qemu-e2k/target/microblaze/op_helper.c
Richard Henderson ab0c8d0f5b target/microblaze: Use cc->do_unaligned_access
This fixes the problem in which unaligned stores succeeded,
but then we raised the exception after modifying memory.
Store the ESS for the unaligned data access in the iflags
for the insn, so that it can be found during unwind.

Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-09-01 07:43:35 -07:00

431 lines
11 KiB
C

/*
* Microblaze helper routines.
*
* Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
{
int test = ctrl & STREAM_TEST;
int atomic = ctrl & STREAM_ATOMIC;
int control = ctrl & STREAM_CONTROL;
int nonblock = ctrl & STREAM_NONBLOCK;
int exception = ctrl & STREAM_EXCEPTION;
qemu_log_mask(LOG_UNIMP, "Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
id, data,
test ? "t" : "",
nonblock ? "n" : "",
exception ? "e" : "",
control ? "c" : "",
atomic ? "a" : "");
}
uint32_t helper_get(uint32_t id, uint32_t ctrl)
{
int test = ctrl & STREAM_TEST;
int atomic = ctrl & STREAM_ATOMIC;
int control = ctrl & STREAM_CONTROL;
int nonblock = ctrl & STREAM_NONBLOCK;
int exception = ctrl & STREAM_EXCEPTION;
qemu_log_mask(LOG_UNIMP, "Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
id,
test ? "t" : "",
nonblock ? "n" : "",
exception ? "e" : "",
control ? "c" : "",
atomic ? "a" : "");
return 0xdead0000 | id;
}
void helper_raise_exception(CPUMBState *env, uint32_t index)
{
CPUState *cs = env_cpu(env);
cs->exception_index = index;
cpu_loop_exit(cs);
}
static bool check_divz(CPUMBState *env, uint32_t a, uint32_t b, uintptr_t ra)
{
if (unlikely(b == 0)) {
env->msr |= MSR_DZ;
if ((env->msr & MSR_EE) &&
env_archcpu(env)->cfg.div_zero_exception) {
CPUState *cs = env_cpu(env);
env->esr = ESR_EC_DIVZERO;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit_restore(cs, ra);
}
return false;
}
return true;
}
uint32_t helper_divs(CPUMBState *env, uint32_t a, uint32_t b)
{
if (!check_divz(env, a, b, GETPC())) {
return 0;
}
return (int32_t)a / (int32_t)b;
}
uint32_t helper_divu(CPUMBState *env, uint32_t a, uint32_t b)
{
if (!check_divz(env, a, b, GETPC())) {
return 0;
}
return a / b;
}
/* raise FPU exception. */
static void raise_fpu_exception(CPUMBState *env, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
env->esr = ESR_EC_FPU;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit_restore(cs, ra);
}
static void update_fpu_flags(CPUMBState *env, int flags, uintptr_t ra)
{
int raise = 0;
if (flags & float_flag_invalid) {
env->fsr |= FSR_IO;
raise = 1;
}
if (flags & float_flag_divbyzero) {
env->fsr |= FSR_DZ;
raise = 1;
}
if (flags & float_flag_overflow) {
env->fsr |= FSR_OF;
raise = 1;
}
if (flags & float_flag_underflow) {
env->fsr |= FSR_UF;
raise = 1;
}
if (raise
&& (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
&& (env->msr & MSR_EE)) {
raise_fpu_exception(env, ra);
}
}
uint32_t helper_fadd(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_add(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return fd.l;
}
uint32_t helper_frsub(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return fd.l;
}
uint32_t helper_fmul(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return fd.l;
}
uint32_t helper_fdiv(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fd, fa, fb;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
fd.f = float32_div(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return fd.l;
}
uint32_t helper_fcmp_un(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
uint32_t r = 0;
fa.l = a;
fb.l = b;
if (float32_is_signaling_nan(fa.f, &env->fp_status) ||
float32_is_signaling_nan(fb.f, &env->fp_status)) {
update_fpu_flags(env, float_flag_invalid, GETPC());
r = 1;
}
if (float32_is_quiet_nan(fa.f, &env->fp_status) ||
float32_is_quiet_nan(fb.f, &env->fp_status)) {
r = 1;
}
return r;
}
uint32_t helper_fcmp_lt(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int r;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
r = float32_lt(fb.f, fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_fcmp_eq(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags;
int r;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fb.l = b;
r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_fcmp_le(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags;
int r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = float32_le(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_fcmp_gt(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = float32_lt(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_fcmp_ne(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_fcmp_ge(CPUMBState *env, uint32_t a, uint32_t b)
{
CPU_FloatU fa, fb;
int flags, r;
fa.l = a;
fb.l = b;
set_float_exception_flags(0, &env->fp_status);
r = !float32_lt(fa.f, fb.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags & float_flag_invalid, GETPC());
return r;
}
uint32_t helper_flt(CPUMBState *env, uint32_t a)
{
CPU_FloatU fd, fa;
fa.l = a;
fd.f = int32_to_float32(fa.l, &env->fp_status);
return fd.l;
}
uint32_t helper_fint(CPUMBState *env, uint32_t a)
{
CPU_FloatU fa;
uint32_t r;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
r = float32_to_int32(fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return r;
}
uint32_t helper_fsqrt(CPUMBState *env, uint32_t a)
{
CPU_FloatU fd, fa;
int flags;
set_float_exception_flags(0, &env->fp_status);
fa.l = a;
fd.l = float32_sqrt(fa.f, &env->fp_status);
flags = get_float_exception_flags(&env->fp_status);
update_fpu_flags(env, flags, GETPC());
return fd.l;
}
uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
{
unsigned int i;
uint32_t mask = 0xff000000;
for (i = 0; i < 4; i++) {
if ((a & mask) == (b & mask))
return i + 1;
mask >>= 8;
}
return 0;
}
void helper_stackprot(CPUMBState *env, target_ulong addr)
{
if (addr < env->slr || addr > env->shr) {
CPUState *cs = env_cpu(env);
qemu_log_mask(CPU_LOG_INT, "Stack protector violation at "
TARGET_FMT_lx " %x %x\n",
addr, env->slr, env->shr);
env->ear = addr;
env->esr = ESR_EC_STACKPROT;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit_restore(cs, GETPC());
}
}
#if !defined(CONFIG_USER_ONLY)
/* Writes/reads to the MMU's special regs end up here. */
uint32_t helper_mmu_read(CPUMBState *env, uint32_t ext, uint32_t rn)
{
return mmu_read(env, ext, rn);
}
void helper_mmu_write(CPUMBState *env, uint32_t ext, uint32_t rn, uint32_t v)
{
mmu_write(env, ext, rn, v);
}
void mb_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
unsigned size, MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
qemu_log_mask(CPU_LOG_INT, "Transaction failed: vaddr 0x%" VADDR_PRIx
" physaddr 0x" TARGET_FMT_plx " size %d access type %s\n",
addr, physaddr, size,
access_type == MMU_INST_FETCH ? "INST_FETCH" :
(access_type == MMU_DATA_LOAD ? "DATA_LOAD" : "DATA_STORE"));
if (!(env->msr & MSR_EE)) {
return;
}
if (access_type == MMU_INST_FETCH) {
if (!cpu->cfg.iopb_bus_exception) {
return;
}
env->esr = ESR_EC_INSN_BUS;
} else {
if (!cpu->cfg.dopb_bus_exception) {
return;
}
env->esr = ESR_EC_DATA_BUS;
}
env->ear = addr;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit_restore(cs, retaddr);
}
#endif