;
case VSD_MODE_EXCLUSIVE:
pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
break;
default:
xive_error(xive, "VST: unsupported table mode %d", mode);
return;
}
}
/*
* Interrupt controller MMIO region. The layout is compatible between
* 4K and 64K pages :
*
* Page 0 sub-engine BARs
* 0x000 - 0x3FF IC registers
* 0x400 - 0x7FF PC registers
* 0x800 - 0xFFF VC registers
*
* Page 1 Notify page (writes only)
* 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
* 0x800 - 0xFFF forwards and syncs
*
* Page 2 LSI Trigger page (writes only) (not modeled)
* Page 3 LSI SB EOI page (reads only) (not modeled)
*
* Page 4-7 indirect TIMA
*/
/*
* IC - registers MMIO
*/
static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
MemoryRegion *sysmem = get_system_memory();
uint32_t reg = offset >> 3;
bool is_chip0 = xive->chip->chip_id == 0;
switch (offset) {
/*
* XIVE CQ (PowerBus bridge) settings
*/
case CQ_MSGSND: /* msgsnd for doorbells */
case CQ_FIRMASK_OR: /* FIR error reporting */
break;
case CQ_PBI_CTL:
if (val & CQ_PBI_PC_64K) {
xive->pc_shift = 16;
}
if (val & CQ_PBI_VC_64K) {
xive->vc_shift = 16;
}
break;
case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
/*
* TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
*/
break;
/*
* XIVE Virtualization Controller settings
*/
case VC_GLOBAL_CONFIG:
break;
/*
* XIVE Presenter Controller settings
*/
case PC_GLOBAL_CONFIG:
/*
* PC_GCONF_CHIPID_OVR
* Overrides Int command Chip ID with the Chip ID field (DEBUG)
*/
break;
case PC_TCTXT_CFG:
/*
* TODO: block group support
*/
break;
case PC_TCTXT_TRACK:
/*
* PC_TCTXT_TRACK_EN:
* enable block tracking and exchange of block ownership
* information between Interrupt controllers
*/
break;
/*
* Misc settings
*/
case VC_SBC_CONFIG: /* Store EOI configuration */
/*
* Configure store EOI if required by firwmare (skiboot has removed
* support recently though)
*/
if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
}
break;
case VC_EQC_CONFIG: /* TODO: silent escalation */
case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
break;
/*
* XIVE BAR settings (XSCOM only)
*/
case CQ_RST_CTL:
/* bit4: resets all BAR registers */
break;
case CQ_IC_BAR: /* IC BAR. 8 pages */
xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
if (!(val & CQ_IC_BAR_VALID)) {
xive->ic_base = 0;
if (xive->regs[reg] & CQ_IC_BAR_VALID) {
memory_region_del_subregion(&xive->ic_mmio,
&xive->ic_reg_mmio);
memory_region_del_subregion(&xive->ic_mmio,
&xive->ic_notify_mmio);
memory_region_del_subregion(&xive->ic_mmio,
&xive->ic_lsi_mmio);
memory_region_del_subregion(&xive->ic_mmio,
&xive->tm_indirect_mmio);
memory_region_del_subregion(sysmem, &xive->ic_mmio);
}
} else {
xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
memory_region_add_subregion(sysmem, xive->ic_base,
&xive->ic_mmio);
memory_region_add_subregion(&xive->ic_mmio, 0,
&xive->ic_reg_mmio);
memory_region_add_subregion(&xive->ic_mmio,
1ul << xive->ic_shift,
&xive->ic_notify_mmio);
memory_region_add_subregion(&xive->ic_mmio,
2ul << xive->ic_shift,
&xive->ic_lsi_mmio);
memory_region_add_subregion(&xive->ic_mmio,
4ull << xive->ic_shift,
&xive->tm_indirect_mmio);
}
}
break;
case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
if (!(val & CQ_TM_BAR_VALID)) {
xive->tm_base = 0;
if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
memory_region_del_subregion(sysmem, &xive->tm_mmio);
}
} else {
xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
memory_region_add_subregion(sysmem, xive->tm_base,
&xive->tm_mmio);
}
}
break;
case CQ_PC_BARM:
xive->regs[reg] = val;
memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
break;
case CQ_PC_BAR: /* From 32M to 512G */
if (!(val & CQ_PC_BAR_VALID)) {
xive->pc_base = 0;
if (xive->regs[reg] & CQ_PC_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->pc_mmio);
}
} else {
xive->pc_base = val & ~(CQ_PC_BAR_VALID);
if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
memory_region_add_subregion(sysmem, xive->pc_base,
&xive->pc_mmio);
}
}
break;
case CQ_VC_BARM:
xive->regs[reg] = val;
memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
break;
case CQ_VC_BAR: /* From 64M to 4TB */
if (!(val & CQ_VC_BAR_VALID)) {
xive->vc_base = 0;
if (xive->regs[reg] & CQ_VC_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->vc_mmio);
}
} else {
xive->vc_base = val & ~(CQ_VC_BAR_VALID);
if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
memory_region_add_subregion(sysmem, xive->vc_base,
&xive->vc_mmio);
}
}
break;
/*
* XIVE Table settings.
*/
case CQ_TAR: /* Table Address */
break;
case CQ_TDR: /* Table Data */
pnv_xive_table_set_data(xive, val);
break;
/*
* XIVE VC & PC Virtual Structure Table settings
*/
case VC_VSD_TABLE_ADDR:
case PC_VSD_TABLE_ADDR: /* Virtual table selector */
break;
case VC_VSD_TABLE_DATA: /* Virtual table setting */
case PC_VSD_TABLE_DATA:
pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
break;
/*
* Interrupt fifo overflow in memory backing store (Not modeled)
*/
case VC_IRQ_CONFIG_IPI:
case VC_IRQ_CONFIG_HW:
case VC_IRQ_CONFIG_CASCADE1:
case VC_IRQ_CONFIG_CASCADE2:
case VC_IRQ_CONFIG_REDIST:
case VC_IRQ_CONFIG_IPI_CASC:
break;
/*
* XIVE hardware thread enablement
*/
case PC_THREAD_EN_REG0: /* Physical Thread Enable */
case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
break;
case PC_THREAD_EN_REG0_SET:
xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
break;
case PC_THREAD_EN_REG1_SET:
xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
break;
case PC_THREAD_EN_REG0_CLR:
xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
break;
case PC_THREAD_EN_REG1_CLR:
xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
break;
/*
* Indirect TIMA access set up. Defines the PIR of the HW thread
* to use.
*/
case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
break;
/*
* XIVE PC & VC cache updates for EAS, NVT and END
*/
case VC_IVC_SCRUB_MASK:
case VC_IVC_SCRUB_TRIG:
break;
case VC_EQC_CWATCH_SPEC:
val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
break;
case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
break;
case VC_EQC_CWATCH_DAT0:
/* writing to DATA0 triggers the cache write */
xive->regs[reg] = val;
pnv_xive_end_update(xive);
break;
case VC_EQC_SCRUB_MASK:
case VC_EQC_SCRUB_TRIG:
/*
* The scrubbing registers flush the cache in RAM and can also
* invalidate.
*/
break;
case PC_VPC_CWATCH_SPEC:
val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
break;
case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
break;
case PC_VPC_CWATCH_DAT0:
/* writing to DATA0 triggers the cache write */
xive->regs[reg] = val;
pnv_xive_nvt_update(xive);
break;
case PC_VPC_SCRUB_MASK:
case PC_VPC_SCRUB_TRIG:
/*
* The scrubbing registers flush the cache in RAM and can also
* invalidate.
*/
break;
/*
* XIVE PC & VC cache invalidation
*/
case PC_AT_KILL:
break;
case VC_AT_MACRO_KILL:
break;
case PC_AT_KILL_MASK:
case VC_AT_MACRO_KILL_MASK:
break;
default:
xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
return;
}
xive->regs[reg] = val;
}
static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
uint64_t val = 0;
uint32_t reg = offset >> 3;
switch (offset) {
case CQ_CFG_PB_GEN:
case CQ_IC_BAR:
case CQ_TM1_BAR:
case CQ_TM2_BAR:
case CQ_PC_BAR:
case CQ_PC_BARM:
case CQ_VC_BAR:
case CQ_VC_BARM:
case CQ_TAR:
case CQ_TDR:
case CQ_PBI_CTL:
case PC_TCTXT_CFG:
case PC_TCTXT_TRACK:
case PC_TCTXT_INDIR0:
case PC_TCTXT_INDIR1:
case PC_TCTXT_INDIR2:
case PC_TCTXT_INDIR3:
case PC_GLOBAL_CONFIG:
case PC_VPC_SCRUB_MASK:
case VC_GLOBAL_CONFIG:
case VC_AIB_TX_ORDER_TAG2:
case VC_IRQ_CONFIG_IPI:
case VC_IRQ_CONFIG_HW:
case VC_IRQ_CONFIG_CASCADE1:
case VC_IRQ_CONFIG_CASCADE2:
case VC_IRQ_CONFIG_REDIST:
case VC_IRQ_CONFIG_IPI_CASC:
case VC_EQC_SCRUB_MASK:
case VC_IVC_SCRUB_MASK:
case VC_SBC_CONFIG:
case VC_AT_MACRO_KILL_MASK:
case VC_VSD_TABLE_ADDR:
case PC_VSD_TABLE_ADDR:
case VC_VSD_TABLE_DATA:
case PC_VSD_TABLE_DATA:
case PC_THREAD_EN_REG0:
case PC_THREAD_EN_REG1:
val = xive->regs[reg];
break;
/*
* XIVE hardware thread enablement
*/
case PC_THREAD_EN_REG0_SET:
case PC_THREAD_EN_REG0_CLR:
val = xive->regs[PC_THREAD_EN_REG0 >> 3];
break;
case PC_THREAD_EN_REG1_SET:
case PC_THREAD_EN_REG1_CLR:
val = xive->regs[PC_THREAD_EN_REG1 >> 3];
break;
case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
val = 0xffffff0000000000;
break;
/*
* XIVE PC & VC cache updates for EAS, NVT and END
*/
case VC_EQC_CWATCH_SPEC:
xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
val = xive->regs[reg];
break;
case VC_EQC_CWATCH_DAT0:
/*
* Load DATA registers from cache with data requested by the
* SPEC register
*/
pnv_xive_end_cache_load(xive);
val = xive->regs[reg];
break;
case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
val = xive->regs[reg];
break;
case PC_VPC_CWATCH_SPEC:
xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
val = xive->regs[reg];
break;
case PC_VPC_CWATCH_DAT0:
/*
* Load DATA registers from cache with data requested by the
* SPEC register
*/
pnv_xive_nvt_cache_load(xive);
val = xive->regs[reg];
break;
case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
val = xive->regs[reg];
break;
case PC_VPC_SCRUB_TRIG:
case VC_IVC_SCRUB_TRIG:
case VC_EQC_SCRUB_TRIG:
xive->regs[reg] &= ~VC_SCRUB_VALID;
val = xive->regs[reg];
break;
/*
* XIVE PC & VC cache invalidation
*/
case PC_AT_KILL:
xive->regs[reg] &= ~PC_AT_KILL_VALID;
val = xive->regs[reg];
break;
case VC_AT_MACRO_KILL:
xive->regs[reg] &= ~VC_KILL_VALID;
val = xive->regs[reg];
break;
/*
* XIVE synchronisation
*/
case VC_EQC_CONFIG:
val = VC_EQC_SYNC_MASK;
break;
default:
xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
}
return val;
}
static const MemoryRegionOps pnv_xive_ic_reg_ops = {
.read = pnv_xive_ic_reg_read,
.write = pnv_xive_ic_reg_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* IC - Notify MMIO port page (write only)
*/
#define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
#define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
#define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
#define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
#define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
#define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
#define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
#define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
/* VC synchronisation */
#define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
#define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
#define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
#define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
#define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
/* PC synchronisation */
#define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
#define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
#define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
{
uint8_t blk;
uint32_t idx;
if (val & XIVE_TRIGGER_END) {
xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
addr, val);
return;
}
/*
* Forward the source event notification directly to the Router.
* The source interrupt number should already be correctly encoded
* with the chip block id by the sending device (PHB, PSI).
*/
blk = XIVE_EAS_BLOCK(val);
idx = XIVE_EAS_INDEX(val);
xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
}
static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
/* VC: HW triggers */
switch (addr) {
case 0x000 ... 0x7FF:
pnv_xive_ic_hw_trigger(opaque, addr, val);
break;
/* VC: Forwarded IRQs */
case PNV_XIVE_FORWARD_IPI:
case PNV_XIVE_FORWARD_HW:
case PNV_XIVE_FORWARD_OS_ESC:
case PNV_XIVE_FORWARD_HW_ESC:
case PNV_XIVE_FORWARD_REDIS:
/* TODO: forwarded IRQs. Should be like HW triggers */
xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
addr, val);
break;
/* VC syncs */
case PNV_XIVE_SYNC_IPI:
case PNV_XIVE_SYNC_HW:
case PNV_XIVE_SYNC_OS_ESC:
case PNV_XIVE_SYNC_HW_ESC:
case PNV_XIVE_SYNC_REDIS:
break;
/* PC syncs */
case PNV_XIVE_SYNC_PULL:
case PNV_XIVE_SYNC_PUSH:
case PNV_XIVE_SYNC_VPC:
break;
default:
xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
}
}
static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
/* loads are invalid */
xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
return -1;
}
static const MemoryRegionOps pnv_xive_ic_notify_ops = {
.read = pnv_xive_ic_notify_read,
.write = pnv_xive_ic_notify_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* IC - LSI MMIO handlers (not modeled)
*/
static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
}
static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
return -1;
}
static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
.read = pnv_xive_ic_lsi_read,
.write = pnv_xive_ic_lsi_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* IC - Indirect TIMA MMIO handlers
*/
/*
* When the TIMA is accessed from the indirect page, the thread id of
* the target CPU is configured in the PC_TCTXT_INDIR0 register before
* use. This is used for resets and for debug purpose also.
*/
static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
{
PnvChip *chip = xive->chip;
uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
PowerPCCPU *cpu = NULL;
int pir;
if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
xive_error(xive, "IC: no indirect TIMA access in progress");
return NULL;
}
pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
cpu = pnv_chip_find_cpu(chip, pir);
if (!cpu) {
xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
return NULL;
}
/* Check that HW thread is XIVE enabled */
if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
xive_error(xive, "IC: CPU %x is not enabled", pir);
}
return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
}
static void xive_tm_indirect_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
}
static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
unsigned size)
{
XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
}
static const MemoryRegionOps xive_tm_indirect_ops = {
.read = xive_tm_indirect_read,
.write = xive_tm_indirect_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static void pnv_xive_tm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
PnvXive *xive = pnv_xive_tm_get_xive(cpu);
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
}
static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
{
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
PnvXive *xive = pnv_xive_tm_get_xive(cpu);
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
}
const MemoryRegionOps pnv_xive_tm_ops = {
.read = pnv_xive_tm_read,
.write = pnv_xive_tm_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
/*
* Interrupt controller XSCOM region.
*/
static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
switch (addr >> 3) {
case X_VC_EQC_CONFIG:
/* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
return VC_EQC_SYNC_MASK;
default:
return pnv_xive_ic_reg_read(opaque, addr, size);
}
}
static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
pnv_xive_ic_reg_write(opaque, addr, val, size);
}
static const MemoryRegionOps pnv_xive_xscom_ops = {
.read = pnv_xive_xscom_read,
.write = pnv_xive_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
}
};
/*
* Virtualization Controller MMIO region containing the IPI and END ESB pages
*/
static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
uint64_t edt_type = 0;
uint64_t edt_offset;
MemTxResult result;
AddressSpace *edt_as = NULL;
uint64_t ret = -1;
if (edt_index < XIVE_TABLE_EDT_MAX) {
edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
}
switch (edt_type) {
case CQ_TDR_EDT_IPI:
edt_as = &xive->ipi_as;
break;
case CQ_TDR_EDT_EQ:
edt_as = &xive->end_as;
break;
default:
xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
return -1;
}
/* Remap the offset for the targeted address space */
edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
&result);
if (result != MEMTX_OK) {
xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
offset, edt_offset);
return -1;
}
return ret;
}
static void pnv_xive_vc_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
uint64_t edt_type = 0;
uint64_t edt_offset;
MemTxResult result;
AddressSpace *edt_as = NULL;
if (edt_index < XIVE_TABLE_EDT_MAX) {
edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
}
switch (edt_type) {
case CQ_TDR_EDT_IPI:
edt_as = &xive->ipi_as;
break;
case CQ_TDR_EDT_EQ:
edt_as = &xive->end_as;
break;
default:
xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
offset);
return;
}
/* Remap the offset for the targeted address space */
edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
}
}
static const MemoryRegionOps pnv_xive_vc_ops = {
.read = pnv_xive_vc_read,
.write = pnv_xive_vc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* Presenter Controller MMIO region. The Virtualization Controller
* updates the IPB in the NVT table when required. Not modeled.
*/
static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
return -1;
}
static void pnv_xive_pc_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
PnvXive *xive = PNV_XIVE(opaque);
xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
}
static const MemoryRegionOps pnv_xive_pc_ops = {
.read = pnv_xive_pc_read,
.write = pnv_xive_pc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
Monitor *mon)
{
uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
if (!xive_nvt_is_valid(nvt)) {
return;
}
monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
eq_blk, eq_idx,
xive_get_field32(NVT_W4_IPB, nvt->w4));
}
void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
{
XiveRouter *xrtr = XIVE_ROUTER(xive);
uint8_t blk = pnv_xive_block_id(xive);
uint8_t chip_id = xive->chip->chip_id;
uint32_t srcno0 = XIVE_EAS(blk, 0);
uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
XiveEAS eas;
XiveEND end;
XiveNVT nvt;
int i;
uint64_t xive_nvt_per_subpage;
monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
srcno0, srcno0 + nr_ipis - 1);
xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
srcno0, srcno0 + nr_ipis - 1);
for (i = 0; i < nr_ipis; i++) {
if (xive_router_get_eas(xrtr, blk, i, &eas)) {
break;
}
if (!xive_eas_is_masked(&eas)) {
xive_eas_pic_print_info(&eas, i, mon);
}
}
monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
i = 0;
while (!xive_router_get_end(xrtr, blk, i, &end)) {
xive_end_pic_print_info(&end, i++, mon);
}
monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
i = 0;
while (!xive_router_get_end(xrtr, blk, i, &end)) {
xive_end_eas_pic_print_info(&end, i++, mon);
}
monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
0, XIVE_NVT_COUNT - 1);
xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
xive_nvt_pic_print_info(&nvt, i++, mon);
}
}
}
static void pnv_xive_reset(void *dev)
{
PnvXive *xive = PNV_XIVE(dev);
XiveSource *xsrc = &xive->ipi_source;
XiveENDSource *end_xsrc = &xive->end_source;
/* Default page size (Should be changed at runtime to 64k) */
xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
/* Clear subregions */
if (memory_region_is_mapped(&xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
}
if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
}
if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
}
if (memory_region_is_mapped(&xive->end_edt_mmio)) {
memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
}
}
static void pnv_xive_init(Object *obj)
{
PnvXive *xive = PNV_XIVE(obj);
object_initialize_child(obj, "ipi_source", &xive->ipi_source,
TYPE_XIVE_SOURCE);
object_initialize_child(obj, "end_source", &xive->end_source,
TYPE_XIVE_END_SOURCE);
}
/*
* Maximum number of IRQs and ENDs supported by HW
*/
#define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
#define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
static void pnv_xive_realize(DeviceState *dev, Error **errp)
{
PnvXive *xive = PNV_XIVE(dev);
PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
XiveSource *xsrc = &xive->ipi_source;
XiveENDSource *end_xsrc = &xive->end_source;
Error *local_err = NULL;
pxc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
assert(xive->chip);
/*
* The XiveSource and XiveENDSource objects are realized with the
* maximum allowed HW configuration. The ESB MMIO regions will be
* resized dynamically when the controller is configured by the FW
* to limit accesses to resources not provisioned.
*/
object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
&error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
return;
}
object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
&error_fatal);
object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
&error_abort);
if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
return;
}
/* Default page size. Generally changed at runtime to 64k */
xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
/* XSCOM region, used for initial configuration of the BARs */
memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
/* Interrupt controller MMIO regions */
memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
PNV9_XIVE_IC_SIZE);
memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
xive, "xive-ic-reg", 1 << xive->ic_shift);
memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
&pnv_xive_ic_notify_ops,
xive, "xive-ic-notify", 1 << xive->ic_shift);
/* The Pervasive LSI trigger and EOI pages (not modeled) */
memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
xive, "xive-ic-lsi", 2 << xive->ic_shift);
/* Thread Interrupt Management Area (Indirect) */
memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
&xive_tm_indirect_ops,
xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
/*
* Overall Virtualization Controller MMIO region containing the
* IPI ESB pages and END ESB pages. The layout is defined by the
* EDT "Domain table" and the accesses are dispatched using
* address spaces for each.
*/
memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
"xive-vc", PNV9_XIVE_VC_SIZE);
memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
PNV9_XIVE_VC_SIZE);
address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
PNV9_XIVE_VC_SIZE);
address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
/*
* The MMIO windows exposing the IPI ESBs and the END ESBs in the
* VC region. Their size is configured by the FW in the EDT table.
*/
memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
/* Presenter Controller MMIO region (not modeled) */
memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
"xive-pc", PNV9_XIVE_PC_SIZE);
/* Thread Interrupt Management Area (Direct) */
memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
xive, "xive-tima", PNV9_XIVE_TM_SIZE);
qemu_register_reset(pnv_xive_reset, dev);
}
static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
int xscom_offset)
{
const char compat[] = "ibm,power9-xive-x";
char *name;
int offset;
uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
uint32_t reg[] = {
cpu_to_be32(lpc_pcba),
cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
};
name = g_strdup_printf("xive@%x", lpc_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop(fdt, offset, "compatible", compat,
sizeof(compat))));
return 0;
}
static Property pnv_xive_properties[] = {
DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
/* The PnvChip id identifies the XIVE interrupt controller. */
DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_xive_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
xdc->dt_xscom = pnv_xive_dt_xscom;
dc->desc = "PowerNV XIVE Interrupt Controller";
device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
dc->realize = pnv_xive_realize;
device_class_set_props(dc, pnv_xive_properties);
xrc->get_eas = pnv_xive_get_eas;
xrc->get_end = pnv_xive_get_end;
xrc->write_end = pnv_xive_write_end;
xrc->get_nvt = pnv_xive_get_nvt;
xrc->write_nvt = pnv_xive_write_nvt;
xrc->get_block_id = pnv_xive_get_block_id;
xnc->notify = pnv_xive_notify;
xpc->match_nvt = pnv_xive_match_nvt;
};
static const TypeInfo pnv_xive_info = {
.name = TYPE_PNV_XIVE,
.parent = TYPE_XIVE_ROUTER,
.instance_init = pnv_xive_init,
.instance_size = sizeof(PnvXive),
.class_init = pnv_xive_class_init,
.class_size = sizeof(PnvXiveClass),
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_xive_register_types(void)
{
type_register_static(&pnv_xive_info);
}
type_init(pnv_xive_register_types)