rust/src/librustdoc/html/render.rs

4686 lines
162 KiB
Rust
Raw Normal View History

// ignore-tidy-filelength
2019-02-08 14:53:55 +01:00
//! Rustdoc's HTML rendering module.
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering threads. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among threads). The context, however, should be a lightweight structure. This
//! is cloned per-thread and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These threads are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
2018-02-24 19:14:36 +01:00
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::cmp::Ordering;
use std::collections::{BTreeMap, VecDeque};
use std::default::Default;
use std::error;
2018-06-25 23:28:20 +02:00
use std::ffi::OsStr;
2019-12-22 23:42:04 +01:00
use std::fmt::{self, Formatter, Write};
2019-05-20 04:04:04 +02:00
use std::fs::{self, File};
use std::io::prelude::*;
2019-05-20 04:04:04 +02:00
use std::io::{self, BufReader};
2019-12-22 23:42:04 +01:00
use std::path::{Component, Path, PathBuf};
use std::rc::Rc;
use std::str;
use std::sync::Arc;
use rustc::middle::privacy::AccessLevels;
use rustc::middle::stability;
use rustc_ast_pretty::pprust;
use rustc_data_structures::flock;
2019-12-24 05:02:53 +01:00
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
2019-11-30 02:50:47 +01:00
use rustc_feature::UnstableFeatures;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::Mutability;
2020-01-01 19:40:49 +01:00
use rustc_span::edition::Edition;
use rustc_span::hygiene::MacroKind;
use rustc_span::source_map::FileName;
2020-01-01 19:30:57 +01:00
use rustc_span::symbol::{sym, Symbol};
2019-12-22 23:42:04 +01:00
use serde::ser::SerializeSeq;
use serde::{Serialize, Serializer};
use syntax::ast;
2019-12-21 15:29:46 +01:00
use crate::clean::{self, AttributesExt, Deprecation, GetDefId, SelfTy};
2019-02-23 08:40:07 +01:00
use crate::config::RenderOptions;
use crate::docfs::{DocFS, ErrorStorage, PathError};
2019-02-23 08:40:07 +01:00
use crate::doctree;
use crate::html::escape::Escape;
use crate::html::format::fmt_impl_for_trait_page;
2019-12-22 23:42:04 +01:00
use crate::html::format::Function;
use crate::html::format::{href, print_default_space, print_generic_bounds, WhereClause};
use crate::html::format::{print_abi_with_space, Buffer, PrintWithSpace};
2019-02-23 08:40:07 +01:00
use crate::html::item_type::ItemType;
2019-12-22 23:42:04 +01:00
use crate::html::markdown::{self, ErrorCodes, IdMap, Markdown, MarkdownHtml, MarkdownSummaryLine};
use crate::html::sources;
2019-12-22 23:42:04 +01:00
use crate::html::{highlight, layout, static_files};
2018-05-11 00:02:05 +02:00
use minifier;
#[cfg(test)]
mod tests;
mod cache;
use cache::Cache;
crate use cache::ExternalLocation::{self, *};
2014-12-23 02:58:38 +01:00
/// A pair of name and its optional document.
pub type NameDoc = (String, Option<String>);
2014-12-23 02:58:38 +01:00
crate fn ensure_trailing_slash(v: &str) -> impl fmt::Display + '_ {
crate::html::format::display_fn(move |f| {
2019-12-22 23:42:04 +01:00
if !v.ends_with("/") && !v.is_empty() { write!(f, "{}/", v) } else { write!(f, "{}", v) }
})
2019-01-31 15:42:45 +01:00
}
2019-05-20 04:04:04 +02:00
#[derive(Debug)]
pub struct Error {
pub file: PathBuf,
pub error: io::Error,
}
impl error::Error for Error {}
2019-05-20 04:04:04 +02:00
impl std::fmt::Display for Error {
2019-05-20 04:04:04 +02:00
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let file = self.file.display().to_string();
if file.is_empty() {
write!(f, "{}", self.error)
} else {
write!(f, "\"{}\": {}", self.file.display(), self.error)
}
2019-05-20 04:04:04 +02:00
}
}
impl PathError for Error {
fn new<P: AsRef<Path>>(e: io::Error, path: P) -> Error {
2019-12-22 23:42:04 +01:00
Error { file: path.as_ref().to_path_buf(), error: e }
2019-05-20 04:04:04 +02:00
}
}
macro_rules! try_none {
2019-12-22 23:42:04 +01:00
($e:expr, $file:expr) => {{
2019-05-20 04:04:04 +02:00
use std::io;
match $e {
Some(e) => e,
2019-12-22 23:42:04 +01:00
None => {
return Err(Error::new(io::Error::new(io::ErrorKind::Other, "not found"), $file));
}
2019-05-20 04:04:04 +02:00
}
2019-12-22 23:42:04 +01:00
}};
2019-05-20 04:04:04 +02:00
}
macro_rules! try_err {
2019-12-22 23:42:04 +01:00
($e:expr, $file:expr) => {{
2019-05-20 04:04:04 +02:00
match $e {
Ok(e) => e,
Err(e) => return Err(Error::new(e, $file)),
}
2019-12-22 23:42:04 +01:00
}};
2019-05-20 04:04:04 +02:00
}
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[derive(Clone)]
struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
pub current: Vec<String>,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
pub dst: PathBuf,
/// A flag, which when `true`, will render pages which redirect to the
/// real location of an item. This is used to allow external links to
/// publicly reused items to redirect to the right location.
pub render_redirect_pages: bool,
/// The map used to ensure all generated 'id=' attributes are unique.
id_map: Rc<RefCell<IdMap>>,
pub shared: Arc<SharedContext>,
pub cache: Arc<Cache>,
}
crate struct SharedContext {
/// The path to the crate root source minus the file name.
/// Used for simplifying paths to the highlighted source code files.
pub src_root: PathBuf,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon and added html).
pub layout: layout::Layout,
2018-04-01 21:06:35 +02:00
/// This flag indicates whether `[src]` links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
pub include_sources: bool,
/// The local file sources we've emitted and their respective url-paths.
pub local_sources: FxHashMap<PathBuf, String>,
2019-08-10 22:43:39 +02:00
/// Whether the collapsed pass ran
pub collapsed: bool,
/// The base-URL of the issue tracker for when an item has been tagged with
/// an issue number.
pub issue_tracker_base_url: Option<String>,
/// The directories that have already been created in this doc run. Used to reduce the number
/// of spurious `create_dir_all` calls.
pub created_dirs: RefCell<FxHashSet<PathBuf>>,
/// This flag indicates whether listings of modules (in the side bar and documentation itself)
/// should be ordered alphabetically or in order of appearance (in the source code).
pub sort_modules_alphabetically: bool,
2018-01-20 22:16:46 +01:00
/// Additional themes to be added to the generated docs.
pub themes: Vec<PathBuf>,
2018-03-28 11:18:45 +02:00
/// Suffix to be added on resource files (if suffix is "-v2" then "light.css" becomes
/// "light-v2.css").
2018-02-24 19:14:36 +01:00
pub resource_suffix: String,
/// Optional path string to be used to load static files on output pages. If not set, uses
/// combinations of `../` to reach the documentation root.
pub static_root_path: Option<String>,
/// Option disabled by default to generate files used by RLS and some other tools.
pub generate_redirect_pages: bool,
2019-05-20 04:04:04 +02:00
/// The fs handle we are working with.
pub fs: DocFS,
2019-09-13 15:51:32 +02:00
/// The default edition used to parse doctests.
pub edition: Edition,
2019-09-13 16:34:04 +02:00
pub codes: ErrorCodes,
2019-09-13 16:40:22 +02:00
playground: Option<markdown::Playground>,
}
impl Context {
fn path(&self, filename: &str) -> PathBuf {
// We use splitn vs Path::extension here because we might get a filename
// like `style.min.css` and we want to process that into
// `style-suffix.min.css`. Path::extension would just return `css`
// which would result in `style.min-suffix.css` which isn't what we
// want.
let mut iter = filename.splitn(2, '.');
let base = iter.next().unwrap();
let ext = iter.next().unwrap();
2019-12-22 23:42:04 +01:00
let filename = format!("{}{}.{}", base, self.shared.resource_suffix, ext,);
self.dst.join(&filename)
}
}
impl SharedContext {
crate fn ensure_dir(&self, dst: &Path) -> Result<(), Error> {
let mut dirs = self.created_dirs.borrow_mut();
if !dirs.contains(dst) {
2019-05-20 04:04:04 +02:00
try_err!(self.fs.create_dir_all(dst), dst);
dirs.insert(dst.to_path_buf());
}
Ok(())
}
/// Based on whether the `collapse-docs` pass was run, return either the `doc_value` or the
/// `collapsed_doc_value` of the given item.
pub fn maybe_collapsed_doc_value<'a>(&self, item: &'a clean::Item) -> Option<Cow<'a, str>> {
2019-08-10 22:43:39 +02:00
if self.collapsed {
item.collapsed_doc_value().map(|s| s.into())
} else {
item.doc_value().map(|s| s.into())
}
}
}
/// Metadata about implementations for a type or trait.
#[derive(Clone, Debug)]
pub struct Impl {
pub impl_item: clean::Item,
}
impl Impl {
fn inner_impl(&self) -> &clean::Impl {
match self.impl_item.inner {
clean::ImplItem(ref impl_) => impl_,
2019-12-22 23:42:04 +01:00
_ => panic!("non-impl item found in impl"),
}
}
2015-08-16 12:32:28 +02:00
fn trait_did(&self) -> Option<DefId> {
self.inner_impl().trait_.def_id()
}
}
/// Temporary storage for data obtained during `RustdocVisitor::clean()`.
/// Later on moved into `CACHE_KEY`.
#[derive(Default)]
pub struct RenderInfo {
pub inlined: FxHashSet<DefId>,
2019-02-23 08:40:07 +01:00
pub external_paths: crate::core::ExternalPaths,
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
pub exact_paths: FxHashMap<DefId, Vec<String>>,
pub access_levels: AccessLevels<DefId>,
pub deref_trait_did: Option<DefId>,
pub deref_mut_trait_did: Option<DefId>,
pub owned_box_did: Option<DefId>,
}
// Helper structs for rendering items/sidebars and carrying along contextual
// information
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
struct IndexItem {
ty: ItemType,
name: String,
path: String,
desc: String,
2015-08-16 12:32:28 +02:00
parent: Option<DefId>,
2016-02-16 19:48:28 +01:00
parent_idx: Option<usize>,
search_type: Option<IndexItemFunctionType>,
}
impl Serialize for IndexItem {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
2016-02-16 19:48:28 +01:00
assert_eq!(self.parent.is_some(), self.parent_idx.is_some());
2019-12-22 23:42:04 +01:00
(self.ty, &self.name, &self.path, &self.desc, self.parent_idx, &self.search_type)
.serialize(serializer)
2016-02-16 19:48:28 +01:00
}
}
/// A type used for the search index.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
struct Type {
name: Option<String>,
2017-10-31 20:44:31 +01:00
generics: Option<Vec<String>>,
}
impl Serialize for Type {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
if let Some(name) = &self.name {
let mut seq = serializer.serialize_seq(None)?;
seq.serialize_element(&name)?;
if let Some(generics) = &self.generics {
seq.serialize_element(&generics)?;
2018-06-16 20:44:55 +02:00
}
seq.end()
} else {
serializer.serialize_none()
}
}
}
/// Full type of functions/methods in the search index.
2018-04-19 17:46:13 +02:00
#[derive(Debug)]
struct IndexItemFunctionType {
inputs: Vec<Type>,
2019-03-07 22:47:43 +01:00
output: Option<Vec<Type>>,
}
impl Serialize for IndexItemFunctionType {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
// If we couldn't figure out a type, just write `null`.
2019-03-07 22:47:43 +01:00
let mut iter = self.inputs.iter();
if match self.output {
Some(ref output) => iter.chain(output.iter()).any(|ref i| i.name.is_none()),
None => iter.any(|ref i| i.name.is_none()),
} {
serializer.serialize_none()
2016-02-16 19:48:28 +01:00
} else {
let mut seq = serializer.serialize_seq(None)?;
seq.serialize_element(&self.inputs)?;
if let Some(output) = &self.output {
2019-03-07 22:47:43 +01:00
if output.len() > 1 {
seq.serialize_element(&output)?;
2019-03-07 22:47:43 +01:00
} else {
seq.serialize_element(&output[0])?;
2019-03-07 22:47:43 +01:00
}
2018-05-05 17:06:08 +02:00
}
seq.end()
}
}
}
thread_local!(static CACHE_KEY: RefCell<Arc<Cache>> = Default::default());
thread_local!(pub static CURRENT_DEPTH: Cell<usize> = Cell::new(0));
2017-11-24 23:12:35 +01:00
pub fn initial_ids() -> Vec<String> {
[
2019-12-22 23:42:04 +01:00
"main",
"search",
"help",
"TOC",
"render-detail",
"associated-types",
"associated-const",
"required-methods",
"provided-methods",
"implementors",
"synthetic-implementors",
"implementors-list",
"synthetic-implementors-list",
"methods",
"deref-methods",
"implementations",
]
.iter()
.map(|id| (String::from(*id)))
.collect()
}
/// Generates the documentation for `crate` into the directory `dst`
2019-12-22 23:42:04 +01:00
pub fn run(
mut krate: clean::Crate,
options: RenderOptions,
renderinfo: RenderInfo,
diag: &rustc_errors::Handler,
2019-12-22 23:42:04 +01:00
edition: Edition,
) -> Result<(), Error> {
// need to save a copy of the options for rendering the index page
let md_opts = options.clone();
let RenderOptions {
output,
external_html,
id_map,
playground_url,
sort_modules_alphabetically,
themes,
extension_css,
extern_html_root_urls,
resource_suffix,
static_root_path,
2018-12-20 13:28:55 +01:00
generate_search_filter,
generate_redirect_pages,
..
} = options;
let src_root = match krate.src {
FileName::Real(ref p) => match p.parent() {
Some(p) => p.to_path_buf(),
None => PathBuf::new(),
},
_ => PathBuf::new(),
};
let mut errors = Arc::new(ErrorStorage::new());
// If user passed in `--playground-url` arg, we fill in crate name here
let mut playground = None;
2016-11-30 03:25:08 +01:00
if let Some(url) = playground_url {
2019-12-22 23:42:04 +01:00
playground = Some(markdown::Playground { crate_name: Some(krate.name.clone()), url });
2016-11-30 03:25:08 +01:00
}
2019-09-13 16:40:22 +02:00
let mut layout = layout::Layout {
logo: String::new(),
favicon: String::new(),
external_html,
krate: krate.name.clone(),
css_file_extension: extension_css,
generate_search_filter,
};
let mut issue_tracker_base_url = None;
let mut include_sources = true;
// Crawl the crate attributes looking for attributes which control how we're
// going to emit HTML
if let Some(attrs) = krate.module.as_ref().map(|m| &m.attrs) {
for attr in attrs.lists(sym::doc) {
match (attr.name_or_empty(), attr.value_str()) {
(sym::html_favicon_url, Some(s)) => {
2019-09-13 16:40:22 +02:00
layout.favicon = s.to_string();
2016-02-28 12:11:13 +01:00
}
(sym::html_logo_url, Some(s)) => {
2019-09-13 16:40:22 +02:00
layout.logo = s.to_string();
2016-02-28 12:11:13 +01:00
}
(sym::html_playground_url, Some(s)) => {
playground = Some(markdown::Playground {
crate_name: Some(krate.name.clone()),
url: s.to_string(),
2016-02-28 12:11:13 +01:00
});
}
(sym::issue_tracker_base_url, Some(s)) => {
2019-09-13 16:40:22 +02:00
issue_tracker_base_url = Some(s.to_string());
2016-02-28 12:11:13 +01:00
}
(sym::html_no_source, None) if attr.is_word() => {
2019-09-13 16:40:22 +02:00
include_sources = false;
}
2016-02-28 12:11:13 +01:00
_ => {}
}
}
}
2019-09-13 16:40:22 +02:00
let mut scx = SharedContext {
collapsed: krate.collapsed,
src_root,
include_sources,
local_sources: Default::default(),
issue_tracker_base_url,
layout,
created_dirs: Default::default(),
sort_modules_alphabetically,
themes,
resource_suffix,
static_root_path,
generate_redirect_pages,
fs: DocFS::new(&errors),
edition,
codes: ErrorCodes::from(UnstableFeatures::from_environment().is_nightly_build()),
playground,
};
let dst = output;
2019-05-20 04:04:04 +02:00
scx.ensure_dir(&dst)?;
krate = sources::render(&dst, &mut scx, krate)?;
2019-12-22 23:42:04 +01:00
let (new_crate, index, cache) =
Cache::from_krate(renderinfo, &extern_html_root_urls, &dst, krate);
krate = new_crate;
let cache = Arc::new(cache);
2019-05-20 04:04:04 +02:00
let mut cx = Context {
current: Vec::new(),
dst,
render_redirect_pages: false,
id_map: Rc::new(RefCell::new(id_map)),
shared: Arc::new(scx),
cache: cache.clone(),
};
// Freeze the cache now that the index has been built. Put an Arc into TLS
// for future parallelization opportunities
CACHE_KEY.with(|v| *v.borrow_mut() = cache.clone());
CURRENT_DEPTH.with(|s| s.set(0));
2019-05-20 04:04:04 +02:00
// Write shared runs within a flock; disable thread dispatching of IO temporarily.
Arc::get_mut(&mut cx.shared).unwrap().fs.set_sync_only(true);
write_shared(&cx, &krate, index, &md_opts, diag)?;
2019-05-20 04:04:04 +02:00
Arc::get_mut(&mut cx.shared).unwrap().fs.set_sync_only(false);
// And finally render the whole crate's documentation
let ret = cx.krate(krate);
let nb_errors = Arc::get_mut(&mut errors).map_or_else(|| 0, |errors| errors.write_errors(diag));
if ret.is_err() {
ret
} else if nb_errors > 0 {
Err(Error::new(io::Error::new(io::ErrorKind::Other, "I/O error"), ""))
} else {
Ok(())
}
}
fn write_shared(
cx: &Context,
krate: &clean::Crate,
search_index: String,
options: &RenderOptions,
diag: &rustc_errors::Handler,
) -> Result<(), Error> {
// Write out the shared files. Note that these are shared among all rustdoc
// docs placed in the output directory, so this needs to be a synchronized
// operation with respect to all other rustdocs running around.
let lock_file = cx.dst.join(".lock");
let _lock = try_err!(flock::Lock::new(&lock_file, true, true, true), &lock_file);
// Add all the static files. These may already exist, but we just
// overwrite them anyway to make sure that they're fresh and up-to-date.
2016-03-13 15:36:01 +01:00
2019-12-22 23:42:04 +01:00
write_minify(
&cx.shared.fs,
cx.path("rustdoc.css"),
static_files::RUSTDOC_CSS,
options.enable_minification,
)?;
write_minify(
&cx.shared.fs,
cx.path("settings.css"),
static_files::SETTINGS_CSS,
options.enable_minification,
)?;
write_minify(
&cx.shared.fs,
cx.path("noscript.css"),
static_files::NOSCRIPT_CSS,
options.enable_minification,
)?;
2018-01-20 22:16:46 +01:00
2018-03-28 11:18:45 +02:00
// To avoid "light.css" to be overwritten, we'll first run over the received themes and only
2018-01-20 22:16:46 +01:00
// then we'll run over the "official" styles.
let mut themes: FxHashSet<String> = FxHashSet::default();
2018-01-20 22:16:46 +01:00
for entry in &cx.shared.themes {
let content = try_err!(fs::read(&entry), &entry);
2018-02-24 19:14:36 +01:00
let theme = try_none!(try_none!(entry.file_stem(), &entry).to_str(), &entry);
let extension = try_none!(try_none!(entry.extension(), &entry).to_str(), &entry);
2019-10-10 12:09:01 +02:00
cx.shared.fs.write(cx.path(&format!("{}.{}", theme, extension)), content.as_slice())?;
2018-02-24 19:14:36 +01:00
themes.insert(theme.to_owned());
}
2018-01-20 22:16:46 +01:00
2019-12-22 23:42:04 +01:00
let write = |p, c| cx.shared.fs.write(p, c);
if (*cx.shared).layout.logo.is_empty() {
2019-09-29 23:17:03 +02:00
write(cx.path("rust-logo.png"), static_files::RUST_LOGO)?;
}
2019-01-12 22:27:09 +01:00
if (*cx.shared).layout.favicon.is_empty() {
write(cx.path("favicon.ico"), static_files::RUST_FAVICON)?;
2019-01-12 22:27:09 +01:00
}
write(cx.path("brush.svg"), static_files::BRUSH_SVG)?;
write(cx.path("wheel.svg"), static_files::WHEEL_SVG)?;
write(cx.path("down-arrow.svg"), static_files::DOWN_ARROW_SVG)?;
2019-12-22 23:42:04 +01:00
write_minify(
&cx.shared.fs,
cx.path("light.css"),
static_files::themes::LIGHT,
options.enable_minification,
)?;
2018-03-28 11:18:45 +02:00
themes.insert("light".to_owned());
2019-12-22 23:42:04 +01:00
write_minify(
&cx.shared.fs,
cx.path("dark.css"),
static_files::themes::DARK,
options.enable_minification,
)?;
2018-01-20 22:16:46 +01:00
themes.insert("dark".to_owned());
let mut themes: Vec<&String> = themes.iter().collect();
themes.sort();
// To avoid theme switch latencies as much as possible, we put everything theme related
// at the beginning of the html files into another js file.
2019-05-20 04:04:04 +02:00
let theme_js = format!(
r#"var themes = document.getElementById("theme-choices");
var themePicker = document.getElementById("theme-picker");
2018-04-26 23:44:25 +02:00
function showThemeButtonState() {{
themes.style.display = "block";
themePicker.style.borderBottomRightRadius = "0";
themePicker.style.borderBottomLeftRadius = "0";
}}
2019-07-20 22:40:30 +02:00
function hideThemeButtonState() {{
themes.style.display = "none";
themePicker.style.borderBottomRightRadius = "3px";
themePicker.style.borderBottomLeftRadius = "3px";
}}
2018-04-26 23:44:25 +02:00
function switchThemeButtonState() {{
if (themes.style.display === "block") {{
hideThemeButtonState();
}} else {{
showThemeButtonState();
}}
}};
2018-04-26 23:44:25 +02:00
function handleThemeButtonsBlur(e) {{
var active = document.activeElement;
var related = e.relatedTarget;
if (active.id !== "themePicker" &&
(!active.parentNode || active.parentNode.id !== "theme-choices") &&
(!related ||
(related.id !== "themePicker" &&
(!related.parentNode || related.parentNode.id !== "theme-choices")))) {{
hideThemeButtonState();
2018-04-26 23:44:25 +02:00
}}
}}
themePicker.onclick = switchThemeButtonState;
themePicker.onblur = handleThemeButtonsBlur;
{}.forEach(function(item) {{
var but = document.createElement('button');
2019-10-10 12:09:01 +02:00
but.textContent = item;
but.onclick = function(el) {{
switchTheme(currentTheme, mainTheme, item, true);
}};
2018-04-26 23:44:25 +02:00
but.onblur = handleThemeButtonsBlur;
themes.appendChild(but);
2019-12-22 23:42:04 +01:00
}});"#,
serde_json::to_string(&themes).unwrap()
);
write_minify(&cx.shared.fs, cx.path("theme.js"), &theme_js, options.enable_minification)?;
write_minify(
&cx.shared.fs,
cx.path("main.js"),
static_files::MAIN_JS,
options.enable_minification,
)?;
write_minify(
&cx.shared.fs,
cx.path("settings.js"),
static_files::SETTINGS_JS,
options.enable_minification,
)?;
2018-11-16 11:36:40 +01:00
if cx.shared.include_sources {
2019-05-20 04:04:04 +02:00
write_minify(
&cx.shared.fs,
cx.path("source-script.js"),
2019-05-20 04:04:04 +02:00
static_files::sidebar::SOURCE_SCRIPT,
2019-12-22 23:42:04 +01:00
options.enable_minification,
)?;
2018-11-16 11:36:40 +01:00
}
2018-02-24 19:14:36 +01:00
{
2019-05-20 04:04:04 +02:00
write_minify(
&cx.shared.fs,
cx.path("storage.js"),
2019-12-22 23:42:04 +01:00
&format!(
"var resourcesSuffix = \"{}\";{}",
cx.shared.resource_suffix,
static_files::STORAGE_JS
),
options.enable_minification,
)?;
2018-02-24 19:14:36 +01:00
}
if let Some(ref css) = cx.shared.layout.css_file_extension {
let out = cx.path("theme.css");
2019-05-20 04:04:04 +02:00
let buffer = try_err!(fs::read_to_string(css), css);
if !options.enable_minification {
2019-05-20 04:04:04 +02:00
cx.shared.fs.write(&out, &buffer)?;
2018-06-25 23:28:20 +02:00
} else {
2019-05-20 04:04:04 +02:00
write_minify(&cx.shared.fs, out, &buffer, options.enable_minification)?;
2018-06-25 23:28:20 +02:00
}
2016-03-13 15:36:01 +01:00
}
2019-12-22 23:42:04 +01:00
write_minify(
&cx.shared.fs,
cx.path("normalize.css"),
static_files::NORMALIZE_CSS,
options.enable_minification,
)?;
write(cx.dst.join("FiraSans-Regular.woff"), static_files::fira_sans::REGULAR)?;
write(cx.dst.join("FiraSans-Medium.woff"), static_files::fira_sans::MEDIUM)?;
write(cx.dst.join("FiraSans-LICENSE.txt"), static_files::fira_sans::LICENSE)?;
write(cx.dst.join("SourceSerifPro-Regular.ttf.woff"), static_files::source_serif_pro::REGULAR)?;
write(cx.dst.join("SourceSerifPro-Bold.ttf.woff"), static_files::source_serif_pro::BOLD)?;
write(cx.dst.join("SourceSerifPro-It.ttf.woff"), static_files::source_serif_pro::ITALIC)?;
write(cx.dst.join("SourceSerifPro-LICENSE.md"), static_files::source_serif_pro::LICENSE)?;
write(cx.dst.join("SourceCodePro-Regular.woff"), static_files::source_code_pro::REGULAR)?;
write(cx.dst.join("SourceCodePro-Semibold.woff"), static_files::source_code_pro::SEMIBOLD)?;
write(cx.dst.join("SourceCodePro-LICENSE.txt"), static_files::source_code_pro::LICENSE)?;
write(cx.dst.join("LICENSE-MIT.txt"), static_files::LICENSE_MIT)?;
write(cx.dst.join("LICENSE-APACHE.txt"), static_files::LICENSE_APACHE)?;
write(cx.dst.join("COPYRIGHT.txt"), static_files::COPYRIGHT)?;
fn collect(path: &Path, krate: &str, key: &str) -> io::Result<(Vec<String>, Vec<String>)> {
let mut ret = Vec::new();
2018-09-25 01:08:33 +02:00
let mut krates = Vec::new();
2019-01-14 00:46:11 +01:00
if path.exists() {
for line in BufReader::new(File::open(path)?).lines() {
let line = line?;
if !line.starts_with(key) {
continue;
}
2016-02-16 20:00:57 +01:00
if line.starts_with(&format!(r#"{}["{}"]"#, key, krate)) {
continue;
}
ret.push(line.to_string());
2019-12-22 23:42:04 +01:00
krates.push(
line[key.len() + 2..]
.split('"')
.next()
.map(|s| s.to_owned())
.unwrap_or_else(|| String::new()),
);
2014-01-30 20:30:21 +01:00
}
}
Ok((ret, krates))
}
2018-04-19 17:46:13 +02:00
fn show_item(item: &IndexItem, krate: &str) -> String {
2019-12-22 23:42:04 +01:00
format!(
"{{'crate':'{}','ty':{},'name':'{}','desc':'{}','p':'{}'{}}}",
krate,
item.ty as usize,
item.name,
item.desc.replace("'", "\\'"),
item.path,
if let Some(p) = item.parent_idx { format!(",'parent':{}", p) } else { String::new() }
)
2018-04-19 17:46:13 +02:00
}
let dst = cx.dst.join(&format!("aliases{}.js", cx.shared.resource_suffix));
2018-04-19 17:46:13 +02:00
{
let (mut all_aliases, _) = try_err!(collect(&dst, &krate.name, "ALIASES"), &dst);
2018-04-19 17:46:13 +02:00
let mut output = String::with_capacity(100);
for (alias, items) in &cx.cache.aliases {
2018-04-19 17:46:13 +02:00
if items.is_empty() {
2019-12-22 23:42:04 +01:00
continue;
2018-04-19 17:46:13 +02:00
}
2019-12-22 23:42:04 +01:00
output.push_str(&format!(
"\"{}\":[{}],",
alias,
items.iter().map(|v| show_item(v, &krate.name)).collect::<Vec<_>>().join(",")
));
2018-04-19 17:46:13 +02:00
}
all_aliases.push(format!("ALIASES[\"{}\"] = {{{}}};", krate.name, output));
2018-04-19 17:46:13 +02:00
all_aliases.sort();
2019-08-31 14:45:44 +02:00
let mut v = Buffer::html();
writeln!(&mut v, "var ALIASES = {{}};");
2018-04-19 17:46:13 +02:00
for aliases in &all_aliases {
2019-08-31 14:45:44 +02:00
writeln!(&mut v, "{}", aliases);
2018-04-19 17:46:13 +02:00
}
2019-08-31 14:45:44 +02:00
cx.shared.fs.write(&dst, v.into_inner().into_bytes())?;
2018-04-19 17:46:13 +02:00
}
2018-11-06 01:40:12 +01:00
use std::ffi::OsString;
#[derive(Debug)]
struct Hierarchy {
elem: OsString,
children: FxHashMap<OsString, Hierarchy>,
elems: FxHashSet<OsString>,
}
impl Hierarchy {
fn new(elem: OsString) -> Hierarchy {
2019-12-22 23:42:04 +01:00
Hierarchy { elem, children: FxHashMap::default(), elems: FxHashSet::default() }
2018-11-06 01:40:12 +01:00
}
2018-11-16 11:36:40 +01:00
fn to_json_string(&self) -> String {
let mut subs: Vec<&Hierarchy> = self.children.values().collect();
2018-11-06 01:40:12 +01:00
subs.sort_unstable_by(|a, b| a.elem.cmp(&b.elem));
2019-12-22 23:42:04 +01:00
let mut files = self
.elems
.iter()
.map(|s| format!("\"{}\"", s.to_str().expect("invalid osstring conversion")))
.collect::<Vec<_>>();
2018-11-06 01:40:12 +01:00
files.sort_unstable_by(|a, b| a.cmp(b));
2019-04-11 22:48:53 +02:00
let subs = subs.iter().map(|s| s.to_json_string()).collect::<Vec<_>>().join(",");
2019-12-22 23:42:04 +01:00
let dirs =
if subs.is_empty() { String::new() } else { format!(",\"dirs\":[{}]", subs) };
2019-04-11 22:48:53 +02:00
let files = files.join(",");
2019-12-22 23:42:04 +01:00
let files =
if files.is_empty() { String::new() } else { format!(",\"files\":[{}]", files) };
format!(
"{{\"name\":\"{name}\"{dirs}{files}}}",
name = self.elem.to_str().expect("invalid osstring conversion"),
dirs = dirs,
files = files
)
2018-11-06 01:40:12 +01:00
}
}
2018-11-16 11:36:40 +01:00
if cx.shared.include_sources {
let mut hierarchy = Hierarchy::new(OsString::new());
2019-12-22 23:42:04 +01:00
for source in cx
.shared
.local_sources
.iter()
.filter_map(|p| p.0.strip_prefix(&cx.shared.src_root).ok())
{
2018-11-16 11:36:40 +01:00
let mut h = &mut hierarchy;
2019-12-22 23:42:04 +01:00
let mut elems = source
.components()
.filter_map(|s| match s {
Component::Normal(s) => Some(s.to_owned()),
_ => None,
})
.peekable();
2018-11-16 11:36:40 +01:00
loop {
let cur_elem = elems.next().expect("empty file path");
if elems.peek().is_none() {
h.elems.insert(cur_elem);
break;
} else {
let e = cur_elem.clone();
h.children.entry(cur_elem.clone()).or_insert_with(|| Hierarchy::new(e));
h = h.children.get_mut(&cur_elem).expect("not found child");
}
2018-11-06 01:40:12 +01:00
}
}
let dst = cx.dst.join(&format!("source-files{}.js", cx.shared.resource_suffix));
let (mut all_sources, _krates) = try_err!(collect(&dst, &krate.name, "sourcesIndex"), &dst);
2019-12-22 23:42:04 +01:00
all_sources.push(format!(
"sourcesIndex[\"{}\"] = {};",
&krate.name,
hierarchy.to_json_string()
));
2018-11-16 11:36:40 +01:00
all_sources.sort();
2019-12-22 23:42:04 +01:00
let v = format!(
"var N = null;var sourcesIndex = {{}};\n{}\ncreateSourceSidebar();\n",
all_sources.join("\n")
);
2019-08-31 14:45:44 +02:00
cx.shared.fs.write(&dst, v.as_bytes())?;
2018-11-16 11:36:40 +01:00
}
2018-11-06 01:40:12 +01:00
// Update the search index
let dst = cx.dst.join(&format!("search-index{}.js", cx.shared.resource_suffix));
let (mut all_indexes, mut krates) = try_err!(collect(&dst, &krate.name, "searchIndex"), &dst);
all_indexes.push(search_index);
2018-11-06 01:40:12 +01:00
// Sort the indexes by crate so the file will be generated identically even
// with rustdoc running in parallel.
all_indexes.sort();
2019-05-20 04:04:04 +02:00
{
let mut v = String::from("var searchIndex={};\n");
v.push_str(&all_indexes.join("\n"));
2019-11-18 14:11:21 +01:00
// "addSearchOptions" has to be called first so the crate filtering can be set before the
// search might start (if it's set into the URL for example).
2019-12-02 11:25:27 +01:00
v.push_str("\naddSearchOptions(searchIndex);initSearch(searchIndex);");
2019-05-20 04:04:04 +02:00
cx.shared.fs.write(&dst, &v)?;
}
if options.enable_index_page {
if let Some(index_page) = options.index_page.clone() {
let mut md_opts = options.clone();
md_opts.output = cx.dst.clone();
md_opts.external_html = (*cx.shared).layout.external_html.clone();
2019-09-13 15:51:32 +02:00
crate::markdown::render(index_page, md_opts, diag, cx.shared.edition);
2018-09-25 01:08:33 +02:00
} else {
let dst = cx.dst.join("index.html");
2018-09-25 01:08:33 +02:00
let page = layout::Page {
title: "Index of crates",
css_class: "mod",
root_path: "./",
2019-04-02 05:08:27 +02:00
static_root_path: cx.shared.static_root_path.as_deref(),
2018-09-25 01:08:33 +02:00
description: "List of crates",
keywords: BASIC_KEYWORDS,
resource_suffix: &cx.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
2018-09-25 01:08:33 +02:00
};
krates.push(krate.name.clone());
krates.sort();
krates.dedup();
let content = format!(
2019-12-22 23:42:04 +01:00
"<h1 class='fqn'>\
2018-09-25 01:08:33 +02:00
<span class='in-band'>List of all crates</span>\
</h1><ul class='mod'>{}</ul>",
2019-12-22 23:42:04 +01:00
krates
.iter()
.map(|s| {
format!("<li><a href=\"{}index.html\">{}</li>", ensure_trailing_slash(s), s)
})
.collect::<String>()
);
let v = layout::render(&cx.shared.layout, &page, "", content, &cx.shared.themes);
cx.shared.fs.write(&dst, v.as_bytes())?;
2018-09-25 01:08:33 +02:00
}
}
// Update the list of all implementors for traits
let dst = cx.dst.join("implementors");
for (&did, imps) in &cx.cache.implementors {
// Private modules can leak through to this phase of rustdoc, which
// could contain implementations for otherwise private types. In some
// rare cases we could find an implementation for an item which wasn't
// indexed, so we just skip this step in that case.
//
// FIXME: this is a vague explanation for why this can't be a `get`, in
// theory it should be...
let &(ref remote_path, remote_item_type) = match cx.cache.paths.get(&did) {
Some(p) => p,
None => match cx.cache.external_paths.get(&did) {
Some(p) => p,
None => continue,
2019-12-22 23:42:04 +01:00
},
};
#[derive(Serialize)]
struct Implementor {
text: String,
synthetic: bool,
types: Vec<String>,
}
let implementors = imps
.iter()
.filter_map(|imp| {
// If the trait and implementation are in the same crate, then
// there's no need to emit information about it (there's inlining
// going on). If they're in different crates then the crate defining
// the trait will be interested in our implementation.
//
// If the implementation is from another crate then that crate
// should add it.
if imp.impl_item.def_id.krate == did.krate || !imp.impl_item.def_id.is_local() {
None
} else {
Some(Implementor {
text: imp.inner_impl().print().to_string(),
synthetic: imp.inner_impl().synthetic,
types: collect_paths_for_type(imp.inner_impl().for_.clone()),
})
}
})
.collect::<Vec<_>>();
// Only create a js file if we have impls to add to it. If the trait is
// documented locally though we always create the file to avoid dead
// links.
if implementors.is_empty() && !cx.cache.paths.contains_key(&did) {
continue;
}
let implementors = format!(
r#"implementors["{}"] = {};"#,
krate.name,
serde_json::to_string(&implementors).unwrap()
);
let mut mydst = dst.clone();
2015-01-31 18:20:46 +01:00
for part in &remote_path[..remote_path.len() - 1] {
mydst.push(part);
}
2019-05-20 04:04:04 +02:00
cx.shared.ensure_dir(&mydst)?;
2019-12-22 23:42:04 +01:00
mydst.push(&format!("{}.{}.js", remote_item_type, remote_path[remote_path.len() - 1]));
2019-12-22 23:42:04 +01:00
let (mut all_implementors, _) =
try_err!(collect(&mydst, &krate.name, "implementors"), &mydst);
all_implementors.push(implementors);
// Sort the implementors by crate so the file will be generated
// identically even with rustdoc running in parallel.
all_implementors.sort();
2019-08-31 21:47:55 +02:00
let mut v = String::from("(function() {var implementors = {};\n");
2015-01-31 18:20:46 +01:00
for implementor in &all_implementors {
2019-08-31 21:47:55 +02:00
writeln!(v, "{}", *implementor).unwrap();
}
2019-12-22 23:42:04 +01:00
v.push_str(
"if (window.register_implementors) {\
window.register_implementors(implementors);\
} else {\
window.pending_implementors = implementors;\
}",
2019-12-22 23:42:04 +01:00
);
2019-08-31 14:45:44 +02:00
v.push_str("})()");
2019-05-20 04:04:04 +02:00
cx.shared.fs.write(&mydst, &v)?;
}
Ok(())
}
2019-12-22 23:42:04 +01:00
fn write_minify(
fs: &DocFS,
dst: PathBuf,
contents: &str,
enable_minification: bool,
) -> Result<(), Error> {
2018-05-11 00:02:05 +02:00
if enable_minification {
2018-06-25 23:28:20 +02:00
if dst.extension() == Some(&OsStr::new("css")) {
let res = try_none!(minifier::css::minify(contents).ok(), &dst);
2019-05-20 04:04:04 +02:00
fs.write(dst, res.as_bytes())
2018-06-25 23:28:20 +02:00
} else {
2019-05-20 04:04:04 +02:00
fs.write(dst, minifier::js::minify(contents).as_bytes())
2018-06-25 23:28:20 +02:00
}
2018-05-11 00:02:05 +02:00
} else {
2019-05-20 04:04:04 +02:00
fs.write(dst, contents.as_bytes())
2018-05-11 00:02:05 +02:00
}
}
2018-03-30 11:19:49 +02:00
#[derive(Debug, Eq, PartialEq, Hash)]
struct ItemEntry {
url: String,
name: String,
}
impl ItemEntry {
fn new(mut url: String, name: String) -> ItemEntry {
while url.starts_with('/') {
url.remove(0);
}
2019-12-22 23:42:04 +01:00
ItemEntry { url, name }
2018-03-30 11:19:49 +02:00
}
}
impl ItemEntry {
crate fn print(&self) -> impl fmt::Display + '_ {
crate::html::format::display_fn(move |f| {
write!(f, "<a href='{}'>{}</a>", self.url, Escape(&self.name))
})
2018-03-30 11:19:49 +02:00
}
}
impl PartialOrd for ItemEntry {
fn partial_cmp(&self, other: &ItemEntry) -> Option<::std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for ItemEntry {
fn cmp(&self, other: &ItemEntry) -> ::std::cmp::Ordering {
self.name.cmp(&other.name)
}
}
#[derive(Debug)]
struct AllTypes {
structs: FxHashSet<ItemEntry>,
enums: FxHashSet<ItemEntry>,
unions: FxHashSet<ItemEntry>,
primitives: FxHashSet<ItemEntry>,
traits: FxHashSet<ItemEntry>,
macros: FxHashSet<ItemEntry>,
functions: FxHashSet<ItemEntry>,
typedefs: FxHashSet<ItemEntry>,
2019-08-01 01:41:54 +02:00
opaque_tys: FxHashSet<ItemEntry>,
statics: FxHashSet<ItemEntry>,
constants: FxHashSet<ItemEntry>,
keywords: FxHashSet<ItemEntry>,
attributes: FxHashSet<ItemEntry>,
derives: FxHashSet<ItemEntry>,
2019-02-05 14:27:09 +01:00
trait_aliases: FxHashSet<ItemEntry>,
2018-03-30 11:19:49 +02:00
}
impl AllTypes {
fn new() -> AllTypes {
let new_set = |cap| FxHashSet::with_capacity_and_hasher(cap, Default::default());
2018-03-30 11:19:49 +02:00
AllTypes {
structs: new_set(100),
enums: new_set(100),
unions: new_set(100),
primitives: new_set(26),
traits: new_set(100),
macros: new_set(100),
functions: new_set(100),
typedefs: new_set(100),
2019-08-01 01:41:54 +02:00
opaque_tys: new_set(100),
statics: new_set(100),
constants: new_set(100),
keywords: new_set(100),
attributes: new_set(100),
derives: new_set(100),
2019-02-05 14:27:09 +01:00
trait_aliases: new_set(100),
2018-03-30 11:19:49 +02:00
}
}
2018-04-07 13:10:49 +02:00
fn append(&mut self, item_name: String, item_type: &ItemType) {
2018-03-30 11:19:49 +02:00
let mut url: Vec<_> = item_name.split("::").skip(1).collect();
if let Some(name) = url.pop() {
let new_url = format!("{}/{}.{}.html", url.join("/"), item_type, name);
url.push(name);
let name = url.join("::");
2018-04-07 13:10:49 +02:00
match *item_type {
ItemType::Struct => self.structs.insert(ItemEntry::new(new_url, name)),
ItemType::Enum => self.enums.insert(ItemEntry::new(new_url, name)),
ItemType::Union => self.unions.insert(ItemEntry::new(new_url, name)),
ItemType::Primitive => self.primitives.insert(ItemEntry::new(new_url, name)),
ItemType::Trait => self.traits.insert(ItemEntry::new(new_url, name)),
ItemType::Macro => self.macros.insert(ItemEntry::new(new_url, name)),
ItemType::Function => self.functions.insert(ItemEntry::new(new_url, name)),
ItemType::Typedef => self.typedefs.insert(ItemEntry::new(new_url, name)),
2019-08-01 01:41:54 +02:00
ItemType::OpaqueTy => self.opaque_tys.insert(ItemEntry::new(new_url, name)),
2018-04-07 13:10:49 +02:00
ItemType::Static => self.statics.insert(ItemEntry::new(new_url, name)),
ItemType::Constant => self.constants.insert(ItemEntry::new(new_url, name)),
ItemType::ProcAttribute => self.attributes.insert(ItemEntry::new(new_url, name)),
ItemType::ProcDerive => self.derives.insert(ItemEntry::new(new_url, name)),
2019-02-05 14:27:09 +01:00
ItemType::TraitAlias => self.trait_aliases.insert(ItemEntry::new(new_url, name)),
2018-03-30 11:19:49 +02:00
_ => true,
};
}
}
}
2019-08-31 18:31:55 +02:00
fn print_entries(f: &mut Buffer, e: &FxHashSet<ItemEntry>, title: &str, class: &str) {
2018-03-30 11:19:49 +02:00
if !e.is_empty() {
let mut e: Vec<&ItemEntry> = e.iter().collect();
e.sort();
2019-12-22 23:42:04 +01:00
write!(
f,
"<h3 id='{}'>{}</h3><ul class='{} docblock'>{}</ul>",
title,
Escape(title),
class,
e.iter().map(|s| format!("<li>{}</li>", s.print())).collect::<String>()
);
2018-03-30 11:19:49 +02:00
}
}
2019-08-31 18:31:55 +02:00
impl AllTypes {
fn print(self, f: &mut Buffer) {
2019-12-22 23:42:04 +01:00
write!(
f,
"<h1 class='fqn'>\
2019-08-31 18:31:55 +02:00
<span class='out-of-band'>\
<span id='render-detail'>\
<a id=\"toggle-all-docs\" href=\"javascript:void(0)\" title=\"collapse all docs\">\
[<span class='inner'>&#x2212;</span>]\
</a>\
</span>
</span>
2019-08-31 18:31:55 +02:00
<span class='in-band'>List of all items</span>\
2019-12-22 23:42:04 +01:00
</h1>"
);
2019-08-31 18:31:55 +02:00
print_entries(f, &self.structs, "Structs", "structs");
print_entries(f, &self.enums, "Enums", "enums");
print_entries(f, &self.unions, "Unions", "unions");
print_entries(f, &self.primitives, "Primitives", "primitives");
print_entries(f, &self.traits, "Traits", "traits");
print_entries(f, &self.macros, "Macros", "macros");
print_entries(f, &self.attributes, "Attribute Macros", "attributes");
print_entries(f, &self.derives, "Derive Macros", "derives");
print_entries(f, &self.functions, "Functions", "functions");
print_entries(f, &self.typedefs, "Typedefs", "typedefs");
print_entries(f, &self.trait_aliases, "Trait Aliases", "trait-aliases");
print_entries(f, &self.opaque_tys, "Opaque Types", "opaque-types");
print_entries(f, &self.statics, "Statics", "statics");
print_entries(f, &self.constants, "Constants", "constants")
}
2018-03-30 11:19:49 +02:00
}
2019-09-23 00:49:29 +02:00
#[derive(Debug)]
enum Setting {
2019-12-22 23:42:04 +01:00
Section { description: &'static str, sub_settings: Vec<Setting> },
Entry { js_data_name: &'static str, description: &'static str, default_value: bool },
2019-09-23 00:49:29 +02:00
}
impl Setting {
fn display(&self) -> String {
match *self {
2019-12-22 23:42:04 +01:00
Setting::Section { ref description, ref sub_settings } => format!(
"<div class='setting-line'>\
2019-09-23 00:49:29 +02:00
<div class='title'>{}</div>\
<div class='sub-settings'>{}</div>
2019-09-23 00:49:29 +02:00
</div>",
2019-12-22 23:42:04 +01:00
description,
sub_settings.iter().map(|s| s.display()).collect::<String>()
),
Setting::Entry { ref js_data_name, ref description, ref default_value } => format!(
"<div class='setting-line'>\
2019-09-23 00:49:29 +02:00
<label class='toggle'>\
<input type='checkbox' id='{}' {}>\
<span class='slider'></span>\
</label>\
<div>{}</div>\
</div>",
2019-12-22 23:42:04 +01:00
js_data_name,
if *default_value { " checked" } else { "" },
description,
),
2019-09-23 00:49:29 +02:00
}
}
}
impl From<(&'static str, &'static str, bool)> for Setting {
fn from(values: (&'static str, &'static str, bool)) -> Setting {
2019-12-22 23:42:04 +01:00
Setting::Entry { js_data_name: values.0, description: values.1, default_value: values.2 }
2019-09-23 00:49:29 +02:00
}
}
impl<T: Into<Setting>> From<(&'static str, Vec<T>)> for Setting {
fn from(values: (&'static str, Vec<T>)) -> Setting {
Setting::Section {
description: values.0,
sub_settings: values.1.into_iter().map(|v| v.into()).collect::<Vec<_>>(),
}
}
}
2019-08-31 18:27:27 +02:00
fn settings(root_path: &str, suffix: &str) -> String {
2018-04-13 22:54:09 +02:00
// (id, explanation, default value)
2019-09-23 00:49:29 +02:00
let settings: &[Setting] = &[
2019-12-22 23:42:04 +01:00
(
"Auto-hide item declarations",
vec![
("auto-hide-struct", "Auto-hide structs declaration", true),
("auto-hide-enum", "Auto-hide enums declaration", false),
("auto-hide-union", "Auto-hide unions declaration", true),
("auto-hide-trait", "Auto-hide traits declaration", true),
("auto-hide-macro", "Auto-hide macros declaration", false),
],
)
.into(),
2019-09-23 00:49:29 +02:00
("auto-hide-attributes", "Auto-hide item attributes.", true).into(),
("auto-hide-method-docs", "Auto-hide item methods' documentation", false).into(),
2019-12-22 23:42:04 +01:00
("auto-hide-trait-implementations", "Auto-hide trait implementations documentation", true)
.into(),
("go-to-only-result", "Directly go to item in search if there is only one result", false)
.into(),
2019-09-23 00:49:29 +02:00
("line-numbers", "Show line numbers on code examples", false).into(),
("disable-shortcuts", "Disable keyboard shortcuts", false).into(),
2019-08-31 18:27:27 +02:00
];
format!(
2019-12-22 23:42:04 +01:00
"<h1 class='fqn'>\
<span class='in-band'>Rustdoc settings</span>\
2018-04-13 22:54:09 +02:00
</h1>\
<div class='settings'>{}</div>\
<script src='{}settings{}.js'></script>",
2019-12-22 23:42:04 +01:00
settings.iter().map(|s| s.display()).collect::<String>(),
root_path,
suffix
)
2018-04-13 22:54:09 +02:00
}
impl Context {
fn derive_id(&self, id: String) -> String {
let mut map = self.id_map.borrow_mut();
map.derive(id)
}
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
fn root_path(&self) -> String {
2018-04-01 06:48:15 +02:00
"../".repeat(self.current.len())
}
2013-12-06 03:19:06 +01:00
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate) -> Result<(), Error> {
let mut item = match krate.module.take() {
Some(i) => i,
2016-11-17 07:32:04 +01:00
None => return Ok(()),
};
2019-12-22 23:42:04 +01:00
let final_file = self.dst.join(&krate.name).join("all.html");
2018-04-13 22:54:09 +02:00
let settings_file = self.dst.join("settings.html");
2018-03-30 11:19:49 +02:00
let crate_name = krate.name.clone();
item.name = Some(krate.name);
2018-03-30 11:19:49 +02:00
let mut all = AllTypes::new();
2018-03-30 11:19:49 +02:00
{
// Render the crate documentation
let mut work = vec![(self.clone(), item)];
while let Some((mut cx, item)) = work.pop() {
2019-12-22 23:42:04 +01:00
cx.item(item, &mut all, |cx, item| work.push((cx.clone(), item)))?
2018-03-30 11:19:49 +02:00
}
}
let mut root_path = self.dst.to_str().expect("invalid path").to_owned();
if !root_path.ends_with('/') {
root_path.push('/');
}
2018-04-13 22:54:09 +02:00
let mut page = layout::Page {
2018-03-30 11:19:49 +02:00
title: "List of all items in this crate",
css_class: "mod",
root_path: "../",
2019-04-02 05:08:27 +02:00
static_root_path: self.shared.static_root_path.as_deref(),
2018-03-30 11:19:49 +02:00
description: "List of all items in this crate",
keywords: BASIC_KEYWORDS,
resource_suffix: &self.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
2018-03-30 11:19:49 +02:00
};
let sidebar = if let Some(ref version) = self.cache.crate_version {
2019-12-22 23:42:04 +01:00
format!(
"<p class='location'>Crate {}</p>\
2018-03-30 11:19:49 +02:00
<div class='block version'>\
<p>Version {}</p>\
</div>\
<a id='all-types' href='index.html'><p>Back to index</p></a>",
2019-12-22 23:42:04 +01:00
crate_name, version
)
2018-03-30 11:19:49 +02:00
} else {
String::new()
};
2019-12-22 23:42:04 +01:00
let v = layout::render(
&self.shared.layout,
&page,
sidebar,
|buf: &mut Buffer| all.print(buf),
&self.shared.themes,
);
self.shared.fs.write(&final_file, v.as_bytes())?;
2018-04-13 22:54:09 +02:00
// Generating settings page.
page.title = "Rustdoc settings";
page.description = "Settings of Rustdoc";
page.root_path = "./";
let mut themes = self.shared.themes.clone();
let sidebar = "<p class='location'>Settings</p><div class='sidebar-elems'></div>";
themes.push(PathBuf::from("settings.css"));
let v = layout::render(
2019-08-30 16:41:56 +02:00
&self.shared.layout,
2019-12-22 23:42:04 +01:00
&page,
sidebar,
settings(
2019-08-31 18:27:27 +02:00
self.shared.static_root_path.as_deref().unwrap_or("./"),
2019-12-22 23:42:04 +01:00
&self.shared.resource_suffix,
2019-08-31 18:27:27 +02:00
),
2019-12-22 23:42:04 +01:00
&themes,
);
self.shared.fs.write(&settings_file, v.as_bytes())?;
2018-04-13 22:54:09 +02:00
2014-01-30 20:30:21 +01:00
Ok(())
}
2019-12-22 23:42:04 +01:00
fn render_item(&self, it: &clean::Item, pushname: bool) -> String {
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
CURRENT_DEPTH.with(|slot| {
slot.set(self.current.len());
});
2018-09-10 11:27:21 +02:00
let mut title = if it.is_primitive() || it.is_keyword() {
// No need to include the namespace for primitive types and keywords
String::new()
} else {
self.current.join("::")
};
if pushname {
if !title.is_empty() {
title.push_str("::");
}
title.push_str(it.name.as_ref().unwrap());
}
title.push_str(" - Rust");
let tyname = it.type_();
let desc = if it.is_crate() {
2019-12-22 23:42:04 +01:00
format!("API documentation for the Rust `{}` crate.", self.shared.layout.krate)
} else {
2019-12-22 23:42:04 +01:00
format!(
"API documentation for the Rust `{}` {} in crate `{}`.",
it.name.as_ref().unwrap(),
tyname,
self.shared.layout.krate
)
};
let keywords = make_item_keywords(it);
let page = layout::Page {
css_class: tyname.as_str(),
root_path: &self.root_path(),
2019-04-02 05:08:27 +02:00
static_root_path: self.shared.static_root_path.as_deref(),
title: &title,
description: &desc,
keywords: &keywords,
2018-02-24 19:14:36 +01:00
resource_suffix: &self.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
};
{
self.id_map.borrow_mut().reset();
self.id_map.borrow_mut().populate(initial_ids());
}
if !self.render_redirect_pages {
2019-12-22 23:42:04 +01:00
layout::render(
&self.shared.layout,
&page,
|buf: &mut _| print_sidebar(self, it, buf),
|buf: &mut _| print_item(self, it, buf),
&self.shared.themes,
)
} else {
let mut url = self.root_path();
if let Some(&(ref names, ty)) = self.cache.paths.get(&it.def_id) {
for name in &names[..names.len() - 1] {
url.push_str(name);
url.push_str("/");
}
url.push_str(&item_path(ty, names.last().unwrap()));
layout::redirect(&url)
} else {
String::new()
}
}
}
/// Non-parallelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
2018-03-30 11:19:49 +02:00
fn item<F>(&mut self, item: clean::Item, all: &mut AllTypes, mut f: F) -> Result<(), Error>
2019-12-22 23:42:04 +01:00
where
F: FnMut(&mut Context, clean::Item),
{
// Stripped modules survive the rustdoc passes (i.e., `strip-private`)
// if they contain impls for public types. These modules can also
// contain items such as publicly re-exported structures.
//
// External crates will provide links to these structures, so
// these modules are recursed into, but not rendered normally
// (a flag on the context).
if !self.render_redirect_pages {
self.render_redirect_pages = item.is_stripped();
}
if item.is_mod() {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
let name = item.name.as_ref().unwrap().to_string();
2019-08-12 22:43:26 +02:00
let scx = &self.shared;
if name.is_empty() {
panic!("Unexpected empty destination: {:?}", self.current);
}
let prev = self.dst.clone();
self.dst.push(&name);
self.current.push(name);
2019-08-12 22:43:26 +02:00
info!("Recursing into {}", self.dst.display());
let buf = self.render_item(&item, false);
2019-08-12 22:43:26 +02:00
// buf will be empty if the module is stripped and there is no redirect for it
if !buf.is_empty() {
self.shared.ensure_dir(&self.dst)?;
let joint_dst = self.dst.join("index.html");
scx.fs.write(&joint_dst, buf.as_bytes())?;
2019-08-12 22:43:26 +02:00
}
2019-08-12 22:43:26 +02:00
let m = match item.inner {
2019-12-22 23:42:04 +01:00
clean::StrippedItem(box clean::ModuleItem(m)) | clean::ModuleItem(m) => m,
_ => unreachable!(),
2019-08-12 22:43:26 +02:00
};
// Render sidebar-items.js used throughout this module.
if !self.render_redirect_pages {
let items = self.build_sidebar_items(&m);
let js_dst = self.dst.join("sidebar-items.js");
let v = format!("initSidebarItems({});", serde_json::to_string(&items).unwrap());
2019-08-12 22:43:26 +02:00
scx.fs.write(&js_dst, &v)?;
}
for item in m.items {
f(self, item);
}
info!("Recursed; leaving {}", self.dst.display());
2019-08-12 22:43:26 +02:00
// Go back to where we were at
self.dst = prev;
self.current.pop().unwrap();
} else if item.name.is_some() {
let buf = self.render_item(&item, true);
// buf will be empty if the item is stripped and there is no redirect for it
if !buf.is_empty() {
let name = item.name.as_ref().unwrap();
let item_type = item.type_();
let file_name = &item_path(item_type, name);
2019-05-20 04:04:04 +02:00
self.shared.ensure_dir(&self.dst)?;
let joint_dst = self.dst.join(file_name);
self.shared.fs.write(&joint_dst, buf.as_bytes())?;
if !self.render_redirect_pages {
all.append(full_path(self, &item), &item_type);
}
if self.shared.generate_redirect_pages {
// Redirect from a sane URL using the namespace to Rustdoc's
// URL for the page.
let redir_name = format!("{}.{}.html", name, item_type.name_space());
let redir_dst = self.dst.join(redir_name);
let v = layout::redirect(file_name);
self.shared.fs.write(&redir_dst, v.as_bytes())?;
}
2016-08-16 04:25:12 +02:00
// If the item is a macro, redirect from the old macro URL (with !)
// to the new one (without).
if item_type == ItemType::Macro {
let redir_name = format!("{}.{}!.html", item_type, name);
let redir_dst = self.dst.join(redir_name);
let v = layout::redirect(file_name);
self.shared.fs.write(&redir_dst, v.as_bytes())?;
2016-08-16 04:25:12 +02:00
}
}
}
Ok(())
}
fn build_sidebar_items(&self, m: &clean::Module) -> BTreeMap<String, Vec<NameDoc>> {
// BTreeMap instead of HashMap to get a sorted output
let mut map: BTreeMap<_, Vec<_>> = BTreeMap::new();
2015-01-31 18:20:46 +01:00
for item in &m.items {
2019-12-22 23:42:04 +01:00
if item.is_stripped() {
continue;
}
let short = item.type_();
let myname = match item.name {
None => continue,
Some(ref s) => s.to_string(),
};
let short = short.to_string();
2019-12-22 23:42:04 +01:00
map.entry(short)
.or_default()
.push((myname, Some(plain_summary_line(item.doc_value()))));
}
if self.shared.sort_modules_alphabetically {
for (_, items) in &mut map {
items.sort();
}
}
2016-10-01 22:47:43 +02:00
map
}
}
2019-08-31 19:29:31 +02:00
impl Context {
2019-02-08 14:53:55 +01:00
/// Generates a url appropriate for an `href` attribute back to the source of
/// this item.
///
/// The url generated, when clicked, will redirect the browser back to the
/// original source code.
///
/// If `None` is returned, then a source link couldn't be generated. This
/// may happen, for example, with externally inlined items where the source
/// of their crate documentation isn't known.
2019-08-31 19:29:31 +02:00
fn src_href(&self, item: &clean::Item) -> Option<String> {
let mut root = self.root_path();
let mut path = String::new();
// We can safely ignore macros from other libraries
2019-08-31 19:29:31 +02:00
let file = match item.source.filename {
FileName::Real(ref path) => path,
_ => return None,
};
2019-08-31 19:29:31 +02:00
let (krate, path) = if item.def_id.is_local() {
if let Some(path) = self.shared.local_sources.get(file) {
(&self.shared.layout.krate, path)
} else {
return None;
}
} else {
let (krate, src_root) = match *self.cache.extern_locations.get(&item.def_id.krate)? {
2018-11-21 05:01:56 +01:00
(ref name, ref src, Local) => (name, src),
(ref name, ref src, Remote(ref s)) => {
root = s.to_string();
(name, src)
}
2018-11-21 05:01:56 +01:00
(_, _, Unknown) => return None,
};
sources::clean_path(&src_root, file, false, |component| {
path.push_str(&component.to_string_lossy());
path.push('/');
});
2019-12-22 23:42:04 +01:00
let mut fname = file.file_name().expect("source has no filename").to_os_string();
fname.push(".html");
path.push_str(&fname.to_string_lossy());
(krate, &path)
};
2019-08-31 19:29:31 +02:00
let lines = if item.source.loline == item.source.hiline {
item.source.loline.to_string()
} else {
2019-08-31 19:29:31 +02:00
format!("{}-{}", item.source.loline, item.source.hiline)
};
2019-12-22 23:42:04 +01:00
Some(format!(
"{root}src/{krate}/{path}#{lines}",
root = Escape(&root),
krate = krate,
path = path,
lines = lines
))
}
}
2019-08-31 21:47:55 +02:00
fn wrap_into_docblock<F>(w: &mut Buffer, f: F)
2019-12-22 23:42:04 +01:00
where
F: FnOnce(&mut Buffer),
2019-08-31 21:47:55 +02:00
{
write!(w, "<div class=\"docblock type-decl hidden-by-usual-hider\">");
f(w);
2018-03-27 11:57:00 +02:00
write!(w, "</div>")
}
2019-08-31 19:29:31 +02:00
fn print_item(cx: &Context, item: &clean::Item, buf: &mut Buffer) {
debug_assert!(!item.is_stripped());
// Write the breadcrumb trail header for the top
2019-08-31 19:29:31 +02:00
write!(buf, "<h1 class='fqn'><span class='out-of-band'>");
if let Some(version) = item.stable_since() {
2019-12-22 23:42:04 +01:00
write!(
buf,
"<span class='since' title='Stable since Rust version {0}'>{0}</span>",
version
);
}
2019-12-22 23:42:04 +01:00
write!(
buf,
"<span id='render-detail'>\
<a id=\"toggle-all-docs\" href=\"javascript:void(0)\" \
title=\"collapse all docs\">\
[<span class='inner'>&#x2212;</span>]\
</a>\
2019-12-22 23:42:04 +01:00
</span>"
);
// Write `src` tag
//
// When this item is part of a `pub use` in a downstream crate, the
// [src] link in the downstream documentation will actually come back to
// this page, and this link will be auto-clicked. The `id` attribute is
// used to find the link to auto-click.
2019-08-31 19:29:31 +02:00
if cx.shared.include_sources && !item.is_primitive() {
if let Some(l) = cx.src_href(item) {
2019-12-22 23:42:04 +01:00
write!(buf, "<a class='srclink' href='{}' title='{}'>[src]</a>", l, "goto source code");
}
}
2019-08-31 19:29:31 +02:00
write!(buf, "</span>"); // out-of-band
write!(buf, "<span class='in-band'>");
let name = match item.inner {
2019-12-22 23:42:04 +01:00
clean::ModuleItem(ref m) => {
if m.is_crate {
2019-08-31 19:29:31 +02:00
"Crate "
} else {
2019-08-31 19:29:31 +02:00
"Module "
2019-12-22 23:42:04 +01:00
}
}
2019-08-31 19:29:31 +02:00
clean::FunctionItem(..) | clean::ForeignFunctionItem(..) => "Function ",
clean::TraitItem(..) => "Trait ",
clean::StructItem(..) => "Struct ",
clean::UnionItem(..) => "Union ",
clean::EnumItem(..) => "Enum ",
clean::TypedefItem(..) => "Type Definition ",
clean::MacroItem(..) => "Macro ",
clean::ProcMacroItem(ref mac) => match mac.kind {
2019-08-31 19:29:31 +02:00
MacroKind::Bang => "Macro ",
MacroKind::Attr => "Attribute Macro ",
MacroKind::Derive => "Derive Macro ",
2019-12-22 23:42:04 +01:00
},
2019-08-31 19:29:31 +02:00
clean::PrimitiveItem(..) => "Primitive Type ",
clean::StaticItem(..) | clean::ForeignStaticItem(..) => "Static ",
clean::ConstantItem(..) => "Constant ",
clean::ForeignTypeItem => "Foreign Type ",
clean::KeywordItem(..) => "Keyword ",
clean::OpaqueTyItem(..) => "Opaque Type ",
clean::TraitAliasItem(..) => "Trait Alias ",
_ => {
// We don't generate pages for any other type.
unreachable!();
}
2019-08-31 19:29:31 +02:00
};
buf.write_str(name);
if !item.is_primitive() && !item.is_keyword() {
let cur = &cx.current;
let amt = if item.is_mod() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
2019-12-22 23:42:04 +01:00
write!(
buf,
"<a href='{}index.html'>{}</a>::<wbr>",
"../".repeat(cur.len() - i - 1),
component
);
}
}
2019-12-22 23:42:04 +01:00
write!(buf, "<a class=\"{}\" href=''>{}</a>", item.type_(), item.name.as_ref().unwrap());
2019-08-31 19:29:31 +02:00
write!(buf, "</span></h1>"); // in-band
2019-08-31 19:29:31 +02:00
match item.inner {
2019-12-22 23:42:04 +01:00
clean::ModuleItem(ref m) => item_module(buf, cx, item, &m.items),
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) => {
item_function(buf, cx, item, f)
}
2019-08-31 21:47:55 +02:00
clean::TraitItem(ref t) => item_trait(buf, cx, item, t),
clean::StructItem(ref s) => item_struct(buf, cx, item, s),
clean::UnionItem(ref s) => item_union(buf, cx, item, s),
clean::EnumItem(ref e) => item_enum(buf, cx, item, e),
clean::TypedefItem(ref t, _) => item_typedef(buf, cx, item, t),
clean::MacroItem(ref m) => item_macro(buf, cx, item, m),
clean::ProcMacroItem(ref m) => item_proc_macro(buf, cx, item, m),
2019-09-13 21:22:00 +02:00
clean::PrimitiveItem(_) => item_primitive(buf, cx, item),
2019-12-22 23:42:04 +01:00
clean::StaticItem(ref i) | clean::ForeignStaticItem(ref i) => item_static(buf, cx, item, i),
2019-08-31 21:47:55 +02:00
clean::ConstantItem(ref c) => item_constant(buf, cx, item, c),
clean::ForeignTypeItem => item_foreign_type(buf, cx, item),
2019-09-13 21:22:00 +02:00
clean::KeywordItem(_) => item_keyword(buf, cx, item),
2019-08-31 21:47:55 +02:00
clean::OpaqueTyItem(ref e, _) => item_opaque_ty(buf, cx, item, e),
clean::TraitAliasItem(ref ta) => item_trait_alias(buf, cx, item, ta),
_ => {
// We don't generate pages for any other type.
unreachable!();
}
}
}
fn item_path(ty: ItemType, name: &str) -> String {
match ty {
ItemType::Module => format!("{}index.html", ensure_trailing_slash(name)),
_ => format!("{}.{}.html", ty, name),
}
}
fn full_path(cx: &Context, item: &clean::Item) -> String {
let mut s = cx.current.join("::");
s.push_str("::");
s.push_str(item.name.as_ref().unwrap());
2016-10-01 22:47:43 +02:00
s
}
2014-12-23 02:58:38 +01:00
#[inline]
fn plain_summary_line(s: Option<&str>) -> String {
let s = s.unwrap_or("");
// This essentially gets the first paragraph of text in one line.
2019-12-22 23:42:04 +01:00
let mut line = s
.lines()
.skip_while(|line| line.chars().all(|c| c.is_whitespace()))
.take_while(|line| line.chars().any(|c| !c.is_whitespace()))
.fold(String::new(), |mut acc, line| {
acc.push_str(line);
acc.push(' ');
acc
});
// remove final whitespace
line.pop();
markdown::plain_summary_line(&line[..])
2018-12-11 22:29:40 +01:00
}
fn shorten(s: String) -> String {
if s.chars().count() > 60 {
let mut len = 0;
2019-12-22 23:42:04 +01:00
let mut ret = s
.split_whitespace()
.take_while(|p| {
// + 1 for the added character after the word.
len += p.chars().count() + 1;
len < 60
})
.collect::<Vec<_>>()
.join(" ");
ret.push('…');
ret
} else {
s
}
2014-12-23 02:58:38 +01:00
}
2019-08-31 21:47:55 +02:00
fn document(w: &mut Buffer, cx: &Context, item: &clean::Item) {
if let Some(ref name) = item.name {
info!("Documenting {}", name);
}
2019-08-31 21:47:55 +02:00
document_stability(w, cx, item, false);
document_full(w, item, cx, "", false);
}
Remove hoedown from rustdoc Is it really time? Have our months, no, *years* of suffering come to an end? Are we finally able to cast off the pall of Hoedown? The weight which has dragged us down for so long? ----- So, timeline for those who need to catch up: * Way back in December 2016, [we decided we wanted to switch out the markdown renderer](https://github.com/rust-lang/rust/issues/38400). However, this was put on hold because the build system at the time made it difficult to pull in dependencies from crates.io. * A few months later, in March 2017, [the first PR was done, to switch out the renderers entirely](https://github.com/rust-lang/rust/pull/40338). The PR itself was fraught with CI and build system issues, but eventually landed. * However, not all was well in the Rustdoc world. During the PR and shortly after, we noticed [some differences in the way the two parsers handled some things](https://github.com/rust-lang/rust/issues/40912), and some of these differences were major enough to break the docs for some crates. * A couple weeks afterward, [Hoedown was put back in](https://github.com/rust-lang/rust/pull/41290), at this point just to catch tests that Pulldown was "spuriously" running. This would at least provide some warning about spurious tests, rather than just breaking spontaneously. * However, the problems had created enough noise by this point that just a few days after that, [Hoedown was switched back to the default](https://github.com/rust-lang/rust/pull/41431) while we came up with a solution for properly warning about the differences. * That solution came a few weeks later, [as a series of warnings when the HTML emitted by the two parsers was semantically different](https://github.com/rust-lang/rust/pull/41991). But that came at a cost, as now rustdoc needed proc-macro support (the new crate needed some custom derives farther down its dependency tree), and the build system was not equipped to handle it at the time. It was worked on for three months as the issue stumped more and more people. * In that time, [bootstrap was completely reworked](https://github.com/rust-lang/rust/pull/43059) to change how it ordered compilation, and [the method by which it built rustdoc would change](https://github.com/rust-lang/rust/pull/43482), as well. This allowed it to only be built after stage1, when proc-macros would be available, allowing the "rendering differences" PR to finally land. * The warnings were not perfect, and revealed a few [spurious](https://github.com/rust-lang/rust/pull/44368) [differences](https://github.com/rust-lang/rust/pull/45421) between how we handled the renderers. * Once these were handled, [we flipped the switch to turn on the "rendering difference" warnings all the time](https://github.com/rust-lang/rust/pull/45324), in October 2017. This began the "warning cycle" for this change, and landed in stable in 1.23, on 2018-01-04. * Once those warnings hit stable, and after a couple weeks of seeing whether we would get any more reports than what we got from sitting on nightly/beta, [we switched the renderers](https://github.com/rust-lang/rust/pull/47398), making Pulldown the default but still offering the option to use Hoedown. And that brings us to the present. We haven't received more new issues from this in the meantime, and the "switch by default" is now on beta. Our reasoning is that, at this point, anyone who would have been affected by this has run into it already.
2018-02-16 15:09:19 +01:00
/// Render md_text as markdown.
2019-07-16 18:29:50 +02:00
fn render_markdown(
2019-08-31 21:47:55 +02:00
w: &mut Buffer,
2019-07-16 18:29:50 +02:00
cx: &Context,
md_text: &str,
links: Vec<(String, String)>,
prefix: &str,
is_hidden: bool,
2019-08-31 21:47:55 +02:00
) {
let mut ids = cx.id_map.borrow_mut();
2019-12-22 23:42:04 +01:00
write!(
w,
"<div class='docblock{}'>{}{}</div>",
if is_hidden { " hidden" } else { "" },
prefix,
Markdown(
md_text,
&links,
&mut ids,
cx.shared.codes,
cx.shared.edition,
&cx.shared.playground
)
.to_string()
)
}
2019-02-23 09:02:57 +01:00
fn document_short(
2019-08-31 21:47:55 +02:00
w: &mut Buffer,
2019-02-23 09:02:57 +01:00
cx: &Context,
item: &clean::Item,
link: AssocItemLink<'_>,
2019-07-16 18:29:50 +02:00
prefix: &str,
is_hidden: bool,
2019-08-31 21:47:55 +02:00
) {
if let Some(s) = item.doc_value() {
2016-05-18 20:27:13 +02:00
let markdown = if s.contains('\n') {
2019-12-22 23:42:04 +01:00
format!(
"{} [Read more]({})",
&plain_summary_line(Some(s)),
naive_assoc_href(item, link)
)
2016-05-18 20:27:13 +02:00
} else {
2018-10-25 20:11:11 +02:00
plain_summary_line(Some(s))
2016-05-18 20:27:13 +02:00
};
2019-08-31 21:47:55 +02:00
render_markdown(w, cx, &markdown, item.links(), prefix, is_hidden);
} else if !prefix.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"<div class='docblock{}'>{}</div>",
if is_hidden { " hidden" } else { "" },
prefix
);
}
}
2019-08-31 21:47:55 +02:00
fn document_full(w: &mut Buffer, item: &clean::Item, cx: &Context, prefix: &str, is_hidden: bool) {
if let Some(s) = cx.shared.maybe_collapsed_doc_value(item) {
debug!("Doc block: =====\n{}\n=====", s);
2019-08-31 21:47:55 +02:00
render_markdown(w, cx, &*s, item.links(), prefix, is_hidden);
} else if !prefix.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"<div class='docblock{}'>{}</div>",
if is_hidden { " hidden" } else { "" },
prefix
);
}
}
2019-08-31 21:47:55 +02:00
fn document_stability(w: &mut Buffer, cx: &Context, item: &clean::Item, is_hidden: bool) {
let stabilities = short_stability(item, cx);
if !stabilities.is_empty() {
2019-08-31 21:47:55 +02:00
write!(w, "<div class='stability{}'>", if is_hidden { " hidden" } else { "" });
for stability in stabilities {
2019-08-31 21:47:55 +02:00
write!(w, "{}", stability);
}
2019-08-31 21:47:55 +02:00
write!(w, "</div>");
}
}
fn document_non_exhaustive_header(item: &clean::Item) -> &str {
if item.is_non_exhaustive() { " (Non-exhaustive)" } else { "" }
}
2019-08-31 21:47:55 +02:00
fn document_non_exhaustive(w: &mut Buffer, item: &clean::Item) {
if item.is_non_exhaustive() {
write!(w, "<div class='docblock non-exhaustive non-exhaustive-{}'>", {
if item.is_struct() {
"struct"
} else if item.is_enum() {
"enum"
} else if item.is_variant() {
"variant"
} else {
"type"
}
2019-08-31 21:47:55 +02:00
});
2018-06-30 21:03:51 +02:00
if item.is_struct() {
2019-12-22 23:42:04 +01:00
write!(
w,
"Non-exhaustive structs could have additional fields added in future. \
Therefore, non-exhaustive structs cannot be constructed in external crates \
using the traditional <code>Struct {{ .. }}</code> syntax; cannot be \
matched against without a wildcard <code>..</code>; and \
2019-12-22 23:42:04 +01:00
struct update syntax will not work."
);
2018-06-30 21:03:51 +02:00
} else if item.is_enum() {
2019-12-22 23:42:04 +01:00
write!(
w,
"Non-exhaustive enums could have additional variants added in future. \
Therefore, when matching against variants of non-exhaustive enums, an \
2019-12-22 23:42:04 +01:00
extra wildcard arm must be added to account for any future variants."
);
} else if item.is_variant() {
2019-12-22 23:42:04 +01:00
write!(
w,
"Non-exhaustive enum variants could have additional fields added in future. \
Therefore, non-exhaustive enum variants cannot be constructed in external \
2019-12-22 23:42:04 +01:00
crates and cannot be matched against."
);
2018-06-30 21:03:51 +02:00
} else {
2019-12-22 23:42:04 +01:00
write!(
w,
"This type will require a wildcard arm in any match statements or \
constructors."
);
2018-06-30 21:03:51 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, "</div>");
}
}
fn name_key(name: &str) -> (&str, u64, usize) {
2019-12-22 23:42:04 +01:00
let end = name.bytes().rposition(|b| b.is_ascii_digit()).map_or(name.len(), |i| i + 1);
// find number at end
2019-12-22 23:42:04 +01:00
let split = name[0..end].bytes().rposition(|b| !b.is_ascii_digit()).map_or(0, |i| i + 1);
// count leading zeroes
let after_zeroes =
name[split..end].bytes().position(|b| b != b'0').map_or(name.len(), |extra| split + extra);
// sort leading zeroes last
let num_zeroes = after_zeroes - split;
match name[split..end].parse() {
Ok(n) => (&name[..split], n, num_zeroes),
Err(_) => (name, 0, num_zeroes),
}
}
2019-08-31 21:47:55 +02:00
fn item_module(w: &mut Buffer, cx: &Context, item: &clean::Item, items: &[clean::Item]) {
document(w, cx, item);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
let mut indices = (0..items.len()).filter(|i| !items[*i].is_stripped()).collect::<Vec<usize>>();
// the order of item types in the listing
fn reorder(ty: ItemType) -> u8 {
match ty {
2019-12-22 23:42:04 +01:00
ItemType::ExternCrate => 0,
ItemType::Import => 1,
ItemType::Primitive => 2,
ItemType::Module => 3,
ItemType::Macro => 4,
ItemType::Struct => 5,
ItemType::Enum => 6,
ItemType::Constant => 7,
ItemType::Static => 8,
ItemType::Trait => 9,
ItemType::Function => 10,
ItemType::Typedef => 12,
ItemType::Union => 13,
_ => 14 + ty as u8,
}
}
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: usize, idx2: usize) -> Ordering {
let ty1 = i1.type_();
let ty2 = i2.type_();
if ty1 != ty2 {
2019-12-22 23:42:04 +01:00
return (reorder(ty1), idx1).cmp(&(reorder(ty2), idx2));
}
let s1 = i1.stability.as_ref().map(|s| s.level);
let s2 = i2.stability.as_ref().map(|s| s.level);
match (s1, s2) {
(Some(stability::Unstable), Some(stability::Stable)) => return Ordering::Greater,
(Some(stability::Stable), Some(stability::Unstable)) => return Ordering::Less,
_ => {}
}
let lhs = i1.name.as_ref().map_or("", |s| &**s);
let rhs = i2.name.as_ref().map_or("", |s| &**s);
name_key(lhs).cmp(&name_key(rhs))
}
if cx.shared.sort_modules_alphabetically {
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
}
// This call is to remove re-export duplicates in cases such as:
2017-08-18 00:08:12 +02:00
//
// ```
// pub mod foo {
// pub mod bar {
// pub trait Double { fn foo(); }
// }
// }
//
// pub use foo::bar::*;
// pub use foo::*;
// ```
//
// `Double` will appear twice in the generated docs.
//
// FIXME: This code is quite ugly and could be improved. Small issue: DefId
// can be identical even if the elements are different (mostly in imports).
// So in case this is an import, we keep everything by adding a "unique id"
// (which is the position in the vector).
2019-12-22 23:42:04 +01:00
indices.dedup_by_key(|i| {
(
items[*i].def_id,
if items[*i].name.as_ref().is_some() { Some(full_path(cx, &items[*i])) } else { None },
items[*i].type_(),
if items[*i].is_import() { *i } else { 0 },
)
});
debug!("{:?}", indices);
let mut curty = None;
2015-01-31 18:20:46 +01:00
for &idx in &indices {
let myitem = &items[idx];
if myitem.is_stripped() {
continue;
}
let myty = Some(myitem.type_());
if curty == Some(ItemType::ExternCrate) && myty == Some(ItemType::Import) {
// Put `extern crate` and `use` re-exports in the same section.
curty = myty;
} else if myty != curty {
if curty.is_some() {
2019-08-31 21:47:55 +02:00
write!(w, "</table>");
}
curty = myty;
2018-05-28 21:30:01 +02:00
let (short, name) = item_ty_to_strs(&myty.unwrap());
2019-12-22 23:42:04 +01:00
write!(
w,
"<h2 id='{id}' class='section-header'>\
2016-03-22 23:58:45 +01:00
<a href=\"#{id}\">{name}</a></h2>\n<table>",
2019-12-22 23:42:04 +01:00
id = cx.derive_id(short.to_owned()),
name = name
);
}
match myitem.inner {
clean::ExternCrateItem(ref name, ref src) => {
use crate::html::format::anchor;
2016-04-25 08:24:50 +02:00
match *src {
2019-12-22 23:42:04 +01:00
Some(ref src) => write!(
w,
"<tr><td><code>{}extern crate {} as {};",
myitem.visibility.print_with_space(),
anchor(myitem.def_id, src),
name
),
None => write!(
w,
"<tr><td><code>{}extern crate {};",
myitem.visibility.print_with_space(),
anchor(myitem.def_id, name)
),
}
2019-08-31 21:47:55 +02:00
write!(w, "</code></td></tr>");
}
clean::ImportItem(ref import) => {
2019-12-22 23:42:04 +01:00
write!(
w,
"<tr><td><code>{}{}</code></td></tr>",
myitem.visibility.print_with_space(),
import.print()
);
}
_ => {
2019-12-22 23:42:04 +01:00
if myitem.name.is_none() {
continue;
}
let unsafety_flag = match myitem.inner {
clean::FunctionItem(ref func) | clean::ForeignFunctionItem(ref func)
2019-12-22 23:42:04 +01:00
if func.header.unsafety == hir::Unsafety::Unsafe =>
{
"<a title='unsafe function' href='#'><sup>⚠</sup></a>"
2016-10-24 03:09:44 +02:00
}
_ => "",
};
2016-10-24 03:09:44 +02:00
let stab = myitem.stability_class();
2019-12-22 23:42:04 +01:00
let add = if stab.is_some() { " " } else { "" };
let doc_value = myitem.doc_value().unwrap_or("");
2019-12-22 23:42:04 +01:00
write!(
w,
"\
<tr class='{stab}{add}module-item'>\
<td><a class=\"{class}\" href=\"{href}\" \
title='{title}'>{name}</a>{unsafety_flag}</td>\
2019-02-08 15:09:05 +01:00
<td class='docblock-short'>{stab_tags}{docs}</td>\
2016-03-22 23:58:45 +01:00
</tr>",
2019-12-22 23:42:04 +01:00
name = *myitem.name.as_ref().unwrap(),
stab_tags = stability_tags(myitem),
docs = MarkdownSummaryLine(doc_value, &myitem.links()).to_string(),
class = myitem.type_(),
add = add,
stab = stab.unwrap_or_else(|| String::new()),
unsafety_flag = unsafety_flag,
href = item_path(myitem.type_(), myitem.name.as_ref().unwrap()),
title = [full_path(cx, myitem), myitem.type_().to_string()]
.iter()
.filter_map(|s| if !s.is_empty() { Some(s.as_str()) } else { None })
.collect::<Vec<_>>()
.join(" "),
);
}
}
}
if curty.is_some() {
2019-08-31 21:47:55 +02:00
write!(w, "</table>");
}
}
/// Render the stability and deprecation tags that are displayed in the item's summary at the
/// module level.
fn stability_tags(item: &clean::Item) -> String {
let mut tags = String::new();
fn tag_html(class: &str, contents: &str) -> String {
format!(r#"<span class="stab {}">{}</span>"#, class, contents)
}
// The trailing space after each tag is to space it properly against the rest of the docs.
if item.deprecation().is_some() {
let mut message = "Deprecated";
if let Some(ref stab) = item.stability {
if let Some(ref depr) = stab.deprecation {
if let Some(ref since) = depr.since {
if !stability::deprecation_in_effect(&since) {
message = "Deprecation planned";
}
}
}
}
tags += &tag_html("deprecated", message);
}
2019-12-22 23:42:04 +01:00
if let Some(stab) = item.stability.as_ref().filter(|s| s.level == stability::Unstable) {
if stab.feature.as_deref() == Some("rustc_private") {
tags += &tag_html("internal", "Internal");
} else {
tags += &tag_html("unstable", "Experimental");
}
}
if let Some(ref cfg) = item.attrs.cfg {
tags += &tag_html("portability", &cfg.render_short_html());
}
tags
}
/// Render the stability and/or deprecation warning that is displayed at the top of the item's
/// documentation.
fn short_stability(item: &clean::Item, cx: &Context) -> Vec<String> {
let mut stability = vec![];
let error_codes = cx.shared.codes;
2019-02-06 13:01:28 +01:00
if let Some(Deprecation { note, since }) = &item.deprecation() {
// We display deprecation messages for #[deprecated] and #[rustc_deprecated]
// but only display the future-deprecation messages for #[rustc_deprecated].
let mut message = if let Some(since) = since {
2019-02-06 13:01:28 +01:00
format!("Deprecated since {}", Escape(since))
} else {
String::from("Deprecated")
};
if let Some(ref stab) = item.stability {
if let Some(ref depr) = stab.deprecation {
if let Some(ref since) = depr.since {
2019-02-06 13:01:28 +01:00
if !stability::deprecation_in_effect(&since) {
message = format!("Deprecating in {}", Escape(&since));
}
}
}
}
if let Some(note) = note {
let mut ids = cx.id_map.borrow_mut();
2019-09-13 15:51:32 +02:00
let html = MarkdownHtml(
2019-12-22 23:42:04 +01:00
&note,
&mut ids,
error_codes,
cx.shared.edition,
&cx.shared.playground,
);
message.push_str(&format!(": {}", html.to_string()));
}
stability.push(format!("<div class='stab deprecated'>{}</div>", message));
}
2019-12-22 23:42:04 +01:00
if let Some(stab) = item.stability.as_ref().filter(|stab| stab.level == stability::Unstable) {
let is_rustc_private = stab.feature.as_deref() == Some("rustc_private");
let mut message = if is_rustc_private {
"<span class='emoji'>⚙️</span> This is an internal compiler API."
} else {
"<span class='emoji'>🔬</span> This is a nightly-only experimental API."
}
.to_owned();
if let Some(feature) = stab.feature.as_deref() {
let mut feature = format!("<code>{}</code>", Escape(&feature));
if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, stab.issue) {
feature.push_str(&format!(
"&nbsp;<a href=\"{url}{issue}\">#{issue}</a>",
url = url,
issue = issue
));
}
2015-12-12 21:01:27 +01:00
message.push_str(&format!(" ({})", feature));
}
if let Some(unstable_reason) = &stab.unstable_reason {
// Provide a more informative message than the compiler help.
let unstable_reason = if is_rustc_private {
"This crate is being loaded from the sysroot, a permanently unstable location \
for private compiler dependencies. It is not intended for general use. Prefer \
using a public version of this crate from \
[crates.io](https://crates.io) via [`Cargo.toml`]\
(https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html)."
} else {
unstable_reason
};
let mut ids = cx.id_map.borrow_mut();
message = format!(
"<details><summary>{}</summary>{}</details>",
message,
MarkdownHtml(
&unstable_reason,
&mut ids,
error_codes,
2019-09-13 15:51:32 +02:00
cx.shared.edition,
2019-09-13 16:40:22 +02:00
&cx.shared.playground,
2019-12-22 23:42:04 +01:00
)
.to_string()
);
}
2015-12-12 21:01:27 +01:00
2019-12-22 23:42:04 +01:00
let class = if is_rustc_private { "internal" } else { "unstable" };
stability.push(format!("<div class='stab {}'>{}</div>", class, message));
}
if let Some(ref cfg) = item.attrs.cfg {
2019-12-22 23:42:04 +01:00
stability.push(format!("<div class='stab portability'>{}</div>", cfg.render_long_html()));
}
stability
}
2019-08-31 21:47:55 +02:00
fn item_constant(w: &mut Buffer, cx: &Context, it: &clean::Item, c: &clean::Constant) {
write!(w, "<pre class='rust const'>");
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"{vis}const \
{name}: {typ}",
2019-12-22 23:42:04 +01:00
vis = it.visibility.print_with_space(),
name = it.name.as_ref().unwrap(),
typ = c.type_.print(),
2019-12-22 23:42:04 +01:00
);
if c.value.is_some() || c.is_literal {
2020-01-06 00:19:42 +01:00
write!(w, " = {expr};", expr = Escape(&c.expr));
} else {
write!(w, ";");
}
if let Some(value) = &c.value {
if !c.is_literal {
let value_lowercase = value.to_lowercase();
let expr_lowercase = c.expr.to_lowercase();
if value_lowercase != expr_lowercase
&& value_lowercase.trim_end_matches("i32") != expr_lowercase
{
2020-01-06 00:19:42 +01:00
write!(w, " // {value}", value = Escape(value));
}
}
}
write!(w, "</pre>");
document(w, cx, it)
}
2019-08-31 21:47:55 +02:00
fn item_static(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Static) {
write!(w, "<pre class='rust static'>");
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"{vis}static {mutability}\
{name}: {typ}</pre>",
2019-12-22 23:42:04 +01:00
vis = it.visibility.print_with_space(),
mutability = s.mutability.print_with_space(),
name = it.name.as_ref().unwrap(),
typ = s.type_.print()
);
document(w, cx, it)
}
2019-08-31 21:47:55 +02:00
fn item_function(w: &mut Buffer, cx: &Context, it: &clean::Item, f: &clean::Function) {
let header_len = format!(
"{}{}{}{}{:#}fn {}{:#}",
it.visibility.print_with_space(),
f.header.constness.print_with_space(),
f.header.asyncness.print_with_space(),
f.header.unsafety.print_with_space(),
print_abi_with_space(f.header.abi),
it.name.as_ref().unwrap(),
f.generics.print()
2019-12-22 23:42:04 +01:00
)
.len();
2019-08-31 21:47:55 +02:00
write!(w, "{}<pre class='rust fn'>", render_spotlight_traits(it));
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"{vis}{constness}{asyncness}{unsafety}{abi}fn \
2018-06-07 00:50:59 +02:00
{name}{generics}{decl}{where_clause}</pre>",
2019-12-22 23:42:04 +01:00
vis = it.visibility.print_with_space(),
constness = f.header.constness.print_with_space(),
asyncness = f.header.asyncness.print_with_space(),
unsafety = f.header.unsafety.print_with_space(),
2019-12-22 23:42:04 +01:00
abi = print_abi_with_space(f.header.abi),
name = it.name.as_ref().unwrap(),
generics = f.generics.print(),
where_clause = WhereClause { gens: &f.generics, indent: 0, end_newline: true },
decl = Function { decl: &f.decl, header_len, indent: 0, asyncness: f.header.asyncness }
.print()
);
document(w, cx, it)
}
2019-12-22 23:42:04 +01:00
fn render_implementor(
cx: &Context,
implementor: &Impl,
w: &mut Buffer,
implementor_dups: &FxHashMap<&str, (DefId, bool)>,
aliases: &[String],
2019-12-22 23:42:04 +01:00
) {
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
// If there's already another implementor that has the same abbridged name, use the
// full path, for example in `std::iter::ExactSizeIterator`
let use_absolute = match implementor.inner_impl().for_ {
2019-12-22 23:42:04 +01:00
clean::ResolvedPath { ref path, is_generic: false, .. }
| clean::BorrowedRef {
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
type_: box clean::ResolvedPath { ref path, is_generic: false, .. },
..
} => implementor_dups[path.last_name()].1,
_ => false,
};
2019-12-22 23:42:04 +01:00
render_impl(
w,
cx,
implementor,
AssocItemLink::Anchor(None),
RenderMode::Normal,
implementor.impl_item.stable_since(),
false,
Some(use_absolute),
false,
false,
aliases,
2019-12-22 23:42:04 +01:00
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
}
2019-12-22 23:42:04 +01:00
fn render_impls(cx: &Context, w: &mut Buffer, traits: &[&&Impl], containing_item: &clean::Item) {
let mut impls = traits
.iter()
.map(|i| {
let did = i.trait_did().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.inner_impl().provided_trait_methods);
2019-12-22 23:42:04 +01:00
let mut buffer = if w.is_for_html() { Buffer::html() } else { Buffer::new() };
render_impl(
&mut buffer,
cx,
i,
assoc_link,
RenderMode::Normal,
containing_item.stable_since(),
true,
None,
false,
true,
&[],
2019-12-22 23:42:04 +01:00
);
buffer.into_inner()
})
.collect::<Vec<_>>();
impls.sort();
w.write_str(&impls.join(""));
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
}
2019-02-05 14:27:09 +01:00
fn bounds(t_bounds: &[clean::GenericBound], trait_alias: bool) -> String {
let mut bounds = String::new();
2018-07-19 10:23:56 +02:00
if !t_bounds.is_empty() {
2019-02-05 14:27:09 +01:00
if !trait_alias {
bounds.push_str(": ");
}
2018-07-19 10:23:56 +02:00
for (i, p) in t_bounds.iter().enumerate() {
if i > 0 {
bounds.push_str(" + ");
}
bounds.push_str(&p.print().to_string());
}
}
2018-07-19 10:23:56 +02:00
bounds
}
fn compare_impl<'a, 'b>(lhs: &'a &&Impl, rhs: &'b &&Impl) -> Ordering {
let lhs = format!("{}", lhs.inner_impl().print());
let rhs = format!("{}", rhs.inner_impl().print());
// lhs and rhs are formatted as HTML, which may be unnecessary
name_key(&lhs).cmp(&name_key(&rhs))
}
2019-12-22 23:42:04 +01:00
fn item_trait(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Trait) {
2019-02-05 14:27:09 +01:00
let bounds = bounds(&t.bounds, false);
2016-02-28 12:23:07 +01:00
let types = t.items.iter().filter(|m| m.is_associated_type()).collect::<Vec<_>>();
let consts = t.items.iter().filter(|m| m.is_associated_const()).collect::<Vec<_>>();
let required = t.items.iter().filter(|m| m.is_ty_method()).collect::<Vec<_>>();
let provided = t.items.iter().filter(|m| m.is_method()).collect::<Vec<_>>();
2018-03-27 11:57:00 +02:00
// Output the trait definition
wrap_into_docblock(w, |w| {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust trait'>");
render_attributes(w, it, true);
2019-12-22 23:42:04 +01:00
write!(
w,
"{}{}{}trait {}{}{}",
it.visibility.print_with_space(),
t.unsafety.print_with_space(),
if t.is_auto { "auto " } else { "" },
it.name.as_ref().unwrap(),
t.generics.print(),
bounds
);
2018-03-27 11:57:00 +02:00
if !t.generics.where_predicates.is_empty() {
2019-08-31 21:47:55 +02:00
write!(w, "{}", WhereClause { gens: &t.generics, indent: 0, end_newline: true });
2018-03-27 11:57:00 +02:00
} else {
2019-08-31 21:47:55 +02:00
write!(w, " ");
}
2017-07-09 00:40:29 +02:00
2018-03-27 11:57:00 +02:00
if t.items.is_empty() {
2019-08-31 21:47:55 +02:00
write!(w, "{{ }}");
2018-03-27 11:57:00 +02:00
} else {
// FIXME: we should be using a derived_id for the Anchors here
2019-08-31 21:47:55 +02:00
write!(w, "{{\n");
2018-03-27 11:57:00 +02:00
for t in &types {
2019-08-31 21:47:55 +02:00
render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait);
write!(w, ";\n");
2018-03-27 11:57:00 +02:00
}
if !types.is_empty() && !consts.is_empty() {
2019-08-31 21:47:55 +02:00
w.write_str("\n");
2018-03-27 11:57:00 +02:00
}
for t in &consts {
2019-08-31 21:47:55 +02:00
render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait);
write!(w, ";\n");
2018-03-27 11:57:00 +02:00
}
if !consts.is_empty() && !required.is_empty() {
2019-08-31 21:47:55 +02:00
w.write_str("\n");
2018-03-27 11:57:00 +02:00
}
for (pos, m) in required.iter().enumerate() {
2019-08-31 21:47:55 +02:00
render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait);
write!(w, ";\n");
2018-03-27 11:57:00 +02:00
if pos < required.len() - 1 {
2019-12-22 23:42:04 +01:00
write!(w, "<div class='item-spacer'></div>");
2018-03-27 11:57:00 +02:00
}
}
2018-03-27 11:57:00 +02:00
if !required.is_empty() && !provided.is_empty() {
2019-08-31 21:47:55 +02:00
w.write_str("\n");
2018-03-27 11:57:00 +02:00
}
for (pos, m) in provided.iter().enumerate() {
2019-08-31 21:47:55 +02:00
render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait);
2018-03-27 11:57:00 +02:00
match m.inner {
clean::MethodItem(ref inner) if !inner.generics.where_predicates.is_empty() => {
2019-08-31 21:47:55 +02:00
write!(w, ",\n {{ ... }}\n");
2019-12-22 23:42:04 +01:00
}
2018-03-27 11:57:00 +02:00
_ => {
2019-08-31 21:47:55 +02:00
write!(w, " {{ ... }}\n");
2019-12-22 23:42:04 +01:00
}
2018-03-27 11:57:00 +02:00
}
if pos < provided.len() - 1 {
2019-12-22 23:42:04 +01:00
write!(w, "<div class='item-spacer'></div>");
2018-03-27 11:57:00 +02:00
}
2017-07-09 00:40:29 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, "}}");
}
2018-03-27 11:57:00 +02:00
write!(w, "</pre>")
2019-08-31 21:47:55 +02:00
});
// Trait documentation
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2014-01-30 20:30:21 +01:00
2019-12-22 23:42:04 +01:00
fn write_small_section_header(w: &mut Buffer, id: &str, title: &str, extra_content: &str) {
write!(
w,
"
<h2 id='{0}' class='small-section-header'>\
{1}<a href='#{0}' class='anchor'></a>\
2019-12-22 23:42:04 +01:00
</h2>{2}",
id, title, extra_content
)
}
2019-08-31 21:47:55 +02:00
fn write_loading_content(w: &mut Buffer, extra_content: &str) {
write!(w, "{}<span class='loading-content'>Loading content...</span>", extra_content)
}
2019-08-31 21:47:55 +02:00
fn trait_item(w: &mut Buffer, cx: &Context, m: &clean::Item, t: &clean::Item) {
let name = m.name.as_ref().unwrap();
let item_type = m.type_();
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
2019-12-22 23:42:04 +01:00
write!(
w,
"<h3 id='{id}' class='method'>{extra}<code id='{ns_id}'>",
extra = render_spotlight_traits(m),
id = id,
ns_id = ns_id
);
2019-08-31 21:47:55 +02:00
render_assoc_item(w, m, AssocItemLink::Anchor(Some(&id)), ItemType::Impl);
write!(w, "</code>");
render_stability_since(w, m, t);
write!(w, "</h3>");
document(w, cx, m);
}
if !types.is_empty() {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"associated-types",
"Associated Types",
"<div class='methods'>",
);
2015-01-31 18:20:46 +01:00
for t in &types {
2019-08-31 21:47:55 +02:00
trait_item(w, cx, *t, it);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
}
if !consts.is_empty() {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"associated-const",
"Associated Constants",
"<div class='methods'>",
);
for t in &consts {
2019-08-31 21:47:55 +02:00
trait_item(w, cx, *t, it);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
}
// Output the documentation for each function individually
if !required.is_empty() {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"required-methods",
"Required methods",
"<div class='methods'>",
);
2015-01-31 18:20:46 +01:00
for m in &required {
2019-08-31 21:47:55 +02:00
trait_item(w, cx, *m, it);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
}
if !provided.is_empty() {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"provided-methods",
"Provided methods",
"<div class='methods'>",
);
2015-01-31 18:20:46 +01:00
for m in &provided {
2019-08-31 21:47:55 +02:00
trait_item(w, cx, *m, it);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
}
// If there are methods directly on this trait object, render them here.
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All);
if let Some(implementors) = cx.cache.implementors.get(&it.def_id) {
// The DefId is for the first Type found with that name. The bool is
// if any Types with the same name but different DefId have been found.
let mut implementor_dups: FxHashMap<&str, (DefId, bool)> = FxHashMap::default();
2016-12-19 22:30:42 +01:00
for implementor in implementors {
match implementor.inner_impl().for_ {
2019-12-22 23:42:04 +01:00
clean::ResolvedPath { ref path, did, is_generic: false, .. }
| clean::BorrowedRef {
type_: box clean::ResolvedPath { ref path, did, is_generic: false, .. },
..
} => {
let &mut (prev_did, ref mut has_duplicates) =
implementor_dups.entry(path.last_name()).or_insert((did, false));
if prev_did != did {
*has_duplicates = true;
}
}
_ => {}
2016-12-19 22:30:42 +01:00
}
}
2016-12-22 06:27:31 +01:00
2019-12-22 23:42:04 +01:00
let (local, foreign) = implementors.iter().partition::<Vec<_>, _>(|i| {
i.inner_impl().for_.def_id().map_or(true, |d| cx.cache.paths.contains_key(&d))
});
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
2019-12-22 23:42:04 +01:00
let (mut synthetic, mut concrete): (Vec<&&Impl>, Vec<&&Impl>) =
local.iter().partition(|i| i.inner_impl().synthetic);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
synthetic.sort_by(compare_impl);
concrete.sort_by(compare_impl);
if !foreign.is_empty() {
2019-08-31 21:47:55 +02:00
write_small_section_header(w, "foreign-impls", "Implementations on Foreign Types", "");
for implementor in foreign {
let assoc_link = AssocItemLink::GotoSource(
implementor.impl_item.def_id,
2019-12-22 23:42:04 +01:00
&implementor.inner_impl().provided_trait_methods,
);
render_impl(
w,
cx,
&implementor,
assoc_link,
RenderMode::Normal,
implementor.impl_item.stable_since(),
false,
None,
true,
false,
&[],
);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "");
}
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"implementors",
"Implementors",
"<div class='item-list' id='implementors-list'>",
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
for implementor in concrete {
render_implementor(cx, implementor, w, &implementor_dups, &[]);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
if t.auto {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"synthetic-implementors",
"Auto implementors",
"<div class='item-list' id='synthetic-implementors-list'>",
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
for implementor in synthetic {
render_implementor(
cx,
implementor,
w,
&implementor_dups,
&collect_paths_for_type(implementor.inner_impl().for_.clone()),
);
}
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
2013-12-06 03:19:06 +01:00
}
} else {
// even without any implementations to write in, we still want the heading and list, so the
// implementors javascript file pulled in below has somewhere to write the impls into
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"implementors",
"Implementors",
"<div class='item-list' id='implementors-list'>",
);
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
if t.auto {
2019-12-22 23:42:04 +01:00
write_small_section_header(
w,
"synthetic-implementors",
"Auto implementors",
"<div class='item-list' id='synthetic-implementors-list'>",
);
2019-08-31 21:47:55 +02:00
write_loading_content(w, "</div>");
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
}
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
2019-12-22 23:42:04 +01:00
write!(
w,
"<script type=\"text/javascript\" \
src=\"{root_path}/implementors/{path}/{ty}.{name}.js\" async>\
</script>",
2019-12-22 23:42:04 +01:00
root_path = vec![".."; cx.current.len()].join("/"),
path = if it.def_id.is_local() {
cx.current.join("/")
} else {
let (ref path, _) = cx.cache.external_paths[&it.def_id];
path[..path.len() - 1].join("/")
},
ty = it.type_(),
name = *it.name.as_ref().unwrap()
);
}
2019-02-23 08:40:07 +01:00
fn naive_assoc_href(it: &clean::Item, link: AssocItemLink<'_>) -> String {
use crate::html::item_type::ItemType::*;
2016-03-25 00:10:15 +01:00
let name = it.name.as_ref().unwrap();
let ty = match it.type_() {
Typedef | AssocType => AssocType,
2019-12-22 23:42:04 +01:00
s @ _ => s,
2016-03-25 00:10:15 +01:00
};
let anchor = format!("#{}.{}", ty, name);
match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
2016-03-25 00:10:15 +01:00
AssocItemLink::GotoSource(did, _) => {
href(did).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor)
}
}
}
2019-12-22 23:42:04 +01:00
fn assoc_const(
w: &mut Buffer,
it: &clean::Item,
ty: &clean::Type,
_default: Option<&String>,
link: AssocItemLink<'_>,
extra: &str,
) {
write!(
w,
"{}{}const <a href='{}' class=\"constant\"><b>{}</b></a>: {}",
extra,
it.visibility.print_with_space(),
naive_assoc_href(it, link),
it.name.as_ref().unwrap(),
ty.print()
);
}
2019-12-22 23:42:04 +01:00
fn assoc_type(
w: &mut Buffer,
it: &clean::Item,
bounds: &[clean::GenericBound],
default: Option<&clean::Type>,
link: AssocItemLink<'_>,
extra: &str,
) {
write!(
w,
"{}type <a href='{}' class=\"type\">{}</a>",
extra,
naive_assoc_href(it, link),
it.name.as_ref().unwrap()
);
if !bounds.is_empty() {
write!(w, ": {}", print_generic_bounds(bounds))
}
2016-03-25 00:10:15 +01:00
if let Some(default) = default {
write!(w, " = {}", default.print())
}
}
2019-08-31 21:47:55 +02:00
fn render_stability_since_raw(w: &mut Buffer, ver: Option<&str>, containing_ver: Option<&str>) {
2016-02-28 12:11:13 +01:00
if let Some(v) = ver {
if containing_ver != ver && v.len() > 0 {
2019-08-31 21:47:55 +02:00
write!(w, "<span class='since' title='Stable since Rust version {0}'>{0}</span>", v)
}
}
}
2019-08-31 21:47:55 +02:00
fn render_stability_since(w: &mut Buffer, item: &clean::Item, containing_item: &clean::Item) {
render_stability_since_raw(w, item.stable_since(), containing_item.stable_since())
}
2019-12-22 23:42:04 +01:00
fn render_assoc_item(
w: &mut Buffer,
item: &clean::Item,
link: AssocItemLink<'_>,
parent: ItemType,
) {
fn method(
w: &mut Buffer,
meth: &clean::Item,
header: hir::FnHeader,
g: &clean::Generics,
d: &clean::FnDecl,
link: AssocItemLink<'_>,
parent: ItemType,
) {
let name = meth.name.as_ref().unwrap();
let anchor = format!("#{}.{}", meth.type_(), name);
let href = match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, provided_methods) => {
// We're creating a link from an impl-item to the corresponding
// trait-item and need to map the anchored type accordingly.
let ty = if provided_methods.contains(name) {
ItemType::Method
} else {
ItemType::TyMethod
};
href(did).map(|p| format!("{}#{}.{}", p.0, ty, name)).unwrap_or(anchor)
}
};
let mut header_len = format!(
"{}{}{}{}{}{:#}fn {}{:#}",
meth.visibility.print_with_space(),
header.constness.print_with_space(),
header.asyncness.print_with_space(),
header.unsafety.print_with_space(),
print_default_space(meth.is_default()),
print_abi_with_space(header.abi),
name,
g.print()
2019-12-22 23:42:04 +01:00
)
.len();
let (indent, end_newline) = if parent == ItemType::Trait {
header_len += 4;
(4, false)
} else {
(0, true)
};
2019-08-31 21:47:55 +02:00
render_attributes(w, meth, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"{}{}{}{}{}{}{}fn <a href='{href}' class='fnname'>{name}</a>\
{generics}{decl}{where_clause}",
2019-12-22 23:42:04 +01:00
if parent == ItemType::Trait { " " } else { "" },
meth.visibility.print_with_space(),
header.constness.print_with_space(),
header.asyncness.print_with_space(),
header.unsafety.print_with_space(),
2019-12-22 23:42:04 +01:00
print_default_space(meth.is_default()),
print_abi_with_space(header.abi),
href = href,
name = name,
generics = g.print(),
decl = Function { decl: d, header_len, indent, asyncness: header.asyncness }.print(),
where_clause = WhereClause { gens: g, indent, end_newline }
)
}
match item.inner {
2019-12-22 23:42:04 +01:00
clean::StrippedItem(..) => {}
clean::TyMethodItem(ref m) => method(w, item, m.header, &m.generics, &m.decl, link, parent),
clean::MethodItem(ref m) => method(w, item, m.header, &m.generics, &m.decl, link, parent),
clean::AssocConstItem(ref ty, ref default) => assoc_const(
w,
item,
ty,
default.as_ref(),
link,
if parent == ItemType::Trait { " " } else { "" },
),
clean::AssocTypeItem(ref bounds, ref default) => assoc_type(
w,
item,
bounds,
default.as_ref(),
link,
if parent == ItemType::Trait { " " } else { "" },
),
_ => panic!("render_assoc_item called on non-associated-item"),
}
}
2019-08-31 21:47:55 +02:00
fn item_struct(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Struct) {
2018-03-27 11:57:00 +02:00
wrap_into_docblock(w, |w| {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust struct'>");
render_attributes(w, it, true);
2019-12-22 23:42:04 +01:00
render_struct(w, it, Some(&s.generics), s.struct_type, &s.fields, "", true);
2018-03-27 11:57:00 +02:00
write!(w, "</pre>")
2019-08-31 21:47:55 +02:00
});
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2019-12-22 23:42:04 +01:00
let mut fields = s
.fields
.iter()
.filter_map(|f| match f.inner {
2016-05-27 12:04:56 +02:00
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
2019-12-22 23:42:04 +01:00
})
.peekable();
if let doctree::Plain = s.struct_type {
if fields.peek().is_some() {
2019-12-22 23:42:04 +01:00
write!(
w,
"<h2 id='fields' class='fields small-section-header'>
Fields{}<a href='#fields' class='anchor'></a></h2>",
2019-12-22 23:42:04 +01:00
document_non_exhaustive_header(it)
);
2019-08-31 21:47:55 +02:00
document_non_exhaustive(w, it);
2016-05-27 12:04:56 +02:00
for (field, ty) in fields {
2019-12-22 23:42:04 +01:00
let id = cx.derive_id(format!(
"{}.{}",
ItemType::StructField,
field.name.as_ref().unwrap()
));
let ns_id = cx.derive_id(format!(
"{}.{}",
field.name.as_ref().unwrap(),
ItemType::StructField.name_space()
));
write!(
w,
"<span id=\"{id}\" class=\"{item_type} small-section-header\">\
2018-12-16 21:48:02 +01:00
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code id=\"{ns_id}\">{name}: {ty}</code>\
</span>",
2019-12-22 23:42:04 +01:00
item_type = ItemType::StructField,
id = id,
ns_id = ns_id,
name = field.name.as_ref().unwrap(),
ty = ty.print()
);
2019-08-31 21:47:55 +02:00
document(w, cx, field);
}
}
}
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
2019-08-31 21:47:55 +02:00
fn item_union(w: &mut Buffer, cx: &Context, it: &clean::Item, s: &clean::Union) {
2018-03-27 11:57:00 +02:00
wrap_into_docblock(w, |w| {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust union'>");
render_attributes(w, it, true);
2019-12-22 23:42:04 +01:00
render_union(w, it, Some(&s.generics), &s.fields, "", true);
2018-03-27 11:57:00 +02:00
write!(w, "</pre>")
2019-08-31 21:47:55 +02:00
});
2016-08-10 20:00:17 +02:00
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2019-12-22 23:42:04 +01:00
let mut fields = s
.fields
.iter()
.filter_map(|f| match f.inner {
2016-08-10 20:00:17 +02:00
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
2019-12-22 23:42:04 +01:00
})
.peekable();
2016-08-10 20:00:17 +02:00
if fields.peek().is_some() {
2019-12-22 23:42:04 +01:00
write!(
w,
"<h2 id='fields' class='fields small-section-header'>
Fields<a href='#fields' class='anchor'></a></h2>"
);
2016-08-10 20:00:17 +02:00
for (field, ty) in fields {
let name = field.name.as_ref().expect("union field name");
let id = format!("{}.{}", ItemType::StructField, name);
2019-12-22 23:42:04 +01:00
write!(
w,
"<span id=\"{id}\" class=\"{shortty} small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code>{name}: {ty}</code>\
</span>",
2019-12-22 23:42:04 +01:00
id = id,
name = name,
shortty = ItemType::StructField,
ty = ty.print()
);
if let Some(stability_class) = field.stability_class() {
2019-12-22 23:42:04 +01:00
write!(w, "<span class='stab {stab}'></span>", stab = stability_class);
}
2019-08-31 21:47:55 +02:00
document(w, cx, field);
2016-08-10 20:00:17 +02:00
}
}
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
2016-08-10 20:00:17 +02:00
}
2019-08-31 21:47:55 +02:00
fn item_enum(w: &mut Buffer, cx: &Context, it: &clean::Item, e: &clean::Enum) {
2018-03-27 11:57:00 +02:00
wrap_into_docblock(w, |w| {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust enum'>");
render_attributes(w, it, true);
2019-12-22 23:42:04 +01:00
write!(
w,
"{}enum {}{}{}",
it.visibility.print_with_space(),
it.name.as_ref().unwrap(),
e.generics.print(),
WhereClause { gens: &e.generics, indent: 0, end_newline: true }
);
2018-03-27 11:57:00 +02:00
if e.variants.is_empty() && !e.variants_stripped {
2019-08-31 21:47:55 +02:00
write!(w, " {{}}");
2018-03-27 11:57:00 +02:00
} else {
2019-08-31 21:47:55 +02:00
write!(w, " {{\n");
2018-03-27 11:57:00 +02:00
for v in &e.variants {
2019-08-31 21:47:55 +02:00
write!(w, " ");
2018-03-27 11:57:00 +02:00
let name = v.name.as_ref().unwrap();
match v.inner {
2019-12-22 23:42:04 +01:00
clean::VariantItem(ref var) => match var.kind {
clean::VariantKind::CLike => write!(w, "{}", name),
clean::VariantKind::Tuple(ref tys) => {
write!(w, "{}(", name);
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
write!(w, ",&nbsp;")
2014-01-30 20:30:21 +01:00
}
2019-12-22 23:42:04 +01:00
write!(w, "{}", ty.print());
}
2019-12-22 23:42:04 +01:00
write!(w, ")");
}
2019-12-22 23:42:04 +01:00
clean::VariantKind::Struct(ref s) => {
render_struct(w, v, None, s.struct_type, &s.fields, " ", false);
}
},
_ => unreachable!(),
}
2019-08-31 21:47:55 +02:00
write!(w, ",\n");
}
2018-03-27 11:57:00 +02:00
if e.variants_stripped {
2019-08-31 21:47:55 +02:00
write!(w, " // some variants omitted\n");
2018-03-27 11:57:00 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, "}}");
}
2018-03-27 11:57:00 +02:00
write!(w, "</pre>")
2019-08-31 21:47:55 +02:00
});
2019-08-31 21:47:55 +02:00
document(w, cx, it);
if !e.variants.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"<h2 id='variants' class='variants small-section-header'>
Variants{}<a href='#variants' class='anchor'></a></h2>\n",
2019-12-22 23:42:04 +01:00
document_non_exhaustive_header(it)
);
2019-08-31 21:47:55 +02:00
document_non_exhaustive(w, it);
2015-01-31 18:20:46 +01:00
for variant in &e.variants {
2019-12-22 23:42:04 +01:00
let id =
cx.derive_id(format!("{}.{}", ItemType::Variant, variant.name.as_ref().unwrap()));
let ns_id = cx.derive_id(format!(
"{}.{}",
variant.name.as_ref().unwrap(),
ItemType::Variant.name_space()
));
write!(
w,
"<div id=\"{id}\" class=\"variant small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
2018-12-16 21:48:02 +01:00
<code id='{ns_id}'>{name}",
2019-12-22 23:42:04 +01:00
id = id,
ns_id = ns_id,
name = variant.name.as_ref().unwrap()
);
2016-05-27 12:04:56 +02:00
if let clean::VariantItem(ref var) = variant.inner {
if let clean::VariantKind::Tuple(ref tys) = var.kind {
2019-08-31 21:47:55 +02:00
write!(w, "(");
2016-05-27 12:04:56 +02:00
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
2019-08-31 21:47:55 +02:00
write!(w, ",&nbsp;");
2016-05-27 12:04:56 +02:00
}
write!(w, "{}", ty.print());
2016-05-27 12:04:56 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, ")");
2016-05-27 12:04:56 +02:00
}
}
2019-08-31 21:47:55 +02:00
write!(w, "</code></div>");
document(w, cx, variant);
document_non_exhaustive(w, variant);
2016-02-28 12:11:13 +01:00
2019-02-23 08:40:07 +01:00
use crate::clean::{Variant, VariantKind};
2019-12-22 23:42:04 +01:00
if let clean::VariantItem(Variant { kind: VariantKind::Struct(ref s) }) = variant.inner
{
let variant_id = cx.derive_id(format!(
"{}.{}.fields",
ItemType::Variant,
variant.name.as_ref().unwrap()
));
write!(w, "<div class='autohide sub-variant' id='{id}'>", id = variant_id);
write!(
w,
"<h3>Fields of <b>{name}</b></h3><div>",
name = variant.name.as_ref().unwrap()
);
2016-05-27 12:04:56 +02:00
for field in &s.fields {
2019-02-23 08:40:07 +01:00
use crate::clean::StructFieldItem;
2016-05-27 12:04:56 +02:00
if let StructFieldItem(ref ty) = field.inner {
2019-12-22 23:42:04 +01:00
let id = cx.derive_id(format!(
"variant.{}.field.{}",
variant.name.as_ref().unwrap(),
field.name.as_ref().unwrap()
));
let ns_id = cx.derive_id(format!(
"{}.{}.{}.{}",
variant.name.as_ref().unwrap(),
ItemType::Variant.name_space(),
field.name.as_ref().unwrap(),
ItemType::StructField.name_space()
));
write!(
w,
"<span id=\"{id}\" class=\"variant small-section-header\">\
2018-10-19 01:34:46 +02:00
<a href=\"#{id}\" class=\"anchor field\"></a>\
2018-12-16 21:48:02 +01:00
<code id='{ns_id}'>{f}:&nbsp;{t}\
</code></span>",
2019-12-22 23:42:04 +01:00
id = id,
ns_id = ns_id,
f = field.name.as_ref().unwrap(),
t = ty.print()
);
2019-08-31 21:47:55 +02:00
document(w, cx, field);
2016-05-27 12:04:56 +02:00
}
}
2019-08-31 21:47:55 +02:00
write!(w, "</div></div>");
}
2019-08-31 21:47:55 +02:00
render_stability_since(w, variant, it);
}
}
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn render_attribute(attr: &ast::MetaItem) -> Option<String> {
let path = pprust::path_to_string(&attr.path);
2016-10-13 01:40:02 +02:00
if attr.is_word() {
Some(path)
} else if let Some(v) = attr.value_str() {
Some(format!("{} = {:?}", path, v))
} else if let Some(values) = attr.meta_item_list() {
2019-12-22 23:42:04 +01:00
let display: Vec<_> = values
.iter()
.filter_map(|attr| attr.meta_item().and_then(|mi| render_attribute(mi)))
.collect();
2016-10-13 01:40:02 +02:00
2019-12-22 23:42:04 +01:00
if display.len() > 0 { Some(format!("{}({})", path, display.join(", "))) } else { None }
} else {
None
2016-10-13 01:40:02 +02:00
}
}
const ATTRIBUTE_WHITELIST: &'static [Symbol] = &[
sym::export_name,
sym::lang,
sym::link_section,
sym::must_use,
sym::no_mangle,
sym::repr,
2019-12-22 23:42:04 +01:00
sym::non_exhaustive,
];
// The `top` parameter is used when generating the item declaration to ensure it doesn't have a
// left padding. For example:
//
// #[foo] <----- "top" attribute
// struct Foo {
// #[bar] <---- not "top" attribute
// bar: usize,
// }
2019-08-31 21:47:55 +02:00
fn render_attributes(w: &mut Buffer, it: &clean::Item, top: bool) {
2016-11-06 20:06:01 +01:00
let mut attrs = String::new();
for attr in &it.attrs.other_attrs {
if !ATTRIBUTE_WHITELIST.contains(&attr.name_or_empty()) {
continue;
}
if let Some(s) = render_attribute(&attr.meta().unwrap()) {
2016-11-06 20:06:01 +01:00
attrs.push_str(&format!("#[{}]\n", s));
2015-02-12 16:47:03 +01:00
}
}
2016-11-06 20:06:01 +01:00
if attrs.len() > 0 {
2019-12-22 23:42:04 +01:00
write!(
w,
"<span class=\"docblock attributes{}\">{}</span>",
if top { " top-attr" } else { "" },
&attrs
);
2016-11-06 20:06:01 +01:00
}
2015-02-12 16:47:03 +01:00
}
2019-12-22 23:42:04 +01:00
fn render_struct(
w: &mut Buffer,
it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
tab: &str,
structhead: bool,
) {
write!(
w,
"{}{}{}",
it.visibility.print_with_space(),
if structhead { "struct " } else { "" },
it.name.as_ref().unwrap()
);
2016-02-28 12:11:13 +01:00
if let Some(g) = g {
write!(w, "{}", g.print())
}
match ty {
doctree::Plain => {
if let Some(g) = g {
2019-08-31 21:47:55 +02:00
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true })
}
let mut has_visible_fields = false;
2019-08-31 21:47:55 +02:00
write!(w, " {{");
2015-01-31 18:20:46 +01:00
for field in fields {
if let clean::StructFieldItem(ref ty) = field.inner {
2019-12-22 23:42:04 +01:00
write!(
w,
"\n{} {}{}: {},",
tab,
field.visibility.print_with_space(),
field.name.as_ref().unwrap(),
ty.print()
);
has_visible_fields = true;
}
}
if has_visible_fields {
if it.has_stripped_fields().unwrap() {
2019-08-31 21:47:55 +02:00
write!(w, "\n{} // some fields omitted", tab);
}
2019-08-31 21:47:55 +02:00
write!(w, "\n{}", tab);
} else if it.has_stripped_fields().unwrap() {
// If there are no visible fields we can just display
// `{ /* fields omitted */ }` to save space.
2019-08-31 21:47:55 +02:00
write!(w, " /* fields omitted */ ");
}
2019-08-31 21:47:55 +02:00
write!(w, "}}");
}
doctree::Tuple => {
2019-08-31 21:47:55 +02:00
write!(w, "(");
for (i, field) in fields.iter().enumerate() {
2014-01-30 20:30:21 +01:00
if i > 0 {
2019-08-31 21:47:55 +02:00
write!(w, ", ");
2014-01-30 20:30:21 +01:00
}
match field.inner {
2019-12-22 23:42:04 +01:00
clean::StrippedItem(box clean::StructFieldItem(..)) => write!(w, "_"),
clean::StructFieldItem(ref ty) => {
write!(w, "{}{}", field.visibility.print_with_space(), ty.print())
}
2019-12-22 23:42:04 +01:00
_ => unreachable!(),
}
}
2019-08-31 21:47:55 +02:00
write!(w, ")");
if let Some(g) = g {
2019-08-31 21:47:55 +02:00
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false })
}
2019-08-31 21:47:55 +02:00
write!(w, ";");
2014-01-30 20:30:21 +01:00
}
doctree::Unit => {
// Needed for PhantomData.
if let Some(g) = g {
2019-08-31 21:47:55 +02:00
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false })
}
2019-08-31 21:47:55 +02:00
write!(w, ";");
}
}
}
2019-12-22 23:42:04 +01:00
fn render_union(
w: &mut Buffer,
it: &clean::Item,
g: Option<&clean::Generics>,
fields: &[clean::Item],
tab: &str,
structhead: bool,
) {
write!(
w,
"{}{}{}",
it.visibility.print_with_space(),
if structhead { "union " } else { "" },
it.name.as_ref().unwrap()
);
2016-08-10 20:00:17 +02:00
if let Some(g) = g {
write!(w, "{}", g.print());
2019-08-31 21:47:55 +02:00
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true });
2016-08-10 20:00:17 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, " {{\n{}", tab);
2016-08-10 20:00:17 +02:00
for field in fields {
if let clean::StructFieldItem(ref ty) = field.inner {
2019-12-22 23:42:04 +01:00
write!(
w,
" {}{}: {},\n{}",
field.visibility.print_with_space(),
field.name.as_ref().unwrap(),
ty.print(),
tab
);
2016-08-10 20:00:17 +02:00
}
}
if it.has_stripped_fields().unwrap() {
2019-08-31 21:47:55 +02:00
write!(w, " // some fields omitted\n{}", tab);
2016-08-10 20:00:17 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, "}}");
2016-08-10 20:00:17 +02:00
}
#[derive(Copy, Clone)]
enum AssocItemLink<'a> {
Anchor(Option<&'a str>),
GotoSource(DefId, &'a FxHashSet<String>),
}
impl<'a> AssocItemLink<'a> {
fn anchor(&self, id: &'a String) -> Self {
match *self {
2019-12-22 23:42:04 +01:00
AssocItemLink::Anchor(_) => AssocItemLink::Anchor(Some(&id)),
ref other => *other,
}
}
}
enum AssocItemRender<'a> {
All,
2019-12-22 23:42:04 +01:00
DerefFor { trait_: &'a clean::Type, type_: &'a clean::Type, deref_mut_: bool },
}
#[derive(Copy, Clone, PartialEq)]
enum RenderMode {
Normal,
ForDeref { mut_: bool },
}
2019-12-22 23:42:04 +01:00
fn render_assoc_items(
w: &mut Buffer,
cx: &Context,
containing_item: &clean::Item,
it: DefId,
2020-01-15 18:52:04 +01:00
what: AssocItemRender<'_>,
2019-12-22 23:42:04 +01:00
) {
let c = &cx.cache;
let v = match c.impls.get(&it) {
Some(v) => v,
2019-08-31 21:47:55 +02:00
None => return,
};
2019-12-22 23:42:04 +01:00
let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| i.inner_impl().trait_.is_none());
if !non_trait.is_empty() {
let render_mode = match what {
AssocItemRender::All => {
2019-12-22 23:42:04 +01:00
write!(
w,
"\
2018-07-21 00:15:08 +02:00
<h2 id='methods' class='small-section-header'>\
Methods<a href='#methods' class='anchor'></a>\
</h2>\
2019-12-22 23:42:04 +01:00
"
);
RenderMode::Normal
}
AssocItemRender::DerefFor { trait_, type_, deref_mut_ } => {
2019-12-22 23:42:04 +01:00
write!(
w,
"\
2018-07-21 00:15:08 +02:00
<h2 id='deref-methods' class='small-section-header'>\
Methods from {}&lt;Target = {}&gt;\
<a href='#deref-methods' class='anchor'></a>\
</h2>\
2019-12-22 23:42:04 +01:00
",
trait_.print(),
type_.print()
);
2020-01-15 18:52:04 +01:00
RenderMode::ForDeref { mut_: deref_mut_ }
}
};
for i in &non_trait {
2019-12-22 23:42:04 +01:00
render_impl(
w,
cx,
i,
AssocItemLink::Anchor(None),
render_mode,
containing_item.stable_since(),
true,
None,
false,
true,
&[],
2019-12-22 23:42:04 +01:00
);
}
}
if let AssocItemRender::DerefFor { .. } = what {
2019-08-31 21:47:55 +02:00
return;
}
if !traits.is_empty() {
2019-12-22 23:42:04 +01:00
let deref_impl =
traits.iter().find(|t| t.inner_impl().trait_.def_id() == c.deref_trait_did);
if let Some(impl_) = deref_impl {
2019-12-22 23:42:04 +01:00
let has_deref_mut = traits
.iter()
.find(|t| t.inner_impl().trait_.def_id() == c.deref_mut_trait_did)
.is_some();
2019-08-31 21:47:55 +02:00
render_deref_methods(w, cx, impl_, containing_item, has_deref_mut);
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
2019-12-22 23:42:04 +01:00
let (synthetic, concrete): (Vec<&&Impl>, Vec<&&Impl>) =
traits.iter().partition(|t| t.inner_impl().synthetic);
let (blanket_impl, concrete): (Vec<&&Impl>, _) =
concrete.into_iter().partition(|t| t.inner_impl().blanket_impl.is_some());
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
2019-08-31 21:47:55 +02:00
let mut impls = Buffer::empty_from(&w);
render_impls(cx, &mut impls, &concrete, containing_item);
let impls = impls.into_inner();
if !impls.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"\
2018-07-21 00:15:08 +02:00
<h2 id='implementations' class='small-section-header'>\
Trait Implementations<a href='#implementations' class='anchor'></a>\
</h2>\
2019-12-22 23:42:04 +01:00
<div id='implementations-list'>{}</div>",
impls
);
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
if !synthetic.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"\
2018-07-21 00:15:08 +02:00
<h2 id='synthetic-implementations' class='small-section-header'>\
Auto Trait Implementations\
<a href='#synthetic-implementations' class='anchor'></a>\
</h2>\
<div id='synthetic-implementations-list'>\
2019-12-22 23:42:04 +01:00
"
);
2019-08-31 21:47:55 +02:00
render_impls(cx, w, &synthetic, containing_item);
write!(w, "</div>");
}
if !blanket_impl.is_empty() {
2019-12-22 23:42:04 +01:00
write!(
w,
"\
<h2 id='blanket-implementations' class='small-section-header'>\
Blanket Implementations\
<a href='#blanket-implementations' class='anchor'></a>\
</h2>\
<div id='blanket-implementations-list'>\
2019-12-22 23:42:04 +01:00
"
);
2019-08-31 21:47:55 +02:00
render_impls(cx, w, &blanket_impl, containing_item);
write!(w, "</div>");
}
}
}
2019-12-22 23:42:04 +01:00
fn render_deref_methods(
w: &mut Buffer,
cx: &Context,
impl_: &Impl,
container_item: &clean::Item,
deref_mut: bool,
) {
let deref_type = impl_.inner_impl().trait_.as_ref().unwrap();
2020-01-10 02:07:13 +01:00
let (target, real_target) = impl_
2019-12-22 23:42:04 +01:00
.inner_impl()
.items
.iter()
.filter_map(|item| match item.inner {
2020-01-10 14:46:28 +01:00
clean::TypedefItem(ref t, true) => Some(match *t {
2020-01-15 18:52:04 +01:00
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
2020-01-10 14:46:28 +01:00
}),
_ => None,
2019-12-22 23:42:04 +01:00
})
.next()
.expect("Expected associated type binding");
let what =
2020-01-15 18:52:04 +01:00
AssocItemRender::DerefFor { trait_: deref_type, type_: real_target, deref_mut_: deref_mut };
if let Some(did) = target.def_id() {
render_assoc_items(w, cx, container_item, did, what);
} else {
if let Some(prim) = target.primitive_type() {
if let Some(&did) = cx.cache.primitive_locations.get(&prim) {
render_assoc_items(w, cx, container_item, did, what);
}
}
}
}
2017-10-28 01:11:01 +02:00
fn should_render_item(item: &clean::Item, deref_mut_: bool) -> bool {
let self_type_opt = match item.inner {
clean::MethodItem(ref method) => method.decl.self_type(),
clean::TyMethodItem(ref method) => method.decl.self_type(),
2019-12-22 23:42:04 +01:00
_ => None,
2017-10-28 01:11:01 +02:00
};
if let Some(self_ty) = self_type_opt {
let (by_mut_ref, by_box, by_value) = match self_ty {
2019-12-22 23:42:04 +01:00
SelfTy::SelfBorrowed(_, mutability)
| SelfTy::SelfExplicit(clean::BorrowedRef { mutability, .. }) => {
(mutability == Mutability::Mut, false, false)
2019-12-22 23:42:04 +01:00
}
2017-10-28 01:11:01 +02:00
SelfTy::SelfExplicit(clean::ResolvedPath { did, .. }) => {
(false, Some(did) == cache().owned_box_did, false)
2019-12-22 23:42:04 +01:00
}
SelfTy::SelfValue => (false, false, true),
_ => (false, false, false),
2017-10-28 01:11:01 +02:00
};
(deref_mut_ || !by_mut_ref) && !by_box && !by_value
2017-10-28 01:11:01 +02:00
} else {
false
}
}
2019-08-31 21:47:55 +02:00
fn render_spotlight_traits(item: &clean::Item) -> String {
match item.inner {
2019-12-22 23:42:04 +01:00
clean::FunctionItem(clean::Function { ref decl, .. })
| clean::TyMethodItem(clean::TyMethod { ref decl, .. })
| clean::MethodItem(clean::Method { ref decl, .. })
| clean::ForeignFunctionItem(clean::Function { ref decl, .. }) => spotlight_decl(decl),
_ => String::new(),
}
}
2019-08-31 21:47:55 +02:00
fn spotlight_decl(decl: &clean::FnDecl) -> String {
let mut out = Buffer::html();
let mut trait_ = String::new();
if let Some(did) = decl.output.def_id() {
let c = cache();
if let Some(impls) = c.impls.get(&did) {
for i in impls {
let impl_ = i.inner_impl();
if impl_.trait_.def_id().map_or(false, |d| c.traits[&d].is_spotlight) {
if out.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(&format!(
"<h3 class=\"important\">Important traits for {}</h3>\
<code class=\"content\">",
2019-12-22 23:42:04 +01:00
impl_.for_.print()
));
trait_.push_str(&impl_.for_.print().to_string());
}
//use the "where" class here to make it small
2019-12-22 23:42:04 +01:00
out.push_str(&format!(
"<span class=\"where fmt-newline\">{}</span>",
impl_.print()
));
let t_did = impl_.trait_.def_id().unwrap();
for it in &impl_.items {
if let clean::TypedefItem(ref tydef, _) = it.inner {
out.push_str("<span class=\"where fmt-newline\"> ");
2019-12-22 23:42:04 +01:00
assoc_type(
&mut out,
it,
&[],
Some(&tydef.type_),
AssocItemLink::GotoSource(t_did, &FxHashSet::default()),
"",
);
out.push_str(";</span>");
}
}
}
}
}
}
if !out.is_empty() {
2019-12-22 23:42:04 +01:00
out.insert_str(
0,
&format!(
"<div class=\"important-traits\"><div class='tooltip'>ⓘ\
<span class='tooltiptext'>Important traits for {}</span></div>\
<div class=\"content hidden\">",
2019-12-22 23:42:04 +01:00
trait_
),
);
out.push_str("</code></div></div>");
}
2019-08-31 21:47:55 +02:00
out.into_inner()
}
2019-12-22 23:42:04 +01:00
fn render_impl(
w: &mut Buffer,
cx: &Context,
i: &Impl,
link: AssocItemLink<'_>,
render_mode: RenderMode,
outer_version: Option<&str>,
show_def_docs: bool,
use_absolute: Option<bool>,
is_on_foreign_type: bool,
show_default_items: bool,
// This argument is used to reference same type with different pathes to avoid duplication
// in documentation pages for trait with automatic implementations like "Send" and "Sync".
aliases: &[String],
2019-12-22 23:42:04 +01:00
) {
if render_mode == RenderMode::Normal {
let id = cx.derive_id(match i.inner_impl().trait_ {
2019-12-22 23:42:04 +01:00
Some(ref t) => {
if is_on_foreign_type {
get_id_for_impl_on_foreign_type(&i.inner_impl().for_, t)
} else {
format!("impl-{}", small_url_encode(&format!("{:#}", t.print())))
}
}
None => "impl".to_string(),
});
let aliases = if aliases.is_empty() {
String::new()
} else {
format!(" aliases=\"{}\"", aliases.join(","))
};
2018-08-10 19:36:08 +02:00
if let Some(use_absolute) = use_absolute {
write!(w, "<h3 id='{}' class='impl'{}><code class='in-band'>", id, aliases);
2019-08-31 21:47:55 +02:00
fmt_impl_for_trait_page(&i.inner_impl(), w, use_absolute);
2018-08-11 11:52:44 +02:00
if show_def_docs {
for it in &i.inner_impl().items {
if let clean::TypedefItem(ref tydef, _) = it.inner {
2019-08-31 21:47:55 +02:00
write!(w, "<span class=\"where fmt-newline\"> ");
2019-12-22 23:42:04 +01:00
assoc_type(
w,
it,
&vec![],
Some(&tydef.type_),
AssocItemLink::Anchor(None),
"",
);
2019-08-31 21:47:55 +02:00
write!(w, ";</span>");
2018-08-11 11:52:44 +02:00
}
2018-08-10 19:36:08 +02:00
}
}
2019-08-31 21:47:55 +02:00
write!(w, "</code>");
2018-08-10 19:36:08 +02:00
} else {
2019-12-22 23:42:04 +01:00
write!(
w,
"<h3 id='{}' class='impl'{}><code class='in-band'>{}</code>",
2019-12-22 23:42:04 +01:00
id,
aliases,
2019-12-22 23:42:04 +01:00
i.inner_impl().print()
2019-08-31 21:47:55 +02:00
);
2018-08-10 19:36:08 +02:00
}
2019-08-31 21:47:55 +02:00
write!(w, "<a href='#{}' class='anchor'></a>", id);
let since = i.impl_item.stability.as_ref().map(|s| &s.since[..]);
2019-08-31 21:47:55 +02:00
render_stability_since_raw(w, since, outer_version);
2019-08-31 19:29:31 +02:00
if let Some(l) = cx.src_href(&i.impl_item) {
2019-12-22 23:42:04 +01:00
write!(w, "<a class='srclink' href='{}' title='{}'>[src]</a>", l, "goto source code");
}
2019-08-31 21:47:55 +02:00
write!(w, "</h3>");
if let Some(ref dox) = cx.shared.maybe_collapsed_doc_value(&i.impl_item) {
let mut ids = cx.id_map.borrow_mut();
2019-12-22 23:42:04 +01:00
write!(
w,
"<div class='docblock'>{}</div>",
Markdown(
&*dox,
&i.impl_item.links(),
&mut ids,
cx.shared.codes,
cx.shared.edition,
&cx.shared.playground
)
.to_string()
);
}
}
2019-12-22 23:42:04 +01:00
fn doc_impl_item(
w: &mut Buffer,
cx: &Context,
item: &clean::Item,
link: AssocItemLink<'_>,
render_mode: RenderMode,
is_default_item: bool,
outer_version: Option<&str>,
trait_: Option<&clean::Trait>,
show_def_docs: bool,
) {
let item_type = item.type_();
let name = item.name.as_ref().unwrap();
2016-02-28 12:11:13 +01:00
2019-09-13 20:32:59 +02:00
let render_method_item = match render_mode {
RenderMode::Normal => true,
2017-10-28 01:11:01 +02:00
RenderMode::ForDeref { mut_: deref_mut_ } => should_render_item(&item, deref_mut_),
2016-02-28 12:11:13 +01:00
};
2019-12-22 23:42:04 +01:00
let (is_hidden, extra_class) =
if (trait_.is_none() || item.doc_value().is_some() || item.inner.is_associated())
&& !is_default_item
{
(false, "")
} else {
(true, " hidden")
};
match item.inner {
2019-12-22 23:42:04 +01:00
clean::MethodItem(clean::Method { ref decl, .. })
| clean::TyMethodItem(clean::TyMethod { ref decl, .. }) => {
// Only render when the method is not static or we allow static methods
if render_method_item {
let id = cx.derive_id(format!("{}.{}", item_type, name));
2019-12-22 23:42:04 +01:00
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class);
2019-08-31 21:47:55 +02:00
write!(w, "{}", spotlight_decl(decl));
write!(w, "<code id='{}'>", ns_id);
render_assoc_item(w, item, link.anchor(&id), ItemType::Impl);
write!(w, "</code>");
render_stability_since_raw(w, item.stable_since(), outer_version);
2019-08-31 19:29:31 +02:00
if let Some(l) = cx.src_href(item) {
2019-12-22 23:42:04 +01:00
write!(
w,
"<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code"
);
}
2019-08-31 21:47:55 +02:00
write!(w, "</h4>");
}
}
clean::TypedefItem(ref tydef, _) => {
let id = cx.derive_id(format!("{}.{}", ItemType::AssocType, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
2019-08-31 21:47:55 +02:00
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class);
write!(w, "<code id='{}'>", ns_id);
assoc_type(w, item, &Vec::new(), Some(&tydef.type_), link.anchor(&id), "");
write!(w, "</code></h4>");
}
clean::AssocConstItem(ref ty, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
2019-08-31 21:47:55 +02:00
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class);
write!(w, "<code id='{}'>", ns_id);
assoc_const(w, item, ty, default.as_ref(), link.anchor(&id), "");
write!(w, "</code>");
render_stability_since_raw(w, item.stable_since(), outer_version);
2019-08-31 19:29:31 +02:00
if let Some(l) = cx.src_href(item) {
2019-12-22 23:42:04 +01:00
write!(
w,
"<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code"
);
}
2019-08-31 21:47:55 +02:00
write!(w, "</h4>");
}
clean::AssocTypeItem(ref bounds, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
2019-08-31 21:47:55 +02:00
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class);
write!(w, "<code id='{}'>", ns_id);
assoc_type(w, item, bounds, default.as_ref(), link.anchor(&id), "");
write!(w, "</code></h4>");
}
2019-08-31 21:47:55 +02:00
clean::StrippedItem(..) => return,
2019-12-22 23:42:04 +01:00
_ => panic!("can't make docs for trait item with name {:?}", item.name),
}
2019-09-13 20:32:59 +02:00
if render_method_item {
2016-05-18 20:37:58 +02:00
if !is_default_item {
if let Some(t) = trait_ {
// The trait item may have been stripped so we might not
// find any documentation or stability for it.
if let Some(it) = t.items.iter().find(|i| i.name == item.name) {
// We need the stability of the item from the trait
// because impls can't have a stability.
2019-08-31 21:47:55 +02:00
document_stability(w, cx, it, is_hidden);
if item.doc_value().is_some() {
2019-08-31 21:47:55 +02:00
document_full(w, item, cx, "", is_hidden);
} else if show_def_docs {
// In case the item isn't documented,
// provide short documentation from the trait.
2019-08-31 21:47:55 +02:00
document_short(w, cx, it, link, "", is_hidden);
}
}
} else {
2019-08-31 21:47:55 +02:00
document_stability(w, cx, item, is_hidden);
if show_def_docs {
2019-08-31 21:47:55 +02:00
document_full(w, item, cx, "", is_hidden);
}
}
2016-05-18 20:37:58 +02:00
} else {
2019-08-31 21:47:55 +02:00
document_stability(w, cx, item, is_hidden);
if show_def_docs {
2019-08-31 21:47:55 +02:00
document_short(w, cx, item, link, "", is_hidden);
}
}
}
}
let traits = &cx.cache.traits;
let trait_ = i.trait_did().map(|did| &traits[&did]);
2019-08-31 21:47:55 +02:00
write!(w, "<div class='impl-items'>");
for trait_item in &i.inner_impl().items {
2019-12-22 23:42:04 +01:00
doc_impl_item(
w,
cx,
trait_item,
link,
render_mode,
false,
outer_version,
trait_,
show_def_docs,
);
}
2019-12-22 23:42:04 +01:00
fn render_default_items(
w: &mut Buffer,
cx: &Context,
t: &clean::Trait,
i: &clean::Impl,
render_mode: RenderMode,
outer_version: Option<&str>,
show_def_docs: bool,
) {
2015-01-31 18:20:46 +01:00
for trait_item in &t.items {
let n = trait_item.name.clone();
if i.items.iter().find(|m| m.name == n).is_some() {
2016-02-28 12:11:13 +01:00
continue;
}
let did = i.trait_.as_ref().unwrap().def_id().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.provided_trait_methods);
2019-12-22 23:42:04 +01:00
doc_impl_item(
w,
cx,
trait_item,
assoc_link,
render_mode,
true,
outer_version,
None,
show_def_docs,
);
}
}
// If we've implemented a trait, then also emit documentation for all
2016-03-25 00:10:15 +01:00
// default items which weren't overridden in the implementation block.
// We don't emit documentation for default items if they appear in the
// Implementations on Foreign Types or Implementors sections.
if show_default_items {
if let Some(t) = trait_ {
2019-12-22 23:42:04 +01:00
render_default_items(
w,
cx,
t,
&i.inner_impl(),
render_mode,
outer_version,
show_def_docs,
);
}
}
2019-08-31 21:47:55 +02:00
write!(w, "</div>");
}
2019-12-22 23:42:04 +01:00
fn item_opaque_ty(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::OpaqueTy) {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust opaque'>");
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"type {}{}{where_clause} = impl {bounds};</pre>",
it.name.as_ref().unwrap(),
t.generics.print(),
where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true },
bounds = bounds(&t.bounds, false)
);
2019-02-05 14:27:09 +01:00
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2019-02-05 14:27:09 +01:00
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
2019-02-05 14:27:09 +01:00
}
2019-12-22 23:42:04 +01:00
fn item_trait_alias(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::TraitAlias) {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust trait-alias'>");
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"trait {}{}{} = {};</pre>",
it.name.as_ref().unwrap(),
t.generics.print(),
WhereClause { gens: &t.generics, indent: 0, end_newline: true },
bounds(&t.bounds, true)
);
2018-07-19 10:23:56 +02:00
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2018-07-19 10:23:56 +02:00
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
2018-07-19 10:23:56 +02:00
}
2019-08-31 21:47:55 +02:00
fn item_typedef(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Typedef) {
write!(w, "<pre class='rust typedef'>");
render_attributes(w, it, false);
2019-12-22 23:42:04 +01:00
write!(
w,
"type {}{}{where_clause} = {type_};</pre>",
it.name.as_ref().unwrap(),
t.generics.print(),
where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true },
type_ = t.type_.print()
);
2019-08-31 21:47:55 +02:00
document(w, cx, it);
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
2019-08-31 21:47:55 +02:00
fn item_foreign_type(w: &mut Buffer, cx: &Context, it: &clean::Item) {
writeln!(w, "<pre class='rust foreigntype'>extern {{");
render_attributes(w, it, false);
write!(
w,
" {}type {};\n}}</pre>",
it.visibility.print_with_space(),
it.name.as_ref().unwrap(),
2019-08-31 21:47:55 +02:00
);
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn print_sidebar(cx: &Context, it: &clean::Item, buffer: &mut Buffer) {
2019-12-22 23:42:04 +01:00
let parentlen = cx.current.len() - if it.is_mod() { 1 } else { 0 };
if it.is_struct()
|| it.is_trait()
|| it.is_primitive()
|| it.is_union()
|| it.is_enum()
|| it.is_mod()
|| it.is_typedef()
{
write!(
buffer,
"<p class='location'>{}{}</p>",
match it.inner {
clean::StructItem(..) => "Struct ",
clean::TraitItem(..) => "Trait ",
clean::PrimitiveItem(..) => "Primitive Type ",
clean::UnionItem(..) => "Union ",
clean::EnumItem(..) => "Enum ",
clean::TypedefItem(..) => "Type Definition ",
clean::ForeignTypeItem => "Foreign Type ",
2019-12-22 23:42:04 +01:00
clean::ModuleItem(..) =>
if it.is_crate() {
"Crate "
} else {
"Module "
},
_ => "",
},
2019-12-22 23:42:04 +01:00
it.name.as_ref().unwrap()
);
}
if it.is_crate() {
if let Some(ref version) = cx.cache.crate_version {
2019-12-22 23:42:04 +01:00
write!(
buffer,
"<div class='block version'>\
<p>Version {}</p>\
</div>",
2019-12-22 23:42:04 +01:00
version
);
}
}
write!(buffer, "<div class=\"sidebar-elems\">");
if it.is_crate() {
2019-12-22 23:42:04 +01:00
write!(
buffer,
"<a id='all-types' href='all.html'><p>See all {}'s items</p></a>",
it.name.as_ref().expect("crates always have a name")
);
}
match it.inner {
clean::StructItem(ref s) => sidebar_struct(buffer, it, s),
clean::TraitItem(ref t) => sidebar_trait(buffer, it, t),
2019-09-13 21:22:00 +02:00
clean::PrimitiveItem(_) => sidebar_primitive(buffer, it),
clean::UnionItem(ref u) => sidebar_union(buffer, it, u),
clean::EnumItem(ref e) => sidebar_enum(buffer, it, e),
2019-09-13 21:22:00 +02:00
clean::TypedefItem(_, _) => sidebar_typedef(buffer, it),
clean::ModuleItem(ref m) => sidebar_module(buffer, &m.items),
clean::ForeignTypeItem => sidebar_foreign_type(buffer, it),
_ => (),
}
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
write!(buffer, "<p class='location'>");
for (i, name) in cx.current.iter().take(parentlen).enumerate() {
if i > 0 {
write!(buffer, "::<wbr>");
}
2019-12-22 23:42:04 +01:00
write!(
buffer,
"<a href='{}index.html'>{}</a>",
&cx.root_path()[..(cx.current.len() - i - 1) * 3],
*name
);
}
write!(buffer, "</p>");
// Sidebar refers to the enclosing module, not this module.
let relpath = if it.is_mod() { "../" } else { "" };
2019-12-22 23:42:04 +01:00
write!(
buffer,
"<script>window.sidebarCurrent = {{\
name: '{name}', \
ty: '{ty}', \
relpath: '{path}'\
}};</script>",
2019-12-22 23:42:04 +01:00
name = it.name.as_ref().map(|x| &x[..]).unwrap_or(""),
ty = it.type_(),
path = relpath
);
if parentlen == 0 {
// There is no sidebar-items.js beyond the crate root path
// FIXME maybe dynamic crate loading can be merged here
} else {
2019-12-22 23:42:04 +01:00
write!(buffer, "<script defer src=\"{path}sidebar-items.js\"></script>", path = relpath);
}
// Closes sidebar-elems div.
write!(buffer, "</div>");
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while used_links.insert(format!("{}-{}", url, add)) == false {
add += 1;
}
format!("{}-{}", url, add)
}
fn get_methods(
i: &clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
deref_mut: bool,
) -> Vec<String> {
2019-12-22 23:42:04 +01:00
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_method() => {
if !for_deref || should_render_item(item, deref_mut) {
2019-12-22 23:42:04 +01:00
Some(format!(
"<a href=\"#{}\">{}</a>",
get_next_url(used_links, format!("method.{}", name)),
name
))
2017-10-28 01:11:01 +02:00
} else {
None
}
}
_ => None,
2019-12-22 23:42:04 +01:00
})
.collect::<Vec<_>>()
}
2017-10-27 23:09:10 +02:00
// The point is to url encode any potential character from a type with genericity.
fn small_url_encode(s: &str) -> String {
s.replace("<", "%3C")
2019-12-22 23:42:04 +01:00
.replace(">", "%3E")
.replace(" ", "%20")
.replace("?", "%3F")
.replace("'", "%27")
.replace("&", "%26")
.replace(",", "%2C")
.replace(":", "%3A")
.replace(";", "%3B")
.replace("[", "%5B")
.replace("]", "%5D")
.replace("\"", "%22")
2017-10-27 23:09:10 +02:00
}
fn sidebar_assoc_items(it: &clean::Item) -> String {
let mut out = String::new();
let c = cache();
if let Some(v) = c.impls.get(&it.def_id) {
let mut used_links = FxHashSet::default();
{
2019-09-13 20:25:56 +02:00
let used_links_bor = &mut used_links;
2019-12-22 23:42:04 +01:00
let mut ret = v
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(move |i| get_methods(i.inner_impl(), false, used_links_bor, false))
.collect::<Vec<_>>();
2019-02-04 12:38:26 +01:00
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
if !ret.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#methods\">Methods\
</a><div class=\"sidebar-links\">{}</div>",
ret.join("")
));
}
}
if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
2019-12-22 23:42:04 +01:00
if let Some(impl_) = v
.iter()
.filter(|i| i.inner_impl().trait_.is_some())
.find(|i| i.inner_impl().trait_.def_id() == c.deref_trait_did)
{
if let Some((target, real_target)) = impl_
2019-12-22 23:42:04 +01:00
.inner_impl()
.items
.iter()
.filter_map(|item| match item.inner {
2020-01-10 14:46:28 +01:00
clean::TypedefItem(ref t, true) => Some(match *t {
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
2020-01-10 14:46:28 +01:00
}),
_ => None,
2019-12-22 23:42:04 +01:00
})
.next()
{
2020-01-15 18:52:04 +01:00
let inner_impl = target
2019-12-22 23:42:04 +01:00
.def_id()
.or(target
.primitive_type()
.and_then(|prim| c.primitive_locations.get(&prim).cloned()))
.and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
out.push_str("<a class=\"sidebar-title\" href=\"#deref-methods\">");
2019-12-22 23:42:04 +01:00
out.push_str(&format!(
"Methods from {}&lt;Target={}&gt;",
Escape(&format!(
2019-12-22 23:42:04 +01:00
"{:#}",
impl_.inner_impl().trait_.as_ref().unwrap().print()
)),
Escape(&format!("{:#}", real_target.print()))
2019-12-22 23:42:04 +01:00
));
out.push_str("</a>");
2019-12-22 23:42:04 +01:00
let mut ret = impls
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), true, &mut used_links, true))
.collect::<Vec<_>>();
2019-02-04 12:38:26 +01:00
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
if !ret.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(&format!(
"<div class=\"sidebar-links\">{}</div>",
ret.join("")
));
2019-02-04 12:38:26 +01:00
}
}
}
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
let format_impls = |impls: Vec<&Impl>| {
let mut links = FxHashSet::default();
2019-12-22 23:42:04 +01:00
let mut ret = impls
.iter()
2019-02-04 12:38:26 +01:00
.filter_map(|i| {
let is_negative_impl = is_negative_impl(i.inner_impl());
if let Some(ref i) = i.inner_impl().trait_ {
let i_display = format!("{:#}", i.print());
2019-02-04 12:38:26 +01:00
let out = Escape(&i_display);
let encoded = small_url_encode(&format!("{:#}", i.print()));
2019-12-22 23:42:04 +01:00
let generated = format!(
"<a href=\"#impl-{}\">{}{}</a>",
encoded,
if is_negative_impl { "!" } else { "" },
out
);
if links.insert(generated.clone()) { Some(generated) } else { None }
2019-02-04 12:38:26 +01:00
} else {
None
}
})
.collect::<Vec<String>>();
ret.sort();
ret.join("")
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
};
2019-12-22 23:42:04 +01:00
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) =
v.iter().partition::<Vec<_>, _>(|i| i.inner_impl().synthetic);
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) = concrete
.into_iter()
.partition::<Vec<_>, _>(|i| i.inner_impl().blanket_impl.is_some());
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
let concrete_format = format_impls(concrete);
let synthetic_format = format_impls(synthetic);
let blanket_format = format_impls(blanket_impl);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
if !concrete_format.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#implementations\">\
Trait Implementations</a>",
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", concrete_format));
}
if !synthetic_format.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#synthetic-implementations\">\
Auto Trait Implementations</a>",
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", synthetic_format));
}
if !blanket_format.is_empty() {
2019-12-22 23:42:04 +01:00
out.push_str(
"<a class=\"sidebar-title\" href=\"#blanket-implementations\">\
Blanket Implementations</a>",
);
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", blanket_format));
}
}
}
out
}
2019-08-31 15:07:29 +02:00
fn sidebar_struct(buf: &mut Buffer, it: &clean::Item, s: &clean::Struct) {
let mut sidebar = String::new();
2017-11-04 20:45:12 +01:00
let fields = get_struct_fields_name(&s.fields);
2017-11-04 20:45:12 +01:00
if !fields.is_empty() {
if let doctree::Plain = s.struct_type {
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">{}</div>",
fields
));
}
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
fn get_id_for_impl_on_foreign_type(for_: &clean::Type, trait_: &clean::Type) -> String {
small_url_encode(&format!("impl-{:#}-for-{:#}", trait_.print(), for_.print()))
}
2017-11-04 20:45:12 +01:00
fn extract_for_impl_name(item: &clean::Item) -> Option<(String, String)> {
match item.inner {
clean::ItemEnum::ImplItem(ref i) => {
if let Some(ref trait_) = i.trait_ {
Some((
format!("{:#}", i.for_.print()),
get_id_for_impl_on_foreign_type(&i.for_, trait_),
))
2017-11-04 20:45:12 +01:00
} else {
None
}
2019-12-22 23:42:04 +01:00
}
2017-11-04 20:45:12 +01:00
_ => None,
}
}
2017-11-20 21:50:05 +01:00
fn is_negative_impl(i: &clean::Impl) -> bool {
i.polarity == Some(clean::ImplPolarity::Negative)
}
2019-08-31 15:07:29 +02:00
fn sidebar_trait(buf: &mut Buffer, it: &clean::Item, t: &clean::Trait) {
let mut sidebar = String::new();
2019-12-22 23:42:04 +01:00
let types = t
.items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if m.is_associated_type() => {
Some(format!("<a href=\"#associatedtype.{name}\">{name}</a>", name = name))
}
_ => None,
})
.collect::<String>();
let consts = t
.items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if m.is_associated_const() => {
Some(format!("<a href=\"#associatedconstant.{name}\">{name}</a>", name = name))
}
_ => None,
})
.collect::<String>();
let mut required = t
.items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if m.is_ty_method() => {
Some(format!("<a href=\"#tymethod.{name}\">{name}</a>", name = name))
}
_ => None,
})
.collect::<Vec<String>>();
let mut provided = t
.items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if m.is_method() => {
Some(format!("<a href=\"#method.{0}\">{0}</a>", name))
}
_ => None,
})
.collect::<Vec<String>>();
2017-11-04 20:45:12 +01:00
if !types.is_empty() {
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#associated-types\">\
2017-11-04 20:45:12 +01:00
Associated Types</a><div class=\"sidebar-links\">{}</div>",
2019-12-22 23:42:04 +01:00
types
));
}
2017-11-04 20:45:12 +01:00
if !consts.is_empty() {
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#associated-const\">\
2017-11-04 20:45:12 +01:00
Associated Constants</a><div class=\"sidebar-links\">{}</div>",
2019-12-22 23:42:04 +01:00
consts
));
}
2017-11-04 20:45:12 +01:00
if !required.is_empty() {
2019-02-04 12:38:26 +01:00
required.sort();
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#required-methods\">\
2017-11-04 20:45:12 +01:00
Required Methods</a><div class=\"sidebar-links\">{}</div>",
2019-12-22 23:42:04 +01:00
required.join("")
));
}
2017-11-04 20:45:12 +01:00
if !provided.is_empty() {
2019-02-04 12:38:26 +01:00
provided.sort();
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#provided-methods\">\
2017-11-04 20:45:12 +01:00
Provided Methods</a><div class=\"sidebar-links\">{}</div>",
2019-12-22 23:42:04 +01:00
provided.join("")
));
}
let c = cache();
if let Some(implementors) = c.implementors.get(&it.def_id) {
2019-12-22 23:42:04 +01:00
let mut res = implementors
.iter()
.filter(|i| i.inner_impl().for_.def_id().map_or(false, |d| !c.paths.contains_key(&d)))
.filter_map(|i| match extract_for_impl_name(&i.impl_item) {
Some((ref name, ref id)) => {
Some(format!("<a href=\"#{}\">{}</a>", id, Escape(name)))
}
_ => None,
})
.collect::<Vec<String>>();
2017-11-04 20:45:12 +01:00
if !res.is_empty() {
2019-02-04 12:38:26 +01:00
res.sort();
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#foreign-impls\">\
2017-11-04 20:45:12 +01:00
Implementations on Foreign Types</a><div \
class=\"sidebar-links\">{}</div>",
2019-12-22 23:42:04 +01:00
res.join("")
));
2017-11-04 20:45:12 +01:00
}
}
sidebar.push_str("<a class=\"sidebar-title\" href=\"#implementors\">Implementors</a>");
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
if t.auto {
2019-12-22 23:42:04 +01:00
sidebar.push_str(
"<a class=\"sidebar-title\" \
href=\"#synthetic-implementors\">Auto Implementors</a>",
);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
}
2017-10-27 00:16:44 +02:00
sidebar.push_str(&sidebar_assoc_items(it));
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar)
}
2019-09-13 21:22:00 +02:00
fn sidebar_primitive(buf: &mut Buffer, it: &clean::Item) {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
2019-09-13 21:22:00 +02:00
fn sidebar_typedef(buf: &mut Buffer, it: &clean::Item) {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
2017-11-04 20:45:12 +01:00
fn get_struct_fields_name(fields: &[clean::Item]) -> String {
2019-12-22 23:42:04 +01:00
fields
.iter()
.filter(|f| if let clean::StructFieldItem(..) = f.inner { true } else { false })
.filter_map(|f| match f.name {
Some(ref name) => Some(format!(
"<a href=\"#structfield.{name}\">\
{name}</a>",
name = name
)),
_ => None,
})
.collect()
2017-11-04 20:45:12 +01:00
}
2019-08-31 15:07:29 +02:00
fn sidebar_union(buf: &mut Buffer, it: &clean::Item, u: &clean::Union) {
let mut sidebar = String::new();
2017-11-04 20:45:12 +01:00
let fields = get_struct_fields_name(&u.fields);
2017-11-04 20:45:12 +01:00
if !fields.is_empty() {
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">{}</div>",
fields
));
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
2019-08-31 15:07:29 +02:00
fn sidebar_enum(buf: &mut Buffer, it: &clean::Item, e: &clean::Enum) {
let mut sidebar = String::new();
2019-12-22 23:42:04 +01:00
let variants = e
.variants
.iter()
.filter_map(|v| match v.name {
Some(ref name) => Some(format!(
"<a href=\"#variant.{name}\">{name}\
</a>",
name = name
)),
_ => None,
})
.collect::<String>();
2017-11-04 20:45:12 +01:00
if !variants.is_empty() {
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<a class=\"sidebar-title\" href=\"#variants\">Variants</a>\
<div class=\"sidebar-links\">{}</div>",
variants
));
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
2018-05-28 21:30:01 +02:00
fn item_ty_to_strs(ty: &ItemType) -> (&'static str, &'static str) {
match *ty {
2019-12-22 23:42:04 +01:00
ItemType::ExternCrate | ItemType::Import => ("reexports", "Re-exports"),
ItemType::Module => ("modules", "Modules"),
ItemType::Struct => ("structs", "Structs"),
ItemType::Union => ("unions", "Unions"),
ItemType::Enum => ("enums", "Enums"),
ItemType::Function => ("functions", "Functions"),
ItemType::Typedef => ("types", "Type Definitions"),
ItemType::Static => ("statics", "Statics"),
ItemType::Constant => ("constants", "Constants"),
ItemType::Trait => ("traits", "Traits"),
ItemType::Impl => ("impls", "Implementations"),
ItemType::TyMethod => ("tymethods", "Type Methods"),
ItemType::Method => ("methods", "Methods"),
ItemType::StructField => ("fields", "Struct Fields"),
ItemType::Variant => ("variants", "Variants"),
ItemType::Macro => ("macros", "Macros"),
ItemType::Primitive => ("primitives", "Primitive Types"),
ItemType::AssocType => ("associated-types", "Associated Types"),
ItemType::AssocConst => ("associated-consts", "Associated Constants"),
ItemType::ForeignType => ("foreign-types", "Foreign Types"),
ItemType::Keyword => ("keywords", "Keywords"),
ItemType::OpaqueTy => ("opaque-types", "Opaque Types"),
ItemType::ProcAttribute => ("attributes", "Attribute Macros"),
ItemType::ProcDerive => ("derives", "Derive Macros"),
ItemType::TraitAlias => ("trait-aliases", "Trait aliases"),
2018-05-28 21:30:01 +02:00
}
}
2019-09-13 21:22:00 +02:00
fn sidebar_module(buf: &mut Buffer, items: &[clean::Item]) {
let mut sidebar = String::new();
2019-12-22 23:42:04 +01:00
if items.iter().any(|it| it.type_() == ItemType::ExternCrate || it.type_() == ItemType::Import)
{
sidebar.push_str(&format!(
"<li><a href=\"#{id}\">{name}</a></li>",
id = "reexports",
name = "Re-exports"
));
}
// ordering taken from item_module, reorder, where it prioritized elements in a certain order
// to print its headings
2019-12-22 23:42:04 +01:00
for &myty in &[
ItemType::Primitive,
ItemType::Module,
ItemType::Macro,
ItemType::Struct,
ItemType::Enum,
ItemType::Constant,
ItemType::Static,
ItemType::Trait,
ItemType::Function,
ItemType::Typedef,
ItemType::Union,
ItemType::Impl,
ItemType::TyMethod,
ItemType::Method,
ItemType::StructField,
ItemType::Variant,
ItemType::AssocType,
ItemType::AssocConst,
ItemType::ForeignType,
ItemType::Keyword,
] {
if items.iter().any(|it| !it.is_stripped() && it.type_() == myty) {
2018-05-28 21:30:01 +02:00
let (short, name) = item_ty_to_strs(&myty);
2019-12-22 23:42:04 +01:00
sidebar.push_str(&format!(
"<li><a href=\"#{id}\">{name}</a></li>",
id = short,
name = name
));
}
}
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\"><ul>{}</ul></div>", sidebar);
}
}
2019-08-31 15:07:29 +02:00
fn sidebar_foreign_type(buf: &mut Buffer, it: &clean::Item) {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
2019-08-31 15:07:29 +02:00
write!(buf, "<div class=\"block items\">{}</div>", sidebar);
}
}
2019-08-31 21:47:55 +02:00
fn item_macro(w: &mut Buffer, cx: &Context, it: &clean::Item, t: &clean::Macro) {
2018-03-27 11:57:00 +02:00
wrap_into_docblock(w, |w| {
2019-12-22 23:42:04 +01:00
w.write_str(&highlight::render_with_highlighting(&t.source, Some("macro"), None, None))
2019-08-31 21:47:55 +02:00
});
document(w, cx, it)
}
2019-08-31 21:47:55 +02:00
fn item_proc_macro(w: &mut Buffer, cx: &Context, it: &clean::Item, m: &clean::ProcMacro) {
let name = it.name.as_ref().expect("proc-macros always have names");
match m.kind {
MacroKind::Bang => {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust macro'>");
write!(w, "{}!() {{ /* proc-macro */ }}", name);
write!(w, "</pre>");
}
MacroKind::Attr => {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust attr'>");
write!(w, "#[{}]", name);
write!(w, "</pre>");
}
MacroKind::Derive => {
2019-08-31 21:47:55 +02:00
write!(w, "<pre class='rust derive'>");
write!(w, "#[derive({})]", name);
if !m.helpers.is_empty() {
2019-08-31 21:47:55 +02:00
writeln!(w, "\n{{");
writeln!(w, " // Attributes available to this derive:");
for attr in &m.helpers {
2019-08-31 21:47:55 +02:00
writeln!(w, " #[{}]", attr);
}
2019-08-31 21:47:55 +02:00
write!(w, "}}");
}
2019-08-31 21:47:55 +02:00
write!(w, "</pre>");
}
}
document(w, cx, it)
}
2019-09-13 21:22:00 +02:00
fn item_primitive(w: &mut Buffer, cx: &Context, it: &clean::Item) {
2019-08-31 21:47:55 +02:00
document(w, cx, it);
2020-01-15 18:52:04 +01:00
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
2019-09-13 21:22:00 +02:00
fn item_keyword(w: &mut Buffer, cx: &Context, it: &clean::Item) {
document(w, cx, it)
2018-05-28 21:30:01 +02:00
}
crate const BASIC_KEYWORDS: &'static str = "rust, rustlang, rust-lang";
fn make_item_keywords(it: &clean::Item) -> String {
2016-02-28 14:01:43 +01:00
format!("{}, {}", BASIC_KEYWORDS, it.name.as_ref().unwrap())
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
/// Returns a list of all paths used in the type.
/// This is used to help deduplicate imported impls
/// for reexported types. If any of the contained
/// types are re-exported, we don't use the corresponding
/// entry from the js file, as inlining will have already
/// picked up the impl
fn collect_paths_for_type(first_ty: clean::Type) -> Vec<String> {
let mut out = Vec::new();
let mut visited = FxHashSet::default();
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
let mut work = VecDeque::new();
let cache = cache();
work.push_back(first_ty);
while let Some(ty) = work.pop_front() {
if !visited.insert(ty.clone()) {
continue;
}
match ty {
clean::Type::ResolvedPath { did, .. } => {
let get_extern = || cache.external_paths.get(&did).map(|s| s.0.clone());
let fqp = cache.exact_paths.get(&did).cloned().or_else(get_extern);
match fqp {
Some(path) => {
out.push(path.join("::"));
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
_ => {}
};
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
clean::Type::Tuple(tys) => {
work.extend(tys.into_iter());
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
clean::Type::Slice(ty) => {
work.push_back(*ty);
}
clean::Type::Array(ty, _) => {
work.push_back(*ty);
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
clean::Type::RawPointer(_, ty) => {
work.push_back(*ty);
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
clean::Type::BorrowedRef { type_, .. } => {
work.push_back(*type_);
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
clean::Type::QPath { self_type, trait_, .. } => {
work.push_back(*self_type);
work.push_back(*trait_);
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
_ => {}
}
2019-12-22 23:42:04 +01:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 22:16:55 +01:00
out
}
crate fn cache() -> Arc<Cache> {
CACHE_KEY.with(|c| c.borrow().clone())
}