* fixed link typos and copy-paster errors
* rewrote Fn* explanations
* `RHS = Self` -> `RHS` is `Self` (added that to all applicable places as
well)
* fixed up some links
* s/MutDeref/DerefMut
* removed remaining superfluous `fn main()`s
* fixed some minor phrasings and factual errors and inaccuracies
std::ops docs: Fix phrasing and factual errors/inaccuracies
Part of #29365.
* Added paragraph adapted from API guidelines that operator implementations
should be unsurprising
* Modified Point example to be more clear when just reading it
Part of #29365.
* Strenghtened summary/explanation split, making phrasings more parallel
* Added links throughout
* Fixed some example formatting & removed extraneous `fn main()`s (or hid
then when needed because of `#![features]`.
* Emphasized note on `RangeFrom`'s `Iterator` implementation
* Added summary sentences to (unstable) `contains` methods
Part of #29365.
* Moved explanations out of Examples section and expanded on them.
* Made the super-/subtrait relationships more explicit.
* Added links to the other traits, TRPL and the nomicon where appropriate
* Changed method summaries to be in 3rd person singular
* General copyediting
Part of #29365.
* Shortened summary sentences, removing "stuttering"
* Small copyediting
* Changed method summary sentences to be in 3rd person singular
* Removed extraneous explicit `fn main()` in example for `IndexMut`
Part of #29365.
* Removed "stuttering" in summary sentence.
* Copy-edited the explanaition sections
* Added sub-headings in Examples section to aid linking
* Actually implement `Drop` in the `PrintOnDrop` exampl
* Add link to Drop chapter in TRPL
* Changed `drop` summary sentence to be in 3rd person singular
* Added missing link to `panic!`
Part of #29365.
* Expanded the explanaition sections, adapting some parts from the book,
the reference, as well as the API guidelines. As such, the docs now
explicitly state that `Deref` and `DerefMut` should only be implemented
for smart pointers and that they should not fail. Additionally, there
is now a short primer on `Deref` coercion.
* Added links to `DerefMut` from `Deref` and vice versa
* Added links to relevant reference sections
* Removed "stuttering" in summary sentences
* Changed summary sentences of `Deref::deref` and `Deref::deref_mut` to
be in 3rd person singular
* Removed explicit uses of `fn main()` in the examples
Part of #29365.
* Added "real" examples for `BitOrAssign`, `BitXorAssign`, `ShlAssign`,
and `ShrAssign`
* Rewrote method summary senteces to be in 3rd person singular
* Rephrased example introductions to be less redundant ("in this example"
etc.) and to not use "trivial"
* Removed superfluous explicit `fn main()`s in examples
* Added some missing periods
Part of #29365.
* Replaced examples for Mul-/Div-/RemAssign with more illustrative ones
* Made summary senteces for the trait methods use third person singular
* Moved some explanations from Examples section to main explanation
* Switched around argument order for the vector-scalar multiplication
example such that the vector is on the left side (as it would be expected
if one were to switch from `*` to `*=`)
* Replaced mostly redundant example introductions with headings in traits
with more than one example (where it made sense)
* Cleaned up some examples to derive `PartialEq` instead of implementing it
manually when that wasn't needed
* Removed explicit `fn main()`s in examples where they weren't necessary
* Rephrased some things
* Added some missing periods
* Fixed some formatting/punctuation in examples
rustc::middle::dataflow - visit the CFG in RPO
We used to propagate bits in node-id order, which sometimes caused an
excessive number of iterations, especially when macros were present. As
everyone knows, visiting the CFG in RPO bounds the number of iterators
by 1 plus the depth of the most deeply nested loop (times the height of
the lattice, which is 1).
I have no idea how this affects borrowck perf in the non-worst-case, so it's probably a good idea to not roll this up so we can see the effects.
Fixes#43704.
r? @eddyb
We used to propagate bits in node-id order, which sometimes caused an
excessive number of iterations, especially when macros were present. As
everyone knows, visiting the CFG in RPO bounds the number of iterators
by 1 plus the depth of the most deeply nested loop (times the height of
the lattice, which is 1).
Fixes#43704.
de-orphan extended information
Bizarrely, librustc_passes, librustc_plugin, librustc_mir, and libsyntax [weren't getting their error explanations registered](https://github.com/rust-lang/rust/issues/35284) (leaving _several_ error codes absent from [the index](https://doc.rust-lang.org/nightly/error-index.html) and `--explain`). This surfaced a few latent doctest failures that were fixed where readily possible and ignored (with a recorded excuse) if not.
Also, we don't issue E0563 anymore.
r? @GuillaumeGomez
The sole appearance of this code was deleted in 6383de15; the existing practice
in these cases seems to be to comment out its mention in
`register_diagnostics!`.
After repatriating error explanations to the global registry, some lurking
doctest failures surfaced and needed to be chased down. Sadly, a few doctests
needed to be ignored due to a not-yet-understood regression in the doctest
`compile_fail` functionality (filed #43707).
Optimize initialization of arrays using repeat expressions
This PR was inspired by [this thread](https://www.reddit.com/r/rust/comments/6o8ok9/understanding_rust_performances_a_newbie_question/) on Reddit.
It tries to bring array initialization in the same ballpark as `Vec::from_elem()` for unoptimized builds.
For optimized builds this should relieve LLVM of having to figure out the construct we generate is in fact a `memset()`.
To that end this emits `llvm.memset()` when:
* the array is of integer type and all elements are zero (`Vec::from_elem()` also explicitly optimizes for this case)
* the array elements are byte sized
If the array is zero-sized initialization is omitted entirely.
APFloat: Rewrite It In Rust and use it for deterministic floating-point CTFE.
As part of the CTFE initiative, we're forced to find a solution for floating-point operations.
By design, IEEE-754 does not explicitly define everything in a deterministic manner, and there is some variability between platforms, at the very least (e.g. NaN payloads).
If types are to evaluate constant expressions involving type (or in the future, const) generics, that evaluation needs to be *fully deterministic*, even across `rustc` host platforms.
That is, if `[T; T::X]` was used in a cross-compiled library, and the evaluation of `T::X` executed a floating-point operation, that operation has to be reproducible on *any other host*, only knowing `T` and the definition of the `X` associated const (as either AST or HIR).
Failure to uphold those rules allows an associated type (e.g. `<Foo as Iterator>::Item`) to be seen as two (or more) different types, depending on the current host, and such type safety violations typically allow writing of a `transmute` in safe code, given enough generics.
The options considered by @rust-lang/compiler were:
1. Ban floating-point operations in generic const-evaluation contexts
2. Emulate floating-point operations in an uniformly deterministic fashion
The former option may seem appealing at first, but floating-point operations *are allowed today*, so they can't be banned wholesale, a distinction has to be made between the code that already works, and future generic contexts. *Moreover*, every computation that succeeded *has to be cached*, otherwise the generic case can be reproduced without any generics. IMO there are too many ways it can go wrong, and a single violation can be enough for an unsoundness hole.
Not to mention we may end up really wanting floating-point operations *anyway*, in CTFE.
I went with the latter option, and seeing how LLVM *already* has a library for this exact purpose (as it needs to perform optimizations independently of host floating-point capabilities), i.e. `APFloat`, that was what I ended up basing this PR on.
But having been burned by the low reusability of bindings that link to LLVM, and because I would *rather* the floating-point operations to be wrong than not deterministic or not memory-safe (`APFloat` does far more pointer juggling than I'm comfortable with), I decided to RIIR.
This way, we have a guarantee of *no* `unsafe` code, a bit more control over the where native floating-point might accidentally be involved, and non-LLVM backends can share it.
I've also ported all the testcases over, *before* any functionality, to catch any mistakes.
Currently the PR replaces all CTFE operations to go through `apfloat::ieee::{Single,Double}`, keeping only the bits of the `f32` / `f64` memory representation in between operations.
Converting from a string also double-checks that `core::num` and `apfloat` agree on the interpretation of a floating-point number literal, in case either of them has any bugs left around.
r? @nikomatsakis
f? @nagisa @est31
<hr/>
Huge thanks to @edef1c for first demoing usable `APFloat` bindings and to @chandlerc for fielding my questions on IRC about `APFloat` peculiarities (also upstreaming some bugfixes).
Unskip some tests on AArch64
I've been running the test suite remotely on an Acer Chromebook R13 and natively on an ARM Juno developer board, both AArch64 devices. Most of the tests that are skipped on AArch64 are due to testing stdcall/fastcall/x86-specific code or the debugger, but I've found a few tests that could be enabled there.
These have been skipped previously due to failing on the `aarch64-linux-android` and `mac-android` buildbots, more than 2 years ago (#23471, #23695). It seems we don't test those platforms any more, but as they do work on AArch64 Linux, I'd like to propose re-enabling them. All of them pass on my devices.
Add L4Re Support in librustc_back
Add experimental support for x86_64-unknown-l4re-uclibc target, which covers the L4 Runtime Environment.
This pull request contains the changes that have to be made to librustc_back. It follows the changes humenda made in pull request https://github.com/rust-lang/libc/pull/591 to libc.
Next steps will be the modifications to the needed libraries. (libstd, liballoc_system, libpanic_abort, libunwind)
Thanks to humenda for reviewing.
incr.comp.: Assert that no DepNode is re-opened (see issue #42298).
This PR removes the last occurrence of DepNode re-opening and adds an assertion that prevents our doing so in the future too. The DepGraph should no be guaranteed to be cycle free.
r? @nikomatsakis
EDIT: Closes https://github.com/rust-lang/rust/issues/42298
Link LLVM tools dynamically
Set `LLVM_LINK_LLVM_DYLIB=ON` -- "If enabled, tools will be linked with
the libLLVM shared library." Rust doesn't ship any of the LLVM tools,
and only needs a few at all for some test cases, so statically linking
the tools is just a waste of space. I've also had memory issues on
slower machines with LLVM debuginfo enabled, when several tools start
linking in parallel consuming several GBs each.
With the default configuration, `build/x86_64-unknown-linux-gnu/llvm`
was 1.5GB before, now down to 731MB. The difference is more drastic
with `--enable-llvm-release-debuginfo`, from 28GB to "only" 13GB.
This does not change the linking behavior of `rustc_llvm`.
Add a more precise error message for issue #35976
When trying to perform static dispatch on something which derefs to a trait object, and the target trait is not in scope, we had confusing error messages if the target method had a `Self: Sized` bound. We add a more precise error message in this case: "consider using trait ...".
Fixes#35976.
r? @nikomatsakis
field does not exist error: note fields if Levenshtein suggestion fails
When trying to access or initialize a nonexistent field, if we can't infer what
field was meant (by virtue of the purported field in the source being a small
Levenshtein distance away from an actual field, suggestive of a typo), issue a
note listing all the available fields. To reduce terminal clutter, we don't
issue the note when we have a `find_best_match_for_name` Levenshtein
suggestion: the suggestion is probably right.
The third argument of the call to `find_best_match_for_name` is changed to
`None`, accepting the default maximum Levenshtein distance of one-third of the
identifier supplied for correction. The previous value of `Some(name.len())`
was overzealous, inappropriately very Levenshtein-distant suggestions when the
attempted field access could not plausibly be a mere typo. For example, if a
struct has fields `mule` and `phone`, but I type `.donkey`, I'd rather the
error have a note listing that the available fields are, in fact, `mule` and
`phone` (which is the behavior induced by this patch) rather than the error
asking "did you mean `phone`?" (which is the behavior on master). The "only
find fits with at least one matching letter" comment was accurate when it was
first introduced in 09d992471 (January 2015), but is a vicious lie in its
present context before a call to `find_best_match_for_name` and must be
destroyed (replacing every letter is within a Levenshtein distance of name.len()).
The present author claims that this suffices to resolve#42599.