qemu-e2k/hw/pci.c
Isaku Yamahata c2afc92290 pci: don't call qdev pci init method
As pci id initialization is moved to common layer,
some initialization function can be empty.
So don't call init method if NULL.

Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2011-06-15 18:32:08 +03:00

2186 lines
66 KiB
C

/*
* QEMU PCI bus manager
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pci_bridge.h"
#include "pci_internals.h"
#include "monitor.h"
#include "net.h"
#include "sysemu.h"
#include "loader.h"
#include "qemu-objects.h"
#include "range.h"
//#define DEBUG_PCI
#ifdef DEBUG_PCI
# define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
#else
# define PCI_DPRINTF(format, ...) do { } while (0)
#endif
static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent);
static char *pcibus_get_dev_path(DeviceState *dev);
static char *pcibus_get_fw_dev_path(DeviceState *dev);
static int pcibus_reset(BusState *qbus);
struct BusInfo pci_bus_info = {
.name = "PCI",
.size = sizeof(PCIBus),
.print_dev = pcibus_dev_print,
.get_dev_path = pcibus_get_dev_path,
.get_fw_dev_path = pcibus_get_fw_dev_path,
.reset = pcibus_reset,
.props = (Property[]) {
DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1),
DEFINE_PROP_STRING("romfile", PCIDevice, romfile),
DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1),
DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present,
QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false),
DEFINE_PROP_BIT("command_serr_enable", PCIDevice, cap_present,
QEMU_PCI_CAP_SERR_BITNR, true),
DEFINE_PROP_END_OF_LIST()
}
};
static void pci_update_mappings(PCIDevice *d);
static void pci_set_irq(void *opaque, int irq_num, int level);
static int pci_add_option_rom(PCIDevice *pdev, bool is_default_rom);
static void pci_del_option_rom(PCIDevice *pdev);
static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET;
static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU;
struct PCIHostBus {
int domain;
struct PCIBus *bus;
QLIST_ENTRY(PCIHostBus) next;
};
static QLIST_HEAD(, PCIHostBus) host_buses;
static const VMStateDescription vmstate_pcibus = {
.name = "PCIBUS",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_EQUAL(nirq, PCIBus),
VMSTATE_VARRAY_INT32(irq_count, PCIBus, nirq, 0, vmstate_info_int32, int32_t),
VMSTATE_END_OF_LIST()
}
};
static int pci_bar(PCIDevice *d, int reg)
{
uint8_t type;
if (reg != PCI_ROM_SLOT)
return PCI_BASE_ADDRESS_0 + reg * 4;
type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS;
}
static inline int pci_irq_state(PCIDevice *d, int irq_num)
{
return (d->irq_state >> irq_num) & 0x1;
}
static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level)
{
d->irq_state &= ~(0x1 << irq_num);
d->irq_state |= level << irq_num;
}
static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change)
{
PCIBus *bus;
for (;;) {
bus = pci_dev->bus;
irq_num = bus->map_irq(pci_dev, irq_num);
if (bus->set_irq)
break;
pci_dev = bus->parent_dev;
}
bus->irq_count[irq_num] += change;
bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0);
}
int pci_bus_get_irq_level(PCIBus *bus, int irq_num)
{
assert(irq_num >= 0);
assert(irq_num < bus->nirq);
return !!bus->irq_count[irq_num];
}
/* Update interrupt status bit in config space on interrupt
* state change. */
static void pci_update_irq_status(PCIDevice *dev)
{
if (dev->irq_state) {
dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT;
} else {
dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
}
}
void pci_device_deassert_intx(PCIDevice *dev)
{
int i;
for (i = 0; i < PCI_NUM_PINS; ++i) {
qemu_set_irq(dev->irq[i], 0);
}
}
/*
* This function is called on #RST and FLR.
* FLR if PCI_EXP_DEVCTL_BCR_FLR is set
*/
void pci_device_reset(PCIDevice *dev)
{
int r;
/* TODO: call the below unconditionally once all pci devices
* are qdevified */
if (dev->qdev.info) {
qdev_reset_all(&dev->qdev);
}
dev->irq_state = 0;
pci_update_irq_status(dev);
pci_device_deassert_intx(dev);
/* Clear all writable bits */
pci_word_test_and_clear_mask(dev->config + PCI_COMMAND,
pci_get_word(dev->wmask + PCI_COMMAND) |
pci_get_word(dev->w1cmask + PCI_COMMAND));
pci_word_test_and_clear_mask(dev->config + PCI_STATUS,
pci_get_word(dev->wmask + PCI_STATUS) |
pci_get_word(dev->w1cmask + PCI_STATUS));
dev->config[PCI_CACHE_LINE_SIZE] = 0x0;
dev->config[PCI_INTERRUPT_LINE] = 0x0;
for (r = 0; r < PCI_NUM_REGIONS; ++r) {
PCIIORegion *region = &dev->io_regions[r];
if (!region->size) {
continue;
}
if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) &&
region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_set_quad(dev->config + pci_bar(dev, r), region->type);
} else {
pci_set_long(dev->config + pci_bar(dev, r), region->type);
}
}
pci_update_mappings(dev);
}
/*
* Trigger pci bus reset under a given bus.
* To be called on RST# assert.
*/
void pci_bus_reset(PCIBus *bus)
{
int i;
for (i = 0; i < bus->nirq; i++) {
bus->irq_count[i] = 0;
}
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
if (bus->devices[i]) {
pci_device_reset(bus->devices[i]);
}
}
}
static int pcibus_reset(BusState *qbus)
{
pci_bus_reset(DO_UPCAST(PCIBus, qbus, qbus));
/* topology traverse is done by pci_bus_reset().
Tell qbus/qdev walker not to traverse the tree */
return 1;
}
static void pci_host_bus_register(int domain, PCIBus *bus)
{
struct PCIHostBus *host;
host = qemu_mallocz(sizeof(*host));
host->domain = domain;
host->bus = bus;
QLIST_INSERT_HEAD(&host_buses, host, next);
}
PCIBus *pci_find_root_bus(int domain)
{
struct PCIHostBus *host;
QLIST_FOREACH(host, &host_buses, next) {
if (host->domain == domain) {
return host->bus;
}
}
return NULL;
}
int pci_find_domain(const PCIBus *bus)
{
PCIDevice *d;
struct PCIHostBus *host;
/* obtain root bus */
while ((d = bus->parent_dev) != NULL) {
bus = d->bus;
}
QLIST_FOREACH(host, &host_buses, next) {
if (host->bus == bus) {
return host->domain;
}
}
abort(); /* should not be reached */
return -1;
}
void pci_bus_new_inplace(PCIBus *bus, DeviceState *parent,
const char *name, uint8_t devfn_min)
{
qbus_create_inplace(&bus->qbus, &pci_bus_info, parent, name);
assert(PCI_FUNC(devfn_min) == 0);
bus->devfn_min = devfn_min;
/* host bridge */
QLIST_INIT(&bus->child);
pci_host_bus_register(0, bus); /* for now only pci domain 0 is supported */
vmstate_register(NULL, -1, &vmstate_pcibus, bus);
}
PCIBus *pci_bus_new(DeviceState *parent, const char *name, uint8_t devfn_min)
{
PCIBus *bus;
bus = qemu_mallocz(sizeof(*bus));
bus->qbus.qdev_allocated = 1;
pci_bus_new_inplace(bus, parent, name, devfn_min);
return bus;
}
void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque, int nirq)
{
bus->set_irq = set_irq;
bus->map_irq = map_irq;
bus->irq_opaque = irq_opaque;
bus->nirq = nirq;
bus->irq_count = qemu_mallocz(nirq * sizeof(bus->irq_count[0]));
}
void pci_bus_hotplug(PCIBus *bus, pci_hotplug_fn hotplug, DeviceState *qdev)
{
bus->qbus.allow_hotplug = 1;
bus->hotplug = hotplug;
bus->hotplug_qdev = qdev;
}
void pci_bus_set_mem_base(PCIBus *bus, target_phys_addr_t base)
{
bus->mem_base = base;
}
PCIBus *pci_register_bus(DeviceState *parent, const char *name,
pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque, uint8_t devfn_min, int nirq)
{
PCIBus *bus;
bus = pci_bus_new(parent, name, devfn_min);
pci_bus_irqs(bus, set_irq, map_irq, irq_opaque, nirq);
return bus;
}
int pci_bus_num(PCIBus *s)
{
if (!s->parent_dev)
return 0; /* pci host bridge */
return s->parent_dev->config[PCI_SECONDARY_BUS];
}
static int get_pci_config_device(QEMUFile *f, void *pv, size_t size)
{
PCIDevice *s = container_of(pv, PCIDevice, config);
uint8_t *config;
int i;
assert(size == pci_config_size(s));
config = qemu_malloc(size);
qemu_get_buffer(f, config, size);
for (i = 0; i < size; ++i) {
if ((config[i] ^ s->config[i]) &
s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) {
qemu_free(config);
return -EINVAL;
}
}
memcpy(s->config, config, size);
pci_update_mappings(s);
qemu_free(config);
return 0;
}
/* just put buffer */
static void put_pci_config_device(QEMUFile *f, void *pv, size_t size)
{
const uint8_t **v = pv;
assert(size == pci_config_size(container_of(pv, PCIDevice, config)));
qemu_put_buffer(f, *v, size);
}
static VMStateInfo vmstate_info_pci_config = {
.name = "pci config",
.get = get_pci_config_device,
.put = put_pci_config_device,
};
static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size)
{
PCIDevice *s = container_of(pv, PCIDevice, irq_state);
uint32_t irq_state[PCI_NUM_PINS];
int i;
for (i = 0; i < PCI_NUM_PINS; ++i) {
irq_state[i] = qemu_get_be32(f);
if (irq_state[i] != 0x1 && irq_state[i] != 0) {
fprintf(stderr, "irq state %d: must be 0 or 1.\n",
irq_state[i]);
return -EINVAL;
}
}
for (i = 0; i < PCI_NUM_PINS; ++i) {
pci_set_irq_state(s, i, irq_state[i]);
}
return 0;
}
static void put_pci_irq_state(QEMUFile *f, void *pv, size_t size)
{
int i;
PCIDevice *s = container_of(pv, PCIDevice, irq_state);
for (i = 0; i < PCI_NUM_PINS; ++i) {
qemu_put_be32(f, pci_irq_state(s, i));
}
}
static VMStateInfo vmstate_info_pci_irq_state = {
.name = "pci irq state",
.get = get_pci_irq_state,
.put = put_pci_irq_state,
};
const VMStateDescription vmstate_pci_device = {
.name = "PCIDevice",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_LE(version_id, PCIDevice),
VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0,
vmstate_info_pci_config,
PCI_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2,
vmstate_info_pci_irq_state,
PCI_NUM_PINS * sizeof(int32_t)),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_pcie_device = {
.name = "PCIDevice",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_LE(version_id, PCIDevice),
VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0,
vmstate_info_pci_config,
PCIE_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2,
vmstate_info_pci_irq_state,
PCI_NUM_PINS * sizeof(int32_t)),
VMSTATE_END_OF_LIST()
}
};
static inline const VMStateDescription *pci_get_vmstate(PCIDevice *s)
{
return pci_is_express(s) ? &vmstate_pcie_device : &vmstate_pci_device;
}
void pci_device_save(PCIDevice *s, QEMUFile *f)
{
/* Clear interrupt status bit: it is implicit
* in irq_state which we are saving.
* This makes us compatible with old devices
* which never set or clear this bit. */
s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
vmstate_save_state(f, pci_get_vmstate(s), s);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
}
int pci_device_load(PCIDevice *s, QEMUFile *f)
{
int ret;
ret = vmstate_load_state(f, pci_get_vmstate(s), s, s->version_id);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
return ret;
}
static void pci_set_default_subsystem_id(PCIDevice *pci_dev)
{
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
pci_default_sub_vendor_id);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
pci_default_sub_device_id);
}
/*
* Parse [[<domain>:]<bus>:]<slot>, return -1 on error if funcp == NULL
* [[<domain>:]<bus>:]<slot>.<func>, return -1 on error
*/
int pci_parse_devaddr(const char *addr, int *domp, int *busp,
unsigned int *slotp, unsigned int *funcp)
{
const char *p;
char *e;
unsigned long val;
unsigned long dom = 0, bus = 0;
unsigned int slot = 0;
unsigned int func = 0;
p = addr;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
dom = bus;
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
}
}
slot = val;
if (funcp != NULL) {
if (*e != '.')
return -1;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
func = val;
}
/* if funcp == NULL func is 0 */
if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7)
return -1;
if (*e)
return -1;
/* Note: QEMU doesn't implement domains other than 0 */
if (!pci_find_bus(pci_find_root_bus(dom), bus))
return -1;
*domp = dom;
*busp = bus;
*slotp = slot;
if (funcp != NULL)
*funcp = func;
return 0;
}
int pci_read_devaddr(Monitor *mon, const char *addr, int *domp, int *busp,
unsigned *slotp)
{
/* strip legacy tag */
if (!strncmp(addr, "pci_addr=", 9)) {
addr += 9;
}
if (pci_parse_devaddr(addr, domp, busp, slotp, NULL)) {
monitor_printf(mon, "Invalid pci address\n");
return -1;
}
return 0;
}
PCIBus *pci_get_bus_devfn(int *devfnp, const char *devaddr)
{
int dom, bus;
unsigned slot;
if (!devaddr) {
*devfnp = -1;
return pci_find_bus(pci_find_root_bus(0), 0);
}
if (pci_parse_devaddr(devaddr, &dom, &bus, &slot, NULL) < 0) {
return NULL;
}
*devfnp = PCI_DEVFN(slot, 0);
return pci_find_bus(pci_find_root_bus(dom), bus);
}
static void pci_init_cmask(PCIDevice *dev)
{
pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff);
pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff);
dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST;
dev->cmask[PCI_REVISION_ID] = 0xff;
dev->cmask[PCI_CLASS_PROG] = 0xff;
pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff);
dev->cmask[PCI_HEADER_TYPE] = 0xff;
dev->cmask[PCI_CAPABILITY_LIST] = 0xff;
}
static void pci_init_wmask(PCIDevice *dev)
{
int config_size = pci_config_size(dev);
dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff;
dev->wmask[PCI_INTERRUPT_LINE] = 0xff;
pci_set_word(dev->wmask + PCI_COMMAND,
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_INTX_DISABLE);
if (dev->cap_present & QEMU_PCI_CAP_SERR) {
pci_word_test_and_set_mask(dev->wmask + PCI_COMMAND, PCI_COMMAND_SERR);
}
memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff,
config_size - PCI_CONFIG_HEADER_SIZE);
}
static void pci_init_w1cmask(PCIDevice *dev)
{
/*
* Note: It's okay to set w1cmask even for readonly bits as
* long as their value is hardwired to 0.
*/
pci_set_word(dev->w1cmask + PCI_STATUS,
PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY);
}
static void pci_init_wmask_bridge(PCIDevice *d)
{
/* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and
PCI_SEC_LETENCY_TIMER */
memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4);
/* base and limit */
d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff;
d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff;
pci_set_word(d->wmask + PCI_MEMORY_BASE,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_MEMORY_LIMIT,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE,
PCI_PREF_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT,
PCI_PREF_RANGE_MASK & 0xffff);
/* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */
memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8);
/* TODO: add this define to pci_regs.h in linux and then in qemu. */
#define PCI_BRIDGE_CTL_VGA_16BIT 0x10 /* VGA 16-bit decode */
#define PCI_BRIDGE_CTL_DISCARD 0x100 /* Primary discard timer */
#define PCI_BRIDGE_CTL_SEC_DISCARD 0x200 /* Secondary discard timer */
#define PCI_BRIDGE_CTL_DISCARD_STATUS 0x400 /* Discard timer status */
#define PCI_BRIDGE_CTL_DISCARD_SERR 0x800 /* Discard timer SERR# enable */
pci_set_word(d->wmask + PCI_BRIDGE_CONTROL,
PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_SERR |
PCI_BRIDGE_CTL_ISA |
PCI_BRIDGE_CTL_VGA |
PCI_BRIDGE_CTL_VGA_16BIT |
PCI_BRIDGE_CTL_MASTER_ABORT |
PCI_BRIDGE_CTL_BUS_RESET |
PCI_BRIDGE_CTL_FAST_BACK |
PCI_BRIDGE_CTL_DISCARD |
PCI_BRIDGE_CTL_SEC_DISCARD |
PCI_BRIDGE_CTL_DISCARD_SERR);
/* Below does not do anything as we never set this bit, put here for
* completeness. */
pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL,
PCI_BRIDGE_CTL_DISCARD_STATUS);
}
static int pci_init_multifunction(PCIBus *bus, PCIDevice *dev)
{
uint8_t slot = PCI_SLOT(dev->devfn);
uint8_t func;
if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/*
* multifunction bit is interpreted in two ways as follows.
* - all functions must set the bit to 1.
* Example: Intel X53
* - function 0 must set the bit, but the rest function (> 0)
* is allowed to leave the bit to 0.
* Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10,
*
* So OS (at least Linux) checks the bit of only function 0,
* and doesn't see the bit of function > 0.
*
* The below check allows both interpretation.
*/
if (PCI_FUNC(dev->devfn)) {
PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)];
if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) {
/* function 0 should set multifunction bit */
error_report("PCI: single function device can't be populated "
"in function %x.%x", slot, PCI_FUNC(dev->devfn));
return -1;
}
return 0;
}
if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
return 0;
}
/* function 0 indicates single function, so function > 0 must be NULL */
for (func = 1; func < PCI_FUNC_MAX; ++func) {
if (bus->devices[PCI_DEVFN(slot, func)]) {
error_report("PCI: %x.0 indicates single function, "
"but %x.%x is already populated.",
slot, slot, func);
return -1;
}
}
return 0;
}
static void pci_config_alloc(PCIDevice *pci_dev)
{
int config_size = pci_config_size(pci_dev);
pci_dev->config = qemu_mallocz(config_size);
pci_dev->cmask = qemu_mallocz(config_size);
pci_dev->wmask = qemu_mallocz(config_size);
pci_dev->w1cmask = qemu_mallocz(config_size);
pci_dev->used = qemu_mallocz(config_size);
}
static void pci_config_free(PCIDevice *pci_dev)
{
qemu_free(pci_dev->config);
qemu_free(pci_dev->cmask);
qemu_free(pci_dev->wmask);
qemu_free(pci_dev->w1cmask);
qemu_free(pci_dev->used);
}
/* -1 for devfn means auto assign */
static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, PCIBus *bus,
const char *name, int devfn,
const PCIDeviceInfo *info)
{
PCIConfigReadFunc *config_read = info->config_read;
PCIConfigWriteFunc *config_write = info->config_write;
if (devfn < 0) {
for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices);
devfn += PCI_FUNC_MAX) {
if (!bus->devices[devfn])
goto found;
}
error_report("PCI: no slot/function available for %s, all in use", name);
return NULL;
found: ;
} else if (bus->devices[devfn]) {
error_report("PCI: slot %d function %d not available for %s, in use by %s",
PCI_SLOT(devfn), PCI_FUNC(devfn), name, bus->devices[devfn]->name);
return NULL;
}
pci_dev->bus = bus;
pci_dev->devfn = devfn;
pstrcpy(pci_dev->name, sizeof(pci_dev->name), name);
pci_dev->irq_state = 0;
pci_config_alloc(pci_dev);
pci_config_set_vendor_id(pci_dev->config, info->vendor_id);
pci_config_set_device_id(pci_dev->config, info->device_id);
pci_config_set_revision(pci_dev->config, info->revision);
pci_config_set_class(pci_dev->config, info->class_id);
if (!info->is_bridge) {
if (info->subsystem_vendor_id || info->subsystem_id) {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
info->subsystem_vendor_id);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
info->subsystem_id);
} else {
pci_set_default_subsystem_id(pci_dev);
}
} else {
/* subsystem_vendor_id/subsystem_id are only for header type 0 */
assert(!info->subsystem_vendor_id);
assert(!info->subsystem_id);
}
pci_init_cmask(pci_dev);
pci_init_wmask(pci_dev);
pci_init_w1cmask(pci_dev);
if (info->is_bridge) {
pci_init_wmask_bridge(pci_dev);
}
if (pci_init_multifunction(bus, pci_dev)) {
pci_config_free(pci_dev);
return NULL;
}
if (!config_read)
config_read = pci_default_read_config;
if (!config_write)
config_write = pci_default_write_config;
pci_dev->config_read = config_read;
pci_dev->config_write = config_write;
bus->devices[devfn] = pci_dev;
pci_dev->irq = qemu_allocate_irqs(pci_set_irq, pci_dev, PCI_NUM_PINS);
pci_dev->version_id = 2; /* Current pci device vmstate version */
return pci_dev;
}
static void do_pci_unregister_device(PCIDevice *pci_dev)
{
qemu_free_irqs(pci_dev->irq);
pci_dev->bus->devices[pci_dev->devfn] = NULL;
pci_config_free(pci_dev);
}
/* TODO: obsolete. eliminate this once all pci devices are qdevifed. */
PCIDevice *pci_register_device(PCIBus *bus, const char *name,
int instance_size, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write)
{
PCIDevice *pci_dev;
PCIDeviceInfo info = {
.config_read = config_read,
.config_write = config_write,
};
pci_dev = qemu_mallocz(instance_size);
pci_dev = do_pci_register_device(pci_dev, bus, name, devfn, &info);
if (pci_dev == NULL) {
hw_error("PCI: can't register device\n");
}
return pci_dev;
}
static target_phys_addr_t pci_to_cpu_addr(PCIBus *bus,
target_phys_addr_t addr)
{
return addr + bus->mem_base;
}
static void pci_unregister_io_regions(PCIDevice *pci_dev)
{
PCIIORegion *r;
int i;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &pci_dev->io_regions[i];
if (!r->size || r->addr == PCI_BAR_UNMAPPED)
continue;
if (r->type == PCI_BASE_ADDRESS_SPACE_IO) {
isa_unassign_ioport(r->addr, r->filtered_size);
} else {
cpu_register_physical_memory(pci_to_cpu_addr(pci_dev->bus,
r->addr),
r->filtered_size,
IO_MEM_UNASSIGNED);
}
}
}
static int pci_unregister_device(DeviceState *dev)
{
PCIDevice *pci_dev = DO_UPCAST(PCIDevice, qdev, dev);
PCIDeviceInfo *info = DO_UPCAST(PCIDeviceInfo, qdev, dev->info);
int ret = 0;
if (info->exit)
ret = info->exit(pci_dev);
if (ret)
return ret;
pci_unregister_io_regions(pci_dev);
pci_del_option_rom(pci_dev);
qemu_free(pci_dev->romfile);
do_pci_unregister_device(pci_dev);
return 0;
}
void pci_register_bar(PCIDevice *pci_dev, int region_num,
pcibus_t size, uint8_t type,
PCIMapIORegionFunc *map_func)
{
PCIIORegion *r;
uint32_t addr;
uint64_t wmask;
assert(region_num >= 0);
assert(region_num < PCI_NUM_REGIONS);
if (size & (size-1)) {
fprintf(stderr, "ERROR: PCI region size must be pow2 "
"type=0x%x, size=0x%"FMT_PCIBUS"\n", type, size);
exit(1);
}
r = &pci_dev->io_regions[region_num];
r->addr = PCI_BAR_UNMAPPED;
r->size = size;
r->filtered_size = size;
r->type = type;
r->map_func = map_func;
r->ram_addr = IO_MEM_UNASSIGNED;
wmask = ~(size - 1);
addr = pci_bar(pci_dev, region_num);
if (region_num == PCI_ROM_SLOT) {
/* ROM enable bit is writable */
wmask |= PCI_ROM_ADDRESS_ENABLE;
}
pci_set_long(pci_dev->config + addr, type);
if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) &&
r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_set_quad(pci_dev->wmask + addr, wmask);
pci_set_quad(pci_dev->cmask + addr, ~0ULL);
} else {
pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff);
pci_set_long(pci_dev->cmask + addr, 0xffffffff);
}
}
static void pci_simple_bar_mapfunc(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
cpu_register_physical_memory(addr, size,
pci_dev->io_regions[region_num].ram_addr);
}
void pci_register_bar_simple(PCIDevice *pci_dev, int region_num,
pcibus_t size, uint8_t attr, ram_addr_t ram_addr)
{
pci_register_bar(pci_dev, region_num, size,
PCI_BASE_ADDRESS_SPACE_MEMORY | attr,
pci_simple_bar_mapfunc);
pci_dev->io_regions[region_num].ram_addr = ram_addr;
}
static void pci_bridge_filter(PCIDevice *d, pcibus_t *addr, pcibus_t *size,
uint8_t type)
{
pcibus_t base = *addr;
pcibus_t limit = *addr + *size - 1;
PCIDevice *br;
for (br = d->bus->parent_dev; br; br = br->bus->parent_dev) {
uint16_t cmd = pci_get_word(d->config + PCI_COMMAND);
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
if (!(cmd & PCI_COMMAND_IO)) {
goto no_map;
}
} else {
if (!(cmd & PCI_COMMAND_MEMORY)) {
goto no_map;
}
}
base = MAX(base, pci_bridge_get_base(br, type));
limit = MIN(limit, pci_bridge_get_limit(br, type));
}
if (base > limit) {
goto no_map;
}
*addr = base;
*size = limit - base + 1;
return;
no_map:
*addr = PCI_BAR_UNMAPPED;
*size = 0;
}
static pcibus_t pci_bar_address(PCIDevice *d,
int reg, uint8_t type, pcibus_t size)
{
pcibus_t new_addr, last_addr;
int bar = pci_bar(d, reg);
uint16_t cmd = pci_get_word(d->config + PCI_COMMAND);
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
if (!(cmd & PCI_COMMAND_IO)) {
return PCI_BAR_UNMAPPED;
}
new_addr = pci_get_long(d->config + bar) & ~(size - 1);
last_addr = new_addr + size - 1;
/* NOTE: we have only 64K ioports on PC */
if (last_addr <= new_addr || new_addr == 0 || last_addr > UINT16_MAX) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
if (!(cmd & PCI_COMMAND_MEMORY)) {
return PCI_BAR_UNMAPPED;
}
if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
new_addr = pci_get_quad(d->config + bar);
} else {
new_addr = pci_get_long(d->config + bar);
}
/* the ROM slot has a specific enable bit */
if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) {
return PCI_BAR_UNMAPPED;
}
new_addr &= ~(size - 1);
last_addr = new_addr + size - 1;
/* NOTE: we do not support wrapping */
/* XXX: as we cannot support really dynamic
mappings, we handle specific values as invalid
mappings. */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr == PCI_BAR_UNMAPPED) {
return PCI_BAR_UNMAPPED;
}
/* Now pcibus_t is 64bit.
* Check if 32 bit BAR wraps around explicitly.
* Without this, PC ide doesn't work well.
* TODO: remove this work around.
*/
if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) {
return PCI_BAR_UNMAPPED;
}
/*
* OS is allowed to set BAR beyond its addressable
* bits. For example, 32 bit OS can set 64bit bar
* to >4G. Check it. TODO: we might need to support
* it in the future for e.g. PAE.
*/
if (last_addr >= TARGET_PHYS_ADDR_MAX) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
static void pci_update_mappings(PCIDevice *d)
{
PCIIORegion *r;
int i;
pcibus_t new_addr, filtered_size;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
/* this region isn't registered */
if (!r->size)
continue;
new_addr = pci_bar_address(d, i, r->type, r->size);
/* bridge filtering */
filtered_size = r->size;
if (new_addr != PCI_BAR_UNMAPPED) {
pci_bridge_filter(d, &new_addr, &filtered_size, r->type);
}
/* This bar isn't changed */
if (new_addr == r->addr && filtered_size == r->filtered_size)
continue;
/* now do the real mapping */
if (r->addr != PCI_BAR_UNMAPPED) {
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
int class;
/* NOTE: specific hack for IDE in PC case:
only one byte must be mapped. */
class = pci_get_word(d->config + PCI_CLASS_DEVICE);
if (class == 0x0101 && r->size == 4) {
isa_unassign_ioport(r->addr + 2, 1);
} else {
isa_unassign_ioport(r->addr, r->filtered_size);
}
} else {
cpu_register_physical_memory(pci_to_cpu_addr(d->bus, r->addr),
r->filtered_size,
IO_MEM_UNASSIGNED);
qemu_unregister_coalesced_mmio(r->addr, r->filtered_size);
}
}
r->addr = new_addr;
r->filtered_size = filtered_size;
if (r->addr != PCI_BAR_UNMAPPED) {
/*
* TODO: currently almost all the map funcions assumes
* filtered_size == size and addr & ~(size - 1) == addr.
* However with bridge filtering, they aren't always true.
* Teach them such cases, such that filtered_size < size and
* addr & (size - 1) != 0.
*/
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
r->map_func(d, i, r->addr, r->filtered_size, r->type);
} else {
r->map_func(d, i, pci_to_cpu_addr(d->bus, r->addr),
r->filtered_size, r->type);
}
}
}
}
static inline int pci_irq_disabled(PCIDevice *d)
{
return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE;
}
/* Called after interrupt disabled field update in config space,
* assert/deassert interrupts if necessary.
* Gets original interrupt disable bit value (before update). */
static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled)
{
int i, disabled = pci_irq_disabled(d);
if (disabled == was_irq_disabled)
return;
for (i = 0; i < PCI_NUM_PINS; ++i) {
int state = pci_irq_state(d, i);
pci_change_irq_level(d, i, disabled ? -state : state);
}
}
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len)
{
uint32_t val = 0;
assert(len == 1 || len == 2 || len == 4);
len = MIN(len, pci_config_size(d) - address);
memcpy(&val, d->config + address, len);
return le32_to_cpu(val);
}
void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int l)
{
int i, was_irq_disabled = pci_irq_disabled(d);
uint32_t config_size = pci_config_size(d);
for (i = 0; i < l && addr + i < config_size; val >>= 8, ++i) {
uint8_t wmask = d->wmask[addr + i];
uint8_t w1cmask = d->w1cmask[addr + i];
assert(!(wmask & w1cmask));
d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask);
d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */
}
if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) ||
range_covers_byte(addr, l, PCI_COMMAND))
pci_update_mappings(d);
if (range_covers_byte(addr, l, PCI_COMMAND))
pci_update_irq_disabled(d, was_irq_disabled);
}
/***********************************************************/
/* generic PCI irq support */
/* 0 <= irq_num <= 3. level must be 0 or 1 */
static void pci_set_irq(void *opaque, int irq_num, int level)
{
PCIDevice *pci_dev = opaque;
int change;
change = level - pci_irq_state(pci_dev, irq_num);
if (!change)
return;
pci_set_irq_state(pci_dev, irq_num, level);
pci_update_irq_status(pci_dev);
if (pci_irq_disabled(pci_dev))
return;
pci_change_irq_level(pci_dev, irq_num, change);
}
/***********************************************************/
/* monitor info on PCI */
typedef struct {
uint16_t class;
const char *desc;
const char *fw_name;
uint16_t fw_ign_bits;
} pci_class_desc;
static const pci_class_desc pci_class_descriptions[] =
{
{ 0x0001, "VGA controller", "display"},
{ 0x0100, "SCSI controller", "scsi"},
{ 0x0101, "IDE controller", "ide"},
{ 0x0102, "Floppy controller", "fdc"},
{ 0x0103, "IPI controller", "ipi"},
{ 0x0104, "RAID controller", "raid"},
{ 0x0106, "SATA controller"},
{ 0x0107, "SAS controller"},
{ 0x0180, "Storage controller"},
{ 0x0200, "Ethernet controller", "ethernet"},
{ 0x0201, "Token Ring controller", "token-ring"},
{ 0x0202, "FDDI controller", "fddi"},
{ 0x0203, "ATM controller", "atm"},
{ 0x0280, "Network controller"},
{ 0x0300, "VGA controller", "display", 0x00ff},
{ 0x0301, "XGA controller"},
{ 0x0302, "3D controller"},
{ 0x0380, "Display controller"},
{ 0x0400, "Video controller", "video"},
{ 0x0401, "Audio controller", "sound"},
{ 0x0402, "Phone"},
{ 0x0403, "Audio controller", "sound"},
{ 0x0480, "Multimedia controller"},
{ 0x0500, "RAM controller", "memory"},
{ 0x0501, "Flash controller", "flash"},
{ 0x0580, "Memory controller"},
{ 0x0600, "Host bridge", "host"},
{ 0x0601, "ISA bridge", "isa"},
{ 0x0602, "EISA bridge", "eisa"},
{ 0x0603, "MC bridge", "mca"},
{ 0x0604, "PCI bridge", "pci"},
{ 0x0605, "PCMCIA bridge", "pcmcia"},
{ 0x0606, "NUBUS bridge", "nubus"},
{ 0x0607, "CARDBUS bridge", "cardbus"},
{ 0x0608, "RACEWAY bridge"},
{ 0x0680, "Bridge"},
{ 0x0700, "Serial port", "serial"},
{ 0x0701, "Parallel port", "parallel"},
{ 0x0800, "Interrupt controller", "interrupt-controller"},
{ 0x0801, "DMA controller", "dma-controller"},
{ 0x0802, "Timer", "timer"},
{ 0x0803, "RTC", "rtc"},
{ 0x0900, "Keyboard", "keyboard"},
{ 0x0901, "Pen", "pen"},
{ 0x0902, "Mouse", "mouse"},
{ 0x0A00, "Dock station", "dock", 0x00ff},
{ 0x0B00, "i386 cpu", "cpu", 0x00ff},
{ 0x0c00, "Fireware contorller", "fireware"},
{ 0x0c01, "Access bus controller", "access-bus"},
{ 0x0c02, "SSA controller", "ssa"},
{ 0x0c03, "USB controller", "usb"},
{ 0x0c04, "Fibre channel controller", "fibre-channel"},
{ 0, NULL}
};
static void pci_for_each_device_under_bus(PCIBus *bus,
void (*fn)(PCIBus *b, PCIDevice *d))
{
PCIDevice *d;
int devfn;
for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
d = bus->devices[devfn];
if (d) {
fn(bus, d);
}
}
}
void pci_for_each_device(PCIBus *bus, int bus_num,
void (*fn)(PCIBus *b, PCIDevice *d))
{
bus = pci_find_bus(bus, bus_num);
if (bus) {
pci_for_each_device_under_bus(bus, fn);
}
}
static void pci_device_print(Monitor *mon, QDict *device)
{
QDict *qdict;
QListEntry *entry;
uint64_t addr, size;
monitor_printf(mon, " Bus %2" PRId64 ", ", qdict_get_int(device, "bus"));
monitor_printf(mon, "device %3" PRId64 ", function %" PRId64 ":\n",
qdict_get_int(device, "slot"),
qdict_get_int(device, "function"));
monitor_printf(mon, " ");
qdict = qdict_get_qdict(device, "class_info");
if (qdict_haskey(qdict, "desc")) {
monitor_printf(mon, "%s", qdict_get_str(qdict, "desc"));
} else {
monitor_printf(mon, "Class %04" PRId64, qdict_get_int(qdict, "class"));
}
qdict = qdict_get_qdict(device, "id");
monitor_printf(mon, ": PCI device %04" PRIx64 ":%04" PRIx64 "\n",
qdict_get_int(qdict, "device"),
qdict_get_int(qdict, "vendor"));
if (qdict_haskey(device, "irq")) {
monitor_printf(mon, " IRQ %" PRId64 ".\n",
qdict_get_int(device, "irq"));
}
if (qdict_haskey(device, "pci_bridge")) {
QDict *info;
qdict = qdict_get_qdict(device, "pci_bridge");
info = qdict_get_qdict(qdict, "bus");
monitor_printf(mon, " BUS %" PRId64 ".\n",
qdict_get_int(info, "number"));
monitor_printf(mon, " secondary bus %" PRId64 ".\n",
qdict_get_int(info, "secondary"));
monitor_printf(mon, " subordinate bus %" PRId64 ".\n",
qdict_get_int(info, "subordinate"));
info = qdict_get_qdict(qdict, "io_range");
monitor_printf(mon, " IO range [0x%04"PRIx64", 0x%04"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
info = qdict_get_qdict(qdict, "memory_range");
monitor_printf(mon,
" memory range [0x%08"PRIx64", 0x%08"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
info = qdict_get_qdict(qdict, "prefetchable_range");
monitor_printf(mon, " prefetchable memory range "
"[0x%08"PRIx64", 0x%08"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
}
QLIST_FOREACH_ENTRY(qdict_get_qlist(device, "regions"), entry) {
qdict = qobject_to_qdict(qlist_entry_obj(entry));
monitor_printf(mon, " BAR%d: ", (int) qdict_get_int(qdict, "bar"));
addr = qdict_get_int(qdict, "address");
size = qdict_get_int(qdict, "size");
if (!strcmp(qdict_get_str(qdict, "type"), "io")) {
monitor_printf(mon, "I/O at 0x%04"FMT_PCIBUS
" [0x%04"FMT_PCIBUS"].\n",
addr, addr + size - 1);
} else {
monitor_printf(mon, "%d bit%s memory at 0x%08"FMT_PCIBUS
" [0x%08"FMT_PCIBUS"].\n",
qdict_get_bool(qdict, "mem_type_64") ? 64 : 32,
qdict_get_bool(qdict, "prefetch") ?
" prefetchable" : "", addr, addr + size - 1);
}
}
monitor_printf(mon, " id \"%s\"\n", qdict_get_str(device, "qdev_id"));
if (qdict_haskey(device, "pci_bridge")) {
qdict = qdict_get_qdict(device, "pci_bridge");
if (qdict_haskey(qdict, "devices")) {
QListEntry *dev;
QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) {
pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev)));
}
}
}
}
void do_pci_info_print(Monitor *mon, const QObject *data)
{
QListEntry *bus, *dev;
QLIST_FOREACH_ENTRY(qobject_to_qlist(data), bus) {
QDict *qdict = qobject_to_qdict(qlist_entry_obj(bus));
QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) {
pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev)));
}
}
}
static QObject *pci_get_dev_class(const PCIDevice *dev)
{
int class;
const pci_class_desc *desc;
class = pci_get_word(dev->config + PCI_CLASS_DEVICE);
desc = pci_class_descriptions;
while (desc->desc && class != desc->class)
desc++;
if (desc->desc) {
return qobject_from_jsonf("{ 'desc': %s, 'class': %d }",
desc->desc, class);
} else {
return qobject_from_jsonf("{ 'class': %d }", class);
}
}
static QObject *pci_get_dev_id(const PCIDevice *dev)
{
return qobject_from_jsonf("{ 'device': %d, 'vendor': %d }",
pci_get_word(dev->config + PCI_VENDOR_ID),
pci_get_word(dev->config + PCI_DEVICE_ID));
}
static QObject *pci_get_regions_list(const PCIDevice *dev)
{
int i;
QList *regions_list;
regions_list = qlist_new();
for (i = 0; i < PCI_NUM_REGIONS; i++) {
QObject *obj;
const PCIIORegion *r = &dev->io_regions[i];
if (!r->size) {
continue;
}
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'io', "
"'address': %" PRId64 ", "
"'size': %" PRId64 " }",
i, r->addr, r->size);
} else {
int mem_type_64 = r->type & PCI_BASE_ADDRESS_MEM_TYPE_64;
obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'memory', "
"'mem_type_64': %i, 'prefetch': %i, "
"'address': %" PRId64 ", "
"'size': %" PRId64 " }",
i, mem_type_64,
r->type & PCI_BASE_ADDRESS_MEM_PREFETCH,
r->addr, r->size);
}
qlist_append_obj(regions_list, obj);
}
return QOBJECT(regions_list);
}
static QObject *pci_get_devices_list(PCIBus *bus, int bus_num);
static QObject *pci_get_dev_dict(PCIDevice *dev, PCIBus *bus, int bus_num)
{
uint8_t type;
QObject *obj;
obj = qobject_from_jsonf("{ 'bus': %d, 'slot': %d, 'function': %d," "'class_info': %p, 'id': %p, 'regions': %p,"
" 'qdev_id': %s }",
bus_num,
PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
pci_get_dev_class(dev), pci_get_dev_id(dev),
pci_get_regions_list(dev),
dev->qdev.id ? dev->qdev.id : "");
if (dev->config[PCI_INTERRUPT_PIN] != 0) {
QDict *qdict = qobject_to_qdict(obj);
qdict_put(qdict, "irq", qint_from_int(dev->config[PCI_INTERRUPT_LINE]));
}
type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
if (type == PCI_HEADER_TYPE_BRIDGE) {
QDict *qdict;
QObject *pci_bridge;
pci_bridge = qobject_from_jsonf("{ 'bus': "
"{ 'number': %d, 'secondary': %d, 'subordinate': %d }, "
"'io_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, "
"'memory_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, "
"'prefetchable_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "} }",
dev->config[PCI_PRIMARY_BUS], dev->config[PCI_SECONDARY_BUS],
dev->config[PCI_SUBORDINATE_BUS],
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO),
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY),
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_PREFETCH),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_PREFETCH));
if (dev->config[PCI_SECONDARY_BUS] != 0) {
PCIBus *child_bus = pci_find_bus(bus, dev->config[PCI_SECONDARY_BUS]);
if (child_bus) {
qdict = qobject_to_qdict(pci_bridge);
qdict_put_obj(qdict, "devices",
pci_get_devices_list(child_bus,
dev->config[PCI_SECONDARY_BUS]));
}
}
qdict = qobject_to_qdict(obj);
qdict_put_obj(qdict, "pci_bridge", pci_bridge);
}
return obj;
}
static QObject *pci_get_devices_list(PCIBus *bus, int bus_num)
{
int devfn;
PCIDevice *dev;
QList *dev_list;
dev_list = qlist_new();
for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
dev = bus->devices[devfn];
if (dev) {
qlist_append_obj(dev_list, pci_get_dev_dict(dev, bus, bus_num));
}
}
return QOBJECT(dev_list);
}
static QObject *pci_get_bus_dict(PCIBus *bus, int bus_num)
{
bus = pci_find_bus(bus, bus_num);
if (bus) {
return qobject_from_jsonf("{ 'bus': %d, 'devices': %p }",
bus_num, pci_get_devices_list(bus, bus_num));
}
return NULL;
}
void do_pci_info(Monitor *mon, QObject **ret_data)
{
QList *bus_list;
struct PCIHostBus *host;
bus_list = qlist_new();
QLIST_FOREACH(host, &host_buses, next) {
QObject *obj = pci_get_bus_dict(host->bus, 0);
if (obj) {
qlist_append_obj(bus_list, obj);
}
}
*ret_data = QOBJECT(bus_list);
}
static const char * const pci_nic_models[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio",
NULL
};
static const char * const pci_nic_names[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio-net-pci",
NULL
};
/* Initialize a PCI NIC. */
/* FIXME callers should check for failure, but don't */
PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model,
const char *default_devaddr)
{
const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr;
PCIBus *bus;
int devfn;
PCIDevice *pci_dev;
DeviceState *dev;
int i;
i = qemu_find_nic_model(nd, pci_nic_models, default_model);
if (i < 0)
return NULL;
bus = pci_get_bus_devfn(&devfn, devaddr);
if (!bus) {
error_report("Invalid PCI device address %s for device %s",
devaddr, pci_nic_names[i]);
return NULL;
}
pci_dev = pci_create(bus, devfn, pci_nic_names[i]);
dev = &pci_dev->qdev;
qdev_set_nic_properties(dev, nd);
if (qdev_init(dev) < 0)
return NULL;
return pci_dev;
}
PCIDevice *pci_nic_init_nofail(NICInfo *nd, const char *default_model,
const char *default_devaddr)
{
PCIDevice *res;
if (qemu_show_nic_models(nd->model, pci_nic_models))
exit(0);
res = pci_nic_init(nd, default_model, default_devaddr);
if (!res)
exit(1);
return res;
}
static void pci_bridge_update_mappings_fn(PCIBus *b, PCIDevice *d)
{
pci_update_mappings(d);
}
void pci_bridge_update_mappings(PCIBus *b)
{
PCIBus *child;
pci_for_each_device_under_bus(b, pci_bridge_update_mappings_fn);
QLIST_FOREACH(child, &b->child, sibling) {
pci_bridge_update_mappings(child);
}
}
/* Whether a given bus number is in range of the secondary
* bus of the given bridge device. */
static bool pci_secondary_bus_in_range(PCIDevice *dev, int bus_num)
{
return !(pci_get_word(dev->config + PCI_BRIDGE_CONTROL) &
PCI_BRIDGE_CTL_BUS_RESET) /* Don't walk the bus if it's reset. */ &&
dev->config[PCI_SECONDARY_BUS] < bus_num &&
bus_num <= dev->config[PCI_SUBORDINATE_BUS];
}
PCIBus *pci_find_bus(PCIBus *bus, int bus_num)
{
PCIBus *sec;
if (!bus) {
return NULL;
}
if (pci_bus_num(bus) == bus_num) {
return bus;
}
/* Consider all bus numbers in range for the host pci bridge. */
if (bus->parent_dev &&
!pci_secondary_bus_in_range(bus->parent_dev, bus_num)) {
return NULL;
}
/* try child bus */
for (; bus; bus = sec) {
QLIST_FOREACH(sec, &bus->child, sibling) {
assert(sec->parent_dev);
if (sec->parent_dev->config[PCI_SECONDARY_BUS] == bus_num) {
return sec;
}
if (pci_secondary_bus_in_range(sec->parent_dev, bus_num)) {
break;
}
}
}
return NULL;
}
PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn)
{
bus = pci_find_bus(bus, bus_num);
if (!bus)
return NULL;
return bus->devices[devfn];
}
static int pci_qdev_init(DeviceState *qdev, DeviceInfo *base)
{
PCIDevice *pci_dev = (PCIDevice *)qdev;
PCIDeviceInfo *info = container_of(base, PCIDeviceInfo, qdev);
PCIBus *bus;
int rc;
bool is_default_rom;
/* initialize cap_present for pci_is_express() and pci_config_size() */
if (info->is_express) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
bus = FROM_QBUS(PCIBus, qdev_get_parent_bus(qdev));
pci_dev = do_pci_register_device(pci_dev, bus, base->name,
pci_dev->devfn, info);
if (pci_dev == NULL)
return -1;
if (qdev->hotplugged && info->no_hotplug) {
qerror_report(QERR_DEVICE_NO_HOTPLUG, info->qdev.name);
do_pci_unregister_device(pci_dev);
return -1;
}
if (info->init) {
rc = info->init(pci_dev);
if (rc != 0) {
do_pci_unregister_device(pci_dev);
return rc;
}
}
/* rom loading */
is_default_rom = false;
if (pci_dev->romfile == NULL && info->romfile != NULL) {
pci_dev->romfile = qemu_strdup(info->romfile);
is_default_rom = true;
}
pci_add_option_rom(pci_dev, is_default_rom);
if (bus->hotplug) {
/* Let buses differentiate between hotplug and when device is
* enabled during qemu machine creation. */
rc = bus->hotplug(bus->hotplug_qdev, pci_dev,
qdev->hotplugged ? PCI_HOTPLUG_ENABLED:
PCI_COLDPLUG_ENABLED);
if (rc != 0) {
int r = pci_unregister_device(&pci_dev->qdev);
assert(!r);
return rc;
}
}
return 0;
}
static int pci_unplug_device(DeviceState *qdev)
{
PCIDevice *dev = DO_UPCAST(PCIDevice, qdev, qdev);
PCIDeviceInfo *info = container_of(qdev->info, PCIDeviceInfo, qdev);
if (info->no_hotplug) {
qerror_report(QERR_DEVICE_NO_HOTPLUG, info->qdev.name);
return -1;
}
return dev->bus->hotplug(dev->bus->hotplug_qdev, dev,
PCI_HOTPLUG_DISABLED);
}
void pci_qdev_register(PCIDeviceInfo *info)
{
info->qdev.init = pci_qdev_init;
info->qdev.unplug = pci_unplug_device;
info->qdev.exit = pci_unregister_device;
info->qdev.bus_info = &pci_bus_info;
qdev_register(&info->qdev);
}
void pci_qdev_register_many(PCIDeviceInfo *info)
{
while (info->qdev.name) {
pci_qdev_register(info);
info++;
}
}
PCIDevice *pci_create_multifunction(PCIBus *bus, int devfn, bool multifunction,
const char *name)
{
DeviceState *dev;
dev = qdev_create(&bus->qbus, name);
qdev_prop_set_uint32(dev, "addr", devfn);
qdev_prop_set_bit(dev, "multifunction", multifunction);
return DO_UPCAST(PCIDevice, qdev, dev);
}
PCIDevice *pci_try_create_multifunction(PCIBus *bus, int devfn,
bool multifunction,
const char *name)
{
DeviceState *dev;
dev = qdev_try_create(&bus->qbus, name);
if (!dev) {
return NULL;
}
qdev_prop_set_uint32(dev, "addr", devfn);
qdev_prop_set_bit(dev, "multifunction", multifunction);
return DO_UPCAST(PCIDevice, qdev, dev);
}
PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn,
bool multifunction,
const char *name)
{
PCIDevice *dev = pci_create_multifunction(bus, devfn, multifunction, name);
qdev_init_nofail(&dev->qdev);
return dev;
}
PCIDevice *pci_create(PCIBus *bus, int devfn, const char *name)
{
return pci_create_multifunction(bus, devfn, false, name);
}
PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name)
{
return pci_create_simple_multifunction(bus, devfn, false, name);
}
PCIDevice *pci_try_create(PCIBus *bus, int devfn, const char *name)
{
return pci_try_create_multifunction(bus, devfn, false, name);
}
static int pci_find_space(PCIDevice *pdev, uint8_t size)
{
int config_size = pci_config_size(pdev);
int offset = PCI_CONFIG_HEADER_SIZE;
int i;
for (i = PCI_CONFIG_HEADER_SIZE; i < config_size; ++i)
if (pdev->used[i])
offset = i + 1;
else if (i - offset + 1 == size)
return offset;
return 0;
}
static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id,
uint8_t *prev_p)
{
uint8_t next, prev;
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST))
return 0;
for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]);
prev = next + PCI_CAP_LIST_NEXT)
if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id)
break;
if (prev_p)
*prev_p = prev;
return next;
}
static void pci_map_option_rom(PCIDevice *pdev, int region_num, pcibus_t addr, pcibus_t size, int type)
{
cpu_register_physical_memory(addr, size, pdev->rom_offset);
}
/* Patch the PCI vendor and device ids in a PCI rom image if necessary.
This is needed for an option rom which is used for more than one device. */
static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, int size)
{
uint16_t vendor_id;
uint16_t device_id;
uint16_t rom_vendor_id;
uint16_t rom_device_id;
uint16_t rom_magic;
uint16_t pcir_offset;
uint8_t checksum;
/* Words in rom data are little endian (like in PCI configuration),
so they can be read / written with pci_get_word / pci_set_word. */
/* Only a valid rom will be patched. */
rom_magic = pci_get_word(ptr);
if (rom_magic != 0xaa55) {
PCI_DPRINTF("Bad ROM magic %04x\n", rom_magic);
return;
}
pcir_offset = pci_get_word(ptr + 0x18);
if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) {
PCI_DPRINTF("Bad PCIR offset 0x%x or signature\n", pcir_offset);
return;
}
vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
rom_vendor_id = pci_get_word(ptr + pcir_offset + 4);
rom_device_id = pci_get_word(ptr + pcir_offset + 6);
PCI_DPRINTF("%s: ROM id %04x%04x / PCI id %04x%04x\n", pdev->romfile,
vendor_id, device_id, rom_vendor_id, rom_device_id);
checksum = ptr[6];
if (vendor_id != rom_vendor_id) {
/* Patch vendor id and checksum (at offset 6 for etherboot roms). */
checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8);
checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8);
PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum);
ptr[6] = checksum;
pci_set_word(ptr + pcir_offset + 4, vendor_id);
}
if (device_id != rom_device_id) {
/* Patch device id and checksum (at offset 6 for etherboot roms). */
checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8);
checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8);
PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum);
ptr[6] = checksum;
pci_set_word(ptr + pcir_offset + 6, device_id);
}
}
/* Add an option rom for the device */
static int pci_add_option_rom(PCIDevice *pdev, bool is_default_rom)
{
int size;
char *path;
void *ptr;
char name[32];
if (!pdev->romfile)
return 0;
if (strlen(pdev->romfile) == 0)
return 0;
if (!pdev->rom_bar) {
/*
* Load rom via fw_cfg instead of creating a rom bar,
* for 0.11 compatibility.
*/
int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
if (class == 0x0300) {
rom_add_vga(pdev->romfile);
} else {
rom_add_option(pdev->romfile, -1);
}
return 0;
}
path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile);
if (path == NULL) {
path = qemu_strdup(pdev->romfile);
}
size = get_image_size(path);
if (size < 0) {
error_report("%s: failed to find romfile \"%s\"",
__FUNCTION__, pdev->romfile);
qemu_free(path);
return -1;
}
if (size & (size - 1)) {
size = 1 << qemu_fls(size);
}
if (pdev->qdev.info->vmsd)
snprintf(name, sizeof(name), "%s.rom", pdev->qdev.info->vmsd->name);
else
snprintf(name, sizeof(name), "%s.rom", pdev->qdev.info->name);
pdev->rom_offset = qemu_ram_alloc(&pdev->qdev, name, size);
ptr = qemu_get_ram_ptr(pdev->rom_offset);
load_image(path, ptr);
qemu_free(path);
if (is_default_rom) {
/* Only the default rom images will be patched (if needed). */
pci_patch_ids(pdev, ptr, size);
}
qemu_put_ram_ptr(ptr);
pci_register_bar(pdev, PCI_ROM_SLOT, size,
0, pci_map_option_rom);
return 0;
}
static void pci_del_option_rom(PCIDevice *pdev)
{
if (!pdev->rom_offset)
return;
qemu_ram_free(pdev->rom_offset);
pdev->rom_offset = 0;
}
/*
* if !offset
* Reserve space and add capability to the linked list in pci config space
*
* if offset = 0,
* Find and reserve space and add capability to the linked list
* in pci config space */
int pci_add_capability(PCIDevice *pdev, uint8_t cap_id,
uint8_t offset, uint8_t size)
{
uint8_t *config;
if (!offset) {
offset = pci_find_space(pdev, size);
if (!offset) {
return -ENOSPC;
}
}
config = pdev->config + offset;
config[PCI_CAP_LIST_ID] = cap_id;
config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST];
pdev->config[PCI_CAPABILITY_LIST] = offset;
pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
memset(pdev->used + offset, 0xFF, size);
/* Make capability read-only by default */
memset(pdev->wmask + offset, 0, size);
/* Check capability by default */
memset(pdev->cmask + offset, 0xFF, size);
return offset;
}
/* Unlink capability from the pci config space. */
void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size)
{
uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev);
if (!offset)
return;
pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT];
/* Make capability writable again */
memset(pdev->wmask + offset, 0xff, size);
memset(pdev->w1cmask + offset, 0, size);
/* Clear cmask as device-specific registers can't be checked */
memset(pdev->cmask + offset, 0, size);
memset(pdev->used + offset, 0, size);
if (!pdev->config[PCI_CAPABILITY_LIST])
pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST;
}
/* Reserve space for capability at a known offset (to call after load). */
void pci_reserve_capability(PCIDevice *pdev, uint8_t offset, uint8_t size)
{
memset(pdev->used + offset, 0xff, size);
}
uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id)
{
return pci_find_capability_list(pdev, cap_id, NULL);
}
static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent)
{
PCIDevice *d = (PCIDevice *)dev;
const pci_class_desc *desc;
char ctxt[64];
PCIIORegion *r;
int i, class;
class = pci_get_word(d->config + PCI_CLASS_DEVICE);
desc = pci_class_descriptions;
while (desc->desc && class != desc->class)
desc++;
if (desc->desc) {
snprintf(ctxt, sizeof(ctxt), "%s", desc->desc);
} else {
snprintf(ctxt, sizeof(ctxt), "Class %04x", class);
}
monitor_printf(mon, "%*sclass %s, addr %02x:%02x.%x, "
"pci id %04x:%04x (sub %04x:%04x)\n",
indent, "", ctxt, pci_bus_num(d->bus),
PCI_SLOT(d->devfn), PCI_FUNC(d->devfn),
pci_get_word(d->config + PCI_VENDOR_ID),
pci_get_word(d->config + PCI_DEVICE_ID),
pci_get_word(d->config + PCI_SUBSYSTEM_VENDOR_ID),
pci_get_word(d->config + PCI_SUBSYSTEM_ID));
for (i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (!r->size)
continue;
monitor_printf(mon, "%*sbar %d: %s at 0x%"FMT_PCIBUS
" [0x%"FMT_PCIBUS"]\n",
indent, "",
i, r->type & PCI_BASE_ADDRESS_SPACE_IO ? "i/o" : "mem",
r->addr, r->addr + r->size - 1);
}
}
static char *pci_dev_fw_name(DeviceState *dev, char *buf, int len)
{
PCIDevice *d = (PCIDevice *)dev;
const char *name = NULL;
const pci_class_desc *desc = pci_class_descriptions;
int class = pci_get_word(d->config + PCI_CLASS_DEVICE);
while (desc->desc &&
(class & ~desc->fw_ign_bits) !=
(desc->class & ~desc->fw_ign_bits)) {
desc++;
}
if (desc->desc) {
name = desc->fw_name;
}
if (name) {
pstrcpy(buf, len, name);
} else {
snprintf(buf, len, "pci%04x,%04x",
pci_get_word(d->config + PCI_VENDOR_ID),
pci_get_word(d->config + PCI_DEVICE_ID));
}
return buf;
}
static char *pcibus_get_fw_dev_path(DeviceState *dev)
{
PCIDevice *d = (PCIDevice *)dev;
char path[50], name[33];
int off;
off = snprintf(path, sizeof(path), "%s@%x",
pci_dev_fw_name(dev, name, sizeof name),
PCI_SLOT(d->devfn));
if (PCI_FUNC(d->devfn))
snprintf(path + off, sizeof(path) + off, ",%x", PCI_FUNC(d->devfn));
return strdup(path);
}
static char *pcibus_get_dev_path(DeviceState *dev)
{
PCIDevice *d = container_of(dev, PCIDevice, qdev);
PCIDevice *t;
int slot_depth;
/* Path format: Domain:00:Slot.Function:Slot.Function....:Slot.Function.
* 00 is added here to make this format compatible with
* domain:Bus:Slot.Func for systems without nested PCI bridges.
* Slot.Function list specifies the slot and function numbers for all
* devices on the path from root to the specific device. */
char domain[] = "DDDD:00";
char slot[] = ":SS.F";
int domain_len = sizeof domain - 1 /* For '\0' */;
int slot_len = sizeof slot - 1 /* For '\0' */;
int path_len;
char *path, *p;
int s;
/* Calculate # of slots on path between device and root. */;
slot_depth = 0;
for (t = d; t; t = t->bus->parent_dev) {
++slot_depth;
}
path_len = domain_len + slot_len * slot_depth;
/* Allocate memory, fill in the terminating null byte. */
path = qemu_malloc(path_len + 1 /* For '\0' */);
path[path_len] = '\0';
/* First field is the domain. */
s = snprintf(domain, sizeof domain, "%04x:00", pci_find_domain(d->bus));
assert(s == domain_len);
memcpy(path, domain, domain_len);
/* Fill in slot numbers. We walk up from device to root, so need to print
* them in the reverse order, last to first. */
p = path + path_len;
for (t = d; t; t = t->bus->parent_dev) {
p -= slot_len;
s = snprintf(slot, sizeof slot, ":%02x.%x",
PCI_SLOT(t->devfn), PCI_FUNC(t->devfn));
assert(s == slot_len);
memcpy(p, slot, slot_len);
}
return path;
}
static int pci_qdev_find_recursive(PCIBus *bus,
const char *id, PCIDevice **pdev)
{
DeviceState *qdev = qdev_find_recursive(&bus->qbus, id);
if (!qdev) {
return -ENODEV;
}
/* roughly check if given qdev is pci device */
if (qdev->info->init == &pci_qdev_init &&
qdev->parent_bus->info == &pci_bus_info) {
*pdev = DO_UPCAST(PCIDevice, qdev, qdev);
return 0;
}
return -EINVAL;
}
int pci_qdev_find_device(const char *id, PCIDevice **pdev)
{
struct PCIHostBus *host;
int rc = -ENODEV;
QLIST_FOREACH(host, &host_buses, next) {
int tmp = pci_qdev_find_recursive(host->bus, id, pdev);
if (!tmp) {
rc = 0;
break;
}
if (tmp != -ENODEV) {
rc = tmp;
}
}
return rc;
}