qemu-e2k/hw/etraxfs_timer.c
edgar_igl bbaf29c769 * target-cris/op.c: Make sure the bit-test insn only updates the XNZ flags.
* target-cris/helper.c: Update ERP for user-mode simulation aswell.
* hw/etraxfs_timer.c: Support multiple timers.
* hw/etraxfs_ser.c: Multiple ports, the data just goes to stdout.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4004 c046a42c-6fe2-441c-8c8c-71466251a162
2008-03-01 17:25:33 +00:00

296 lines
6.6 KiB
C

/*
* QEMU ETRAX System Emulator
*
* Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <sys/time.h>
#include "hw.h"
#include "qemu-timer.h"
#define D(x)
void etrax_ack_irq(CPUState *env, uint32_t mask);
#define R_TIME 0xb001e038
#define RW_TMR0_DIV 0xb001e000
#define R_TMR0_DATA 0xb001e004
#define RW_TMR0_CTRL 0xb001e008
#define RW_TMR1_DIV 0xb001e010
#define R_TMR1_DATA 0xb001e014
#define RW_TMR1_CTRL 0xb001e018
#define RW_INTR_MASK 0xb001e048
#define RW_ACK_INTR 0xb001e04c
#define R_INTR 0xb001e050
#define R_MASKED_INTR 0xb001e054
uint32_t rw_intr_mask;
uint32_t rw_ack_intr;
uint32_t r_intr;
struct fs_timer_t {
QEMUBH *bh;
unsigned int limit;
int scale;
ptimer_state *ptimer;
CPUState *env;
qemu_irq *irq;
uint32_t mask;
struct timeval last;
};
static struct fs_timer_t timer[2];
static inline int timer_index(target_phys_addr_t addr)
{
int t = 0;
if (addr >= 0xb005e000)
t = 1;
return t;
}
/* diff two timevals. Return a single int in us. */
int diff_timeval_us(struct timeval *a, struct timeval *b)
{
int diff;
/* assume these values are signed. */
diff = (a->tv_sec - b->tv_sec) * 1000 * 1000;
diff += (a->tv_usec - b->tv_usec);
return diff;
}
static uint32_t timer_readb (void *opaque, target_phys_addr_t addr)
{
CPUState *env;
uint32_t r = 0;
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
static uint32_t timer_readw (void *opaque, target_phys_addr_t addr)
{
CPUState *env;
uint32_t r = 0;
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
uint32_t r = 0;
int t = timer_index(addr);
switch (addr) {
case R_TMR0_DATA:
break;
case R_TMR1_DATA:
D(printf ("R_TMR1_DATA\n"));
break;
case R_TIME:
{
struct timeval now;
gettimeofday(&now, NULL);
if (!(timer[t].last.tv_sec == 0
&& timer[t].last.tv_usec == 0)) {
r = diff_timeval_us(&now, &timer[t].last);
r *= 1000; /* convert to ns. */
r++; /* make sure we increase for each call. */
}
timer[t].last = now;
break;
}
case RW_INTR_MASK:
r = rw_intr_mask;
break;
case R_MASKED_INTR:
r = r_intr & rw_intr_mask;
break;
default:
printf ("%s %x p=%x\n", __func__, addr, env->pc);
break;
}
return r;
}
static void
timer_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void
timer_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void write_ctrl(struct fs_timer_t *t, uint32_t v)
{
int op;
int freq;
int freq_hz;
op = v & 3;
freq = v >> 2;
freq_hz = 32000000;
switch (freq)
{
case 0:
case 1:
printf ("extern or disabled timer clock?\n");
break;
case 4: freq_hz = 29493000; break;
case 5: freq_hz = 32000000; break;
case 6: freq_hz = 32768000; break;
case 7: freq_hz = 100000000; break;
default:
abort();
break;
}
printf ("freq_hz=%d limit=%d\n", freq_hz, t->limit);
t->scale = 0;
if (t->limit > 2048)
{
t->scale = 2048;
ptimer_set_period(t->ptimer, freq_hz / t->scale);
}
printf ("op=%d\n", op);
switch (op)
{
case 0:
printf ("limit=%d %d\n", t->limit, t->limit/t->scale);
ptimer_set_limit(t->ptimer, t->limit / t->scale, 1);
break;
case 1:
ptimer_stop(t->ptimer);
break;
case 2:
ptimer_run(t->ptimer, 0);
break;
default:
abort();
break;
}
}
static void timer_ack_irq(struct fs_timer_t *t)
{
if (!(r_intr & t->mask & rw_intr_mask)) {
qemu_irq_lower(t->irq[0]);
etrax_ack_irq(t->env, 1 << 0x1b);
}
}
static void
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
int t = timer_index(addr);
D(printf ("%s %x %x pc=%x\n",
__func__, addr, value, env->pc));
switch (addr)
{
case RW_TMR0_DIV:
D(printf ("RW_TMR0_DIV=%x\n", value));
timer[t].limit = value;
break;
case RW_TMR0_CTRL:
D(printf ("RW_TMR0_CTRL=%x\n", value));
write_ctrl(&timer[t], value);
break;
case RW_TMR1_DIV:
D(printf ("RW_TMR1_DIV=%x\n", value));
break;
case RW_TMR1_CTRL:
D(printf ("RW_TMR1_CTRL=%x\n", value));
break;
case RW_INTR_MASK:
D(printf ("RW_INTR_MASK=%x\n", value));
rw_intr_mask = value;
break;
case RW_ACK_INTR:
r_intr &= ~value;
timer_ack_irq(&timer[t]);
break;
default:
printf ("%s %x %x pc=%x\n",
__func__, addr, value, env->pc);
break;
}
}
static CPUReadMemoryFunc *timer_read[] = {
&timer_readb,
&timer_readw,
&timer_readl,
};
static CPUWriteMemoryFunc *timer_write[] = {
&timer_writeb,
&timer_writew,
&timer_writel,
};
static void timer_irq(void *opaque)
{
struct fs_timer_t *t = opaque;
r_intr |= t->mask;
if (t->mask & rw_intr_mask) {
qemu_irq_raise(t->irq[0]);
}
}
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs)
{
int timer_regs;
timer[0].bh = qemu_bh_new(timer_irq, &timer[0]);
timer[0].ptimer = ptimer_init(timer[0].bh);
timer[0].irq = irqs + 0x1b;
timer[0].mask = 1;
timer[0].env = env;
timer[1].bh = qemu_bh_new(timer_irq, &timer[1]);
timer[1].ptimer = ptimer_init(timer[1].bh);
timer[1].irq = irqs + 0x1b;
timer[1].mask = 1;
timer[1].env = env;
timer_regs = cpu_register_io_memory(0, timer_read, timer_write, env);
cpu_register_physical_memory (0xb001e000, 0x5c, timer_regs);
cpu_register_physical_memory (0xb005e000, 0x5c, timer_regs);
}