qemu-e2k/hw/sh_timer.c
balrog 5c16736a37 SH4: Eliminate P4 to A7 mangling (Takashi YOSHII).
Main purpose of this is to delete
       *physical = address & 0x1fffffff;
at target-sh4/helper.c:449, using new mmio rule introduced by #5849
This masking is a nice trick to realize P4/A7 duality of SH registers.
But, IMHO, it is logically wrong.

Most of SH4 cpu control registers in P4 area(0xfc000000...0xffffffff) have
one more address called A7 which is usually P4 address with upper 3bits masked.
This is an address only appears in TLB's physical address part.

Current code use trick writing drivers as if they are really in A7
(that's why you see many *_A7 in hw/sh*.c), and using translation P4 to A7.

Signed-off-by: Takashi YOSHII <takasi-y@ops.dti.ne.jp>
Signed-off-by: Andrzej Zaborowski <andrew.zaborowski@intel.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5935 c046a42c-6fe2-441c-8c8c-71466251a162
2008-12-07 19:39:58 +00:00

327 lines
8.4 KiB
C

/*
* SuperH Timer modules.
*
* Copyright (c) 2007 Magnus Damm
* Based on arm_timer.c by Paul Brook
* Copyright (c) 2005-2006 CodeSourcery.
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "sh.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#define TIMER_TCR_TPSC (7 << 0)
#define TIMER_TCR_CKEG (3 << 3)
#define TIMER_TCR_UNIE (1 << 5)
#define TIMER_TCR_ICPE (3 << 6)
#define TIMER_TCR_UNF (1 << 8)
#define TIMER_TCR_ICPF (1 << 9)
#define TIMER_TCR_RESERVED (0x3f << 10)
#define TIMER_FEAT_CAPT (1 << 0)
#define TIMER_FEAT_EXTCLK (1 << 1)
typedef struct {
ptimer_state *timer;
uint32_t tcnt;
uint32_t tcor;
uint32_t tcr;
uint32_t tcpr;
int freq;
int int_level;
int old_level;
int feat;
int enabled;
qemu_irq irq;
} sh_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void sh_timer_update(sh_timer_state *s)
{
int new_level = s->int_level && (s->tcr & TIMER_TCR_UNIE);
if (new_level != s->old_level)
qemu_set_irq (s->irq, new_level);
s->old_level = s->int_level;
s->int_level = new_level;
}
static uint32_t sh_timer_read(void *opaque, target_phys_addr_t offset)
{
sh_timer_state *s = (sh_timer_state *)opaque;
switch (offset >> 2) {
case 0:
return s->tcor;
case 1:
return ptimer_get_count(s->timer);
case 2:
return s->tcr | (s->int_level ? TIMER_TCR_UNF : 0);
case 3:
if (s->feat & TIMER_FEAT_CAPT)
return s->tcpr;
default:
cpu_abort (cpu_single_env, "sh_timer_read: Bad offset %x\n",
(int)offset);
return 0;
}
}
static void sh_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
sh_timer_state *s = (sh_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case 0:
s->tcor = value;
ptimer_set_limit(s->timer, s->tcor, 0);
break;
case 1:
s->tcnt = value;
ptimer_set_count(s->timer, s->tcnt);
break;
case 2:
if (s->enabled) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch (value & TIMER_TCR_TPSC) {
case 0: freq >>= 2; break;
case 1: freq >>= 4; break;
case 2: freq >>= 6; break;
case 3: freq >>= 8; break;
case 4: freq >>= 10; break;
case 6:
case 7: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved TPSC value\n"); break;
}
switch ((value & TIMER_TCR_CKEG) >> 3) {
case 0: break;
case 1:
case 2:
case 3: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved CKEG value\n"); break;
}
switch ((value & TIMER_TCR_ICPE) >> 6) {
case 0: break;
case 2:
case 3: if (s->feat & TIMER_FEAT_CAPT) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved ICPE value\n"); break;
}
if ((value & TIMER_TCR_UNF) == 0)
s->int_level = 0;
value &= ~TIMER_TCR_UNF;
if ((value & TIMER_TCR_ICPF) && (!(s->feat & TIMER_FEAT_CAPT)))
cpu_abort (cpu_single_env,
"sh_timer_write: Reserved ICPF value\n");
value &= ~TIMER_TCR_ICPF; /* capture not supported */
if (value & TIMER_TCR_RESERVED)
cpu_abort (cpu_single_env,
"sh_timer_write: Reserved TCR bits set\n");
s->tcr = value;
ptimer_set_limit(s->timer, s->tcor, 0);
ptimer_set_freq(s->timer, freq);
if (s->enabled) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, 0);
}
break;
case 3:
if (s->feat & TIMER_FEAT_CAPT) {
s->tcpr = value;
break;
}
default:
cpu_abort (cpu_single_env, "sh_timer_write: Bad offset %x\n",
(int)offset);
}
sh_timer_update(s);
}
static void sh_timer_start_stop(void *opaque, int enable)
{
sh_timer_state *s = (sh_timer_state *)opaque;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop %d (%d)\n", enable, s->enabled);
#endif
if (s->enabled && !enable) {
ptimer_stop(s->timer);
}
if (!s->enabled && enable) {
ptimer_run(s->timer, 0);
}
s->enabled = !!enable;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop done %d\n", s->enabled);
#endif
}
static void sh_timer_tick(void *opaque)
{
sh_timer_state *s = (sh_timer_state *)opaque;
s->int_level = s->enabled;
sh_timer_update(s);
}
static void *sh_timer_init(uint32_t freq, int feat, qemu_irq irq)
{
sh_timer_state *s;
QEMUBH *bh;
s = (sh_timer_state *)qemu_mallocz(sizeof(sh_timer_state));
s->freq = freq;
s->feat = feat;
s->tcor = 0xffffffff;
s->tcnt = 0xffffffff;
s->tcpr = 0xdeadbeef;
s->tcor = 0;
s->enabled = 0;
s->irq = irq;
bh = qemu_bh_new(sh_timer_tick, s);
s->timer = ptimer_init(bh);
/* ??? Save/restore. */
return s;
}
typedef struct {
void *timer[3];
int level[3];
uint32_t tocr;
uint32_t tstr;
int feat;
} tmu012_state;
static uint32_t tmu012_read(void *opaque, target_phys_addr_t offset)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_read 0x%lx\n", (unsigned long) offset);
#endif
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n",
(int)offset);
return sh_timer_read(s->timer[2], offset - 0x20);
}
if (offset >= 0x14)
return sh_timer_read(s->timer[1], offset - 0x14);
if (offset >= 0x08)
return sh_timer_read(s->timer[0], offset - 0x08);
if (offset == 4)
return s->tstr;
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0)
return s->tocr;
cpu_abort (cpu_single_env, "tmu012_write: Bad offset %x\n",
(int)offset);
return 0;
}
static void tmu012_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_write 0x%lx 0x%08x\n", (unsigned long) offset, value);
#endif
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n",
(int)offset);
sh_timer_write(s->timer[2], offset - 0x20, value);
return;
}
if (offset >= 0x14) {
sh_timer_write(s->timer[1], offset - 0x14, value);
return;
}
if (offset >= 0x08) {
sh_timer_write(s->timer[0], offset - 0x08, value);
return;
}
if (offset == 4) {
sh_timer_start_stop(s->timer[0], value & (1 << 0));
sh_timer_start_stop(s->timer[1], value & (1 << 1));
if (s->feat & TMU012_FEAT_3CHAN)
sh_timer_start_stop(s->timer[2], value & (1 << 2));
else
if (value & (1 << 2))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel\n");
s->tstr = value;
return;
}
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) {
s->tocr = value & (1 << 0);
}
}
static CPUReadMemoryFunc *tmu012_readfn[] = {
tmu012_read,
tmu012_read,
tmu012_read
};
static CPUWriteMemoryFunc *tmu012_writefn[] = {
tmu012_write,
tmu012_write,
tmu012_write
};
void tmu012_init(target_phys_addr_t base, int feat, uint32_t freq,
qemu_irq ch0_irq, qemu_irq ch1_irq,
qemu_irq ch2_irq0, qemu_irq ch2_irq1)
{
int iomemtype;
tmu012_state *s;
int timer_feat = (feat & TMU012_FEAT_EXTCLK) ? TIMER_FEAT_EXTCLK : 0;
s = (tmu012_state *)qemu_mallocz(sizeof(tmu012_state));
s->feat = feat;
s->timer[0] = sh_timer_init(freq, timer_feat, ch0_irq);
s->timer[1] = sh_timer_init(freq, timer_feat, ch1_irq);
if (feat & TMU012_FEAT_3CHAN)
s->timer[2] = sh_timer_init(freq, timer_feat | TIMER_FEAT_CAPT,
ch2_irq0); /* ch2_irq1 not supported */
iomemtype = cpu_register_io_memory(0, tmu012_readfn,
tmu012_writefn, s);
cpu_register_physical_memory(P4ADDR(base), 0x00001000, iomemtype);
cpu_register_physical_memory(A7ADDR(base), 0x00001000, iomemtype);
/* ??? Save/restore. */
}