Use Eq + Ord for lexicographical ordering of sequences.
For each of <, <=, >= or > as R, use::
[x, ..xs] R [y, ..ys] = if x != y { x R y } else { xs R ys }
Previous code using `a < b` and then `!(b < a)` for short-circuiting
fails on cases such as [1.0, 2.0] < [0.0/0.0, 3.0], where the first
element was effectively considered equal.
Containers like &[T] did also implement only one comparison operator `<`,
and derived the comparison results from this. This isn't correct either for
Ord.
Implement functions in `std::iterator::order::{lt,le,gt,ge,equal,cmp}` that all
iterable containers can use for lexical order.
We also visit tuple ordering, having the same problem and same solution
(but differing implementation).
Fix#3192. r? anyone
There are 4 different new tests, to check some different scenarios for
what the parse context is at the time of recovery, becasue our
compile-fail infrastructure does not appear to handle verifying
error-recovery situations.
Differentiate between unit-like struct definition item and unit-like
struct construction in the error message.
----
More generally, outlines a more generic strategy for parse error
recovery: By committing to an expression/statement at set points in
the parser, we can then do some look-ahead to catch common mistakes
and skip over them.
One detail about this strategy is that you want to avoid emitting the
"helpful" message unless the input is reasonably close to the case of
interest. (E.g. do not warn about a potential unit struct for an
input of the form `let hmm = do foo { } { };`)
To accomplish this, I added (partial) last_token tracking; used for
`commit_stmt` support.
The check_for_erroneous_unit_struct_expecting fn returns bool to
signal whether it "made progress"; currently unused; this is meant for
use to compose several such recovery checks together in a loop.
Adds `--target-cpu` flag which lets you choose a more specific target cpu instead of just passing the default, `generic`. It's more or less akin to `-mcpu`/`-mtune` in clang/gcc.
The type of the result of option_env! was not fully specified in the
None case, leading to type check failures in the case where the variable
was not defined (e.g. option_env!("FOO").is_none()).
Also cleanup the treatment of mutability in mem_categorization, which still
included the concept of interior mutability. At some point, we should
refactor the types to exclude the possibility of interior mutability rather
than just ignoring the mutability value in those cases.
to favor inherent methods over extension methods.
The reason to favor inherent methods is that otherwise an impl
like
impl Foo for @Foo { fn method(&self) { self.method() } }
causes infinite recursion. The current change to favor inherent methods is
rather hacky; the method resolution code is in need of a refactoring.
what amount a T* pointer must be adjusted to reach the contents
of the box. For `~T` types, this requires knowing the type `T`,
which is not known in the case of objects.
`enum Token` was 192 bytes (64-bit), as pointed out by pnkfelix; the only
bloating variant being `INTERPOLATED(nonterminal)`.
Updating `enum nonterminal` to use ~ where variants included big types,
shrunk size_of(Token) to 32 bytes (64-bit).
I am unsure if the `nt_ident` variant should have an indirection, with
ast::ident being only 16 bytes (64-bit), but without this, enum Token
would be 40 bytes.
A dumb benchmark says that compilation time is unchanged, while peak
memory usage for compiling std.rs is down 3%
Before::
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc --cfg stage1 src/libstd/std.rs
19.00user 0.39system 0:19.41elapsed 99%CPU (0avgtext+0avgdata 627820maxresident)k
0inputs+28896outputs (0major+228665minor)pagefaults 0swaps
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc -O --cfg stage1 src/libstd/std.rs
31.64user 0.34system 0:32.02elapsed 99%CPU (0avgtext+0avgdata 629876maxresident)k
0inputs+22432outputs (0major+229411minor)pagefaults 0swaps
After::
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc --cfg stage1 src/libstd/std.rs
19.07user 0.45system 0:19.55elapsed 99%CPU (0avgtext+0avgdata 609384maxresident)k
0inputs+28896outputs (0major+221997minor)pagefaults 0swaps
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc -O --cfg stage1 src/libstd/std.rs
31.90user 0.34system 0:32.28elapsed 99%CPU (0avgtext+0avgdata 612080maxresident)k
0inputs+22432outputs (0major+223726minor)pagefaults 0swaps
This can be applied to statics and it will indicate that LLVM will attempt to
merge the constant in .data with other statics.
I have preliminarily applied this to all of the statics generated by the new
`ifmt!` syntax extension. I compiled a file with 1000 calls to `ifmt!` and a
separate file with 1000 calls to `fmt!` to compare the sizes, and the results
were:
```
fmt 310k
ifmt (before) 529k
ifmt (after) 202k
```
This now means that ifmt! is both faster and smaller than fmt!, yay!
`enum Token` was 192 bytes (64-bit), as pointed out by pnkfelix; the only
bloating variant being `INTERPOLATED(nonterminal)`.
Updating `enum nonterminal` to use ~ where variants included big types,
shrunk size_of(Token) to 32 bytes (64-bit).
I am unsure if the `nt_ident` variant should have an indirection, with
ast::ident being only 16 bytes (64-bit), but without this, enum Token
would be 40 bytes.
A dumb benchmark says that compilation time is unchanged, while peak
memory usage for compiling std.rs is down 3%
Before::
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc --cfg stage1 src/libstd/std.rs
19.00user 0.39system 0:19.41elapsed 99%CPU (0avgtext+0avgdata 627820maxresident)k
0inputs+28896outputs (0major+228665minor)pagefaults 0swaps
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc -O --cfg stage1 src/libstd/std.rs
31.64user 0.34system 0:32.02elapsed 99%CPU (0avgtext+0avgdata 629876maxresident)k
0inputs+22432outputs (0major+229411minor)pagefaults 0swaps
After::
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc --cfg stage1 src/libstd/std.rs
19.07user 0.45system 0:19.55elapsed 99%CPU (0avgtext+0avgdata 609384maxresident)k
0inputs+28896outputs (0major+221997minor)pagefaults 0swaps
$ time ./x86_64-unknown-linux-gnu/stage1/bin/rustc -O --cfg stage1 src/libstd/std.rs
31.90user 0.34system 0:32.28elapsed 99%CPU (0avgtext+0avgdata 612080maxresident)k
0inputs+22432outputs (0major+223726minor)pagefaults 0swaps