`replace_prefix` is currently implemented as a method but has no real relation
to the struct it is implemented on. Turn it into a closure and move it into the
only method from which it is called.
Added [T; N]::zip()
This is my first PR to rust so I hope I have done everything right, or at least close :)
---
This is PR adds the array method `[T; N]::zip()` which, in my mind, is a natural extension to #75212.
My implementation of `zip()` is mostly just a modified copy-paste of `map()`. Should I keep the comments? Also am I right in assuming there should be no way for the `for`-loop to panic, thus no need for the dropguard seen in the `map()`-function?
The doc comment is in a similar way a slightly modified copy paste of [`Iterator::zip()`](https://doc.rust-lang.org/beta/std/iter/trait.Iterator.html#method.zip)
`@jplatte` mentioned in [#75490](https://github.com/rust-lang/rust/pull/75490#issuecomment-677790758) `zip_with()`,
> zip and zip_with seem like they would be useful :)
is this something I should add (assuming there is interest for this PR at all :))
Rename `overlapping_patterns` lint
As discussed in https://github.com/rust-lang/rust/issues/65477. I also tweaked a few things along the way.
r? `@varkor`
`@rustbot` modify labels: +A-exhaustiveness-checking
Reserve necessary space for params in generics_of
Always reserve space for the exact number of generic parameters we need in generics_of. As far as I can see, the default is 0/4 elements based on has_self, and the vector grows on after that.
Acknowledge that `[CONST; N]` is stable
When `const_in_array_repeat_expressions` (RFC 2203) got unstably implemented as part of https://github.com/rust-lang/rust/pull/61749, accidentally, the special case of repeating a *constant* got stabilized immediately. That is why the following code works on stable:
```rust
const EMPTY: Vec<i32> = Vec::new();
pub const fn bar() -> [Vec<i32>; 2] {
[EMPTY; 2]
}
fn main() {
let x = bar();
}
```
In contrast, if we had written `[expr; 2]` for some expression that is not *literally* a constant but could be evaluated at compile-time (e.g. `(EMPTY,).0`), this would have failed.
We could take back this stabilization as it was clearly accidental. However, I propose we instead just officially accept this and stabilize a small subset of RFC 2203, while leaving the more complex case of general expressions that could be evaluated at compile-time unstable. Making that case work well is pretty much blocked on inline `const` expressions (to avoid relying too much on [implicit promotion](https://github.com/rust-lang/const-eval/blob/master/promotion.md)), so it could take a bit until it comes to full fruition. `[CONST; N]` is an uncontroversial subset of this feature that has no semantic ambiguities, does not rely on promotion, and basically provides the full expressive power of RFC 2203 but without the convenience (people have to define constants to repeat them, possibly using associated consts if generics are involved).
Well, I said "no semantic ambiguities", that is only almost true... the one point I am not sure about is `[CONST; 0]`. There are two possible behaviors here: either this is equivalent to `let x = CONST; [x; 0]`, or it is a NOP (if we argue that the constant is never actually instantiated). The difference between the two is that if `CONST` has a destructor, it should run in the former case (but currently doesn't, due to https://github.com/rust-lang/rust/issues/74836); but should not run if it is considered a NOP. For regular `[x; 0]` there seems to be consensus on running drop (there isn't really an alternative); any opinions for the `CONST` special case? Should this instantiate the const only to immediately run its destructors? That seems somewhat silly to me. After all, the `let`-expansion does *not* work in general, for `N > 1`.
Cc `@rust-lang/lang` `@rust-lang/wg-const-eval`
Cc https://github.com/rust-lang/rust/issues/49147
Ran the tidy check
Following the diagnostic guide better
Diagnostic generation is now relegated to its own function in the diagnostics module.
Added tests
Fixed the ui test
Fix pretty printing an AST representing `&(mut ident)`
The PR fixes a misguiding help diagnostic in the parser that I reported in #80186. I discovered that the parsers recovery and reporting logic was correct but the pretty printer produced wrong code for the example. (Details in https://github.com/rust-lang/rust/issues/80186#issuecomment-748498676)
Example:
```rust
#![allow(unused_variables)]
fn main() {
let mut &x = &0;
}
```
The AST fragment
`PatKind::Ref(PatKind::Ident(BindingMode::ByValue(Mutability::Mut), ..), Mutability::Not)`
was printed to be `&mut ident`. But this wouldn't round trip through parsing again, because then it would be:
`PatKind::Ref(PatKind::Ident(BindingMode::ByValue(Mutability::Not), ..), Mutability::Mut)`
Now the pretty-printer prints `&(mut ident)`. Reparsing that code results in the AST fragment
`PatKind::Ref(PatKind::Paren(PatKind::Ident(BindingMode::ByValue(Mutability::Mut), ..)), Mutability::Not)`
which I think should behave like the original pattern.
Old diagnostic:
```
error: `mut` must be attached to each individual binding
--> src/main.rs:3:9
|
3 | let mut &x = &0;
| ^^^^^^ help: add `mut` to each binding: `&mut x`
|
= note: `mut` may be followed by `variable` and `variable @ pattern`
```
New diagnostic:
```
error: `mut` must be attached to each individual binding
--> src/main.rs:3:9
|
3 | let mut &x = &0;
| ^^^^^^ help: add `mut` to each binding: `&(mut x)`
|
= note: `mut` may be followed by `variable` and `variable @ pattern`
```
Fixes#80186
Minor cleanups in LateResolver
- Avoid calculating hash twice
- Avoid creating a closure in every iteration of a loop
- Reserve space for path in advance
- Some readability changes
Cleanup markdown span handling
1. Get rid of `locate()` in markdown handling
This function was unfortunate for several reasons:
- It used `unsafe` because it wanted to tell whether a string came from
the same *allocation* as another, not just whether it was a textual match.
- It recalculated spans even though they were already available from pulldown
- It sometimes *failed* to calculate the span, which meant it was always possible for the span to be `None`, even though in practice that should never happen.
This has several cleanups:
- Make the span required
- Pass through the span from pulldown in the `HeadingLinks` and `Footnotes` iterators
- Only add iterator bounds on the `impl Iterator`, not on `new` and the struct itself.
2. Remove unnecessary scope in `markdown_links`
I recommend reading a single commit at a time.
cc ``@bugadani`` - this will conflict with https://github.com/rust-lang/rust/pull/77859, I'll try to make sure that gets merged first.